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Abstract: I’ll sketch an extension of the classical Uncertainty Principle to
the context of Gelfand pairs. The Gelfand pair setting includes rieman-
nian symmetric spaces, compact topological groups, and locally compact
abelian groups. If the locally compact abelian group is R™ one recovers a
sharp form of the signal processing version of the classical Heisenberg un-
certainty principle. Then I’ll indicate applications to spherical functions
on riemannian symmetric spaces and to Cayley complexes, and finally I’ll
describe the extension to hypergroups.

Introduction.

The classical uncertainty principle says that a function and its Fourier trans-
form cannot both be mostly concentrated on short intervals: if f(¢) has most of
its support in an interval of length ¢, and its Fourier transform f('r) has most
of its support in an interval of length Zthen ¢.7 > 1 — 1 where 7 is specified
by the precise meaning of “most of its support”. In signal processing this says
that instantaneous frequency cannot be measured precisely [9].

In 1989, D. L. Donoho and P. B. Stark proved /5] a sharp classical extension
of the uncertainty principle. Let T be a measurable set, 1p its indicator (=
characteristic) function, and || - || = |} - ||, an L, norm. We say that

f €L, is e— concentrated on T if ||f — 17 f}]| < €||f]]. (1.1)

The precise form of Donoho and Stark’s stronger Lo version mentioned above
is [5]
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Let f, fe Ly(R),let ¢,6 >0, and let T, W C R be measurable sets.

(1.Buppose that f is e-concentrated on T and f is 6-concentrated on W.
Then Lebesgue measures satisfy |T|-|W|> (1 — e = §)2%.

The key point in the Donoho-Stark L, argument is the operator norm
inequality

QP> < |T|-|W| where Pf=1pf and Qf = (1w f)" (1.3)

where " denotes Fourier transform as usual and " is its inverse.

The formulation (1.2) of Donoho and Stark is due to K. T. Smith /21], who
extended it locally compact abelian groups by extending the inequality (1.3).
Then in [28] I modified Smith’s arguments so that they apply more generally to
Gelfand pairs, thus to riemannian symmetric spaces and compact topological
groups as well as locally compact abelian groups. It turns out [27] that this
modification applies with no essential change to give an analogous uncertainty
principle for commutative hypergroups.

There are two apparently different generalizations to Smith’s extension of
the uncertainty principle to Gelfand pairs. Fix a Gelfand pair (G, K). Theorem
2.23 extends the uncertainty principle to functions on K\G/K. It depends on
the spherical transform for the Gelfand pair (G, K) and the resulting decom-
position of Ly(K\G/K) by positive definite zonal spherical functions. This is
the result that extends with no essential change to hypergroups. Theorem 3.10
extends the uncertainty principle to functions on G/K; it depends on the vector
valued transform corresponding to a direct integral decomposition of L,(G/K).
That is the result that has implications for various classes of special functions.
These two extensions are in fact equivalent because the underlying Lo decom-
positions use the same Plancherel measure.

The uncertainty principles that we consider here are in the same spirit as
the local uncertainty inequalities of Price, Racki, Sitaram and others. For those,
see, for example, [16], [18] and [19]. But our methods and ideas are quite dif-
ferent from the support theorems of Benedicks, Cowling, Price, Sitaram and
others, which they call local uncertainty principles ([1], [17], [2], [13], [7]).
The latter are of the form if both f and f are supported on sets of finite mea-
sure then f = 0 a.e. Theorems of that sort do not apply to compact groups
or compact Gelfand pairs; in fact they depend in an essential way on the ap-
pearance of a connected noncompact abelian group in the computation of the
Fourier transform (/13], [2]). In contrast, our considerations apply to both the
compact and the noncompact settings.
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In Section 2 we recall some function theory on K\G/K for a Gelfand pair
(G, K) and indicate the associated scalar uncertainty principle. In Section 3 we
describe the direct integral decomposition of Ly(G/K) and the corresponding
vector valued transform on G/K and verify the analogs of the operator norm
inequalities of §2 to derive the vector uncertainty principle for G/K.

In Section 4 we indicate some of the connection with various classes of spe-
cial functions that occur as spherical functions on riemannian symmetric spaces.

In Section 5 we show how uncertainty principles for generalized Cayley
graphs follow from uncertainty principles for Gelfand pairs. In Section 6 we
show how those considerations extend to a class of simplicial complexes, for
which generalized Cayley graphs are the 1-dimensional case.

Finally in Section 7 we describe just how the scalar uncertainty principle
extends to commutative hypergroups.

The Scalar Uncertainty Principle and Commutative Function Theory
of Gelfand Pairs.

Let G be a locally compact topological group and K a compact subgroup. Let
mg be Haar measure on G, subject to the usual convention: counting measure
if G is infinite and discrete, total mass 1 if G is compact. Let mg be Haar
measure of total mass 1 on K.

Convolution on G is the action of functions under the left regular represen-
tation:

fix o) = [ Sl s)dmo(a), (2.1)
Young’s Inequality is
ILf * hll, < [IfIl1]|Allp for f € Li(G) and h € Ly(G). (22)

A function f on G is called K-bi-invariant if f(kizks) = f(z) forallz € G
and k; € K. Similarly a Borel measure g on G is called K-bi-invariant if
p(k1Aks) = pu(A) for all measurable A and all k; € K. We say that a function
f :+ G — C vanishes at co if, given ¢ > 0, there is a compact subset C, C G
such that |f(z)| < € for z ¢ C. . Each-of the spaces

M(G): Afinite Borel measures on G

Co(G): continuous functions G — C with compact support

Coo(G) : continuous functions G — C vanishing at oo

L,(G): standard Lebesgue space of measurable functions G — C,1 < p < oo
(2.3)
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projects onto its subspace

M(K\G/K), Co(K\G/K), Cao(K\G/K), Ly(K\G/K),1<p< oo
(2.4)
of K-bi-invariant functions (or measures), by f +— f% (or g+ pu!) where

fi(z) = /K /K Flkyzhs)dmg (ky)dmy (k2) and pf(A4) = p(KAK).  (2.5)

Co(G) C L1(G) C M(G) are associative algebras under convolution, we
have respective subalgebras Co(K\G/K) C L1(K\G/K) C M(K\G/K). The
following conditions are equivalent

(1) the convolution algebra Co(K\G/K) is commutative

(2) the convolution algebra L, (K\G/K) is commutative

(3) the convolution algebra M(K\G/K) is commutative

(4) if z,y € G then KzK - KyK = KyK - Kz K
and they imply that G is unimodular. If they hold, one says that (G, K) is
commutative or equivalently that (G, K) is a Gelfand pair. See [3] and [8]
for a general introduction.

If G is a locally compact abelian group, and we set K = {1}, then (G, K)
is commutative. There are more interesting examples, riemannian symmetric
spaces and compact groups, as follows.

The name “Gelfand pair” comes from a result of I. M. Gelfand: let G
be a locally compact group and # an involutive automorphism of G such that
G = SK where K is a compact subgroup of G, if £ € K then 8(k) = k, and if
s € S then 8(s) = s~!. Then G is unimodular and (G, K) is commutative.

In particular, one has the famous result of Elie Cartan?: if M is a connected
riemannian symmetric space, if G is any group of isometries of M that contains
the identity component of the group of all isometries, and if K is the isotropy
subgroup of G at some point of M, then (G, K) is commutative.

Another special case concerns compact groups: let M be a compact topo-
logical group, let G = M x M (so G acts on M by (z,y) : m — zmy~!), and
let K be the stabilizer of the identity element of M (so K = {(z,z7!) | z €
M} = AM, the diagonal M in G). Then (G, K) is commutative.

Fix a Gelfand pair (G, K). A nonzero Radon measure p on G is called
spherical if it is K-bi-invariant and if 4 : Co(K\G/K) — C is an algebra

2In modern language, Cartan proved that the commuting algebra for the left regular
representation of G on Lo(G/K) is commutative, i.e. that this left regular representation is
multiplicity—free.
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homomorphism, i.e., pu(f * h) = p(f)u(h). Here u(f) means [; f(x)du(z).
A continuous function w : G — C is called a zonal spherical function or
zsf if du(z) = w(z~!)dmg(z) defines a spherical measure. That is the analog
of exponential function on R or quasi-character on a locally compact abelian
group. The following are equivalent for a function w : G — C.
(1) w is a zonal spherical function on G.
(2) w is continuous, is K-bi-invariant, and satisfies w(1) = 1, and
if f € Co(K\G/K) there is a constant Ay € C such that f*w =
)\fw.
(3) w is not identically zero, and if z,y € G then w(z)w(y) =
[ w(zky)dmg (k).

The Fourier transform, whether on R or an arbitrary locally compact
abelian group, only uses unitary characters, that is, quasi—characters that, as
functions, are positive definite.® Continuous positive definite functions ¢ : G —
C with ¢(1) = 1 correspond to unitary representations = of G with cyclic unit
vectors u in the representation space My, such that ¢(z) = (u, n(z)u) for all
z € G. The pair (m, u) is unique up to unitary equivalence. The connection
with Gelfand pairs is

Theorem 2.6: Let ¢ be a positive definite zonal spherical function and (w,u) the
corresponding cyclic unitary representation, ¢(z) = (u, w(z)u). Then m is irre-
ducible and u spans the space HE of m(K)-fized vectors. Conversely, if w is an
irreducible unitary representation of G and HE is spanned by a unit vector u
then ¢(z) = (u, 7(x)u) is a positive definite zonal spherical function.

Write S = S(G, K) for the set of all zonal spherical functions f : G —
C, and write P = P(G, K) for the set of all positive definite zonal spherical

functions. The spherical transform is the map f — f, from K-bi-invariant
functions on G to functions on S = S(G, K), given by

Flw) = mo(f) = /G F(eyo(e=Ydme (2). (2.7)

If f € Li(K\G/K), in particular if f € Co(K\G/K), then the integral is
absolutely convergent. The map

S — H C; by we— (f(w)) as f ranges over Co(K\G/K). (2.8)

is injective and we now view S C [] C; . The subspace topology on S is the

weak topology for the functions Fwith f € Co(K\G/K). Since positive definite
functions are bounded by their value at the identity element 1 € G,

P=P(G,K)C[] D; where Dy ={z; €C; |Iz7| < IIfIl:}. (2.9

3A function ¢ : G — C is positive definite if Ec_,‘c]'qb(a:i_lxj) > 0 whenever n >
1, {c1,..-,cn} CC and {z1,...,zo} C G.
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If w € S then w € P if and only if p,(f * f*) > 0 for all f € Co(K\G/K).
Here f*(z) = f(z~!) because G is unimodular. Combining this with (2.9) one
proves that P has closure cl(P) consisting of all z € [T Dy such that

a) f — z; is alinear functional on Co(K\G/K),
(2.10) b)  zpup, = 25,25, forall fi, fo € Co(K\G/K), and
¢) Zzpape >0 for all f € Co(K\G/K).

Thus P is locally compact. Either P is compact and equal to its closure in
[1 C; ,orclP = PUQO is the 1-point compactification of P. As a corollary one

has the Riemann-Lebesgue Lemma: If f € L1(K\G/K) then f € Coo(P), i.e.,
f is a continuous function on P vanishing at co.

Mautner [15] and Godement (/10], [11]) extended the classical Pontrjagin—
Plancherel Theorem from locally compact abelian groups to Gelfand pairs:

Theorem 2.11: Let (G, K) be commutative. Then there is a unique positive Radon
measure v on P, concentrated on a certain subset M, such that

if f € Co(K\G/K) then Fe Ly(P,v) and ||fllcapy) = 1flloae) - (212)

Moreover f — f extends by continuity to a Hilbert space isomorphism of
Ly(K\G/K) onto Ly(P,v) whick intertwines the (left) convolution represen-
tation

£: Co(K\G/K) on Ly(K\G/K) by £(f)h = f+h (2.13q)
with the (left) multiplication representation
Z: Co(K\G/K) on Ly(P,v) by {f)g=fq . (2.13b)

v is called Plancherel measure for (G,K). The uniform closure of
£(Cyo(K\G/K)) in the algebra of bounded linear operators on Ly(K\G/K) is a
commutative C* algebra, and M is its maximal ideal space. If f € Co(K\G/K)
then 4(f) has dual £(f), function on M given by ¢(f) (m) = £(f) modulo m. If
m € M there is a unique zonal spherical function wy, such that

40y (m) = [ fhon(e™)dmo(s) (2.14)

Furthermore w,, is positive definite, so M is identified with a subset of P, and
M — P extends to a homeomorphism of MU{0} onto a closed subset of PU{0}.
If f € Co(K\G/K) then £(ff (m) = f(wm), ie., 4(f) = flar. With these
identifications, the construction of Plancherel measure proceeds along the same
lines as the standard construction of Haar measure. Along the way one gets the
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analog of Bochner’s Theorem, f(x) = [,, wm(z) f(m)dv(m), and the analog of
the Fourier inversion formula, f € Li(P,v) and f(z) = [p f(w)w(z)du(u) for
f in the dense subspace Co(K\G/K) * Co(K\G/K) of Lo( K\G/K).

To adapt (1.3) we use the spherical transform and its inverse,

fw) = / f(2)w(z~Y)dmg(z) and H(z) = f hw(@)dv(w).  (2.15)
G P
Straightforward computation gives ||fllc < ||f||1 for f € Li(K\G/K) and
H|Alloo < ||R||1 for h € Li(P,v), so Riesz-Thorin interpolation gives

Wil < I1fll,  for  fe€L,(K\G/K), 1<p<2,
(216) ”hﬂp’ S ”hllp fOI‘ h € LP(Pa V)) 1 S P S 2»

with the usual » + o = L. Compare [2], §51.

Fix subsets T' = KTK C G and U C P of finite measure. Let 17 and
1y denote their respective indicator functions. Define operators P = Pr and

Q=Qu by .
Pf=1rf and Qf = (ly f). (2.17)

Proposition 2.18: If1 < p < 2 and ¢ > 1 then ||PQf||, < ma(T)Yw(U)/?||f||,
for f € L,(K\G/K). If p = q the operator norm on L,(K\G/K) satisfies
1PQll, < ma(T)Pu(U)V?.

Proof: We compute

PQs(@) = 12(0) [ 1) { [ 1)t ama(w) | w(alan(o)
=126 [ 56 { [ wp @)} dmaw)

As w(y~Hw(z) = [ w(y~'kz)dmg (k) and f is K-bi-invariant,

PQS(2) = 12(2) [ 1) { [ 10t i) pdmat) = (1)

where k;(y) = 17(2) [p lv(w)w(y~te)dv(w) = 17(z)1y(y~'z). Using Holder,

1PRF(2) = 1(f, k=)l < |IFllplIRzllpr = 11 F1lpl110Tlp: |17 (2))-
Integration [ |PQf(z)|!dmg(z) and (2.16) give

1PQANly < 11£llp 111l ma(T)H¢ < 1I£1lp lILollp ma(T)Y/*
= mg(T) u(U) || £, -
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That completes the proof of Proposition 2.18.

Proposition 2.18 is sufficient for the uncertainty principle of Theorem 2.23
below. But there are some other useful operator norm estimates for Gelfand
pairs. The estimate analogous to that of Proposition 2.18, but in the other
order, is

Proposition 2.19: If1<p<2,¢>p, and f € L,(K\G/K), then*
QP S]l, < ma(T)Yw(U)?||fll, and ||QPf|l; < ma(T)/Pu(U)M?||Pf]|, .

If K\G/K has finite measure, then G is compact, and one has a stronger
form of part of (2.16), analog of the Hausdorff-Young Inequality (again compare

[2], §51):

~ 11
1Flle < 117l for £ € L,(K\G/K) with 1<p <0 and - <min(=,5)

(2.20a)
Similarly, if P has finite measure, for example if P is compact, then

. 1 ., 11
[|Flly < |h]|p for h € Ly(P,v) with 1 <p < oo and p < mll’l(;, 5) .
(2.200)
These lead to slightly stronger forms of Propositions 2.18 and 2.19.

We have a Gelfand pair (G, K), subsets T = KTK C G and U C P of
finite measure, and operators P = Pr and @ = Qu as in (2.17). Given ¢ > 0
we say that

f € L,(K\G/K) is Ly, ¢ — concentrated on T if ||f — 17 f|l, < €||fll,
(2.21a)
and similarly, given § > 0,

h € Ly(P,v) is Ly 6— concentrated on U if {|A—1yh||y < 6||h{[p (2.210)
Somewhat analogously, we say (compare [5] and [21]) that

f € L,(K\G/K) is L, 6 — bandlimited to U if there exists
fu € L,(K\G/K) with fy supported in U and ||f — full, < 6/|f]l, -

*There is a typographical error (a misplaced prime) in the published statement of [21],
Theorem 3.2. The correction is implicit in the argument below. The argument for the second
inequality of Proposition 2.19 follows [22].
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Theorem 2.23: (Scalar Uncertainty Principle) Suppose that0 # f € L,(K\G/K)
with 1 < p < 2 and €,6 > 0 such that f is e-concenirated on T and 6-
bandlimited to U. Then

—€—6

1/p 1/p =7
ma(T) () 2 1IPQlly >

And if p= 2 then, further, |PQ||2>1—¢—6.

Proof: The first inequality is the case p = q of Proposition 2.18. Note fy =
Q@ fu because fy is supported in U, and of course ||P|| £ 1, to compute

A llp = WPQF, S Wf = Pfllp + [IPf— Pfully + [|IPQfy — PRSIl
= (e+ 6+ 8|IPQII)IISlp

50 [|PQfllp > (1= €= 8 = §11PQII)IIfllp- Now (1+8)[[PQIlp > 1— €6,
proving the general assertion. If p = 2 we can take fU =Qfsothat @f = Q fU
and the ||PQfy — PQf||, term does not occur.

3 The Vector Uncertainty Principle and Noncommutative Function The-
ory of Gelfand Pairs.

In this Section we describe the vector—valued transform that leads to an anal-
ysis of Ly(G/K) where (G, K) is a Gelfand pair.

From Theorem 2.6, if f € L1(G/K) and = € G then
(f *w)(2) = (7u(f)tw, Tw(2)uw )y - On the other hand, a calculation shows
that if f € C(G/K) N Ly(G/K) and z € G then f(z) = [p(f * w)(z)dv(w).
So f*xw € C(G/K)N L1(G/K) corresponds to m,(f)u, € M, . These facts
combine to prove

Lemma 3.1: If f € Co(G/K) and ¢ € G then

f(:c):/;(ww(f)uw,rw(z)uw)uwdu(w) and

IF1E o/ = ]P 17 B () -

Recall the notion of direct integral. Let (Y,7) be a measure space. For
each y € Y let Hy be a Hilbert space. Let {so} be a countable family of maps
Y — U ey My such that s4(y) € Hy and {sa(y)} spans Hy for ally € Y,
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and the functions y — (sa(y), Sa(y))4, belong to Li(Y, 7). Then the direct

integral X = f;, H,dr(y) modeled on the {s,} is the linear span of all the
maps s : ¥ — (J,ey My such that s(y) € Hy ae. (Y,7) and the functions
y — (s(y),sa(y)),{y belong to Li(Y, 7). H is a separable Hilbert space with

inner product (s,s’),, = fy(s(y),s’(y))uydr(y).

More generally, fix 1 < p < oco. Then the L, direct integral H, is
the linear span of the maps s : Y — |J, oy My such that sy) € Hy ae.
(Y, 7) and the functions y — (s(y),s(y))%: belong to L,(Y, 7). H, is a Ba-

. 1/p
nach space with norm ||s]|, = (fP(s(y),s(y))’,’{f) for 1 < p < o0, norm
[|8]lcc = ess sup (p,uy{s(¥), .s(y));{/y2 Of course H; is the Banach structure un-

derlying the Hilbert space structure of .

Let B(H,) denote the algebra of bounded linear operators on the Hilbert
space Hy. Let T:Y — J,cy B(Hy) such that T(y) € B(H,) ae. (Y,7), and
if 5,8’ € H then y — (T(ygs(y), s'(y)) belongs to Li(Y, 7). Then s — Ts € H,
Ts(y) = T(y)s(y), defines an element T" € B(H). This element is denoted
T = [, T(y)dv(y) and is called the direct integral of the T'(y).

In our case, (P,v) is the measure space; for w € P we have the Hilbert
space H,; for f € Co(G/K) we have sp(w) = mu(f)uw, and {so} = {s7,}
where {f,} is a countable dense subset of Co(G/K). We define the Fourier
transform on G/K to be the map F : L1(G/K) — [, H.,dv(w) given by

F()w) = sp(w) = mo(Httw -
Lemma 3.1 gives us the Godement-Plancherel Theorem for G/K:

Theorem 3.2: Let (G, K) be commutative and let v be its Plancherel measure.
Then the Fourier transform satisfies

f(z) = /P (F(F), (@)t (@) and |F Dl = flloaesmy.  (3:3)

Moreover f v F(f) extends by continuity to a Hilbert space isomorphism of
Ly(G/K) onto H which intertwines the (left) reqular representation

A: Li(G) on La(G/K) by Mp)f =9 = f (3.4a)
with the direct integral representation

= /P T dv(w) : Ly(G) on H = /P Hydv(w) by m() = /P 1o ($)dv(w).
(3.4b)
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The standard Plancherel formula s of the form f(z) = f5 trace 8z~ fdu(r),

where G is the unitary dual of G and £(y)f(g) = f(y~'g). The connection with
Theorem 3.2 is given by

trace T, (&™) f) = (T (Ftw, T (®)uw)- (3.5)

That formula depends on the fact that if v, L u, in H, and f € Li(G/K)
then 7, (f)v, = 0. The same calculation shows that if 7 € G has no K-fixed
vector and f € L1(G/K) then n(f) = 0. So for functions on G/K, only the =,
contribute to the Plancherel formula.

We now carry the considerations of § 2 from K\G/K to G/ K, starting with
the formulae for the Fourier transform and its inverse,

FUHw) = mo(flue and F-L(0)(z) = /P (v, To(@) ), V(@) (3.6)
As in the classical case,
F(Hlleo = ess sup (pwy [|[F(F)(W)lln.
= ess SUP (puw) ||Mw(f)uwllr, < esssup pw) [[fllh = [If]ls

for f € L1(G/K), and

177 (v)lloo = ess sup /P(U(W),Ww(m)uw)uudV(W)S/PIIv(W)IIde(W)= |lvllx

for v € M,. So as before, Riesz-Thorin interpolation results in a G/K analog
of the Titchmarch Inequality

IFflly <Nl for FEL(G/K), 1SpS2 (3n
IF Ol < llolly for  veH,,  1<p<a,

’

; 1,1
with the usual - + o= 1.

Fix sets T = TK C G and U C P of finite measure. As in (2.17) define
Pf=1rf and Qf = F~-Y(ly F(f)).

Proposition 3.8: If 1 < p < 2 and ¢ > 1 then ||PQf||, < ma(T)Yw(U) ?||f||,

for f € Ly(G/K). If p = q the operator norm on L,(G/K) satisfies ||PQ||, <
mg(T)YPu(U)/P.
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Proof: We compute essentially as in the proo%' of Proposition 2.18:
PQs@) = 12(2) [ 106){ [ F0)ma(ihue, b dma(o) | dv(e)
=12) [ 10 { [ 100, 5 2 0(0)  dimc )

= (£, kz)r,06/x0)
where
ke(y) = IT(:c)/ IU(w)(uw,ww(y_lz)uw)uwdu(w)
P
= 17(2)F " (w = lo(w)u, )(y ™ ).
Using Hélder, integration [, [PQf(z)|%dmg(z), and (3.7), we see as before that

NPQFIly < NIfllp 17w = Ty (w)u) |l ma ()
< Ifllp 1wlly ma(T)? = ma(T)/T (V)7 || fll;.

That completes the proof.

Given € > 0 we say that f € L,(G/K) is L, e-concentrated on T if
[|f—17fll, < €llf|lp and similarly, given § > 0, v € H,: is L, 6—concentrated
on U if |[v — 1y v||p» < 6]|v||,s. Analogously,

(3.9)f € Lp(G/K) is L, 6 — bandlimited to U if there exists
fu € L,(G/K) with F(fv) supported in U and ||f — full, < 6||fllp -

We proved Theorem 2.23, the scalar uncertainty principle for K\G/K, as a
formal consequence of Proposition 2.18. Exactly the same argument proves the
vector uncertainty principle for G/K as a formal consequence of Proposition
3.8:

Theorem 3.10: (Vector Uncertainty Principle) Suppose that0 # f € L,(G/K)
with 1 < p < 2 and €,6 > 0 such thet f is e~concenirated on T and 6-
bandlimited to U. Then

l—e-46
TPy (U)YP > ||PQ]l, > ———.
ma(T)!Pu(U)1P 2 |PQlly > =
And if p=2 then, further, ||PQ||2>1~¢—é.
There is an equivalent uncertainty principle for the operator—valued trans-

form f +— F(f) where F(f)(w) = 7,(f) for f € L,(G/K) and w € P. See the
discussion surrounding (3.5).
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Application to Special Functions.

The results described in § § 2 and 3 apply in particular to riemannian symmet-
ric spaces X = G/ K of noncompact type. There the space P of positive definite
zonal spherical functions, the zonal spherical functions, and the Plancherel mea-
sure on P, all are known explicitly from the work of Harish~Chandra and others.
See [12], Chapter 4 for an exposition and [12], pp. 492-493 for extensive ref-
erences. The zonal spherical functions usually turn out to be interesting, well
known special functions. Thus the uncertainty principles described in § § 2 and
3 give results on some classes of special functions that are usually studied in
other settings. Of course many cases had been worked out using specific prop-
erties of those functions. Here we’ll illustrate this phenomenon by looking at
the case G/K = SU(¢,£+ q)/S(U(€) x U(£+ q)) of [20].

Fix a riemannian symmetric space X = G/K of noncompact type. Then
G is a connected semisimple Lie group with finite center and no nontrivial
compact normal subgroup, K is a maximal compact subgroup, and we have
an involutive automorphism 6 of G with fixed point set K. The Lie algebra
g = ¥+ p, decomposition into = 1-eigenspaces of df. Fix a maximal abelian sub-
space a C p, let A be the corresponding analytic subgroup of G, let M denote
the centralizer of A in K, and let M’ denote the normalizer of A in K. Then
M'/M is the Weyl group W = W(G, A) which acts simply transitively on the
collection of positive subsystems of ®. The group M A is the centralizer of A in
G, and the Lie algebra decomposes as the direct sum g = (m+a)+) 5 8o Of
the centralizer of a and the other a-root spaces. Choose a positive subsystem
®t C @, let n= Za€¢+ ga, and let N be the corresponding analytic subgroup
of G. M A normalizes N and we have the Iwasawa decomposition G = KAN.
Any two such Iwasawa decomposition differ by a G-conjugacy.

Here is the connection with the spherical transform of § §2 and 3. The
space of positive definite spherical functions is parameterized by

af ={r€a" |a(r) >0 for all o€ dt}. (4.1)

The Plancherel measure v for (G, K) is given by dv(A) = |e(A)|~2d) where
¢ (A) is the value of Harish—Chandra’s c—function for X. The irreducible unitary
representations with K-fixed unit vectors, ) corresponding to A € aj, are
the representations unitarily induced from the minimal parabolic subgroup as
follows:

T = Indg(x)‘) where @ = M AN and x,(man) = girloga) (4.2)
Thus the representation space of 7 is
Hr={¢:G— C| ¢(gman) = e(“"’)(bg“)qﬁ(g) and / |6(g)|2dma(g) < oo}
G/Q
(4.3)
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where p = 13 cp+(dimga)a, that is, p(H) = i trace (ad (H)|s) for H € a.
Since K is transitive on the Firstenberg boundary 8= G/Q and KNQ = M,
we identify the representation space (4.3) with L,(B) and view first, B = K/M
with K-invariant measure mg induced from mg and, second, Hy = Ly(B)
under ¢ — ¢|g . Thus the Fourier transform F : Li(G/K) — [ Hadv(}),
given by F(f)(A) = s;(A) = mA(f)ua , becomes

F : L1(G/K) — L2(a} x B,v x mg)

by
FORM) = F(H)(\ kM) = / F(gK)e@=AHG ) gm y (gK).  (4.4)
X

Here myx is the measure on X = G/K induced by m¢g and we use the Iwasawa
decomposition G = KAN to define H : G — a by g = kexp(H(g))n.

We need two more ingredients to make the Plancherel formula explicit for
X = G/K: the formula for the zonal spherical function ¢, that corresponds to
A € a} and the formula for the Harish-Chandra c-function ¢ ().

The general expression for spherical functions on X = G/K is
¢r(9) = [i eCAPHEED dm g (k). In the case G = SU(¢, £+q) this is expressed
using hypergeometric functions

1 T(c) T(a+ s)T'(b+ s)
271 T(a)L'(b) Jo [(c+s)

F(a,b;c;2)= I(—s)(—=2)*ds (4.5)
where z is negative real and the contour C of integration is obtained from the
imaginary axis by making dents so that the poles of I'(—s) are to the right of
C and the poles of I'(a + s)['(b+ s) are to the left of C. (4.5) is Barnes’ integral
representation. Let ¢; be the coordinates on A given by

d(a)0 0
Then the positive a-roots are given by «a(loga) = t; with multiplicity m, = 2¢,
by a(loga) = 2t; with multiplicity mq = 1, and by a(loga) = ¢; £¢; ,i < j,
with multiplicity m, = 2. Set

0 0d(a)
a=| 0 I 0 |,whered(a) = diag{e™,...,e"*} and I is ¢ x q.

. A= 1 . 1 . . . -
®,; (t;) = sinh(t;) A (q“)F(E(—q + 1 ~1iAj), E(q +1—1};); 1 —i);; —(sinh(t,) 2))
(4.6a)
and

i=1 i<j

4
®,(a) = (H D) (tj(a))) / (H(cosh 2t; — cosh 2tj)) (4.6b)
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We have G = KALK where a; = {H €a| oj(H) >0 for 1 < j < ¢} and
A4 = exp(ay). The zonal spherical functions are given by K-bi-invariance and

the formula
$r(a) =cc Y c(wA)®ya(a) (4.7)
weW

where A € a}, a € A4, cg is a nonzero constant and ¢ (wA) is the value of the
Harish—Chandra c—function.

The general formula for the Harish-Chandra c—function is due to Harish-
Chandra in real rank 1 and for complex simple G, to Bhanu—Murthy for all but
one case of the split classical groups G, and then in general in the form of the
product formula (4.8) by Gindikin and Karpelevi¢. Let &} = {a € ®* | ka €
&+ implies k > 1}, the set of primitive positive a-roots. Then

—{ih e P (i), @)
cW=e ]I 7 %(zma+1+<u TG + 720 T (el )

aG¢+
where ap = ||a||~2« and the constant cp is specified by c(—ip) = 1.

In the case of G = SU({,£ + ¢q) we have now expressed all the ingredients
of the uncertainty principles of § §2 and 3 in terms of gamma functions and a
few hyperbolic trig functions. Shashahani [20] used these explicit expressions
to prove an uncertainty principle that he needed for application to scattering
theory. That principle is as follows. For € > 0 let N(e) = {A € a} | ||A|®> <
€}. For r > 0 let B, denote the ball of radius » centered at the base point
1K € G/K = X of our riemannian symmetric space. Then there are constants
s,t > 0 that depend only on X and r such that, if f € Ly(X) with support in
B, , then

Jo o OO o tmat) <o [ i@Pde. 49)

Here N(e) has finite volume just when ¢ = 1. The inequality (4.9) corresponds
to a bound on the operator @ of (2.17) and its analog in §3.

This indicates how particular results involving special functions can be
closely related to the uncertainty prineiples discussed in § §2 and 3.

Application to Cayley Graphs

Recall the definition of Cayley graph based on a group G. The vertices of the
graph are just the elements of G, and a subset S C G determines the edges
as {e = [g,95] | g € G and s € S}. Itisbestif 1 ¢ S = S~! and [g,gs] is

285
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interpreted as the oriented edge from g¢ to gs.

If G is discrete, there are no topological considerations, and we can use
counting measure when we want to sum a function on the graph. In our case,
however, we want to use the topological structure of G in a serious way, impos-
ing both topology and measure.

We now suppose that G is a locally compact group. Then the space of
vertices carries the locally compact topology of G and left Haar measure mg.
S carries the subspace topology and the induced Borel structure. Fix a Radon
probability measure o on S. One should view ¢ as the branching probability
from a vertex g along the oriented edges {[g, gs] | s € S}. The best situation is
that in which S generates a locally closed (and thus locally compact) subgroup
N C G and o is the S-restriction of Haar measure my. But of course that
situation is exceptional. Instead we will assume that o is absolutely continuous
with respect to my, say do(s) = y(s)mn (s) for some measurable function ¥ on
N positive on S and zero on N \ S. In any case, the space of edges carries the
topology of G x S and measure mg X 0.

Let G be abelian and f € L,(GxS,mgx0c),1 < p < 2. Weview ft = fyl/p
as an element of L,(G x S,mg X my), so that we have the spherical trans-

form (here the Pontrjagin-Fourier transform) f1 : G x N — C. Then Scalar
Uncertainty Principle of Theorem 2.23 holds. Thus, if f! is e~concentrated
onT C Gx S withArespfct to Haar measure mg X my, and if f! is é-
bandlimited to U C G X N, again with respect to Haar measure mg x my,
then (mg x my)(T)?(ve x vn)(U)VP > ||PQ]l, > 1;;_;6. And if p = 2
then, further, ||[PQ|[2 > 1 — ¢ — 6. Thus the Scalar Uncertainty Principle for
the locally compact abelian group G x N gives an uncertainty principle for the

edge space of the Cayley graph with branching probability, defined by (G, S, o).

We will now carry these considerations from locally compact abelian groups
G to Gelfand pairs (G, K).

Let K be a subgroup of G and suppose that S normalizes K. Suppose that
SN K =0, in other words that gK # gsK for any s € S. Then we have the
directed graph I' = I'(G/K,SK/K) whose vertices are the elements of G/K
and whose edges are the [¢K, gsK],g € G and s € S. In the topological setting
K should be a closed subgroup of G so that the space of vertices will inherit
a good topology. This extends the notion of Cayley graph, which is the case
K = {1}.

Suppose that (G, K) is a Gelfand pair. S normalizes K so N normal-
izes K and NK is a locally compact subgroup of G that contains K. Now
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(G x NK, K x K) is a Gelfand pair corresponding to the coset space G/K x
NK/K, and the subset (G/K x SK/K) C (G/K x NK/K) is the edge space
of the generalized Cayley graph I'(G/K,SK/K). Thus the Vector Uncer-
tainty Principle of Theorem 3.10 applies to this edge space as follows. Let
f € Ly(G/K x SK/K, mg x ) with 1 < p < 2. So as before, fl =
P € L,(G/K x SK/K,mg x myk). Let ¢,6 > O andlet T C G x S
and U C Pg/xxNk/k be sets of finite measure such that f1 is e-concentrated
on T relative to mg X myg and é-bandlimited to U relative to mg x myk
and VGI/K X VNK|K - Then

l—e—9¢
(mg x my)(T)"?(ve x X vwges) (U 2 (1PQIlp > 5~

And if p = 2 then, further, ||[PQ||2 > 1 — ¢ — é. Thus the Vector Uncertainty
Principle for the Gelfand pair (G x NK, K x K) implies an uncertainty principle
for the edge space of the generalized Cayley graph with branching probabilities,
based on (G, K, S, o).

Using somewhat different methods, Velasquez proved an uncertainty prin-
ciple for 1-coboundaries on Cayley graphs I'(G,S) where G is a finite group
[25]. A finite (or even compact) group G can be viewed as (G x G)/é6G where
G x G acts on G by left and right translations, and 6G is the diagonal in G x G.
There (G x G, §G) is a Gelfand pair. Thus one might expect a direct connection
between the just—described uncertainty principle for generalized Cayley graphs
based on Gelfand pairs, and Velasquez’ uncertainty principle for 1-coboundaries
on finite Cayley graphs [25]. Velasquez and I are looking into that now [26].

6 Application to Cayley Complexes.

We now view (generalized) Cayley graphs as the 1-dimensional case of (gener-
alized) Cayley complexes. This does not seem to be in the literature, but the
idea 1s hardly novel.

Definition 6.1: Let G be a group and fiz a subset S=S"1 CG with1 ¢ S.

A 0-simplez for (G,S) is an element of G. A 1-simplex for (G,S) is
an ordered pair Ay = [g,9s] with ¢ € G and s € S. We recursively define
an n-simplez for (G,S) to be an ordered (n + 1)-tuple A, = [to,t1,...,t5]
modulo even permutations, such that each 8;An = [to, ..., ti—1,tit1, ... In] 18
an (n — 1)-simplez for (G, S).

The Cayley complex associated to (G,S) is I'(G,S) = U, o 'n(G,S),
where ', (G, S) consists of the n-simplezes for (G, S), and where the boundary
map is given by A, = 5. (—1)'0;A,.

Note that I'¢(G, S) UT1(G, S) is the Cayley graph associated to (G, S).
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Here A,, is viewed as an oriented n—simplex with vertices ¢; and the 8;A,
are viewed as its faces. A, specifies the ¢; up to an even permutation. Since
each [t;,t;] € T1(G,S) for i # j, each t;'t; € S. Let T,;; denote the
group of even permutations of {0,1,2,...,n}. Its action p : (to,%1,...,t,) —
(tp(0),tp(1)s - - - tp(n)) Carries over to

"D (to,tg e, 8T M, 80 ) (tp(o),t;(;)t,,(l), t;(ll)tp(z), . ,t;(;_l)t,,(n)).
(6.2)
The left action g : [to,1,...,ta] — [gto,9t1,...,9ts] of G on T'y(G, S) carries
over to

g (to, b5 e, t e, 15 tn) = (gto, 5 e, 8T M, 20 ). (6.3)

I'»(G, S) is parameterized by (G X S,,)/Z,+1 where S, is a certain subset of
S" =S5 x-.-x S and where £,4; acts on (G x S,) as in (6.2). In this param-
eterization, G acts as in (6.3).

As in §5, suppose that G is a locally compact group. Then I'o(G, S) = G
carries the locally compact topology of G and left Haar measure mg. As before,
S carries the subspace topology and the induced Borel structure, and we fix
a Radon probability measure ¢ on S to represent branching probabilities on
the Cayley graph I'o(G,S) UT'1(G,S). Suppose that S, generates a locally
compact subgroup N, C G® = G x --- x G. Suppose also that S, has positive
measure with respect to 6" = ¢ x --- X ¢ and that ¢” is absolutely continuous
with respect to left Haar measure my,. Let 7, denote the probability measure
0n(Sn)"1e™ on S,. Then drp(s1,...,83) = Yn(s1,---,8n)mn,(81,...,8,) for
some measurable function v, on N, positive on S, and zero on N, \S,. We will
write mg X 7, both for the product measure on G x S, and for its push—down
to I'n(G,S) = (G x Sp)/Zn4+1. Then the space T'n (G, S) of n-simplexes carries
both the topology of (G x S,)/Xn+1 and the measure mg x 7".

We proceed as in the case of Cayley graphs. Let G be abelian and f €
L,(Ta(G,S),mg x 7),1 < p < 2. View ft = fy!/? as a ¥, ;-invariant
element of L,(G x S,,mg x my,), so that we have the spherical transform
F G x N, — C. Then Theorem 2.23 tells us: If f! is e—concentrated on a
Yn+1-invariant subset T C G x S, with h respect to Haar measure mg x my,,
and if f1 is 6-bandlimited to U C G x Ny, again with respect to Haar measure
mag X my,, then

1l—e—6
1+46
And if p = 2 then, further, |[|[PQ||2 > 1 — ¢ — §. Thus the Scalar Uncertainty

Principle for the locally compact abelian group G X N,, gives an uncertainty
principle for the space I'y (G, S) of n—simplexes in the Cayley complex I'(G, S).

(me x mu, )(T)/?(ve x v, )(U)P 2 ||PQI|, > (6.4)
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These considerations carry over from locally compact abelian groups G to
Gelfand pairs (G, K) as in §5. K is a subgroup of G and that S normalizes K,
so L, = N, K" is a subgroup of G". Suppose that SN K = 0, so gK # gsK
for any s € S. Then

7l'Z[to,tl,...,tn]H[t().K,tl.[{,...,tnK] (65(1)
maps the Cayley complex I'(G, S) onto a generalized Cayley complex

(G, K,S) = [ Tn(G,K,S). (6.5b)
n>0

Note that
mTn(G,S) =Tw(G, K, S), and m8A, = drA, for all A, € ['h(G,S). (6.5¢)

In the topological setting K should be a closed subgroup of G so that the quo-
tient topology on T'y(G, K, S) is locally compact. This extends the notion of
Cayley complex, which is the case K = {1}.

Suppose that (G, K) is a Gelfand pair. S normalizes K so N, normalizes
K" = Kx-..-x K, and L, = N, K" is closed in G*. Now L, is a locally
compact subgroup of G® that contains K", and (G x L,, K"*!) is a Gelfand
pair corresponding to the coset space G/K X L,/K". The subset (G/K x
Sp,K"/K™) C (G/K x L,/K™) represents the space I'n,(G, K, S) = (G/K x
SpK™/K™)/X, 41 of n—simplexes. Thus the Vector Uncertainty Principle of
Theorem 3.10 gives us an uncertainty principle for I'; (G, K, S) as follows. Let
f € Ly(G/K x $,K"/K", mg x 7,) with 1 < p < 2. So fl = fyllr ¢
Ly(G/K xSp K" /K™, mg xmp, ). Let €,6 > 0andlet T = X, 11(T) CG xS,
and U C Pg/kxL,/k~ be sets of finite measure such that f1 is e~concentrated
on T relative to mg x mg, and é-bandlimited to U relative to mg x mg, and
VG/K X VL, /K- Then

l—e—6
(mg x my, NT)?(ve k X vi, k=) U)P > ||PQ|l, > T35

And if p = 2 then, further, ||PQ||2 > 1 — ¢ — §. Thus the Vector Uncertainty
Principle for the Gelfand pair (Gx L,,, K x K”) implies an uncertainty principle
for the space of n—simplexes on the generalized Cayley complex I'(G, K, S).

(6.6)

Application to Commutative Hypergroups.

We recall some basic facts about hypergroups ([6], [14], [23], [24]) and indi-
cate the extension [27] of the scalar uncertainty principle (Theorem 2.23) above
from Gelfand pairs to commutative hypergroups.
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Let X be a locally compact Hausdorff topological space and M(X) the
space of regular complex—valued Borel measures. M*(X) denotes the space
of non-negative measures in M(X) with the weak topology for the maps yu —
u(f),f € C§(X). This topology on M*(X) is called the cone topology.
Given x € X we have the point mass §; € M+ (X) and this gives a homeomor-
phism of X onto a closed subset of M*(X).

The space C(X), consisting of all compact subsets of X, carries a locally
compact hausdorff topology generated by the sets Cy(V) = {S € C(X) |
S meets U and SC V} for U,V openin X. If Y is closed in X then C(Y) is
closed in C(X), and ¢ — {z} is a homeomorphism of X onto a closed subset of
C(X).

Definition 7.1: Let * : M(X) x M(X) — M(X) be an associative algebra product

such that
I MY(X)*M*(X) C M¥*(X) and x : MY (X) x MY(X) — M¥(X) is
continuous,

2. ifz,y€ X then &y * by is a compactly supported probability measure on
X,
the map X x X — C(X), given by (z,y) — b5 * by, is continuous,
there is an element e € X such that 6 x 6o = b6, = 6, x6; for allxz € X,

and
5. there is an involution z — T of X such that e € Supp(é; * 6y) if and only
fe=1y.

Then (X, *) is a hypergroup.

The locally compact group case is the case where each 6, 6, is of the form

§,; then the group composition is zy = z and the involution is z +— z~!,

The double coset space case, X = K\G/K where G is a locally compact
group and K is a compact subgroup, is the case where * is inherited from con-
volution on G. Then 8g.x * dxsk is supported in K{(aKb)K. In the double
coset space case X = K\G/K, (X,*) is commutative if and only if (G, K)
is a Gelfand pair. When G/K is a symmetric space, the symmetry gives the
hypergroup involution.

Voit [27] observed that all the tools used in my argument [28] for the
scalar uncertainty principle for Gelfand pairs are available for commutative
hypergroups, and that my proof of Theorem 2.23 goes through with no essen-
tial change for commutative hypergroups. The result is the same uncertainty
principle.
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