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EXHAUSTION FUNCTIONS AND

COHOMOLOGY VANISHING THEOREMS

FOR OPEN ORBITS ON COMPLEX FLAG MANIFOLDS

Joseph A. Wolf

A bstract . Let G0 be a real semisimple Lie group, let R be a parabolic
subgroup of the complexification G of G0 , let D be an open G0-orbit in
the complex flag manifold X = G/R, and let Y be a maximal compact
linear subvariety of D. First, an explicit parabolic subgroup Q ⊂ R ⊂ G is
constructed so that the open G0-orbits on W = G/Q are measurable and

one such orbit D̃ = G0(w) ⊂ W maps onto D with affine fibre. Second, it
is shown that D is (s + 1)-complete in the sense of Andreotti and Grauert,
s = dim

C
Y ; thus cohomologies Hq(D;F) = 0 for q > s whenever F → D

is a coherent analytic sheaf. This was known [7] for the case of measurable

open orbits, and the proof uses that result on D̃. Third, it is shown that
the space MD of compact linear subvarieties of D is a Stein manifold. For
that, a strictly plurisubharmonic exhaustion function is constructed as in
the argument [9] for the case of measurable open orbits.

1. Background and statement of results

Let G0 be a connected reductive real Lie group, g0 its real Lie algebra,
and g = g0⊗RC the complexification. As usual, Int(g) denotes the complex
connected semisimple Lie group of all inner automorphisms of g, consisting
of the Ad(g) as g runs over any connected Lie group G with Lie algebra g.
Given

(1.1) r : parabolic subalgebra of g

we have the complex flag manifold

(1.2) X = G/R : all Int(g)-conjugates of r

where R is the parabolic subgroup of G that is the analytic subgroup for r.
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G0 acts on X through its adjoint action on g. Since we will only be
interested in the G-orbits and their structure, we may, and do, assume
that

(1.3) G is connected, simply connected and semisimple, and G0 ⊂ G .

The G0-orbit structure of X is well understood [8]. There are only
finitely many orbits; in particular, there are open orbits. If x ∈ X let rx

be the corresponding parabolic subalgebra of g; that is, if x = gR then
rx = Ad(g)r. Let ξ �→ ξ denote complex conjugation of g over g0. Then
rx ∩ rx contains a Cartan subalgebra of g of the form h = h0 ⊗R C where h0

is a Cartan subalgebra of g0. Let ∆ = ∆(g, h) denote the root system. Fix

(1.4a) ∆+ = ∆+(g, h) : positive root system

such that the corresponding1 Borel subalgebra

(1.4b) b = h +
∑

α∈∆+

g−α is contained in rx.

Then there is a unique set Φ of simple roots such that

(1.5a) rx = rr
x + r−n

x , rr
x = h +

∑
α∈Φr

gα, r−n
x =

∑
β∈Φn

g−β

where

(1.5b)
Φr consists of all roots that are linear combinations from Φ ,

Φn consists of all positive roots that are not contained in Φr.

Here r−n
x is the nilradical of rx and rr

x is a reductive complement. Given h

and ∆+(g, h), every parabolic subalgebra of g is Int(g)-conjugate to one of
the form (1.5), for a unique set Φ of simple roots.

In the context of (1.4), one knows [8, Theorem 4.5] that

(1.6) G0(x) is open in X if and only if

we can choose h and ∆+ such that ∆+ = −∆+.

1Our parabolic subalgebras, which include Borel subalgebras, have nilradicals that
are sums of negative root spaces. This is so that holomorphic tangent spaces will be
spanned by positive root spaces, so that in turn, positive linear functionals will corre-
spond to positive vector bundles.
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Here note that ∆+ = −∆+ implies that h0 contains a regular elliptic ele-
ment, so that h0 is a fundamental (as compact as possible) Cartan subal-
gebra of g0. Fix

(1.7)

D = G0(x) ⊂ X : open real group orbit on X,

h, ∆+ : Cartan subalgebra and positive root system, and
K0 : maximal compact subgroup of G0

such that k0 ∩ h is a Cartan subalgebra of k0 . Here k0 and k = k0 ⊗ C are
the real and complexified Lie algebras of K0. The isotropy subgroup of G0

at x is G0 ∩ Rx , which has Lie algebra g0 ∩ rx . Now

(1.8) D ∼= G0/(G0∩Rx) and G0∩Rx has complexified Lie algebra rx∩rx.

Most of the work on open orbits has been done in the case [8, §6] of a
measurable open orbits—the case where D carries a G0-invariant measure.
If D is measurable then, in fact, the measure is induced by the volume
form of a G0-invariant indefinite-kähler metric. The following conditions
are equivalent, and D is measurable if and only if they hold [8, Theorem
6.3].

(1.9)

G0 ∩ Rx is the centralizer of a torus subgroup of K0 ∩ Rx,

rx ∩ rx is reductive,
rx ∩ rx = rr

x,

rn
x = r−n

x where rn
x =

∑
β∈Φn gβ .

In general, D = G0(x) is open in X if and only if rn
x ⊂ rx, which is implied

by the last of the conditions (1.9). For rn
x represents the holomorphic

tangent space to X at x, thus to D at x in the case of an open orbit, so in
that case rn

x represents the antiholomorphic tangent space.
The conditions (1.9) are automatic if K0 contains a Cartan subgroup of

G0, that is, if rankK = rankG, in particular if G0 ∩Rx is compact. They
are also automatic if R is a Borel subgroup of G. More generally, they are
equivalent [8, Theorem 6.7] to the condition that r be Int(g)-conjugate to
the parabolic subalgebra

(1.10) r− = rr + rn where rn =
∑

β∈Φn gβ

of g that is called the opposite of r.
Compare (1.10) with (1.5): r and r− have the same reductive part, but

their nilradicals are “opposite” so that g is the vector space direct sum of
rr, r−n and rn.
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Whether D is measurable or not, k ∩ rx is a parabolic subalgebra of k,
for ∆+ consists of all roots whose value on some element ξ ∈ k0 ∩ h has
positive imaginary part. It follows that

(1.11)
Y = K0(x) ∼= K0/(K0 ∩ Rx) ∼= K/(K ∩ Rx)

is a complex submanifold of D.

Furthermore, Y is not contained in any compact complex submanifold of
D of greater dimension. So Y is a maximal compact subvariety of D. We
will refer to

(1.12) MD = {gY | g ∈ G and gY ⊂ D}

as the linear cycle space or the space of maximal compact linear subvarieties
of D. Since Y is compact and D is open in X, MD is open in

(1.13a) MX = {gY | g ∈ G} ∼= G/L

where

(1.13b) L = {g ∈ G | gY = Y }, closed complex subgroup of G.

Thus MD has the natural structure of a complex manifold. The point of
this paper is to prove

1.14. Theorem. Let D = G0(x) ⊂ X, open orbit on the complex flag
X = G/R. Let Y = K0(x), maximal compact subvariety, as above. Denote
n = dimC D and s = dimC Y . Then D is (s + 1)-complete in the sense
of Andreotti and Grauert [1]: there is an exhaustion function φ : D → R

whose Levi form L(φ) =
√
−1∂∂φ has at least n − s eigenvalues � 0. In

particular, if F → D is a coherent analytic sheaf and q > s then the sheaf
cohomology Hq(D;F) = 0.

Schmid and I proved this theorem some years ago [7] for measurable
open orbits.

1.15. Theorem. Let D be an open G-orbit on a complex flag manifold
X = G/R. Then the linear cycle space MD is a Stein manifold.

I proved this a couple of years ago [9] in the case where the open orbit
D is measurable.
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2. The overlying measurable orbit

In this section we show that an arbitrary open orbit D = G0(x) ⊂ X

is the base of a canonical holomorphic fibration πD : D̃ → D where D̃ is
a measurable open G0-orbit in a certain flag manifold W that lies over X.
We then take a close look at that fibration and its relation to the maximal
compact linear subvarieties.

Fix the open orbit D = G0(x) ⊂ X = G/R and consider the parabolic
subalgebra r− = rr + rn ⊂ g opposite to rx = r = rr + r−n . Denote

(2.1a) q = r ∩ r− .

As D is open, so r−n ∩ r−n = 0, q is the sum of a nilpotent ideal q−n and
a reductive subalgebra qr given by
(2.1b)

qr = rr ∩ rr and

q−n = (rr ∩ rn) + (r−n ∩ rr) + (r−n ∩ rn) = (rr ∩ rn) + r−n.

2.2. Lemma. q is a parabolic subalgebra of g , and q ∩ q = rr ∩ rr, which
is reductive.

Proof. By construction q is the sum of the parabolic subalgebra (rr ∩ rr)+
(rr ∩ rn) of rr with the nilradical r−n of r. The assertion follows. �

Let Q denote the parabolic subgroup of G corresponding to q ⊂ g and
let W denote the corresponding flag manifold G/Q. Our choice of R was
such that r = rx where x ∈ X and D = G0(x) is the open orbit under
study. Let’s check that we have implicitly made the corresponding choice
on W .

2.3. Lemma. Define w ∈ W by q = qw . Then D̃ = G0(w) is a measur-
able open G0-orbit on W , and gw �→ gx defines a surjective holomorphic
projection πD : D̃ → D. Finally, the following are equivalent: (i) D is
measurable, (ii) D̃ = D, (iii) πD is one to one, and (iv) Q = R.

Proof. To see that q ∩ q is reductive we compute

q ∩ q = (r ∩ r−) ∩ (r ∩ r−) = (r ∩ r−) ∩ (r ∩ r−) = rr ∩ rr = qr.

Now G0(w) = D̃ is a measurable open orbit. As Q ⊂ R we have the natural
projection of W onto X:

πX : W → X by πX(gw) = gx,
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in other words

πX : G/Q → G/R by πX(gQ) = gR.

It is holomorphic, and πD is the restriction of πX to the open orbit D̃, thus
also holomorphic. Further, πD is surjective by construction. Finally, the
equivalence statement is immediate. �
2.4. Lemma. Let u = (rr ∩ r−n) + (r−n ∩ rr), nilradical of r ∩ r, and
let U be the corresponding complex analytic subgroup of G. Then U is
unipotent, u0 = g0 ∩ u is a real form of u, U0 = G0 ∩ U is a real form
of U , U(w) = U0(w), and πD : D̃ → D is a holomorphic fibre bundle
with structure group U and affine fibres π−1

D (gx) = gU0(w). If g ∈ G0

then the holomorphic tangent space to gU0(w) at g(w) is represented by
Ad (g)(r ∩ r−n) and the antiholomorphic tangent space is represented by
Ad (g)(r ∩ rn).

Proof. Here U is the nilradical of R ∩ R so U0 = G0 ∩ U is the nilradical
of the isotropy subgroup G0 ∩ R and is a real form of U . Note u = v + v

where v = rr ∩ r−n = u∩ qn, and where v = u∩ q−n. Both are subalgebras;
v represents the holomorphic tangent space of U0(w) at w and v represents
the antiholomorphic tangent space. Note [v, v] = 0.

Now U(w) = V (w) = U0(w) is the fibre over x of πD : D̃ → D, and
G0 ∩ R is the semidirect product of its unipotent radical U0 and a Levy
complement G0 ∩ Q. Thus πD : D̃ → D satisfies π−1

D (g · (G0 ∩ R)) =
gU0 · (G0 ∩ Q); in terms of the complex groups this is the same as gV · Q.
Now we can express πD as quotient of G0/(G0 ∩Q) by the action of U0 on
the right. Thus, the surjective holomorphic map πD is the projection of a
principle U0-bundle. The assertions follow. �
2.5. Lemma. Denote Ỹ = K0(w). Then Ỹ = K(w), Ỹ is a maximal
compact complex subvariety of D̃, and πD|Ỹ is a biholomorphic diffeomor-
phism of Ỹ onto Y .

Proof. The first two assertions are the analog of (1.11) for D̃. As πD(kw) =
kx it is clear that πD(Ỹ ) = Y . The restriction πD|Ỹ is nonsingular by
homogeneity, and is injective because the compact affine subvariety Ỹ ∩
U0(w) must be reduced to a point. The third assertion follows. �
2.6. Lemma. Let MD̃ denote the linear cycle space of D̃, as in (1.12).
Then πD induces a finite covering π̇D : MD̃ → M ′

D where M ′
D is an open

subset of MD .

Proof. Let g ∈ G. Then gỸ ∈ MD̃ if and only if gK0Q ⊂ G0Q. Similarly
gY ∈ MD if and only if gK0R ⊂ G0R. Note that gk0Q ⊂ G0Q implies
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gk0R = gk0QR ⊂ G0QR = G0R. Thus gỸ ∈ MD̃ implies gY ∈ MD . Now
πD induces a map of π̇D : MD̃ → MD .

Let M ′
D denote the image of π̇D . Let L and L̃ denote the respective

G-stabilizers of Y and Ỹ . Then [9, (1.4)] shows that L̃ is a subgroup of
finite index in L, so π̇D is the restriction to an open set of the finite cover
G/L̃ → G/L. Now M ′

D is open in MD, and π̇D restricts on each topological
component of π̇−1

D (M ′
D) to a covering of M ′

D . �

3. Pushing down the exhaustion function

Recall the result of [7], which applies to measurable open orbits. It says
that the measurable open orbit D̃ = G0(w) ⊂ W carries a real analytic
exhaustion function φ̃, constructed as follows.

Let Q = Qw be given by a set Γ of simple roots relative to a Cartan
subalgebra h0 ⊂ g0 ∩ q and a positive root system such that ∆+ = −∆+,
in the way that R = Rx is described in (1.5) by the set Φ. Here Γ ⊂ Φ.

Let λ = 2ρG/Qr , sum of the roots in Γn. The corresponding holomorphic
line bundles over D̃ and W are the duals K

∗
D̃

→ D̃ and K
∗
W → W of the

canonical line bundles. As eλ : H0 → C
× is unitary we have

(3.1a) h0 : G0-invariant hermitian metric on K
∗
D̃

→ D̃,

and K
∗
D̃

→ D̃ has curvature form

(3.1b) ω0 = 2π
√
−1d0λ = −∂∂ log h0

where d0 refers to Lie algebra cohomology of g0 . The maximal compact
subgroup K0 ⊂ G0 is the fixed point set of a Cartan involution θ of G0. Here
we may assume that θ(H0) = H0 . On the Lie algebra level, g0 = k0 + p0

where p0 is the (−1)-eigenspace of dθ, and gu = k0 +
√
−1p0 is the Lie

algebra of a compact real form Gu of G. eλ remains a well defined unitary
character on the Cartan subgroup Hu of Gu with Lie algebra hu = (h0 ∩
k0) +

√
−1(h0 ∩ p0). Thus we have

(3.2a) hu : Gu-invariant hermitian metric on K
∗
W → W,

and K
∗
W → W has curvature form

(3.2b) ωu = 2π
√
−1duλ = −∂∂ log hu.

If ξ and η are holomorphic tangent vectors to W at w, say

(3.3a) ξ =
∑

α∈Γn

ξα ∈ qn and η =
∑

α∈Γn

ηα ∈ qn where ξα, ηα ∈ gα ,
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then

(3.3b)

√
−1∂∂ log h0(ξ, η) = π

∑
α,β∈Γn

(λ, α)〈ξα, ηβ〉 and

√
−1∂∂ log hu(ξ, η) = π

∑
α,β∈Γn

(λ, α)〈ξα, ηβ〉

where ηβ refers to complex conjugation of g over g0 and ηβ refers to con-
jugation over gu . Here λ = −λ and Γn = −Γn = Γn. The parabolic
subalgebra q is θ-stable, in particular θqn = qn, so qn = (qn ∩ k) + (qn ∩ p).

The hermitian form
√
−1∂∂ log h0 is negative definite on qn ∩ k and

positive definite on qn ∩ p, while
√
−1∂∂ log hu is negative definite on all of

qn. More precisely,

(3.4a)
√
−1∂∂ log h0(ξ, η) =

√
−1∂∂ log hu(ξ, η) (ξ, η ∈ qn ∩ k, η = η),

(3.4b)
√
−1∂∂ log h0(ξ, η) =

√
−1∂∂ log hu(ξ, η) (ξ, η ∈ qn ∩ p, η = −η),

and

(3.4c)
√
−1∂∂ log h0(qn ∩ k, qn ∩ p) = 0 =

√
−1∂∂ log hu(qn ∩ k, qn ∩ p).

This last uses the hermitian property of
√
−1∂∂ log h0 and of

√
−1∂∂ log hu .

We now recall the argument of ([6], [7]) for

3.5. Lemma. Define φ̃ : D̃ → R by φ̃ = log(h0/hu). Then its Levi form

(3.6) L(φ̃) =
√
−1∂∂φ̃ =

√
−1∂∂ log h0 −

√
−1∂∂ log hu

is positive semi-definite with at least ñ − s̃ eigenvalues > 0, where ñ =
dimC D̃ and s̃ = dimC Ỹ . On the holomorphic tangent space to D̃ at w it
is positive semi-definite, zero on rn∩ k and positive definite on rn∩p. More
generally, if g ∈ G0 then L(φ̃) is positive definite along the subspace of the
holomorphic tangent space that corresponds to Ad(g)(rn ∩ p).

Proof. The assertions at w are the content of (3.4). The holomorphic tan-
gent space to D̃ at g(w) is represented by Ad(g)rn for any element g ∈ G

of the complex group such that g(w) ∈ D̃. Now let z ∈ D̃, say with
g0(w) = z = gu(w) where g0 ∈ G0 and gu ∈ Gu . Let ξ and η belong to the
holomorphic tangent space of D̃ at z and represent

Ad(g0)ξ0 = ξ = Ad(gu)ξu and Ad(g0)η0 = η = Ad(gu)ηu
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where ξ0, ξu, η0, ηu ∈ rn . Then the invariance properties of h0 and hu say
that

√
−1∂∂ log h0(ξ, η) =

√
−1∂∂ log h0(ξ0, η0) and

√
−1∂∂ log hu(ξ, η) =

√
−1∂∂ log hu(ξu, ηu).

Now
√
−1∂∂ log h0 is positive-definite on the ñ − s̃-dimensional subspace

Ad(g0)(qn ∩ p) of the holomorphic tangent space Ad(g0)qn at z, transver-
sal to the homomorphic tangent space Ad(g0)(qn ∩ k) to g0Y at z, and√
−1∂∂ log hu is negative-definite on the entire holomorphic tangent space

at z. So the difference, which is L(φ̃), is at least positive definite on that
transversal. �

The next step is to push φ̃ down to a smooth exhaustion function on D.

3.7. Lemma. If g ∈ G0 then
√
−1∂∂ log h0|gU0(w) = 0.

Proof. The holomorphic tangent space u∩ qn = rr ∩ r−n to U0(w) at w has
basis given by elements ξα ∈ gα as α runs over Γn = Φr ∩−Φn. Let α, β ∈
Γn. If ξβ ∈ g−α then α ∈ Φr∩Φn, so then α ∈ Φr∩−Φn∩Φr∩Φn ⊂ Γr∩Γn,
which is empty. Now use (3.3b) to see

√
−1∂∂ log h0(ξα, ξβ) = 0. Take

linear combinations to conclude that
√
−1∂∂ log h0|U0(w) is identically zero

at w. As
√
−1∂∂ log h0 is G0-invariant,

√
−1∂∂ log h0|gU0(w) is identically

zero at gw, for every g ∈ G0. That proves our assertion. �

3.8. Lemma. If g ∈ G0 then L(φ̃)|gU0(w) is positive definite.
This shows in particular that the fibres gU0(w) of πD : D̃ → D are Stein
manifolds. We already know that, because we knew, from unipotence of U ,
that those fibres are affine varieties.

Proof. Lemma 3.7 gives that
√
−1∂∂ log h0|gU0(w) is identically zero. Since√

−1∂∂ log hu is negative definite, so is
√
−1∂∂ log hu|gU0(w). Hence, the

difference L(φ̃)|gU0(w) =
√
−1∂∂ log h0|gU0(w) −

√
−1∂∂ log hu is positive

definite. �
3.9. Proposition. If g ∈ G0 then φ̃|gU0(w) has a unique minimum point
m(g), so the function φ : D → R given by

(3.10) φ(g(x)) = φ̃(m(g)) = min{φ̃(w′) | w′ ∈ π−1
D (g(x))}

is well defined. Also, φ is a real analytic exhaustion function on D.

Proof. Let g ∈ G0 . If c > 0 then D̃c = {w′ ∈ D̃ | φ̃(w′) � c} is compact
because φ̃ is an exhaustion function. Thus D̃ ∩ gU0(w) is compact. In
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particular φ̃|gU0(w) has an absolute minimum. Let w1 �= w2 be relative
minima of φ̃|gU0(w). Choose a smooth curve s in gU0(w) from w1 to w2 ,
say s(0) = w1 and s(1) = w2 , with s′(t) �= 0 for 0 < t < 1. Set f(t) =
dφ̃(s′(t)) = d

dt φ̃(s(t)). Then f has a relative maximum at some t0 between 0
and 1. Here we use w1 �= w2 . But Lemma 3.8 says f ′′(t) > 0 for 0 < t < 1.
Thus w1 = w2 . We have proved that φ̃gU0(w) has a unique minimum point
m(g) ∈ gU0(w).

Now φ : D → R is well defined as in (3.10). By construction, πD(D̃c) =
Dc , so Dc is compact, for every real number c > 0. Thus φ : D → R is an
exhaustion function. It remains to show that φ is Cω.

Let M = {m(g) | g ∈ G0}, the minimum locus just described. Define
ψ : G0 × U0 → R by ψ(g, u) = φ̃(gu(w)). Then M is the image under ψ
of the Cω subvariety of G0 × U0 defined by du0ψ = 0. Thus M is a Cω

subvariety of D̃. As φ · πD|M = φ̃|M now φ is Cω. �

3.11. Remark. The first part of the argument of Proposition 3.9 shows
that m(g) is the unique critical point of φ̃|gU0(w) . The second part of the
argument shows that the minimum locus M = {m(g) | g ∈ G0} is a Cω

subvariety of D̃.

4. The Levi form of the exhaustion function

Define ζ = φ · πD, so ζ : D̃ → R by ζ(g(w)) = φ̃(m(g)) = φ(πD(g(w)).
Then the holomorphic tangent spaces of the fibres of πD are in the kernel
of the Levi form L(ζ), and if g ∈ G0 then L(ζ)g(w) has the same number
of positive eigenvalues as L(φ)g(x) . This will allow us to calculate that
number.

We start with a simple remark from linear algebra, whose proof is in-
cluded only because several people have questioned this point.

4.1. Lemma. Let E be a finite dimensional vector space over a real di-
vision algebra F = R, C or H. Let 〈·, ·〉 be an hermitian form on E, say
with “signature” (p, q, z), that is, with p signs +, q signs −, and z signs
0. Let E+ be a positive definite subspace, m = dimF E+, and let E′ be a
complementary subspace of E. Suppose that 〈·, ·〉 has signature (p′, q′, z′)
on E′. Then p′ � p − m.

Proof. We can divide out the kernel of 〈·, ·〉 and assume z = 0. Let E++ be
a positive definite subspace of E of dimension p−m and orthogonal to E+,
so E+ ⊕ E++ is positive definite and its orthocomplement F is negative
definite. If {e1, . . . , em}, {em+1, . . . , ep} and {f1, . . . , fq} are respective
orthonormal bases of E+, E++ and F , then E′ has a basis of the form
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{e′1, . . . , e′p−m; f ′
1, . . . , f

′
q} with e′i = em+i + ui and f ′

i = fi + vi where
ui, vi ∈ E+.
Case 1. E++ = 0. Then m = p and the assertion reduces to p′ � 0.
Case 2. E+ = 0. Then m = 0 and p′ = p, so the assertion reduces to p � p.
Case 3. E++ �= 0 �= E+. Making an orthonormal changes of basis in E+ we
may assume that u1 is a (possibly zero) multiple of e1 , say e′1 = em+1+ae1 .
Look in {e1, em+1}⊥, with E+ replaced by Span {e2, . . . , em}, E++ replaced
by Span {em+2, . . . , ep}, and F replaced by Span {e′′2 , . . . , e′′p−m; f ′

1, . . . , f
′
q},

where e′′i = em+i + u′′
i and u′′

i is the orthogonal projection of the element
ui ∈ Span {e1, . . . , em} onto Span {e2, . . . , em}. By induction on n we have
p′ − 1 � (p − 2) − (m − 1), so p′ � p − m. �

Denote complex dimensions of our spaces by

(4.2) n = dimC D , ñ = dimC D̃ , s = dimC Y , s̃ = dimC Ỹ

where Y = K0(x) ⊂ D and Ỹ = K0(w) ⊂ D̃ are the maximal compact
subvarieties. Lemma 2.5 implies s = s̃.

4.3. Lemma. Recall the minimum locus M ⊂ D̃ of Proposition 3.9 and
Remark 3.11. Let m ∈ M and let T

(1,0)
m (M) denote the part of the holo-

morphic tangent space to D̃ tangent to M at m. Then L(φ̃)|
T

(1,0)
m (M)

has
at least n − s eigenvalues > 0.

Proof. Proposition 3.5 says that L(φ̃) has at least ñ− s̃ eigenvalues > 0 at
m, and dimC π−1

D πD(m) = ñ − n. Lemma 4.1 now says that L(φ̃)|
T

(1,0)
m (M)

has at least n − s̃ = n − s eigenvalues > 0. �

4.4. Lemma. Let ζ = φ · πD as defined at the start of §4. Then L(ζ) has
at least n − s eigenvalues > 0 at every point of D̃.

Proof. If m ∈ M then L(ζ)|
T

(1,0)
m (M)

= L(φ̃)|
T

(1,0)
m (M)

, by construction of
ζ. The assertion now follows from Lemma 4.3. �

Proof of Theorem 1.14. As was described earlier, the holomorphic tan-
gent spaces of the π−1

D (g(x)) are in the kernel of L(ζ), so L(φ)g(x) has the
same number of positive eigenvalues as L(ζ)g(w). Lemma 4.4 says that this
number is � n − s. Combining this with Proposition 3.9, we see that φ
is a real analytic exhaustion function on D whose Levi form has at least
n− s eigenvalues > 0 at every point. This completes the proof of Theorem
1.14. �
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5. The Stein property for MD

Proof of Theorem 1.15. Theorem 1.15 is known [9] when D is measurable,
so we assume that it is not measurable. The considerations of [9, §1] make
no use of measurability. If MX is a projective algebraic variety, then G0/K0

is an hermitian symmetric space, G0 has a compact Cartan subgroup, and
D is measurable. Thus [9, Corollary 1.5] MX is an affine algebraic variety.
We have set things up so that the argument of [9, §3], for D measurable
and MX affine, goes through: push φ : D → R

+ down to φM : MD → R
+

by φM (gY ) = supy∈Y φ(g(y)); then φM is a Cω plurisubharmonic function
on MD that blows up on the boundary of MD in MX . Choose a Cω strictly
plurisubharmonic exhaustion function N on the affine variety MX . Then
φM +N |MD

is a Cω strictly plurisubharmonic exhaustion function MD , so
MD is Stein. �

This argument relies on a certain amount of Lie structure theory. D.
Barlet pointed out that it could also follow from the general result that the
space Cs(Z) of compact complex analytic cycles of pure dimension s, in an
(s + 1)-complete complex analytic space Z of finite dimension, is a Stein
variety. For that result see [4], which extends results from [2], [3] and [5].
Now observe that MD = MX ∩ Cs(D). If one proves that this intersection
is a closed subvariety of the Stein variety Cs(D), then the restriction to
MD of a strictly plurisubharmonic exhaustion function on Cs(D) will be a
strictly plurisubharmonic exhaustion function on MD , giving an alternate
proof that MD is Stein.
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