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ABSTRACT. Let X be a complete connected riemannian manifold, Y a closed
submanifold, and Ny x — Y the normal bundle of Y in X. Then the exponen-
tial map expy, x : Ny,x — X is surjective. When X is a riemannian symmetric
space X = G/K , G reductive, this extends a number of decomposition theo-
rems of the form G = H -expg(sNr)- K, and when Y is totally geodesic in X it
extends a number of “Euler angle type” formulae of the form G = HAK. The
principal new features here are that H can be any reductive subgroup of G and
the symmetric space X may have compact and/or euclidean factors. There are
also some consequences for pseudo~riemannian manifolds and for open G-orbits
on complex flag manifolds G¢/@ . The papers |11} and [12] use the result with
compact factors, and [3] uses the pseudo-riemannian result.

1. Riemannian Exponential Map

Let X be a complete connected riemannian manifold. Fix a closed
submanifold Y C X. The normal bundle Ny,x — Y is the sub-bundle of
the restriction T(X)|y of the tangent bundle of X, whose fibre over y € Y
is the orthocomplement Ty (Y)* C T, (X) of the tangent space to Y at y in
the tangent space to X at y. The exponential map expy x : Ny x — X
is just the corresponding restriction of the usual riemannian exponential
map expy : T(X) — X. In this note we will see that the rather easy
theorem

Theorem 1.1. The exponential map expy x : Ny, x — X is surjective.

has a number of interesting consequences for the structure of real reductive
Lie groups. Some of these consequences were known through rather delicate
results of Mostow [4]. Others are new and are needed in [3], [11], and [12].

The case of Theorem 1.1 where Y is a single point {y}, is part of the
classical Hopf-Rinow Theorem: every point £ € X can be joined to y by a
geodesic. Our argument relies on that case. The case where X has sectional
curvature £ 0 and Y C X is a totally geodesic submanifold, was studied
by Hermann [2]; there expy x : Ny,x — X is a covering map.
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Proof. Let £ € X. Choose w € Y and let m = d(z,w) where d(-,-)
denotes riemannian distance. Then E = {v € Y | d(z,v) £ m} is compact,
so we have y € E minimizing the distance from z to any point of Y.
Now the minimizing geodesic arc from z to y has tangent vector at y that
is orthogonal to T}, (Y") inside Ty,(X). In other words, there is a tangent
vector £ € T,(Y)* such that expy x(£) = x. We have proved that = €

expy, x (Ny,x). a

2. Reductive Group Decomposition

In order to extract some structural results on Lie groups from Theorem
1.1 we fix

G : reductive Lie group,
@ : involutive automorphism of G,
(2.1) K : open subgroup of the fixed point set G®
with X = G/Kconnected, and

ds? : G-invariant f-invariant riemannian metric on X = G/K.

Let g denote the Lie algebra of G. In (2.1) there is no restriction on how
the center of g is allocated between the +1 eigenspaces of #. Compare
[8]. In any case, (X, ds?) is a connected riemannian symmetric space. The
usual case is when G is a connected semisimple Lie group with no compact
factors, 6 is a Cartan involution of G, and K = G?. Here however X could
have compact or euclidean factors, in particular could be compact. Now
fix

(2.2) H : closed f-invariant subgroup of G

and denote

Y = H(z¢) C X where =y = 1K,

23) identity coset in G/K and base point in X.

In view of (2.1), a subalgebra § C g of the Lie algebra of G is reductive
in g if and only if some conjugate Ad(g)h is 6-invariant. See [6, §12.1] for
the case where 6 is a Cartan involution; the general case follows. Let b
be the Lie algebra of H. Then (2.2) is essentially (up to conjugacy of € in
the group of automorphisms of G) equivalent to the condition that H be a
reductive subgroup of G.

Decompose the Lie algebras g and b into +1 eigenspaces of 6,

(2.4) g=t+sandh=(ENh)+(sNh)
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where £ is both the +1 eigenspace of # and the Lie algebra of K. In view
of (2.2),

(2.5a) g=h+r

where
(2.5b) Ad(H)r=rt,t=(¢Nnbh)+(¢Nt), ands=(sNh)+ (sNt).

If B denotes the positive definite bilinear form on s that corresponds to
ds? then we may assume that the decomposition (2.5) of s is an orthogonal
direct sum.

The tangent space Ty, (X) is represented by Ad(g)s for g € G. The
subspace Theo(Y) C Thzo(X) is represented by Ad(h)(s N h) whenever
h € H, and the normal space Thz,(Y)! is represented by Ad(h)(sNt). Since
X is ariemannian symmetric space, the riemannian and Lie group exponen-
tial maps are related by expy (g.£) = expg(Ad(g))K = expg(Ad(g)E)zo
whenever g € G and § € s = T, (X). Thus

Lemma 2.6. Let h € H. Then the exponential map expy x : Ny, x — X
is given on the fibre Thz,(Y)L at hxo by

expy,x (Ad(h)§) = expg(Ad(h)€)ho
= hexpg(€)zo for £ € (sNt).

Theorem 1.1 and Lemma 2.6 combine to give the first statement of
Theorem 2.7 below, and the second statement follows from the first by
gr—g7h
Theorem 2.7. G = H -expg(sNt) - K in the sense that ¢ : (h,&, k) —
h expg(&) k is a real analytic map of H x (s Nt) X K onto G. Similarly
G =K -expg(snrt)-H.

{Of course ¢ cannot be injective: if £ € HN K then ¢(¢,0,1) = ¢(1,0,¢).}

3. Pseudo-Riemannian Exponential Map

As G isreductive and X = G/ K is riemannian symmetric, the riemann-
ian metric ds® comes from a nondegenerate Ad(G)-invariant symmetric bi-
linear form (again call it 3) on g. The restriction of 3 to ¢ is nondegenerate
because H is reductive in G. Now we have a pseudo-riemannian manifold

(3.1) D = G/H with metric do? defined by 3|; .
(D, do?) has a compact totally geodesic submanifold

(3.2) FE = K(dy) C D where dy = 1H € G/H is the base point in D.
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This situation is especially interesting when D is an open G-orbit on a
complex flag manifold G¢/Q ; then E is a maximal compact subvariety and
its Gc—translates inside D carry a lot of geometric and analytic information
on both G and D. Compare (3], [7}, [8], [9], [10] and [12].

As before, we have the normal bundle Ng p — D, sub-bundle of the
restriction T(D)|r of the tangent bundle of D, whose fibre over d € D
is the orthocomplement Ty(E)* C Ty(D) of the tangent space to E at
d in the tangent space to D at d. Here it is important to notice that
T4(E) is a do?-nondegenerate subspace of Ty(D). The exponential map
expg p : Ng,p — D again is just the corresponding restriction of the usual
exponential map expp : T(D) — D. As in Lemma 2.6,

Lemma 3.3. Let k € K. Then the exponential map expgp:Ngp— D
is given on the fibre Tyq, (E)* at kdy by
expp, p(Ad(K)E) = expg(Ad(k)E)kdo = kexpg(€)do for € € (5 M),
Lemma 3.3 combines with the second statement of Theorem 2.7 to

yield

Theorem 3.4. The exponential map expg p : Ng,p — D is surjective.

4. Symmetric Space Case and Euler Angle Decompositions

Now consider the case where D = G/H is a pseudo-riemannian sym-
metric space. In other words, there is an involutive automorphism 7 of G
such that H is an open subgroup of the fixed point set G”. Then 7 and 6
commute because §(H) = H, and t is the —1 eigenspace of 7 on g.

Decompose the Lie algebra g into *1 eigenspaces of 8 and 7,

(4.1) g=Ct+s=h+e=(ENH+(ENt)+(sNh)+(sNr).

Let L c G™ be the identity component of the fixed point set of T8.
Its Lie algebra [ = (N h) + (s Nx) and L(zo) = L/(K N L) is riemannian
symmetric. Denote

(4.2) a: maximal abelian subspace of s Nt and A = expg(a)

Then it is standard that a is unique up to (K N L)-conjugacy and L =
(KNL)A(KNL). But KN L is a maximal compactly embedded subgroup
of L, hence connected because L is connected, so (KN L) € (K N H). As
expg(sNt) C L, this combines with Theorem 2.7 to yield

Theorem 4.3. G = HAK = KAH as in Theorem 2.7.

In case K = H this is the classical “Cartan decomposition”, general-
izing the Euler angle decomposition of SO(3). In case G is a connected
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semisimple group of noncompact type and with finite center, decomposi-
tions of this sort derive from results of Mostow [4] and have been used
extensively in representation theory. See [1] and [5]. When G is compact,
the decomposition seems to be new.
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