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ABSTRACT. A real reductive Lie group Gy acts on complex flag manifolds
G/Q, where Q is a parabolic subgroup of the complexification G of Gp. The
open orbits D = Go(x) include the homogeneous complex manifolds of the
form Go/Vp where Vg = Gg N Q; is the centralizer of a torus; those are the
Go-homogeneous pseudo-kihler manifolds. For an appropriate choice Ko
of maximal compact subgroup of Gp, the orbit Y = Ko(z) is a maximal
compact complex submanifold of D. The “cycle space” Mp = {gY | g €
G and gY C D}, space of maximal compact linear subvarieties of D, has
a natural complex structure. Mp plays important roles in the theory of
moduli of compact kihler manifolds and in automorphic cohomology theory.
Here we sketch a brief exposition of this interesting mathematical topic.

0. Introduction

Some of the most interesting homogeneous spaces in algebraic and differ-
ential geometry are of the form D = Go(z) = Go/Vo where Gy is a real
semisimple group acting naturally on a flag manifold X = G/Q. Here G
is the complexification of Go and Q is a “parabolic subgroup” of G. The
complex flag manifolds themselves are examples of these real group orbits
D = Go(z), corresponding to the case where Gy is a compact real form
of G. Grassmann manifolds and the other hermitian symmetric spaces of
compact type are complex flag manifolds. The class of real group orbits
D = Go(z) € G/Q = X on complex flag manifolds includes the noncom-
pact “real forms” of complex flag manifolds, such as bounded symmetric
domains, and also moduli spaces for polarized Hodge structures. These
homogeneous spaces also play important roles in algebraic topology, in har-
monic analysis (specifically in the representation theory for semisimple Lie
groups), and in related theories of automorphic cohomology.

The theory is especially rich in the case of “fag domains”, the case
of measurable open orbits D = Gy(z) C X. In this note I'll sketch the
structure of those open orbits. They are important in harmonic analysis
and representation theory for semisimple Lie groups (see [12], [13], [14],
[16] and [24]), for the corresponding automorphic function theory (see [7],
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(8], [9], [20], [21] and [25]), and for their intrinsic geometric interest. The
connection with representation theory is the realization of discrete series
(or limits of discrete series) representations of Gy as the natural action of
Gy on cohomologies H*(D;E) of homogeneous holomorphic vector bundles
E — D. The connection with automorphic function theory, as well as
other aspects of complex geometry and complex harmonic analysis, comes
through a certain “linear cycle space” Mp of compact subvarieties Y C D.
If ¢ € H*(D;E) with s = dimcY then integration over compact subvari-
eties carries ¢ to a section of a certain vector bundle over Mp. This carries
a number of analytic problems from cohomology to the more accessible set-
ting of sections of vector bundles. That sort of consideration plays a key
role in the proof of Fréchet convergence of certain Poincaré series Y . v*(¢).

It is a pleasure to indicate some aspects of the theory of flag manifolds
and flag domains in a volume celebrating this milestone occasion for Prof.
Bertram Kostant. For he introduced me to the theory of real semisimple
Lie groups and guided my first explorations of the orbit theory.

In §1 we indicate the structure of parabolic subgroups Q in a complex
semisimple Lie group G and the corresponding flag manifold X = G/Q.
This material was developed by Jacques Tits [17] in the 1950’s. In §§2
and 3 we indicate a few generalities on orbits Go(z) C X where Gy is a
real form of X, and I'll look at the case where Go(z) is open in X. In
§4 we sketch the situation ([22], [23]) for the hermitian symmetric case.
It is fairly concrete and is needed later in §8. Then §5 returns to the
case of open orbits, specializing to the measurable case, the case where
D = Gy(z) carries a Go—invariant pseudo—kihler metric. In that case we
say that D is a “flag domain.” The material of §§2, 3 and 5 represents
joint work with Bert Kostant in the 1960’s and is published in [22]. In §6 I
sketch the construction of an exhaustion function for a flag domain D and
the corresponding vanishing theorem for cohomologies of coherent analytic
sheaves ¥ — D. This construction, due to Wilfried Schmid and myself
[15] and based on earlier work of Schmid [12], comes into the construction
of representations of G on cohomologies of Go~homogeneous holomorphic
vector bundles over D ([12], [13], [16], [20], [21]). It also comes into analysis
([20], [26]) of the space Mp of maximal compact subvarieties of D. The
coset space structure of Mp is described in §7, and in §8 I indicate my proof
|26] that Mp is a Stein manifold.

1. Parabolic subgroups

Let g be a complex reductive Lie algebra, h a Cartan subalgebra and A =
A(g, b) the root system of g with respect to h. Choose a positive root system
At = A*(g,h). Then A is the disjoint union of A* with A~ = —A*. Let
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¥ denote the corresponding simple root system. Thus every root a € A
has unique expression a = Z,,,Eq, nyY, the ny are integers, every ny 2 0
ifa € A*, and every ny < 0ifa € A™.

Every subset ® € ¥ defines a subalgebra q¢ = 93" + 9% C g where

9% =hH+3 cor 9o With®" ={a€A|a= Yves ¥}
93 =Y pce-»88 With®" ={a € At |a ¢ @}, (1.1)
95"=2"pco-» 088 With® "={a €A~ |a¢ ®"}.

Thus q5™ is the nilradical of g4 and q} is a reductive (Levi) complement.
The 2/¥! subalgebras q¢ C g are the standard parabolic subalgebras of
8. The subalgebra q3 + q3 C g is called the opposite of ¢ .

Note that we have set things up so that the nilradical 9" is spanned
by negative root spaces. When we go to complex flag manifolds, this will
mean that the holomorphic tangent space q3 is spanned by positive root
spaces, so positive bundles will correspond to positive linear functionals on
b.

The extreme cases are qy = g, the entire algebra, and qp = b+2ﬂ€ a- 85,
a Borel subalgebra. More generally, the maximal solvable subalgebras of
g are called Borel subalgebras and are Int(g)-conjugate to qg, where
Int(g) denotes the group of inner automorphisms of g. A subalgebra q C g
is called a parabolic subalgebra if it contains a Borel subalgebra, and
every parabolic subalgebra of g is Int(g)-conjugate to exactly one standard
parabolic subalgebra.

Let G be a reductive complex Lie group. In other words, its Lie algebra g
is reductive. If g = q¢ C g is a parabolic subalgebra, then the corresponding
parabolic subgroup of G is its normalizer

Q=CQs = Ng(a) = {9 € G| Ad(g)q = q}. (1.2)

Let G° denote the topological component of the identity in G. Then QNG®
is connected, that is, Q N G° = Q°, for every parabolic subgroup Q C G.
This is a consequence of simple transitivity of the Weyl group W(g,H) on
the collection of simple subsystems of A(g, ). On the other hand, if Ad(g)
is an inner automorphism of g then Q meets the component gG° of G. But
if Ad(g) is outer this depends on ®.

Let L C G be a complex Lie subgroup. If G is connected then the
following conditions are equivalent:

(i) L is a parabolic subgroup of G,
(ii) the Lie algebra [ of L is a parabolic subalgebra of '8, and
(iii) the complex homogeneous space G/L is compact.
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Under these conditions G/L is called a complex flag manifold. Note
here that L is connected and contains a Cartan subgroup, so G/L is simply
connected.

More generally, whenever G is a reductive complex Lie group and Q is a
parabolic subgroup, we say that X = G/Q is a complex flag manifold.
Each topological component of X is simply connected. We view X as a
complex manifold and G as a group of biholomorphic transformations of
X. Since @ is the G-normalizer of q we sometimes view X as the space
of all Ad(G)—conjugates of . When G is connected this means that we
sometimes view X as the space of all Int(g)-conjugates of q. In other
words we sometimes identify € X with the isotropy algebra

qz : Lie algebra of Q, = {g € G | g(z) = =} (1.3)

2. Real group orbits

Let Gop be a reductive real Lie group, gy its real Lie algebra, and g = go®C
its complexified Lie algebra. We fix

q: parabolic subalgebra of g (2.1a)
such that
if g € Go then Ad(g)q is Int(g)—conjugate to q. (2.1b)

This last condition is automatic if Gy is connected. Let G be any connected
complex Lie group with Lie algebra g. Then Gy acts on the complex flag
manifold

X=G/Q: all Int(g)-conjugates of q (2.2)

where @ is the parabolic subgroup of G that is the analytic subgroup for
q. It acts through its adjoint action on g. Since we will only be interested
in the Go-orbits and their structure, it will be convenient to assume, and
we will assume, that

G is connected, simply connected and semisimple, (2.3)

Go C G is the analytic subgroup for gg .
Thus Gy is a real form of G.

Gy has isotropy subgroup Go N @, at £ € X. That subgroup has Lie
algebra goNq, . The latter can be described as a real form of q; N7q, where
T denotes complex conjugation of G over Gy, of gover go. Ifh C gisa
T-stable Cartan subalgebra, then 7 acts on the root system A = A(g, b) by
(ra)(€) = a(r71€) = a(7€) for a € A and £ € b. Since the intersection of
two Borel subalgebras contains a Cartan subalgebra, these considerations
lead to

Compact Subvarieties in Flag Domains 581

2.4. Theorem. q. N 7q, contains a T-stable Cartan subalgebra b of g,
and there is a choice of positive root system AY(g,h) and subset & C ¥
of simple roots such that q; = q¢. That choice made, q, N Tq, is the
semidirect sum of its nilradical

(4= N74z)™" = (a5 N 7q% + (43" N 7a5) + (43" NTa3"™)

= D et Y omt > 6 (2.50)

®rNrd-n P-nmNTdr ¢-rNrP-n

with its reductive (Levi) complement

(9:N79z)" =qp N7q5 = b + Z Oa - (2.5b)
eTNTE"

In particular

dimg(go N qz) = dimc¢(q, N 7qz) = dimc ¢ + |2 N7E™™|.  (2.5¢)

2.6. Corollary. The orbit Go(x) has real codimension |®~" N 7®~"| in
X. In particular Gy(x) is open in X if and only if " NT®~™ is empty.

Each Go-orbit comes from a choice of Go—conjugacy class of pairs
(Ho,A*(g,h)) where Hy is a Cartan subgroup of Gy and A*(g,b) is a
positive root system. The positive root system is determined only up to
conjugacy within the Go—normalizer of Hy and the Weyl group W (q%, b).
Thus

2.7. Corollary. Let {Hyyp,...,Hmnp} be a complete system of conjugacy
classes of Cartan subgroups of Go. Let H; denote the Cartan subgroup of G
corresponding to h; = h;0QC. Let Q; be a G-conjugate of Q that contains
H; . In general let W(-,-) denote the corresponding Weyl group. Then there
are at most

> |W(Go, Hio\W(G, Hy)/W (@, H)| 2.8)

15jSm

distinct Go—orbits on X. In particular, the number of Gy-orbits on X is
finite, so there are closed Go-orbits and there are open Go-orbits.

Here the closed orbit turns out to be unique. There is a good structure
theory for the closed orbits, but it has not yet been exploited. We turn to
the structure of the open orbits.
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3. Open orbits

Fix a Cartan involution 6 of gy and Gy . In other words @ is an automor-
phism of square 1 and, using (2.3) so that gq is semisimple and Gy has
finite center, the fixed point set Ky = G is a maximal compact subgroup
of Go. Thus go = € + s where €, is the Lie algebra of Ky and is the
(+1)-eigenspace of 6 on go, o is the (-1)-eigenspace, €0 L sp under the
Killing form of go, and that Killing form is negative definite on €, positive
definite on s .

Every Cartan subalgebra of gg is Ad(Go)-conjugate to a f—stable Cartan
subalgebra. A f-stable Cartan subalgebra f)y C g is called fundamental
if it maximizes dim (ho N &), compact if it is contained in &, which is
a more stringent condition. More generally, a Cartan subalgebra of g is
called fundamental if it is conjugate to a #-stable fundamental Cartan
subalgebra.

3.1. Lemma. The following conditions on a O-stable Cartan subalgebra
bo C go are equivalent:

(i) bo is a fundamental Cartan subalgebra of go,
(i) hoN¥o contains a regular element of gy, and
(iii) there is a positive root system A+ = A*(g,h),b = ho®C, such that
TAY = A~
A 0-stable Cartan subalgebra by C go is compact if and only if TAT = A~
for every positive root system At (g,b).

3.2. Theorem. Let X = G/Q be a complez flag manifold, G semisimple
and simply connected, and let Gy be a real form of G. The orbit Go(z) is
open in X if and only if q; = q¢ where

(i) bo C 9z N go is a fundamental Cartan subgroup of gy and

(i) @ is a set of simple roots for a positive root system AY(g,b),b =

bo ® C, such that TAt = A—.

Fiz ho = Oho, A*(g,b) and © as above. Let W(g,h)% and W(a%,h)% de-
note the respective subgroups of Weyl groups that stabilize ho. Then the open
Go-orbits on X are parameterized by the double coset space

W (&, b NE\W (g, )% /W (g5, b)be.

3.3. Corollary. Suppose that Go has a compact Cartan subgroup, i.e.
that & contains a Cartan subalgebra of go. Then an orbit Go(z) is open
in X if and only if go N q, contains a compact Cartan subalgebra by of go,
and then, in the notation of Theorem 3.2, the open Go-orbits on X are
parameterized by W (¢,h)\W (g, h)/W (5, b).

Classical methods of differential equations tell us when a homogeneous
space carries an invariant complex structure [5]. The connection with
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semisimple structure theory was first sketched in the late 1950’s ([2]. [3]),
was connected to the theory of parabolic subgroups in the early 1960’s [18],
and was polished to an enumeration of invariant complex structures a few
years later ([27], [28]). We apply this to Ko(x) C Go(x) C X. A careful
examination of the way € sits in both ¢ and gg gives us

3.4. Theorem. Let X = G/Q be a complex flag manifold, G semisimple
and simply connected, and let Gy be a real form of G. Let z € X such
that Go(z) is open in X, and let ho C go N q, be a O-stable fundamental
Cartan subalgebra of go . Then Ko(z) is a compact complex submanifold of
Go(z). Let K be the complezification of Ko, analytic subgroup of G with
Lie algebra t = to ® C. Then Ko(x) = K(z) = K/(K N Q;), complez flag
manifold of K.

The compact subvariety Ko(z) controls the topology of an open orbit
Go(z) C X, as follows. It follows from Corollary 3.3 that the compact real
form G, C G is transitive on X. That gives us a realization X = G, /Va
where V,, C G, is the centralizer there of a torus subgroup. In particular V,
is connected. In view of (2.3) now X is compact and simply connected. In
view of Theorem 3.4, one can apply this argument to the compact subvariety
Ko(z) C Go(z); so it is simply connected. Now a deformation argument
shows that the open orbit Go(z) C X has Ko(z) as a deformation retract,
so Go(z) is simply connected. Thus one obtains

3.5. Proposition. Let X = G/Q be a complez flag manifold, G semisim-
ple and simply connected, and let Gy be a real form of G. Let x € X
such that Go(z) is open in X. Then Go(x) is simply connected and Gy has
connected isotropy subgroup (Qz N7Q;)o at .

The compact subvariety Y = Ky(z) also has a strong influence on the
function theory for an open orbit D = Go(z) C X. The idea is that
a holomorphic function on D must be constant on gY whenever g € G
and gY C D, so if there are “too many” translates of Y inside D then that
holomorphic function must be constant on D. But this has to be formulated
carefully.

Let X = G/Q be a complex flag manifold, G semisimple and simply
connected, and let Gy be a real form of G. Let £ € X such that Go(x)
is open in X. Then there are decompositions G = G| x --- X G,, and
Q=0Q1 X X Qp with Q; = QN G; and each G; simple. Consider the
corresponding decompositions X = X; x :-- x X,,, with X; = G;/Q; and
T = (.’L‘l, ces ,!L‘m), Go = Gl,ox‘ . 'XGm,o, Go(z) = Gl,o(:l‘l)x' . ~XGm,o(.’L‘m)
and Ko(z) = K1,0(21) X -+ X Kmo(xm). If

(D) Gip N (Qi)z; = ((Qi)z; N 7(Qi)s,)o is compact, thus contained in
Ki,O’
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(i) Gio/Kip is an hermitian symmetric coset space, and
(iii) Gio(zi) — Gio/Kip is holomorphic for one of the two invariant
complex structures on G; /K o
then we set L; = K; so L;p = K;0. Otherwise we set L; = G; so Lip =
Gio. Note that each G, o/ L;p is a bounded symmetric domain, irreducible
or reduced to a point. Set L = Ly x -+- x L,;, so Lo= Lo %+ X L.
Then we say that

D(Go,z) = Go/Lo = (G1,0/L1,0) X *** X (Grm,0/Lm,0) (3.6)

is the bounded symmetric domain subordinate to Go(z). Now we
can state a precise result for holomorphic functions on Gy(z).

3.7. Theorem. Let X = G/Q be a complex flag manifold, G semisimple
and simply connected, and let Go be a real form of G. Letx € X with Go(x)
is open in X. Let D(Gy,x) be the bounded symmetric domain subordinate
to Go(z). Then m : g(z) — gLo is a holomorphic map of Go(z) onto
D(Gy, ), and the holomorphic functions on Go(x) are just the f = f-n
where f : D(Go,z) — C is holomorphic.

Thus, in most cases there are no nonconstant holomorphic functions on
Go(z), but in fact this depends on some delicate structure.

4. Example: Hermitian symmetric spaces

In this section, X = G, /K is an irreducible hermitian symmetric space of
compact type. Thus X = G/Q where G is a connected simply connected
complex simple Lie group with a real form Gy C G of hermitian type, as
follows. Fix a Cartan involution 8 of G and the corresponding eigenspace
decomposition gy = € + s where ¥ is the Lie algebra of the fixed point set
Ko = G§. Then G, C G is the compact real form of G that is the analytic
subgroup for the compact real form g, = & + s, of g where s, = V=1sp
of g.

There is a compact Cartan subalgebra to C & of go. If a € A(g,t) then
either go C ¢ and we say that the root « is compact, or ga C s and we say
that a is noncompact. There is a simple root system ¥ = {%o,...,¥m}
such that 1 is noncompact and the other 1; are compact. Furthermore,
every noncompact positive root is of the form o+ Y. ;5 . n:%; with each
integer n; 2 0. If there are two root lengths then the noncompact roots are
long; this is immediate from the classification. Thus

g=t+s" +5" wheret=t+ Z fa,st = Z ga, and 67 = Z fa -
ng=0 no=1 np=-1

(4.1)
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Here q = 9{¥1,..., ¥, }» 0 Other words
g =t,q"=s",andq " =5 ;s0q=t+5". (4.2)
The Cartan subalgebras of go all are Ad(Gg)—conjugate to one of the
br,o given as follows. Let I' = {v1,...,7,} be a set of noncompact positive
roots that is strongly orthogonal in the sense that

if 1 =4 < j < 7 then none of +1; +1; is a root. (4.3)

Then each g[vi] = [g+,, 8—v.] + 8y + 8-, = s1(2,C), say with

1 0 01
8+, 8-%]3 Ay, & (0 —1)’ Oy Dey & (0 0) ’

00
9~‘Y.‘ af‘ﬁ' A (1 0) ’

such that go[yi] = go N g, = su(1,1) is spanned by =1 h.,, e, + f,, and
V=1 (ey, — fy,). Thus /=1 h., spans the compact Cartan subalgebra t,, =
go[yi] Nt of go[yi] and e,, + £, spans the noncompact Cartan subalgebra
ay, = go[yi] N's of go[vi]. Strong orthogonality (4.3) says [8+:»8+;] = O for
1=<i<jE£r. Define

tr = Z t,, and ar = Z ay, . (4.4)

1SisSr 1Sisr
Then g has Cartan subalgebras
t=tr+(tNtF) and br=ar+ (tNL) (4.5)

They are Int(g)-conjugate, for the partial Cayley transform

cr = H exp (gsfzi(eq,,. - f.,,.)) satisfies Ad(cr)tr = ar. (4.6)

1Sisr
However, their real forms
to =goNtand hro =goNbhr (4.7

are not Ad(Gp)-conjugate except in the trivial case where I' is empty, for
the Killing form has rank m = dim {9 and signature 2|T'| —m on br,o. More
precisely,
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4.8. Proposition. Every Cartan subalgebra of go is Ad(Gp)-conjugate to
one of the br o , and Cartan subalgebras br,o and by o are Ad(Gy) ~-conjugate
if and only if the cardinalities |T'| = |I|.

We recall Kostant’s “cascade construction” of a maximal set of strongly
orthogonal noncompact positive roots in A(g, t). This set has cardinality
£ = rankggy and is given by

E={&,...,&)}, where
€1 is the maximal (necessarily noncompact positive) root and  (4.9)
&m+1 is & maximal noncompact positive root L {£&1,...,&x}.

Any set of strongly orthogonal noncompact positive roots in A(g,t) is
W (G, Tp)—conjugate to a subset of =. Further, the Weyl group W (G, Tp)
induces every permutation of =.

Let zp = 1-Q € G/Q = X, the base point of our flag manifold X when X
is viewed as a homogeneous space. The Cartan subalgebra b C go leads
to the orbits Go(crcdzo) C X where TU X is a set of strongly orthogonal
noncompact positive roots in A(g,t) with I’ and ¥ disjoint. In view of
the Weyl group equivalence just discussed, we may take I' = {&,...,&}
and ¥ = {&-41,...,& 45}, both inside E. Using Gy = Ky exp(ag,0)Ko one
arrives at

4.10. Theorem. The Go-orbits on X are just the orbits Dr,x: = Go(crcdzo)
where T' and T are disjoint subsets of 2. Two such orbits Dr y, = Dy 5 if
and only if cardinalities || = |I'| and |Z| = |5’ |. An orbit Dr s is open if
and only if T is empty, closed if and only if (T, £) = (Z,0). An orbit Dri 5
is in the closure of Dr.x if and only if |='| £ |Z| and [Zurjg|x'ur.

5. Measurable open orbits

There is a class of open orbits that currently are much better understood
than the general case. That is the class of measurable open orbits —
the open orbits D = Gy(x) C X where D carries a Go-invariant measure.
They are characterized [22, Theorem 6.3] by

5.1. Theorem. Let D = Gy(x), open orbit in X. If D is measurable then
its Go—invariant measure is induced by the volume form of a Gy~invariant
indefinite~kihler metric. Purther, the Jollowing conditions are equivalent,
and D is measurable if and only if they hold.
(i) GoNQ, is the centralizer of a torus subgroup Z of Ko N Q,,

(i1) 92 N7q is reductive,

(iii) 9z N7, =qF,

(iv) Tq7™ = q3.
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Under these circumstances, 0q = q where 0 is the Cartan involution of go
with fired point set b .

The conditions of Theorem 5.1 are automatic if Ky contains a Cartan
subgroup of Gy, that is, if rank Ky = rank Gy, in particular if Go N Q; is
compact. Thus in particular the open orbits Go(c&zo) of §4 are measurable.
They are also automatic if Q is a Borel subgroup of G. More generally,
they are equivalent [22, Theorem 6.7] to the condition that 7q be Int(g)-
conjugate to the parabolic subalgebra of g that is opposite to q.

6. Exhaustion functions for flag domains

Bounded symmetric domains D C C" are convex, and thus Stein, so coho-
mologies H*(D; F ) = 0 for k > 0 whenever F — D is a coherent analytic
sheaf. This is useful for dealing with holomorphic discrete series representa-
tions. More generally for dealing with general discrete series representations
and their analytic continuations one has

6.1. Theorem. Let X = G/Q be a complex flag manifold, G semisimple
and simply connected, and let Gy be a real form of G. Let D = Go(z) C
X = G/Q be a measurable open orbit. Let Y = Ky(x), mazimal compact
subvariety of D, and let s = dimc Y. Then D is (s + 1)-complete in the
sense of Andreotti-Grauert [1]. In particular, if F — D is a coherent
analytic sheaf then H*(D; F) =0 for k > s.

The special case where Q is a Borel subgroup is due to Schmid [12],
and the general case is due to Schmid and myself [15]. The arguments are
similar: one examines the Levy form of an exhaustion function constructed
from canonical line bundles. In this section I'll indicate the proof.

Let Kx - X and Kp = K x|p — D denote the canonical line bundles.
Consider the dual bundles

Lx =K% - X andLp=K} — D. (6.2)

They are the homogeneous holomorphic line bundle over X associated to
the holomorphic character

e* : Q; — C defined by e*(q) = trace Ad(q)lqn - (6.3)

Write D = Go/V,p where Vg = Gy N Q;, real form of Qr. It is convenient
to write V' for the complexification Q% of V,. Then, following standard
terminology, pg /v is half the sum of the roots that occur in qr and A =
2pg,v - Thus, if a € A(g,b),
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{(a,A\) =0and a € ", or (@, ) >0 and a € ", or (@, ) <0

and a € 7",

Now 7A = —\. Decompose gg = €y +5¢ under the Cartan involution with
fixed point set £y, thus decomposing the Cartan subalgebra by C go N g, as
ho = to + ag with tg = hg N ¥y and ag = hy N s9. Then /\(ao) =0.

View D = Go/Vp and X = G, /Vp where G, is the analytic subgroup
of G for the compact real form g, = € + v/—1s0. Then e* is a unitary
character on V5. Now

Lx — X = Gy/V, has a G,—invariant hermitian metric h,, , 6.4
Lp — D = Gy/V, has a Gy—invariant hermitian metric hg . (6:4)

‘We now have enough information to carry out a computation that results
in
6.5. Lemma. The hermitian form /—180h,, on the holomorphic tangent

bundle of X is negative definite. The hermitian form —108hy on the
holomorphic tangent bundle of D has signature n — 2s where n = dimg¢ D.

6.6. Corollary. Define ¢ : D — R by ¢ = log(ho/hy). Then the Levy
form L(¢) has at least n — s positive eigenvalues at every point of D.

The next point is to show that ¢ is an exhaustion function for D, in
other words that

{z € D | ¢(2) £ ¢} is compact for every c € R.

It suffices to show that e~? has a continuous extension from D to the
compact manifold X that vanishes on the topological boundary bd(D) of
D in X. For that, choose a G,—invariant metric b, on L% = Kx normalized
by hyh; =1 on X, and a Go-invariant metric hj on L}, = Kp normalized
by hohf = 1 on D. Then e~% = h}/h%. So it suffices to show that h%/h?,
has a continuous extension from D to X that vanishes on bd(D).

The holomorphic cotangent bundle T% — X has fibre Ad(g)(q?)* =
Ad(g)(qz™) at g(z). Thus its G,-invariant hermitian metric is given on the
fibre Ad(g)(qz™) at g(z) by F,(¢,n) = —(&,70n) where (,) is the Killing
form. Similarly the Go-invariant indefinite~hermitian metric on T}, — D
is given on the fibre Ad(g)(qz™) at g(x) by Fo(€,m) = —(£, 7). But Kx =
det T and Kp = det T}, so

hg/hy = ¢ (determinant of Fy with respect to F,)

Compact Subvarieties in Flag Domains 589

for some nonzero real constant c. This extends from D to a C* function
on X given by

flg(x)) = c- (det Folxq(g)(4zm) Telative to det Fulsq(g)qzm)) - 6.7)

It remains only to show that the function f of (6.7) vanishes on bd(D). If
g(z) € bd(D) then Go(g(z)) is not open in X, so Ad(g)(q:)+7Ad(g)(9z) #
g. Thus

8a C Ad(g)(q;™) but g_o ¢ Ad(g)(4s) + TAd(9)(9z)

for some a € A(g, Ad(g)h).

If B € A(g,Ad(g)h) with gg C Ad(g)(qz") then Fo(ga,gs) = 0, so
f(g(z)) = 0. Thus ¢ is an exhaustion function for D in X. In view of
Corollary 6.6 now D is (s + 1)—-complete. Theorem 6.1 follows.

7. Coset structure of the cycle space

In this section, X = G/Q is a complex flag manifold, G semisimple, con-
nected and simply connected, and Gy is a real form of G. We fix an open
orbit D = Gy(z) C X = G/Q and assume that it is measurable. As before,
Y = Ky(z), maximal compact subvariety of D, and we write n = dim¢ X
and s =dimc Y.

The linear cycle space or the space of maximal compact linear
subvarieties of D is, by definition,

Mp ={g9Y | g € G and gY C D}. (7.1)
Since Y is compact and D is open in X, Mp is open in
Mx ={gY |ge G} =G/L (7.2a)
where
L={g9€G|gY =Y}, closed complex subgroup of G. (7.2b)
We now look at the structure of the G-stabilizer L of the maximal com-

pact linear subvariety Y in our open orbit D = Go(z) & Go/Vo. The
starting point is the following lemma, which is obvious.

7.3. Lemma. The kernel of the action of L={ge€ G |gY =Y} onY is

E =[] QK™ = ] kQk™* (7.4)

keK ke Ko
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and KE C L C KQ,.

In general, G,Gy,Q,X,D,K,K, and Y break up as direct products
according to any decomposition of gy as a direct sum of ideals, equivalently
any decomposition of Gy as a direct product. Here we use our assumption
that G be connected and simply connected. So, for purposes of determining
the group L specified in (7.2) and just above, we may and do assume that
Gy and go are noncompact and simple. This is equivalent to the assumption
that Go/Kp be an irreducible riemannian symmetric space of noncompact
type.

We will say that Gy is of hermitian type if the irreducible riemannian
symmetric space Go/Ky carries the structure of an hermitian symmetric
space.

As before, we write 6 for the Cartan involution of Gy with fixed point
set Ko, for its holomorphic extension to G, and for its differential on g
and g; and we denote the f—eigenspace decomposition by g = £+ 5. Our
irreducibility assumption says, exactly, that the adjoint action of Ky on
8o = go N s is irreducible. Gy is of hermitian type if and only if this action
fails to be absolutely irreducible. Let Sy = exp(s+) C G. Then Go/Kj is
an open Go-orbit on G/Q where Q = KS_ as in §4.

As before we have the compact real form G, C G, real analytic subgroup
for g, = & +v—1sp, and Ky = GoNG, . Ky is its own normalizer in Gy,
but its normalizer Ng, (Kp) in G, can have several components.

7.5. Proposition. Either Gg is of hermitian type and L = KE = KS, ,
connected, or! L = K Ng, (Ko) with identity component L® = K. In either
case GoNL = Ky. In general, if Go N Q. is compact then L = KE and L
is connected.

This Proposition is proved by running through cases, which are as follows.

(1) Go is of hermitian type with Q, C KS_.
(2) G is of hermitian type with Q, c KS,.
(3) Gy is of hermitian type with Q, ¢ KS_, Q. ¢ KS,, and S_ C

Qz.

(4) Gp is of hermitian type with Q, ¢ KS_, Q. ¢ KS,,and S, C
Qs.

(5) Go is of hermitian type with Q. ¢ KS_, Q. ¢ KS,, S_ ¢ Q.,
and §; 7 Q.

(6) Gy is not of hermitian type.

An important consequence of Proposition 7.5 is

LThis latter situation occurs both for Gp of hermitian type and for Gg not of hermitian
type.
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7.6. Corollary. Either L is a parabolic subgroup KSy of G and Mx =
G/L is a projective algebraic variety, or L is a reductive subgroup of G with
identity component K and Mx = G/L is an affine algebraic variely.

8. Holomorphic structure of the cycle space
Here I want to indicate the proof of

8.1. Theorem. Let D = Go(z) be a measurable open Go-orbit on a
complez flag manifold X = G/Q. Then the linear cycle space Mp is a
Stein manifold.

Results of this sort were suggested by a vanishing theorem in Schmid’s
thesis [12] and by Griffiths’ discussion [8] of moduli spaces for compact
Kaehler manifolds. One case was worked out by R. O. Wells, Jr. using
explicit matrix calculations [19]. Later Wells and I gave an argument for
Theorem 8.1 in the case where GyoNQ; is compact [20, Theorem 2.5.6], but
there were problems with the combinatorics of the proof. I settled these
problems in the general case of Theorem 8.1, as stated, in [26], and that’s
the argument that is indicated below.

Consider the first of the two cases of Corollary 7.6.

8.2. Theorem. Suppose that Mx is a projective algebraic variety. Then
every open orbit D = Gy(x) C X is measurable and Mp is a bounded
symmetric domain. In particular Mp is a Stein manifold.

Here Gy is of hermitian type and L = K 'Sy, maximal parabolic subgroup.
We can replace A* by its negative if necessary and assume L = KS_ .
Thus we are in Case 1 (when Vp = Go N Q; is compact) or in Case 3
(when Vo = Go N Q. is noncompact) of the proof of Proposition 7.5. Also,
Mx = G/L is the standard complex realization of the compact hermitian
symmetric space G,/ Kp. Denote

G{D}={g€G|gY c D}. (8.3)

It is an open subset of G, and Mp C Mx = G/L consists of the cosets gL
with g € G{D}. Evidently Mp is stable under the action of Gg. Thus

G{D} is a union of double cosets GogL with g € G. (8.4)

The proof of Theorem 8.2 consists of showing that only the identity double
coset occurs in GD. That relies on the orbit structure of Gy on My as
described in §4.

The case where Vo = Go N Q, is compact is easy. With V, compact,
Q: C L and there is a holomorphic fibration 7 : X — My given by
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9Qz — gL. Here m(D) is the bounded symmetric domain {gL | g € Gp}
and the gY, g € G, are the fibres of 7 : X —» Mx. Thus Mp is the
bounded symmetric domain {gL | g € Gy}

Return to the general case, where ¥ may be noncompact. The double
cosets GogL of (8.4) are in one to one correspondence with the Go—orbits
on Mx . Those orbits were described in Theorem 4.10 above, and we use
the notation of §4.

G{D} is open in G and the map G — G/L = My is open. So G{D}(z)
is open in Mx . Thus, if crvc, € G{D}, and if Go(crvc%,2) is in the closure
of Go(crcé z), then crck € G{D}. Now (8.4) and Theorem 4.10 combine
as follows.

8.5. Lemma. There is a (necessarily finite) set C of transforms crc,

where T' and X are disjoint subsets of Z, such that (i) if crek,crick € C
with |I'| = || and |Z]| = |X'| then T =TV and £ = ¥’ and (ii) G{D} =
Ucee GocL. So if crcd € C then ¢ty € C for every subset &' C X. In
particular, if ¢& € C whenever @ # £ C ¥ then C = {1} and G{D} = GoL.

This reduces the proof of Theorem 8.2 to the assertion §) # £ C Z implies
ct ¢cC.

R = LNQ; is a parabolic subgroup of G and W = G/R is a complex
flag manifold because S_ C LN Q. So there are holomorphic projections

7 :W — X by gR gQ, , fibre F' =77 (z) = V(w) = V/VNL,

7" : W — Mx by gR+— gL , fibre F" =1r”"1(z) =Kw)2K/KNQ, ,
(8.6)
where g€ G and w=1-Rin W. Set D = Go(w). Then

x': D — D by g(w) — g(z), fibre Vo(w) = Vo/Ko N Vo, open in F’ .
8.7
F' is a complex flag manifold of V = Q~, Vp(w) is open in F’, and VN K
is a maximal compact subgroup of Vp; so Vp(w) is a bounded symmetric
domain and F’ is its compact dual.

The usual positive definite hermitian inner product on gg is (£,7) =
—b(&, 70n) where b is the Killing form. The associated length function
defines

|l€llg : operator norm of ad(¢) : g — g foré €g. (8.8a)

The Hermann Convexity Theorem says
Go(2) = 7"(D) = {exp(()(2) | € € 54 with |[€]lg < 1}. (8.8b)

Recall v = q . A glance at the proof of the Harish-Chandra realization
of Go(z) as a bounded symmetric domain, and of (8.8b), shows that every
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g € Gp has expression

g =exp((1 + ¢2) - k - exp(n) where
nes_, k€ K, (; € Ad(k)(vNsy), and {; € 54 L Ad(k)(v Nsy).
(8.9)

There is a number a = ag > 0 such that, in (8.9), ||¢i]] < ac -

The operator norm information pulls back from G(z) to D. The result
is
8.10. Lemma. Decompose g € Go as in (8.9). Define f: Go — R by
f(g) = lICillg- Then f(gz) = f(g) is a well defined function f : D - R. If
9z € D then 0 £ f(gz) < ac where ag is given as above.

Now the proof of Theorem 8.2 proceeds as follows. Let @ # ¥ C = with
cZ € C. In the notation of §4, we conjugate by an appropriate element
of Ko and may assume ¥ = {&,... ,{n} C E, with 1 S m £ . Let
8[Z] = Y15 is m 8l&:] and let G[X] be the corresponding analytic subgroup
of G. Then G{D} contains the diagonal subgroup G¢[Z] & SL(2;C) in
G[X]. Since & is not a root of q7 = v the orbit X4[Z] = GI[Z|(x) is a
Riemann sphere contained in D.

Let &' = {0 € £ | go ¢ v = q7}, nonempty because it contains &, . The
diagonal subgroup G?[X'] 2 SL(2;C) in G[Z’] has properties:

G[Z'](z) = X“?[X] is the same Riemann sphere X¢[Z] ,

(0[Z'1Ns4) L (vNsy), and

G"[E'] N K is contained in the Cartan subgroup H with Lie algebra .

(8.11)

Now look at the corresponding orbits in the hermitian symmetric flag
variety Mx = G/KS_. The orbit G¢['](2), call it Z4[Z'], is a Riemann
sphere, the diagonal Z[Y'] = G[X'](z). Its intersection with the bounded
symmetric domain Gg(z) is the hemisphere G3[%'](z), where GE[Z'] = Gon
GIZ.

Let f* = ﬂGd[g/] in the notation of Lemma 8.10. Then f* is real analytic
and has a unique real analytic extension fT to GY[Z’] Nexp(s+)K exp(s-).
Evidently f! is unbounded. The function f of Lemma 8.10 is real analytic
on the lower hemisphere of the Riemann sphere X¢[Z] = X?[¥'] and its
restriction to that hemisphere has unique real analytic extension h to the
complement X9¢[Z] \ cZ(z) of the pole opposite to x, extension defined by
f1 just as f is defined by f. In view of (8:11), b = f|xajgp\c2 (). Since ftis
unbounded, it follows that f is unbounded. This contradicts Lemma 8.10.

One concludes that C cannot contain any c with § # £ C Z. As noted
earlier, that completes the proof of Theorem 8.2.

The second case of Corollary 7.6 is addressed by
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8.12. Theorem. Suppose that the open orbit D C X is measurable and
that Mx is an affine algebraic variety. Then Mp is an open Stein subdo-
main of the Stein manifold My .

Recall the exhaustion function ¢ : D — R defined in Corollary 6.6. It is
real analytic and its Levy form

L(¢) = V-109¢ (8.13)

has at least n— s positive eigenvalues at every point of D. Here n = dim¢ D
and s = dimc Y. Since ¢ is an exhaustion function, the subdomains D, =
{z € D | ¢(2) < c} are relatively compact in D.

Analyticity allows one to transfer ¢ to Mp . Define ¢5s : Mp — R+ by

ém(gY) = sup ey B(9(y)) = sup,cb(gk(z)) . (8.14)

The result is -

8.15. Lemma. ¢y is a real analytic plurisubharmonic® function on Mp.
If Yo is a point on the boundary of Mp in Mx and {Y;} is a sequence in
Mp that tends to Yo, then limy, .y, ¢p(Y;) = oo.

The next step is to modify ¢ to obtain a strictly plurisubharmonic
exhaustion function on Mp. Since My is affine, it is Stein, so there is
a proper holomorphic embedding F : Mx — C2™+1 a5 a closed analytic
submanifold of C>™*!. The norm square function N(m) = ||F(m)||? has
positive definite Levy form, and the sets {m € Mx | N(m) < c} are
relatively compact. Now

¢: Mp — R* defined by {(m) = ¢p(m) + N(m) (8.16)

has positive definite Levy form, thus is strictly plurisubharmonic. Since N
and ¢ are real analytic, so is (. And ¢ tends to oo at every boundary point
of Mp because ¢ has that property by hypothesis and N has values 2 0.
So every set

M¢c={me M|({(m)<c} (8.17)

has closure contained in Mp . But F is a proper embedding of M in C2™+1,
so the sets M . of (8.17) have compact closure in Mp .

We have proved that ¢ is a real analytic strictly plurisubharmonic ex-
haustion function on Mp. Theorem 8.12 now follows using H. Grauert’s
solution [6] to the Levy Problem.

Note that this argument shows

2A C? function f on a complex manifold is called plurisubharmonic if the hermitian
form L(f) is positive semidefinite at every point, strictly plurisubharmonic if L(f) is
positive definite everywhere. See [4], [11] or the exposition [10, §2.6].
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8.18. Lemma. Let M be an open submanifold of a Stein manifold M.
Suppose that M carries a C™ plurisubharmonic function§ ,r € {2,3,...,00,w},
that blows up on the boundary of M in M in the sense: if Yoo € bdM and
{yi} € M tends to yo then lim; .o &(y;) = 0co. Then M carries a CT
strictly plurisubharmonic ezhaustion function.

Theorem 8.1 follows from Theorem 8.2 when My is a projective alge-
braic variety, from Theorem 8.12 when My is an affine algebraic variety.
Corollary 7.6 says that these are the only cases.
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