Riemannian Exponential Maps and Decompositions of Reductive Lie Groups

Joseph A. Wolf and Roger Zierau

ABSTRACT. Let X be a complete connected riemannian manifold, Y a closed submanifold, and $\mathbb{N}_{Y,X} \to Y$ the normal bundle of Y in X. Then the exponential map $\exp_{Y,X}: \mathbb{N}_{Y,X} \to X$ is surjective. When X is a riemannian symmetric space X = G/K, G reductive, this extends a number of decomposition theorems of the form $G = H \cdot \exp_G(\mathfrak{s} \cap \mathfrak{r}) \cdot K$, and when Y is totally geodesic in X it extends a number of "Euler angle type" formulae of the form G = HAK. The principal new features here are that H can be any reductive subgroup of G and the symmetric space X may have compact and/or euclidean factors. There are also some consequences for pseudo-riemannian manifolds and for open G-orbits on complex flag manifolds G_C/Q . The papers [11] and [12] use the result with compact factors, and [3] uses the pseudo-riemannian result.

1. Riemannian Exponential Map

Let X be a complete connected riemannian manifold. Fix a closed submanifold $Y \subset X$. The **normal bundle** $\mathbb{N}_{Y,X} \to Y$ is the sub-bundle of the restriction $\mathbb{T}(X)|_Y$ of the tangent bundle of X, whose fibre over $y \in Y$ is the orthocomplement $T_y(Y)^{\perp} \subset T_y(X)$ of the tangent space to Y at y in the tangent space to X at y. The **exponential map** $\exp_{Y,X} : \mathbb{N}_{Y,X} \to X$ is just the corresponding restriction of the usual riemannian exponential map $\exp_X : \mathbb{T}(X) \to X$. In this note we will see that the rather easy theorem

Theorem 1.1. The exponential map $\exp_{Y,X} : \mathbb{N}_{Y,X} \to X$ is surjective.

has a number of interesting consequences for the structure of real reductive Lie groups. Some of these consequences were known through rather delicate results of Mostow [4]. Others are new and are needed in [3], [11], and [12].

The case of Theorem 1.1 where Y is a single point $\{y\}$, is part of the classical Hopf-Rinow Theorem: every point $x \in X$ can be joined to y by a geodesic. Our argument relies on that case. The case where X has sectional curvature ≤ 0 and $Y \subset X$ is a totally geodesic submanifold, was studied by Hermann [2]; there $\exp_{Y,X} : \mathbb{N}_{Y,X} \to X$ is a covering map.

Research partially supported by N.S.F. Grants DMS 93 21285 (JAW) and DMS 93 03224 (RZ). The second author thanks the MSRI for hospitality during the fall of 1994.

Proof. Let $x \in X$. Choose $w \in Y$ and let m = d(x, w) where $d(\cdot, \cdot)$ denotes riemannian distance. Then $E = \{v \in Y \mid d(x, v) \leq m\}$ is compact, so we have $y \in E$ minimizing the distance from x to any point of Y. Now the minimizing geodesic arc from x to y has tangent vector at y that is orthogonal to $T_y(Y)$ inside $T_y(X)$. In other words, there is a tangent vector $\xi \in T_y(Y)^{\perp}$ such that $\exp_{Y,X}(\xi) = x$. We have proved that $x \in \exp_{Y,X}(\mathbb{N}_{Y,X})$.

2. Reductive Group Decomposition

In order to extract some structural results on Lie groups from Theorem 1.1 we fix

G: reductive Lie group,

 θ : involutive automorphism of G,

(2.1) K: open subgroup of the fixed point set G^{θ} with X = G/K connected, and

 $ds^2:G$ –invariant θ –invariant riemannian metric on X=G/K.

Let $\mathfrak g$ denote the Lie algebra of G. In (2.1) there is no restriction on how the center of $\mathfrak g$ is allocated between the ± 1 eigenspaces of θ . Compare [8]. In any case, (X, ds^2) is a connected riemannian symmetric space. The usual case is when G is a connected semisimple Lie group with no compact factors, θ is a Cartan involution of G, and $K = G^{\theta}$. Here however X could have compact or euclidean factors, in particular could be compact. Now fix

(2.2)
$$H: \operatorname{closed} \theta$$
-invariant subgroup of G

and denote

(2.3)
$$Y = H(x_0) \subset X \text{ where } x_0 = 1K,$$
 identity coset in G/K and base point in X .

In view of (2.1), a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ of the Lie algebra of G is reductive in \mathfrak{g} if and only if some conjugate $\mathrm{Ad}(g)\mathfrak{h}$ is θ -invariant. See [6, §12.1] for the case where θ is a Cartan involution; the general case follows. Let \mathfrak{h} be the Lie algebra of H. Then (2.2) is essentially (up to conjugacy of θ in the group of automorphisms of G) equivalent to the condition that H be a reductive subgroup of G.

Decompose the Lie algebras \mathfrak{g} and \mathfrak{h} into ± 1 eigenspaces of θ ,

(2.4)
$$\mathfrak{g} = \mathfrak{k} + \mathfrak{s} \text{ and } \mathfrak{h} = (\mathfrak{k} \cap \mathfrak{h}) + (\mathfrak{s} \cap \mathfrak{h})$$

where \mathfrak{k} is both the +1 eigenspace of θ and the Lie algebra of K. In view of (2.2),

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{r}$$

where

(2.5b)
$$\operatorname{Ad}(H)\mathfrak{r} = \mathfrak{r}$$
, $\mathfrak{k} = (\mathfrak{k} \cap \mathfrak{h}) + (\mathfrak{k} \cap \mathfrak{r})$, and $\mathfrak{s} = (\mathfrak{s} \cap \mathfrak{h}) + (\mathfrak{s} \cap \mathfrak{r})$.

If β denotes the positive definite bilinear form on \mathfrak{s} that corresponds to ds^2 then we may assume that the decomposition (2.5) of \mathfrak{s} is an orthogonal direct sum.

The tangent space $T_{gx_0}(X)$ is represented by $\mathrm{Ad}(g)\mathfrak{s}$ for $g\in G$. The subspace $T_{hx_0}(Y)\subset T_{hx_0}(X)$ is represented by $\mathrm{Ad}(h)(\mathfrak{s}\cap\mathfrak{h})$ whenever $h\in H$, and the normal space $T_{hx_0}(Y)^{\perp}$ is represented by $\mathrm{Ad}(h)(\mathfrak{s}\cap\mathfrak{r})$. Since X is a riemannian symmetric space, the riemannian and Lie group exponential maps are related by $\exp_X(g_*\xi)=\exp_G(\mathrm{Ad}(g)\xi)K=\exp_G(\mathrm{Ad}(g)\xi)x_0$ whenever $g\in G$ and $\xi\in\mathfrak{s}=T_{x_0}(X)$. Thus

Lemma 2.6. Let $h \in H$. Then the exponential map $\exp_{Y,X} : \mathbb{N}_{Y,X} \to X$ is given on the fibre $T_{hx_0}(Y)^{\perp}$ at hx_0 by

$$\exp_{Y,X}(\mathrm{Ad}(h)\xi) = \exp_G(\mathrm{Ad}(h)\xi)hx_0$$
$$= h\exp_G(\xi)x_0 \text{ for } \xi \in (\mathfrak{s} \cap \mathfrak{r}).$$

Theorem 1.1 and Lemma 2.6 combine to give the first statement of Theorem 2.7 below, and the second statement follows from the first by $g \mapsto g^{-1}$.

Theorem 2.7. $G = H \cdot \exp_G(\mathfrak{s} \cap \mathfrak{r}) \cdot K$ in the sense that $\phi : (h, \xi, k) \mapsto h \exp_G(\xi)$ k is a real analytic map of $H \times (\mathfrak{s} \cap \mathfrak{r}) \times K$ onto G. Similarly $G = K \cdot \exp_G(\mathfrak{s} \cap \mathfrak{r}) \cdot H$.

{Of course ϕ cannot be injective: if $\ell \in H \cap K$ then $\phi(\ell, 0, 1) = \phi(1, 0, \ell)$.}

3. Pseudo-Riemannian Exponential Map

As G is reductive and X = G/K is riemannian symmetric, the riemannian metric ds^2 comes from a nondegenerate Ad(G)-invariant symmetric bilinear form (again call it β) on \mathfrak{g} . The restriction of β to \mathfrak{r} is nondegenerate because H is reductive in G. Now we have a pseudo-riemannian manifold

(3.1)
$$D = G/H \text{ with metric } d\sigma^2 \text{ defined by } \beta|_{\mathfrak{r}} .$$

 $(D, d\sigma^2)$ has a compact totally geodesic submanifold

(3.2)
$$E = K(d_0) \subset D$$
 where $d_0 = 1H \in G/H$ is the base point in D .

This situation is especially interesting when D is an open G-orbit on a complex flag manifold $G_{\mathbb{C}}/Q$; then E is a maximal compact subvariety and its $G_{\mathbb{C}}$ -translates inside D carry a lot of geometric and analytic information on both G and D. Compare [3], [7], [8], [9], [10] and [12].

As before, we have the normal bundle $\mathbb{N}_{E,D} \to D$, sub-bundle of the restriction $\mathbb{T}(D)|_E$ of the tangent bundle of D, whose fibre over $d \in D$ is the orthocomplement $T_d(E)^{\perp} \subset T_d(D)$ of the tangent space to E at d in the tangent space to D at d. Here it is important to notice that $T_d(E)$ is a $d\sigma^2$ -nondegenerate subspace of $T_d(D)$. The exponential map $\exp_{E,D}: \mathbb{N}_{E,D} \to D$ again is just the corresponding restriction of the usual exponential map $\exp_D: \mathbb{T}(D) \to D$. As in Lemma 2.6,

Lemma 3.3. Let $k \in K$. Then the exponential map $\exp_{E,D} : \mathbb{N}_{E,D} \to D$ is given on the fibre $T_{kd_0}(E)^{\perp}$ at kd_0 by

$$\exp_{E,D}(\mathrm{Ad}(k)\xi)=\exp_G(\mathrm{Ad}(k)\xi)kd_0=k\exp_G(\xi)d_0\ for\ \xi\in (\mathfrak s\cap \mathfrak r).$$

Lemma 3.3 combines with the second statement of Theorem 2.7 to yield

Theorem 3.4. The exponential map $\exp_{E,D}: \mathbb{N}_{E,D} \to D$ is surjective.

4. Symmetric Space Case and Euler Angle Decompositions

Now consider the case where D = G/H is a pseudo-riemannian symmetric space. In other words, there is an involutive automorphism τ of G such that H is an open subgroup of the fixed point set G^{τ} . Then τ and θ commute because $\theta(H) = H$, and τ is the -1 eigenspace of τ on \mathfrak{g} .

Decompose the Lie algebra g into ± 1 eigenspaces of θ and τ ,

$$(4.1) g = \mathfrak{k} + \mathfrak{s} = \mathfrak{h} + \mathfrak{r} = (\mathfrak{k} \cap \mathfrak{h}) + (\mathfrak{k} \cap \mathfrak{r}) + (\mathfrak{s} \cap \mathfrak{h}) + (\mathfrak{s} \cap \mathfrak{r}).$$

Let $L \subset G^{\tau\theta}$ be the identity component of the fixed point set of $\tau\theta$. Its Lie algebra $\mathfrak{l} = (\mathfrak{k} \cap \mathfrak{h}) + (\mathfrak{s} \cap \mathfrak{r})$ and $L(x_0) \cong L/(K \cap L)$ is riemannian symmetric. Denote

(4.2)
$$\mathfrak{a}$$
: maximal abelian subspace of $\mathfrak{s} \cap \mathfrak{r}$ and $A = \exp_{G}(\mathfrak{a})$

Then it is standard that \mathfrak{a} is unique up to $(K \cap L)$ -conjugacy and $L = (K \cap L)A(K \cap L)$. But $K \cap L$ is a maximal compactly embedded subgroup of L, hence connected because L is connected, so $(K \cap L) \subset (K \cap H)$. As $\exp_G(\mathfrak{s} \cap \mathfrak{r}) \subset L$, this combines with Theorem 2.7 to yield

Theorem 4.3.
$$G = HAK = KAH$$
 as in Theorem 2.7.

In case K = H this is the classical "Cartan decomposition", generalizing the Euler angle decomposition of SO(3). In case G is a connected

semisimple group of noncompact type and with finite center, decompositions of this sort derive from results of Mostow [4] and have been used extensively in representation theory. See [1] and [5]. When G is compact, the decomposition seems to be new.

References

- [1] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Annals of Math. 111 (1980), 253-311.
- [2] R. Hermann, Homogeneous Riemannian manifolds of non-positive sectional curvature, Proc. Koninkl. Nederl. Akad. Wet. Ser. A 66 (1963), 47-56.
- [3] C. Leslie, Geometry of open orbits in complex flag manifolds, thesis in preparation.
- [4] G. D. Mostow, Some new decomposition theorems for semisimple Lie groups. In "Lie Groups and Lie Algebras", Mem. Amer. Math. Soc. 14 (1955), 31-54.
- [5] J. Rawnsley, W. Schmid and J. A. Wolf, Singular unitary representations and indefinite harmonic theory, J. Functional Analysis 51 (1983), 1-114.
- [6] J. A. Wolf, Spaces of Constant Curvature, Fifth Edition, Publish or Perish, 1984.
- [7] _____, The action of a real semisimple Lie group on a complex manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237.
- [8] ______, The action of a real semisimple Lie group on a complex manifold, II: Unitary representations on partially holomorphic co-homology spaces, Memoirs Amer. Math. Soc. 138 (1974).
- [9] _____, The Stein condition for cycle spaces of open orbits on complex flag manifolds, Annals of Math. 136 (1992), 541-555.
- [10] _____, Exhaustion functions and cohomology vanishing theorems for open orbits on complex flag manifolds, Mathematical Research Letters 2 (1995), 179-191.
- [11] J. A. Wolf and R. Zierau, Cayley transforms and orbit structure in complex flag manifolds, to appear.
- [12] _____, Linear cycle spaces in flag domains, in preparation.

Department of Mathematics University of California Berkeley, California 94720 Department of Mathematics Oklahoma State University Stillwater, Oklahoma 74074

jawolf@math.berkeley.edu

zierau@math.okstate.edu

Received June 1995; revised November 1995

Dedicated to our dear Friend and Colleague

Joseph D'Atri 1938–1993 Reprinted from:

Progress in Nonlinear Differential Equations Volume 20

Topics in Geometry:

In Memory of Joseph D'Atri

Editor: Simon Gindikin

Printed in the United States of America

© 1996 Birkhäuser Boston • Basel • Berlin