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New Classes of Infinite-Dimensional Lie Groups

LOKI NATARAJAN, ENRIQUETA RODRIGUEZ-CARRINGTON,
AND JOSEPH A. WOLF

ABSTRACT. We describe some new constructions of infinite-dimensional Lie
groups based on direct limits in various categories of lincar spaces. In each
case the limit group takes its topology and analytic structure from the limit
Lie algebra. In all of the situations we investigate, the limit of the Lic alge-
bras is a good topological Lie algebra. We prove that the result is essentially
the same for limits of Lie groups, but the situation is much more delicate.
In the case of the locally convex direct limit, the limit is a Lie group, except
that in some cases the group composition is only separately continuous.

1. Preliminaries

In this note we summarize our work in progress on Lie group structures
for various classes of direct limits of finite-dimensional groups. In effect, by
taking the direct limit of the Lie algebras in various categories of topological
spaces, and using the exponential map, we carry a topology and an analytic
structure to the limit group.

The case of the usual direct limit, in the category of topological vector
spaces, was published in [7]. The cases of direct limits in the categories
of normed linear spaces and of locally convex topological vector spaces will
appear in [8].

Fix a directed set 4. Thus A4 is a partially ordered set, say with order
relation <, such that if a, B € A then one has y € A with o, B S 7. We
consider directed systems

(1.1) {G,, 95,05 VarMp.a> n,}.
First, by definition, a and B run over A4, each G, is a (finite-dimensional
real) Lie group, say with real Lie algebra g, , and if a £ B then
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¢,,a G, — G’,, is an analytic homomorphism. We require the standard
¢,a=¢ 8o forasp=<yandg = ldemo for all a. Second,
each of the V, is a finite dimensional complex vector ! space, and if a < 8
then g.a V - V‘ is a linear transformation. As above we require the
standard n, =M, s ‘N o foraspsyandn, = ident,, for all a.

Third, =, is a continuous representation of G, on v, , and one has the
consnstency condition that for o < B the left-hand dlagram diagram of

G,xV, =, v g xV, Lo,y
(1.2) ¢I.n1"l.u l";.a 4%...1";“. l":...

G V X, v dn,

p*Vg — V g Vg — V)

is commutative. If a £ # then ¢ defines a Lie algebra homomorphism
d¢p o 8, 85 The Lle algebra representauons dm, satlsfy the consistency
condition that comes out of the condition for the m,. So the right-hand
diagram of (1.2) is commutative.

The direct limit or injective limit group G = lim G, consists of the equiv-
alence classes [g,] of sets {g,} where each 8, €G, and, forsome Be A4,
if B <7y then 8 = ¢, 5(g5). The equlvalence relatnon is such that [g ]
is determined by the eventual behavmr of {g.}: {g}~ { g,} when, for
some B € A,if B <y then g = g’ G is a group with the operations
[g,]- [g]- [h,] where each h, = g_- g and [g, ' = [ga"]. We have
homomorphxsms
(1.3)

$p: Gy — Gby gy(x)=[g,) where g = ¢, ,(x)for B< 7, g, = Ig,

otherwise. Those homomorphisms define the naive direct lzmn (DL) topology
on G: Asubset U C G is DL-open in G if and only if ¢ (U) is open in
G‘, forevery fec A. Gy = llm G consists of G with thls DL topology.
Gp, is a (Hausdorff) topologxcal group

Similarly the direct limit Lie algebra g = llm g, consists of the equiva-
lence classes [{,] of sets {¢,} where each { € g, and, for some B € 4,
if # <y then { = d¢ ({l,) The equlvalence relatnon is the Lie algebra
version of the relatnon for G. Now g is a Lie algebra, one has Lie algebra
homomorphisms d¢p 85 — 9, and these homomorphisms define a naive
direct limit (DL) topology on g as above. 8pL = llm L 8a consists of g
with this DL topology. It is a topological Lie algebra, and the exponential
map

(1.4) €Xpg : gp; — Gp, defined by expg([E,)) = [expGa(ﬁa)]

is well defined and continuous.
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The direct limit vector space V = Ilm V, is defined as above. One has
linear transformations 7% V=V as in (l 3), they define a naive direct
limit (DL) topology on V, and V' together with that topology is a topological
vector space ¥, = l_n_rp”)L v, .

The direct limit representation # = lan =, is the representation of G
on V given by n([g,))([v,]) = [%,(g,)(v,)]. Here = is well defined and is
a continuous representation of G, on Vp, . Similarly dn(iE,)(v,) =
[d=,({,)(v,)] is a continuous representation of gpL ON VD,_ , the series
exp(dn([f D)([v,]) convergesin V,, , and

n(expg([€.1))([v,]) = exp(dn (i, D)([v,]) -

The diagrams
G, xV, =, v o xV, 2, ¥
(1.5) ¢,ln., ln. “"l"" 1'1,
GpL x Voo —— ¥ 8oL > VoL — VoL

are commutative.

EXAMPLE 1. DIRECT LiMITS OF CLASSICAL ALGEBRAS. Let 8, Col(V,),
where V, is a finite-dimensional vector space. For instance, g, could be one
of the class:cal algebras u(n), o(n), or u(q, n). Here d¢, +kon 8~ Bk
is given by §{ — (§3) , obtained by adding dim ¥, "+ —dim ¥V, zero columns
and rows to &.

fpL = hm L 9n is a locally convex Lie algebra since for countable direct
limits of topologncal vector spaces the direct limit and the locally convex
direct limits coincide.

It is convenient to work in the case where the maps of the directed sys-
tem are injective. This implies no loss of generality. In fact, we proved
(7, Proposition 3.1] that there is a unique quotient directed system with the
same limits and with all maps Pp.a> Ng.a » 9o > and n, injective. In (7] we
denoted this injective quotient system with overlines, but here we just pass
to the injective quotient system and drop the extra overline notation.

The spectral growth condition of [7] is

(1.6) 1(¢) = sup{|Im 4| | A is an eigenvalue of dn(¢)} < oo foralléeg.
This condition (1.6) has strong consequences. It forces
(L.7) O0={Ceg|if) <m}

to contain an open neighborhood O, of 0 in ﬂm. [7 Proposition 5.5]. If
dn :g — End(V) is injective, it says that expg : — G is injective, and
that

(1.8) U = Up, =expg(0,) is an open subset of Gy, ;

(1.9) exp; : O, —» U is a homeomorphism; and
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(1.10) expg :d4;'(0,) - ¢, (U) is a diffeomorphism for all o € 4.

Write C”(-) for the sheaf of germs of real analytic functions on a finite-
dimensional real analytic manifold. The direct limit sheaf is C"’(GDL) =
l_il_'nmc"’(Ga). If S is open in Gy, then f: S — C is a section of

C”(Gpy) over S just when each f - ¢, : ¢_'(S) — C is C”. That spec-
ifies the presheaf and thus specifies c"’(GDL). Since the ingredients of this
construction are invariant under group operations, the sheaf c"’(GDL) is in-
variant under left and right group translations and group inversion.

The sheaf C“(gp,, ) is defined similarly. It also has a standard definition
in the context of linear spaces. If B is open in g, , then f: B — C
is analytic just when f - ¢ is analytic in the usual sense for every affine
£ :R — g. The two definitions are equivalent because ¢ must have image in
one of the finite-dimensional spaces g_ .

The main result of [7] says that, given the spectral growth condition, Gpy
hasa C” Lie group structure modelled on the topological vector space g, ,
such that

-1
(L.11) the (exp; |o,) -L‘_. :8U - 0, < gy, form

a local coordinate cover on G,

and
(1.12) C®(Gpy) is the sheaf of germs of C* functions on G, .

Furthermore, exp; : O, — U is an analytic diffeomorphism and the ¢, :
G, — Gy, are analytic.

In [8] we consider the locally convex direct limit of a directed system of
Lie algebras, and also the norm direct limit and the Banach direct limit.
These concepts are defined below, and can be thought of as the direct limits
in different categories of Lie algebras and continuous Lie algebra homomor-
phisms. We then proceed to obtain results similar to those of [7] for each of
these types of limits.

In order to construct the groups associated to these types of limit Lie
algebras, we need to assume that the operator norms on { g8,} are of bounded
growth, in the sense specified below. This condition implies the spectral
growth condition (1.6). It is a condition which is automatically satisfied by
the examples that occur most naturally.

For each o € 4, let v, be the operator norm defined on g, by the
representation dn, on V,. The family {v,} ., is said to be of bounded
growth if for each ¢ = [{.] € g, there exists an index o € A such that
limsup{u‘(cﬁp,a{a) laSpeAd} <.

In the case of the norm direct limit, we also need to assume that the norm
we are dealing with be “not too different” from an operator norm of bounded
growth, in the sense made precise by condition (3.2) below.
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2. Convexity and direct limits. The norm- and Banach direct limits

We focus on direct limits of finite-dimensional Lie algebras, but several of
the results are valid more generally for direct limits of vector spaces.

Let {V_, Wp,a}a, ped be a directed system of topological vector spaces
and continuous linear transformations. The directed system is strict if V, =
wﬁ,a(Vﬁ) , topological isomorphism, whenever a < #. Note that the index
set A may be uncountable.

Let V = l_ig}aH V. , algebraic direct limit. We will deal with several
topologies on V : ’

1.  The (naive) direct limit (DL) topology, described in §1. It is the
strongest topology on V' for which the inclusion maps v, : ¥V, — V are
continuous for all a € 4. A linear transformation F : VoL — W into any
topological vector space W , is continuous if and only if the transformations
F-y, .V, — W are continuous for all a € 4. Such an F is said to be
DL-continuous.

2.  Assume that each V, is locally convex. The locally convex direct
limit (LCDL) topology is defined to be the strongest locally convex topology
on V such that all the ¥, : ¥, — V' are continuous. A convex subset U
of V is LCDL open if and only if y_ '(U) is open for all a € A. A linear
transformation F : V|, — W into a locally convex vector space W, is
continuous if and only if the F -y, : ¥V, — W are all continuous. We will
then say that F is LCDL-continuous.

In the theory of linear spaces, the LCDL topology is used more than the
DL topology, and is often simply called the direct limit topology.

3. Assume that the ¥V, have compatible norms || -||, in the sense that

@1) Vs, @lly =llvll, forasp and veV,.

The norm direct limit or NDL topology on V is the topology given by the
norm ||-|| = lim || - ||, , defined as follows. Let v = [v,] € V', and take

B € A large enough so that w; '(v) is not empty. Then

2.2 vl =llw; ' @)l -

It follows from condition (2.1) that this norm on V is well defined. The
normed vector space thus obtained is denoted by ¥y, , orby (V, ||-]]).

4. The Banach direct limit Vg, of {V,, ¥, .}, peq is defined to be
the completion of ¥ with respect to the NDL topology.

The topological vector spaces Vp, , ¥ cp. » Vapr and Vyp, can be con-
veniently considered as the limits of the same {V,, V’p,a}a, pea in different
categories, and that is the approach we take in [8].

EXAMPLE 2. THE SPACEs ¢,. Let A be the set of natural numbers, and

let V,=R". Let ¢, ,:R" — R™ be the natural inclusion map
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m
(al,...,an)-—»(a,,...,an,O,...,O)eR (nsm).

The direct limit space V', often denoted R™, is the vector space of all
sequences, with coefficients in R, which are eventually zero. Now consider
each of the R" as a Banach space for the norm £, , and observe that the
compatibility condition (2.1) is satisfied, so that the ¢, NDL makes sense.
Note that V' is not NDL-complete. Its completion Vgpr is the usual space
£ .

’ EXAMPLE 3. NORM- AND BANACH DIRECT LIMITS OF CLASSICAL LIE AL-
GEBRAS. We can also take a norm limit of the algebras in Example 1, as fol-
lows. Let 1 < p < co and define || I, on g, to be the ¢, norm, namely

IRlln,p, = (Tr(€°)%)? for 1 <p < oo and K], , = supy,y,_,(IEv])) . Then,
for each p, {||- llx,p}nen is @ compatible family of norms and hence we
have a well-defined norm, || I, = lim || - l,,, on g. We will refer to this
situation as (g, || ll,). Our limit Lie algebras provide more examples of
these constructions.

LEMMA 2.3. Let {V,, ¥5.a)a, pca be adirected system of vector spaces and
linear transformations. Then the natural inclusion maps Vy, < Vicp <
Vwpy are continuous, for the NDL topology given by any Jamily {||-|I,} of
norms satisfying the compatibility condition (2.1).

We say that the system {V, , Y5 ala, pea €ventually stabilizes if there exists
an index a, such that ¥, is an isomorphism onto Vs whenever g 2 a2
@, . In that case V;,, and ¥, are both isomorphic to Voo -

LEMMA 24. Let (V,, ®m.n} be a countable, strict directed system. If the
system never stabilizes, then no locally convex topology makes V into a Baire
space.

COROLLARY 2.5. No NDL topology on V is complete, unless the system
eventually stabilizes.

LEMMA 2.6. Let T be any one of the topologies DL, LCDL, NDL or BDL.
If B C A is a directed set under the partial ordering “ < ” it inherits from
A, then

(a) lim Ve < lim V. is continuous, and

——T,peB S T,a€4 @ ]

(b) if B iscafinal in A, then h—'»nr,pen Vg = lﬂgr,aa ~

Several useful properties hold for the case when the index set 4 = N and
the directed system is strict. For example, then ViepL coincides with VoL
and is complete and Hausdorff, and V. is isomorphic to its image v, (V)
where the latter has the topology induced by VoL - See [11]. However,
these properties do not hold in general for uncountable directed systems; see
[6]. A result of Komura there shows that, even if every V, is Hausdorff,
VicoL can have the property that no two points are separated.
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Of course, if the index set 4 is uncountable, but has a cofinal subsequence,
then it follows from Lemma 2.6 that ¥, has all of the desirable properties
known to hold for countable locally convex direct limits.

Unless we state otherwise, we do not assume that the directed system is
countable. On the other hand, for the remainder of this section and most
of the rest of this paper, we assume that each of the spaces V_ is finite
dimensional. In many situations, it turns out that this finite-dimensionality
makes up for uncountability of the index set.

Recall our assumption that each of the Y5 .a is injective. Together with
the finite dimensionality of the V., it implies that the direct limit is strict.

We use a Zorn’s lemma argument to prove

PROPOSITION 2.7. There exists a compatible system of norms on

{Va ’ Wﬁ.a}a,ﬂe,{
and hence an NDL topology on V .

In particular the LCDL topology is stronger than a Hausdorff topology, so
COROLLARY 2.6. The LCDL topology on V is Hausdorff.

The following corollary is immediate from the Hausdorff property of
VicpL - Its importance stems from these facts: For a barrelled vector space,
the conclusion of the Banach-Steinhaus Theorem (Principle of Uniform
Boundedness) holds. For a bornological vector space, a linear map is bounded
(maps bounded sets into bounded sets) if and only if it is continuous.

COROLLARY 2.9. VicoL s bornological and barrelled.
We also have

PROPOSITION 2.10. If the index set A is linearly ordered, then the locally
convex vector space V, .., is sequentially complete.

As indicated above, the LCDL behaves nicely with respect to continuous
linear maps between locally convex spaces. The projective tensor product
V ®, W provides us with a device allowing us to turn questions dealing
with continuous bilinear maps into questions about continuous linear trans-
formations. If ¥ and W are locally convex spaces, then (see [10, Chapter
43-46]) the projective tensor product topology is the unique locally convex
topology on ¥ ® W such that: For every locally convex space Z , the canon-
ical isomorphism of the space of bilinear mappings of ¥ x W into Z , onto
the space of linear mappings of V ® W into Z , induces an isomorphism
of the space of continuous bilinear mappings of ¥ x W into Z , onto the
space of continuous linear mappings of V ® W into Z .

Let {V_, ¥5.a}a,pca and {W,, Xp.aa,pei be two directed systems of
locally convex vector spaces and continuous linear transformations. There
is no loss of generality in assuming that 4 = A4, since we could if neces-
sary consider both the given systems as having the index set A x A4 (the
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product directed set, which by definition has the lexicographic order). Both
lim wm.(V° ®, Wp) and (lﬁ*nl,cm. V) ‘3_’w (lim LCDL W.) have as‘undefly-
ing vector space (lim ¥,)®( lim W) . It is known that the natural inclusion
map lim LCDL(V‘, ®g Wp) — (lim DCDL_V") ®, (lim LCDL W,) is continuous.
We show that under our hypotheses, this result can be strengthened.

ProposiTION 2.11. Let {V,, ¥ }o pea and (W, X5 o)o pei be tWo
strict directed systems of finite-dimensional vector spaces and continuous linear
maps. Then

im popp(V, ®5 W) = (lim ;cp, V,) @ (lim cp, W)

Direct limits of finite-dimensional Lie algebras. We now consider a di-
rected system {g,, '/’p,a}a, pea of finite-dimensional Lie algebrz}s 8o and
Lie algebra homomorphisms 7 Let g= li_n}uu g, » as described in §1.
Since {g,, ¥ o}a,pea is in particular a directed system of locally convex
vector spaces and continuous linear maps, gp; , 8y cpr> OnpL 274 Gppr all
make sense. Each of them has a topological vector space structure, and also

a Lie algebra structure. We next investigate the question of when these two
structures are compatible.

ProposITION 2.12. (a) If {8, Vg o}a.pca 5@ strict directed system of
Lie algebras, then the Lie bracket is a continuous map g5, X 8p; — 8pf -

(b) Let {g,, W;,a}.., pea be a strict directed system of locally convex Lie
algebras. If the index set A is countable, or each g is finite-dimensional,
then the Lie bracket is a continuous map @, .p; % 8;cpr — 8LcpL -

To prove statement (a) we need some results on direct limits in the category
of topological spaces and continuous maps. These are given in [8]. Statement
(b) is a consequence of Proposition 2.11.

Consider the NDL case. Given a compatible family {||-||,} of norms
for {8, g, a}a,pes > and given &, € g, , for cach index g 2 a we have an
operator norm for the adjoint action of ¥s.q {, ong T

184 (W o &)l 0 = sup{ il |, o, .
Forany a £ § <y we then have |lad (¥ &, )lg, 00 < ll2A(¥, (&), o0

ProposiTION 2.13. Let {g_, Vp,a}a, pea be a directed system of Lie alge-
bras, with a compatible family of norms {||-||,}. Suppose that

(2.14) ifé=[¢ )egand a€ Athen lir;l:up{llad(fa)ll,;,w} < oo.
Then there exists M > 0 such that || [E, YIS M-\l -|Kll forallé, {€g

where ||-|| = lim lI-ll, - Hence the corresponding gy, and gy, are normed
Lie algebras.
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When we speak of the limit Lie algebras gy, and gy, Wwe shall always
assume that the directed system in question satisfies the hypothesis (2.14) of
Proposition 2.13.

3. The basic local coordinate system

Let T be one of the topologies DL, LCDL, NDL or BDL. In this section
we discuss the question of finding sufficient conditions for the existence of a
“good” neighborhood O, of 0 in g, i.e. of a T-open neighborhood O, of
0, such that the restriction of the exponential map to O, is one-to-one. This
neighborhood is essential for construction of analytic manifold structure on
G, in §84 and 5. The set U = exp(0,) will turn out to be a chart of G, at
1, and conditions (1.8) to (1.10) of §1 will hold with T in place of DL.

We already know that the restriction of exp; to the set O, given by (1.7),
is injective. So we need only show that O contains a T-open neighborhood
0, of 0.

The NDL topology for the operator norm. Assume that {dn_, V.} ., is
a compatible family of representations, and that v, is the corresponding
operator norm on g_. Assume that

limsup{v_({,)} < 00

for each [{,] € g. The spectral growth condition follows. We have an
operator norm v = limsupv, on g. Let 1 and O be as defined in (1.6) and
(1.7), using this system {d=_ }. We will now show that O is a neighborhood
of 0 in the NDL Lie algebra (g, v) , where v =limsupv, .

For each a € 4 we set 1,(£) = sup{|Im A| | 1 is an eigenvalue of dx_({)}
and O, = {{ €g,|1,({) <=n}. Then 1,({,) £ v (). Thus O, contains
the open neighborhood .#, = {{, € g, | v,({,) < #} and hence it is itself a
neighborhood of 0. Since this holds for each index a, and O, = ¥, '(0) ,
it follows that O is a neighborhood of 0 in (g, »). We now take as our
0, = 0, , any v-open neighborhood of 0 which is contained in 0. We
could for example take

3.1 0,=0,,={eg|v®) <}

The DL and LCDL topologies. Let O, beasin (3.1), and v be an operator
norm, as above. Since the natural inclusion maps g, — g;cp; < (9, V) are
continuous, O, is an open neighborhood of 0 for both the LCDL and the
DL topologies.

The NDL topology for the general case. Let {||-]|,} be a compatible family
of norms for the directed system and let ||-|| = lim || ||, . We prove that the
NDL Lie algebra (g, || -||) has a neighborhood on which exp is injective
if the norm is “not too different” from an operator norm.

More precisely, let {v,} be a family of operator norms that come from
some representation with bounded spectral growth, as in §1. For each a,
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let ¢ (v) be a positive number such that v () < ¢, (V)IKll, forall {€g,.
Assume that c_(v) is minimal for this condition. We prove that if

3.2) the operator norm v = lll_’n v, satisfies limsupc,(v) < oo,
then O, , is ||-||-open. In effect, (3.2) implies v(§) < limsupc, (v)|I§l] for

all ¢ € g, so the natural inclusion (g, || -||) — (g, ») is continuous.

4. The topologies on the limit groups

In this section we indicate how the topologized Lie algebras gy, , 8;cp; »
Snpr, and ggp,; define topological structures 8y, , &, op, , By and Bypy,
on the limit group G = 1_151 G, . Specifically, we indicate how each G,
carries the structure of a topological manifold modelled on the corresponding
87 » where T is DL, LCDL, NDL or BDL. The C” differentiable manifold
structures are described in §5.

The topologies of 8, ,8,,, and &y, have the property that the group
operations are continuous. So each of them is a topological group in the
usual sense. For &, ., , we only obtain a group with a topology that makes
x+— x~! continuous and (x, y) — xy separately continuous.

The key to this process is the following result in [2, Chapter 1I, §II]: A
family V of subsets of a group G is a fundamental system of neighborhoods
of 1 in G, for some Hausdorff topology under which the group operations
of G are continuous, if and only if V satisfies the five conditions:

1. If U, U, €V, then there exists a set U, € V such that
U,cuyny,,

2. The intersection of all sets of V is {1},

3. If U eV, there exists a set U; €V such that U,_I cU,

4. If UeV and g € G, there exists a set U, € V such that
gUg™' cU,

5. If U €V, there exists a set U, € V such that U, U, Cc U.

Let O, C O be an open neighborhood (for topology to be specified) of 0 and
set

V={Uco0,|U is T-open} and
V={U € G| U =exp(D) for some U € V}.

The desired properties of V follow from a list of analogous properties of V.
We denote by H the Campbell-Hausdorff-Dynkin series in g. Consider the
five conditions:

i. If U,, U, eV, then there exists a set U; € V such that
O,c0,n0,,

2. The intersection of all sets of V is {0},

3. ¥ UeV,thereexistsaset U, €V suchthat -U, c U,

4. If UeV and & € g, there exists a set U, € V such that
H(f, H(Ula _f)) C U:

4.1
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5. If UeV,there exists a set U, € V such that H(U,, U,) c U.

By manipulating of the Campbell-Hausdorff-Baker series, we show that condi-
tions 1 through 5 all hold for gy, , consequently that conditions 1 through
5 all hold for &, . We have conditions i through 4 for 8.cp » and there-
fore conditions 1 through 4 for &, ; but in the LCDL case condition 5
does not generally hold.

DEFINITION 4.2. Let T = NDL or LCDL. Define Gy, = lim \p G, to
be the abstract group G = li.n G, with the topology defined by the family
V of (4.1) for the NDL topology. Define &, = lim ., G, to be the
abstract group G = lE.‘ G, with the topology defined by the family V of
(4.1) for the LCDL topology. In other words, a subset V' C &y, resp. &, ;.
is open if and only if for each g € V there exists U € V such that gU cC V.

The topological group @y, is defined as the completion of &, with
respect to its two-sided group uniformity.

There are (at least) two natural ways in which to consider completing the
group &, : one might use the two-sided group uniformity, or, on the other
hand, one might first complete gy, to gy, and then use a process such as
the one used above to construct G,.. Proposition 4.3 below says that both
exp : O, — U, and its inverse log : U, — O, are uniformly continuous in
the NDL topology, so both paths lead to the same complete topological group
GppL -

A net {g;},; C Byp, is (two-sided) Cauchy if for every neighborhood U
of 1in &, there exists an i, € I such that both g..gj_' and g’ g; arein
U, whenever i, j 2 i,.

PROPOSITION 4.3. Let (g, ||-|l) = oyp, = ljl_’nNm_ g, and let M be a
constant such that || [€, {1 || < MIIE||- Il for all &, € g. Fix r >0 and
a net {§;} C O, with each ||{|| £ r/2M . Then {§} is ||-||-Cauchy in g if
and only if {exp(§,)} is Cauchy in Gy, -

In summary,

THEOREM 4.4. The DL, LCDL and NDL topologies on g define topologies
on G such that, for the resulting topological spaces G, , G,cp, and Gyp, ,
the map exp : O, — U, is a homeomorphism onto an open set. G,, and
GypL are topological groups, as is the completion Gy, of Gyp, - Gycpy s
essentially a topological group, except that group multiplication may be only
separately continuous.

Now consider the BDL case. Assume (3.2) and define O, by the same
inequality (3.1) as in the NDL case. Then Proposition 4.3 and Theorem 4.4
give us

COROLLARY 4.5. Let g,,,, be the completion of the norm direct limit
algebra gy, , let Gg,, be the completion of the corresponding norm di-
rect limit group Gy, , with respect to the two-sided group uniformity, and
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assume (3.2). Then Gg,, is a topological Lie group and the restriction to O,
of the exponential map exp : gg;,, — Gp;, is a homeomorphism onto an
open set.

S. Structure sheaves

In this section we carry the sheaves C“'(GDL) and C“’(gDL) of germs of
analytic functions for the DL topology to corresponding sheaves C"’(GNDL)
and C”(gyp,) for the NDL topologies, to C*(Gyp, ) and C“(gyp, ) for the
BDL topologies, and to C*(G,p,) and C“(g;cp,) for the LCDL topology.

Recall the standard construction [1, p. 9] of direct image sheaves. Let X
and Y be topological spacesand ¥ : X — Y acontinuous map. If F — X is
a sheaf one has a presheaf over Y, which assigns to an open set W, C Y the
abelian group of all sections of F over w"(Wy) . This presheaf is complete.
That defines the direct image sheaf w,F — Y . The assignment y, is a left
exact covariant functor.

The natural maps G, — Gicp; — GypL» BY x = x, and g, —
8ucpL — Onpr BY € — &, are continuous. The sections of the direct image
sheaves C“(Gypr) = Gpr » C”(Bnpr) — 8oL » € (Gep) = Gicpy » and
C”(8ycp) — BucpL are just those sections of the corresponding DL sheaf
whose domains are NDL- or LCDL-open. So they are the analytic function
germ sheaves where we define

DEFINITION 5.1. Let W be an open set in Gyp; » 8npL » Gpepr » OF
ScpL » Tespectively. Then a function f: W — C is real analytic if (a) f is
continuous and (b) f is DL-analytic.

The natural maps Gy, — Ggp, and gyp, < @gp; are continuous. The
sections of the direct image sheaves C“(Gyp, ) — Gppy. and C”(ggp;) — 8ppr.
are just those continuous functions whose restrictions to Gy, Or gy, are
sections of the corresponding NDL sheaf. So they are the analytic function
germ sheaves where we define

DEFINITION 5.2. let W be an open set in Gy, or gy, , respectively.
Then a function f : W — C is real analytic if (a) f is continuous and (b)
the restriction of f to the dense subset W NGy, , respectively Wngy, ,
is NDL-analytic.

6. Conclusion and examples

We now combine the material of §§4 and 5. Let T be one of the topologies
DL, LCDL, NDL or BDL. In the DL case, assume the spectral growth condi-
tion (1.6). In the LCDL, NDL and BDL cases assume the stronger conditions
(2.14) and (3.2). In a group, L, denotes the left translation y + xy. Our
results are summarized in

THEOREM 6.1. The real analytic structures on g = lim g , corresponding
to the topologies T = DL, LCDL or NDL, respectively, define structures G
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of C¥ differentiable manifold on G = l_an G, based on the topogical vector
space g, . A C* local coordinate cover on G, , corresponding to the topology
T, is given by the (exp |o )7t L, :8U; — O, < g, and C®(Gy) is the
sheaf of germs of C* ﬁmcuons on Gp, whose domains are open in G
Gy, and G, are C* Lie groups, as is the completion Ggp,, of GNDL

G cpy is essentially a C® Lie group, except that group multiplication may
be only separately analytic.

ExAMPLE 4. DIRECT LimiTs OF CLASSICAL LiE GRouPs. Let g, be as in
Example 1, and let G, be their respective Lie groups. For the instances
mentioned explicitly in Example 1, the Lie groups are G, = U(n), O(n)
and U(q, n) respectively. The embedding ¢,,, , is given by ¢ — (§9)
where [ is the identity matrix of size dim ¥, , —dimV, . The group &, =
S, coL = ll_l‘l;l LCDL G, is now seen to be a locally convex Lie group modelled
on its Lie algebra lim oL

EXAMPLE 5. NORM- AND BANACH DIRECT LIMITS OF CLASSICAL LIiE
Groups. Using Example 3, each sequences of classical Lie groups in Ex-
ample 4, and for each p with 1 £ p < oo, gives group G = h_t’n G, .That
group G has the structure of normed Lie group &,;,, modelled on the norm
direct limit Lie algebra (g, ||- [l,) . The compatibility condition (2.1) is satis-
fied in these cases, so each of the normed Lie groups &, can be completed
to a Banach Lie group &y, modelled on gy, .

The groups of Examples 4 and 5 have been studied as topological groups
by Kolomytsev, Semoilenko, Ol'shanskii and others. For example see [4, 5,
and 9]. Here [5] contains some bibliography on the subject.

EXAMPLE 6. C™ FUNCTIONS. Let Q be a separable C*° manifold, e.g.
an open subset of R”, G a finite-dimensional Lie group with Lie algebra
g. Then C*(Q, g) and C*(Q, G) are a topological Lie algebra and group
respectively, with the topology of uniform convergence of the functions and
their derivatives on compact sets. Here the algebra and group operations are
specified pointwise. It is standard that C*(Q, g) is complete with respect
to this topology.

For K c Q, K compact, define C’(Q, g) = {f € C*(Q, g) | supp(f) C
K} where supp () is the support of the function f. Define C°(Q2, g) =
Uk compact Cy(Q,9). As Q is locally compact with a countable basis for
open sets, we have a sequence B, C B, C --- of open sets with Q =B,
and each K; closure B, compact Thus, crQ,9) = Ux Cx (2,9).

Give C°°(Q g) the subspace topology inherited from C*(Q, g) Then the
mclus1on map C°;’ Q,g) — "m (Qg) is an isomorphism onto its image.

Thus, we can view C.°(R2, g) as the strict countable direct limit, thus the
locally convex direct limit, of the C;‘; (Q, g) . The sheaf of analytic functions

on C:" (Q, g) is the direct limit sheaf. Note that this topology on C:" Q,9)
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is in general strictly finer than the topology of uniform convergence on com-
pact sets.
Let Cg(Q, G) be C™ functions on Q with values in G, whose support
I

liesin K. Then, C°° (Q, G) isa Lie group with Lie algebra C;’ (K ,8). We

can now deﬁne a dlﬁ'erentlable structure on the direct limit group, c(Q,G)
—UCK (Q, G), modelled on C.°(Q, g). Let O and U be nelghborhoods
of 0 and 1 respectively in g and G, on which the exponential map is a
diffeomorphism. Then, the exponential map from

O ={feC(Q,g)l f has compact support and f(Q) C O}

to
U={feC’(Q,G)| f hascompact support and f(Q) C U}

is a homeomorphism. The sheaf of analytic functions on C.°(Q, G) is
defined as the direct limit sheaf. The existence of local sections is ensured by
the fact that the topology on Cf" (R, G) is given locally by the Lie algebra
crQ, ).

cExm.n'uz 7. Lie GROUPS AND LIE ALGEBRAS OF OPERATORS ON A HILBERT
SPACE. Let H be a Hilbert space, not necessarily separable. Let {e;},, bea
complete orthonormal set in 7. Our indexing set in this example will be the
directed set A4 of all finite subsets of I, with the partial order a £ f <=
aCpB.

For each a € 4, denote by M, the finite-dimensional subspace of H with
basis {e;},c, -

Let GL(M,) the group of invertible linear operators on . If a < B
in 4, then ¢, . :GL(H,) — GL(M,) is the natural mclusnon map which
identifies GL('H ) with the subgroup {g € GL(H, )| g(e;) = e; whenever i €
Bbuti ¢ a}. Thus the directed system {GL(H, ) ¢,,a}a"€‘4 is strict.

The inclusion map ¢, : GL(H,) — G(H) := lim GL(H,) is an isomor-
phism of GL(H,) onto its image, which is the subgroup {g € GL(¥) | g(e,)
=¢ fori ¢ a}. The limit G(H) is a subgroup of the group GL(H) of
all bounded invertible linear operators on 7 . It consists of those operators
which have the form 1 + (finite rank) .

The choice of embedding makes it clear that the spectral growth condition
is satisfied. Hence G(M) with the direct limit topology becomes a Lie group,

Gp (H) with Lie algebra gy, (M) := lim Lgl(’H ) . We can also retopologize
G(H) using the locally convex Lie algebra 8oL (M) - Then G, (H) isa
separately continuous locally convex Lie group modelled on its Lie algebra
8icoL(H) -

For 1 < p £ 0o, we have algebras (g(*), || -||,) as in Examples 2 and
5. Each of them gives us a normed Lie group (Gypy (%), |l -1|,). Their
completions give us Banach Lie groups (Ggp, (H), || -||,) with Banach Lie
algebras BBDL(H) .
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We have as a special case using the uniform operator norm on g(?{) that
the completion is the algebra of compact operators and the completed group
is the group of bounded operators of the form 1 + (compact).

EXAMPLE 8. SUBGROUPS AND SUBALGEBRAS OF SPACES OF BOUNDED LIN-
EAR OPERATORS. Retain the notation of the previous example. We look at
certain subalgebras ¢, C gl(%_,). For example consider ¢, = u(¥,), the Lie
algebra of skew-Hermitian operators on #_ . The corresponding Lie group is
K, = Z(H,), the group of unitary operators on H_. If the {¢_, d¢, ¢.|, }
and {K,, ¢, a|K } form directed systems, then the dlrect limit group K isa
Lie group with Lie algebra, ¢, the direct limit Lie algebra in the direct limit
and various norm topologies. Again with the locally convex topology, K has
a differentiable structure modeled on ¢, but the group operations are only
separately continuous. The normed Lie algebras can be completed to yield
Banach Lie algebras and Banach Lie groups. In general, (Ggp, (M), ||+ I,) =
{g € GL(H) | g preserves a nondegenerate form, and ||g — 1||, < oo}.

For the special case that ¢ = u(*_), the limit ¢ is the Lie algebra of skew-
Hermitian finite rank operators on H and K is the group of unitary operators
of the form 1+(finite rank). The completions of the above with respect to the
norm topology yield, respectively, ¢y, , the Lie algebra of skew-Hermitian
compact operators and K, , the Lie group of unitary operators of the form
1 + (compact).

EXAMPLE 9. THE SEPARABLE CaAse. If H is separable, the limit Lie al-
gebras and Lie groups of Examples 7 and 8 can be considered as countable
direct limits. Indeed, let {"i}ieu be a complete orthonormal system for H
and define for each n € N, a, = {i € N| i £ n}. Thus the directed set
A has a cofinal subsequence {a,},.y and it follows from Lemma 2.6 (b)
that the direct limit over {a,},.y €quals the direct limit over A4 in each of
the direct limit topologies considered here. The classical Banach-Lie algebras
and groups of operators studied by de la Harpe [3] all fit into this scheme.
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