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Admissible Representations and 
Geometry of Flag Manifolds 

JOSEPH A. WOLF 

ABSTRACT. We describe geometric realizations for various classes of admis-
sible representations of reductive Lie groups. The representations occur on 
partially holomorphic cohomology spaces corresponding to partially holo-
morphic homogeneous vector bundles over real group orbits in complex flag 
manifolds. The representations in question include standard tempered and 
limits of standard tempered representations, and representations induced 
from finite dimensional representations of real parabolic subgroups. 

Section 1. Introduction. 

Harmonic analysis on Lie groups and their homogeneous spaces has been 
guided and influenced by various geometric constructions of unitary representa-
tions. Those unitary representations are the building blocks for the extensions 
of classical Fourier analysis relevant to the analytic problems in question. Here 
I'll try to indicate some aspects of the background, concentrating on the inter-
play between geometry and analysis, I'll indicate some extensions that now seem 
worth writing down, and I'll mention some interesting open problems. 

The best known geometric realization of group representations is the Bott-
Borel-Weil Theorem from the 1950's ([2], [19]). If G is a compact connected 
Lie group and T is a maximal torus, then a choice <J>+ = <J>+(g, t) of posi-
tive root system defines a G-invariant complex manifold structure on G jT by: 
I:aE<I>+ {Ja represents the holomorphic tangent space. Now fix that structure and 
let ,\ E it() be integral, that is, e>- is a well defined character of T. View e" as a 
representation ofT on a 1-dimensional vector space E>. and let lE>. ----> G jT de-
note the associated homogeneous holomorphic hermitian line bundle. We write 
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22 JOSEPH A. WOLF 

O(lE.x) --> G /T for the sheaf of germs of holomorphic sections of lE.x --> G jT. The 
group G acts on everything here, including the cohomologies Hq(G/T; O(lE.x)). 
Let p = ~EaE<I>+ a. The Bott-Borel-Weil Theorem says 

THEOREM. If A+p is singular then every Hq(G/T; O(lE.x)) = 0. Now suppose 
that A + p is regular, let w denote the unique Weyl group element such that 
(w(A + p), a) > 0 for all a E <t>+, and let C(w) denote its length as a word in the 
simple root reflections. Then (i) Hq(G/T; O(lE.x)) = 0 for q -=f. C(w), and (ii) G 
acts irreducibly on Hi(w)(G/T; O(lE.x)) by the representation with highest weight 
w(A+p)-p. 

In the Bott-Borel-Weil Theorem, C(w) can be described as the number of 
positive roots that w carries to negative roots, the representation of G with 
highest weight w(A + p)- p can be described as the discrete series representa-
tion with Harish-Chandra parameter w( A+ p), and, by Kodaira-Hodge Theory, 
Hq ( G /T; O(lE.x)) is naturally G-isomorphic to the space of harmonic differential 
forms of bidegree (0, q) on G /T with values in lE.x. 

In 1965 Kostant and Langlands independently conjectured an analog of the 
Bott-Borel-Weil Theorem for connected noncompact semisimple Lie groups with 
finite center. The conjecture was proved in the 1970's in two stages by Schmid 
([23], [25]), and I extended the result (also in the 70's) to general semisimple 
Lie groups [31]. The representations in question there are the discrete series 
representations of G. They are the fundamental building blocks for the tempered 
representations of G, which in turn are the representations that enter into the 
Plancherel formula for G. My structure theory for the geometry of real group 
orbits G(z) C Z ~ Gc/ P on complex flag manifolds from the late 1960's [30] 
also led [31] to corresponding geometric realizations for all standard tempered 
representations of general semisimple Lie groups G. This followed a line of 
attack that in retrospect was modelled on the Kostant-Kirillov-Souriau theory 
of geometric quantization. 

In the context of semisimple Lie groups, the theory of geometric quantization 
seemed to founder on several seemingly intractable technical problems. Typically 
these involved questions of closed range or of vanishing for cohomology except 
in a particular degree, especially in regard to representations whose infinitesimal 
character was singular or even just not very nonsingular. 

By the middle 1970's many mathematicians began to look for alternatives to 
or variations on standard geometric quantization. Methods involving varying 
polarizations or structure group liftings had specialized success, and the derived 
functor modules of Vogan and Zuckerman [29] took a central position in the 
representation theory of semisimple Lie Groups G. Those derived functor mod-
ules are simultaneously modules for the Lie algebra g0 of G and for the maximal 
compact subgroup K of G, but are not G..:_modules. The passage from (go, K)-
modules to G-modules, called globalization, was understood by Schmid [26] in 
the middle 1980's in a form that turned out to be suitable for geometric quan-
tization. Schmid and I [27] used exactness of the maximal globalization functor 
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ADMISSIBLE REPRESENTATIONS AND GEOMETRY OF FLAG MANIFOLDS 23 

of [26] to make a change of polarization argument, starting with the tempered 
case, which had become the case of a maximally real polarization. In the setting 
of real group orbits on the flag manifold X ~ Gc/ B of Borel subalgebras of g, 
this gave us the connection between hyperfunction quantization and the derived 
functor modules of Vogan and Zuckerman. That settled the technical problems, 
mentioned above, for geometric quantization on X ~ Gc/ B, and at the same 
time identified the resulting representations. 

Of course much of the geometric interest in this requires more general flag 
manifolds than the flag of Borel subalgebras of g. There is some work on push-
ing the hyperfunction quantization method down from the flag X ~ Gc/ B to 
a more general flag manifold W ~ Gc/P. This was done in [31] for standard 
tempered representations and certain well behaved (measurable integrable- de-
fined in §2) G-orbits, in [33] for the realizations of discrete series representations 
that are "closest" to the realization of holomorphic discrete series as spaces of 
holomorphic sections of vector bundles, and in [34] for finite rank bundles over 
measurable open orbits. In this paper we show how those results all fit into a 
common framework. 

I am not going to discuss localization methods here, but rather just indi-
cate some of the work in that area. It starts, of course with the seminal work 
[1] of Beilinson and Bernstein. There are many unpublished results of Bern-
stein and MiliCic, or at least I have this impression from MiliCic. There is some 
work ([9],[10]) of Hecht, Milicic, Schmid and myself in which we draw the con-
nection between V-module realizations of representations and realizations by 
Zuckerman derived functor modules, and draw consequences for completeness, 
vanishing and irreducibility. There are papers of Hecht and Taylor ([11], [12], 
[13]) where a minimal-globalization form of localization is developed and ap-
plied to n-homology and an elegant geometric character formula. Finally, there 
is work of Kashiwara, Schmid, Vilonen and many others which would take too 
much space to catalog. 

In Section 2 we specify our class of real Lie groups, and we recall the basic 
facts [30] concerning real group orbits on complex flag manifolds. We con-
centrate on the type of orbit that comes into the geometric constructions of 
representations. Those orbits are the measurable open orbits for the Dolbeault 
cohomology realization of representations such as those of the discrete series, 
measurable integrable orbits for the partially holomorphic cohomology realiza-
tion of representations such as those of the various tempered series. 

In Section 3 we recall the solution ([25] for connected semisimple groups of 
finite center, [31] for more general groups) to the Kostant-Langlands Conjecture. 
This realizes relative discrete series representations on spaces of square integrable 
harmonic bundle-valued forms. 

In Section 4 we recall the corresponding result [31] for the various series of 
standard tempered representations. They are realized on spaces of square in-
tegrable partially harmonic forms with values in a partially holomorphic vector 
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24 JOSEPH A. WOLF 

bundle. Those representations are the ones that enter into the Plancherel for-
mula. 

In Section 5 we show how one obtains (partial) Dolbeault coholomogy real-
izations of standard tempered representations on partially holomorphic negative 
vector bundles. This material was essentially known ([22], [31], [27]) and we 
just put it together. 

In Section 6 we combine methods of [56], [64] and [65] to describe holomor-
phic cohomology realizations over measurable open orbits for several classes of 
representations, not necessarily tempered. In Section 7 we apply the results of §6 
to the holomorphic arc components of a measurable integrable orbit, obtaining 
corresponding partially holomorphic cohomology realizations. Finally, in Section 
8, we list some important open questions for this circle of ideas. 

Section 2. Real Group Orbits on Complex Flag Manifolds. 

We recall some of the main points of [30] that we need to describe our geo-
metric constructions of representations, specifically the constructions in [31] and 
some new constructions. If G is a real Lie group then g0 denotes its real Lie al-
gebra, g is the complexification of g0 , G0 is the topological component of the 
identity of G, and if A, B c G are subgroups then ZA(B) denotes the centralizer 
of Bin A and ZB denotes the center ZB(B) of B. We say that G is reductive if 
go is direct sum of a semisimple ideal and a commutative ideal. If G is reductive 
then Int(g) denotes the group of inner automorphisms of g, group generated by 
the exp(ad(~)) for~ E g. It is the complexification of the adjoint group Ad(G0 ). 

Here we work with the class of general semisimple Lie groups, consisting of 
all real reductive Lie groups G such that 

(2.1) 
if g E G then Ad(g) is an inner automorphism of g 

G has a closed normal abelian subgroup Z such 

that Z C Zc(G0 ) and IGIZG0 I < oo. 

The Harish-Chandra class of reductive Lie groups is the case where G I G0 is finite 
and [G0 , G0 J has finite center. As in the case of Harish-Chandra class groups, the 
first part of (2.1) says that irreducible admissible representations of G have well 
defined infinitesimal characters. The second part says that irreducible admissible 
representations of G more or less have central characters - that if 1r is any such 
representation then the restriction of 1r to the commutative group Z Zco is a sum 
that involves at most I G I Z G0 I < oo distinct quasicharacters. 

The first condition of (2.1) also says that G has a well defined natural action on 
all complex flag manifolds for g. Specifically, if q is any parabolic subalgebra of g 
and if g E G it says that Ad(g)q is Int(g)-conjugate to q. Now G acts on the flag 
manifold W consisting of all Int(g)-conjugates of q by g: Ad(g1 )q 1---+ Ad(ggl)q. 
We identify W with the compact complex manifold Int(g)IQ where Q is the 
parabolic subgroup of Int(g) that is the normalizer of q. 
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ADMISSIBLE REPRESENTATIONS AND GEOMETRY OF FLAG MANIFOLDS 25 

The subgroup Za(G0 ) C G acts trivially on the complex flag manifold W, so 
for purposes of C-orbit structure we may replace G by the group G = GIZa ( G0 ) 

of Harish-Chandra class. In the remainder of §2 we make that replacement, but 
we will have to make the distinction in §§3 and 4. 

With the replacement just described, G c Gc = Int(g) and W = Gc/Q with 
G acting as a subgroup of Gc. If w = gQ E Gc/Q = W then we will write Qw 
and qw for the isotropy subgroup gQg- 1 of Gc at wand the isotropy subalgebra 
of g there. We write 7 for complex conjugation of g over g0 . 

The intersection of any two parabolic subalgebras of g contains a Cartan 
subalgebra. From this, 

(2.2) qw n rqw contains a r-stable Cartan subalgebra I) of g. 

Let IP = IP(g, I)) denote the corresponding root system. There exist a positive 
root system q,+ = q,+(g, I)) and a subset \]i C II of the corresponding system of 
simple roots such that 

qw = qw = qq, + q;j,, nilradical plus reductive complement, where 

(2.3) qq, = L ga and q;j, = I) + L ga with 

\]iT= {a: E q, I 0: E span(w)} and \]in= {a: E q, I 0: E _q,+ but 0: '1- wr} 

Since g0 has only finitely many G-conjugacy classes df Cartan subalgebras IJo = 
[Jng0 , and since ~P(g, I)) admits only finitely many subsystems of positive roots, it 
follows that there are only finitely many G-orbits on W. In particular there are 
open orbits, and the union of the open orbits is dense. It also follows that there 
is just one closed orbit, necessarily the lowest dimensional orbit, and that the 
closed orbit is in the closure of every orbit. The complexification of the isotropy 
subalgebra of go at wE W is (go n qw)c = qw n rqw, sum of 

nilradical: (qq, n rq;j,) + (q;j, n rqq,) + (qq, n rqq,) = 

(2.4) ( wn~wr + wr~wn + wn~wn) ga 

reductive: (q;j, n rq;j,) =I)+ L ga. 

In particular lwn nrwnl is the real codimension of G( w) in W, and G( w) is open 
in W just when wn n rwn is empty. 

One can be more specific. The real Cartan subalgebra 1) 0 has a unique de-
composition 1)0 = IJr + IJA where the roots are pure imaginary on IJr and real 
on IJA· Those are the ±1 eigenspaces on 1)0 for a Cartan involution () of go that 
stabilizes 1) 0 . Let t 0 denote the fixed point set of () on g0 , Lie algebra of the 
maximal compact subgroup K = G0 of G. These are equivalent: (i) IJr is a 
Cartan subalgebra of t0 , (ii) IJr contains a regular element of g0 , (iii) there is 
a system q,+ = q,+ (g, I)) of positive roots such that riP+ = _q,+. The orbit 
G( w) is open in W precisely when some Cart an subalgebra 1)0 C g0 n qw , (which 
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26 JOSEPH A. WOLF 

necessarily maximizes dim fJr ), has a positive root system <I>+ such that (2.3) 
holds and r<I>+ = -<I>+. Since any two maximally compact Cart an subalgebras 
of g0 are G-conjugate, now the open orbits are enumerated by a double coset 
space WK\W9 /Wqr of Weyl groups. Note that WK =We catches the action of 
the various components of G. 

The open orbits that seem to enter most strongly into representation theory 
are the measurable open orbits. They are the open orbits G(w) C W that carry 
a G-invariant volume element. If that is the case, then the invariant volume ele-
ment is the volume element of a G-invariant, possibly indefinite, kaehler metric 
on the orbit, and the isotropy subgroup GnP w is the centralizer in G of a (com-
pact) torus subgroup of G. In terms of Lie algebras, measurable open orbits are 
characterized by the following equivalent conditions: (i) qw n rqw is reductive, 
i.e. qw n rqw = q~ n rq~, (ii) qw n rqw = q~, (iii) rwr = w-r, and rwn = -wn. 
We know just when this happens: if one open C-orbit on W is measurable, then 
they all are measurable; and the open G-orbits on W are measurable if and only 
if rq is conjugate to the parabolic subalgebra opposite to q. So in particular the 
open orbits are measurable in several important situations: the case rank K = 

rank G and the case where q is a Borel subalgebra (that is, W" is empty) of g. 
There are other useful conditions, mostly automatic for measurable open or-

bits. For example, an orbit G( w) C W is integrable if qw + rqw is a subalgebra of 
g. Let u = q:-t nrq:-t and let tJ denote the normalizer of u in g. Then the following 
conditions are equivalent to integrality of G(w): (i) qw + rqw = tJ, (ii) qw C tJ, 

(iii) u is the nilpotent radical of tJ, and (iv) qw + rqw is an algebra and u is its 
nilpotent radical. See [30, Theorem 7.10] for a complete analysis of integrable 
orbits. 

A holomorphic arc in the orbit G(w) C W is a holomorphic map from the unit 
disk in <C toW with image in G(w). A chain of holomorphic arcs in G(w) means 
a sequence {!I,··· , jk} of holomorphic arcs in G(w) such that the image of fi 
meets the image of fi+ 1 for 1 ~ i < k. The holomorphic arc components of G ( w) 
are the equivalence classes of elements of G(w) under the relation: w1 "'w2 if 
there is a chain {!I,··· , jk} of holomorphic arcs in G(w) such that w1 is in the 
image of !I and w2 is in the image of fk. Any connected complex submanifold 
of W contained in G ( w) is contained in a holomorphic arc component. If S is 
a holomorphic arc component of G(w) and g E G such that g(S) meets S then 
g(S) = S. It follows that the a-normalizer Nc(S) = {g E G I g(S) = S} is a 
Lie subgroup of G that is transitive on S. In particular S is an embedded cw 
sub manifold of W. This notion is nicely set up for combining holomorphic and 
real induction of group representations, but the catch is that holomorphic arc 
components might not be complex submanifolds. 

Fix an orbit G(w) c Wand let Sw denote the holomorphic arc component of 
w. If g E G then the holomorphic arc component of g(w) is S9 (w) = gSw, and 
Nc(Sg(w)) = gNc(Sw)g- 1 . Write nc(Sw)o for the real Lie algebra of Nc(Sw), 
nc(Sw) for its complexification, and Nc(Sw)c for the corresponding complex 
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ADMISSIBLE REPRESENTATIONS AND GEOMETRY OF FLAG MANIFOLDS 27 

analytic subgroup of Cc. Now we need a certain r-stable subspace ma(Sw) 
of g. The linear form 8w = Lwnnrwn a : ~ ~ CC defines a r-stable parabolic 
subalgebra sa(Sw) = sa(Sw)n + sa(Swt, where sa(Sw)n = L(o,ow}>O 9o and 
sa(SwY = ~ + La.LOw 9o· Now ma(Sw) = sa(Sw) + Lr go where r ={a E <I> I 
-a~ wnnrwn, (a,8w) < O,a+ra ~<I>}. Then [30, Theorem 8.9] the following 
are equivalent: (i) the holomorphic arc components of C( w) are complex subman-
ifolds of W, (ii) na(Sw) C qw + rqw , (iii) na(Sw) = ma(Sw), and (iv) ma(Sw) 
is a subalgebra of g. When those conditions hold, we say that the orbit C( w) is 
partially complex. In particular, if r is empty, then no ( Sw) = sa ( Sw) = ma ( Sw) 
and C( w) is partially complex. 

We will say that the orbit C(w) C W is of flag type if Na(Sw' )c(w') is a 
complex flag manifold for w' E C(w). We say that C(w) is measurable if Sw' 
carries an Na(Sw' )-invariant positive Radon measure for w' E C(w). We say 
that C(w) is polarized if the qw' haver-stable reductive parts for w' E C(w). Set 
lw = Lwnn-rwn 9a+ L-wnnrwn 9o· Then [30, Theorem 9.2] C(w) is measurable 
if and only if na(Sw) = (qw n rqw) + tu,, in other words just when na(Sw) has 
nilpotent radical (qwnrqw)n and reductive part (qwnrqwY +tw. It follows that 
if C( w) is measurable then (i) C( w) is partially complex, (ii) C( w) is of flag type, 
(iii) C(w) is polarized if and only if it is integrable, and (iv) the Na(Sw)-invariant 
positive Radon measure on Sw is the volume element of an Na(Sw)-invariant, 
possibly indefinite, kaehler metric. Furthermore [30, Theorem 9.9] if C(w) is 
polarized then the following are equivalent: (i) C(w) is measurable, (ii) C(w) 
is integrable, and (iii) C(w) is partially complex and of flag type. Under those 
conditions, na(Sw) = (qw n rqw) + lw = sa(Sw)· 

Section 3. Harmonic Form Realizations of 
Relative Discrete Series Representations. 

In the setting of the Bott-Borel-Weil Theorem, described in § 1 above, the clas-
sical theorems of Dolbeault, Hodge and Kodaira tell us that every cohomology 
class [c] E Hq ( C jT; O(Yl>.)) is represented by exactly one harmonic (0, q)-form 
on C jT with values in F.>,. In this section we suppose that Cis a general semisim-
ple group as in (2.1). We first describe the realization of relative discrete series 
representations by square integrable harmonic differential forms. Then, using 
real group orbit results mentioned in §2, we describe the realization of standard 
tempered representations by square integrable partially harmonic forms. 

If ~ 0 is a Cartan subalgebra of g0 , then by definition the corresponding Cartan 
subgroup of cis given by H = {g E c I Ad(g)e = e for all e E ~o}. Note that 
H = Za(C0 )(H n C0 ) and that H n C0 is the Cartan subgroup of C0 with Lie 
algebra ~ 0 . Let Z C Za(C0 ) as in (2.1). We may (and do) replace Z by ZZ0 o, 

which still satisfies the requirements of (2.1), but which also satisfies: Z n C0 = 
Zao. An irreducible unitary representation 1r E G belongs to the relative discrete 
seriesifitscoefficientsfu,v: c~cc, given by fu,v(g) = (u,rr(g)v)rt,, are square 
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28 JOSEPH A. WOLF 

integrable on G modulo Z. 
Suppose that G has a relatively compact Cartan subgroup, that is, has a 

Cartan subgroup T such that T/Z is compact. That is the condition ([4], [5], 
[31]) for the existence of relative discrete series representations of G. Fix a 
relatively compact Cartan subgroup T C K of G. Then T n G0 = T 0 , in 
particular the Cartan subgroup T n G0 of G0 is commutative. Let <1> = <l>(g, t) 
be the root system, let q>+ = q>+(g, t) a choice of positive root system, and let 
p = r~=aE<I>+ o:, half the trace of adglt on EaE<I>+ 9a· 

If rr is a relative discrete series representation of G and 871" is its distribution 
character, then the equivalence class of 7f is determined by the restriction of e71" to 
TnG'. So we can parameterize the relative discrete series of G by parameterizing 
those restrictions. Here we follow [5], [6] and [31]. 

Let Gt denote the finite index subgroup TG0 = ZG(G0 )G0 of G. The Weyl 
group wt = W(Gt, T) coincides with W 0 = W(G0 , T 0 ) and is a normal sub-
group of W = W(G, T). Let X E f. It follows from (2.1) that the irreducible 
unitary representation x is finite dimensional. Since T 0 is commutative, x has 
differential dx(~) = .A(~)! where .A E it() and where I is the identity on the rep-
resentation space of X· Suppose that .A+ p is regular, i.e., that (.A+ p, o:) -:f. 0 
for all o: E <1>. Then there are unique relative discrete series representations rr~ 
of G0 and 7ft of at whose distribution characters satisfy 

Ew wo sign(w)ew(A+p) 
87ro (x) = ± I1 E ( / 2 / 2 ) and 8 t (zx) = X(z)81ro (x) 

X aE<I>+ eo - e-a 7rx X 
(3.1) 

for z E ZG(G0 ) and x E T 0 n G'. Here note that rrl = xlza(Go) Q9 rr~. The same 
datum x specifies a relative discrete series representation 7rx = Indgt(rrl) of G. 
7f X is characterized by the fact that its distribution character is SUpported in Qt, 
where 

(3.2) 

with 'Yi = Ad(gi) !Gt where {g1 , ... , gr} is any system of coset representatives of 
G modulo at. To combine these into a single formula one chooses the gi so that 
they normalize T, i.e. chooses the 'Yi to be a system of coset representatives of 
w modulo wt. 

Every relative discrete series representation of G is equivalent to a represen-
tation 7fx as just described. Relative discrete series representations 7fx and 7fx' 
are equivalent if and only if x' = x · w- 1 for some wE W. 

A choice q>+ = q>+(g, t) of positive root system defines a G-invariant complex 
manifold structure on G /T such that EaE<I>+ 9a represents the holomorphic 
tangent space. In effect, a choice of q>+ is a choice of Borel subalgebra b = 
t + EaE<I>+ 9-a C g. Let X denote the flag variety of Borel subalgebras of g 
and let x EX stand for the just-described Borel subalgebra b. Then gT f--+ g(x) 
defines a G--equivariant holomorphic diffeomorphism of G /T onto the open real 
group orbit G(x) C X. 
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ADMISSIBLE REPRESENTATIONS AND GEOMETRY OF FLAG MANIFOLDS 29 

More generally let W be a complex flag manifold of g, let w E W, set Y = 
C(w), and suppose 

(3.3) 
Y is open in W and 

C = C/Zc(C0 ) has compact isotropy subgroup at w. 

Let q C g denote the parabolic subalgebra of g corresponding tow, so that W 
consists of all Int(g)-conjugates of q. As in §2 we may view C = C/Zc(C0 ) 

inside Cr; = Int(g). Let L denote the isotropy subgroup of C at w and let L 
denote its inverse image inC under the projection C--+ C/Zc(C0 ) = C SoL 
is compact and L is the isotropy subgroup of C at w. Passing to a conjugate, 
equivalently moving w within Y, we may suppose T C L. 

Let X E L, let Ex denote the representation space, and let lEx --+ Y ~ C / L de-
note the associated holomorphic homogeneous vector bundle. Using the Mackey 
machine, Cartan's highest weight theory, and the methods of [31, §2.4, 3.4, 
3.5], we see that x is finite dimensional and is constructed as follows. First, 
L n C 0 = L0 and there is an irreducible representation x0 of L0 with high-----est weight .A. Second, there is a representation 'ljJ E Zc ( C 0 ) that agrees with 
x0 on Zco = Zc(C0 ) n L 0 . So we have the irreducible unitary representation 
xt = 'ljJ@ x0 of Lt = Zc(C0 )L0 . Third, .A+ p1 is <I>(r, t)-regular and this implies 
x = I nd£ 1 (x t). We will call .A the highest weight of x. 

Note that .A+ p1 is the Harish-Chandra parameter for the infinitesimal char-
acter of x. This of course is a special case of the relative discrete series picture. 
We will simply refer to .A+ PI as the infinitesimal character of X· 

Since x is unitary, the bundle lEx --+ Y has a C-invariant hermitian metric. 
Let 0 denote the Kodaira-Hodge-Laplace operator 7J 8* + 8*8 on lEx. Then we 
have Hilbert spaces 

(3.4) 'Hq(Y; lEx) : harmonic L2 lEx-valued (0, q)-forms on Y 

on which C acts naturally, and the natural actions of C on those spaces are 
unitary representations. 

As remarked before for the flag manifold of Borel subalgebras of g, if C is 
compact (and in fact if Cis compact) then the space 'Hq(Y; lEx) of L2 harmonic 
forms is naturally identified with the sheaf cohomology Hq (Y; O(lEx)). 

The root system <I>= <I>(g, t) decomposes as the disjoint union of the compact 
roots <I> K = <I>(t, t) = { o: E <I> : 9a C t} and the noncompact roots <I>c; K = 
<I>\ <I>K· Write <I>j( for <I>+ n <I>K and <I>~/K for <I>+ n <I>c;K· 

My proof [31, Theorem 7.2.3] of Theorem 3.5 below only applied to the case 
where .A+ pis "sufficiently" nonsingular, because it relied on Schmid's proof [23] 
for connected linear Lie groups. Later [25] Schmid was able to drop the condition 
of sufficient nonsingularity. With this in mind, the proof of [31, Theorem 7.2.3] 
now yields 
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3.5. THEOREM. Let x E L with highest weight .A. Express x = Indit ('tjJ(g;x0 ). 

If).+ p is <I>(g, t)-singular then every Hq(Y; lEx) = 0. Now suppose that .A+ p 
is <I>(g, t) -regular and define 

q(.A + p) = I{ a E <I>j( : (.A+ p, a) < O}J + J{/3 E <I>~/K : (.A+ p, ;3) > O}J. 

Then Hq(Y; lEx) = 0 for q =f. q(.A + p), and G acts irreducibly on 1{q(.>..+p)(Y; lEx) 
by the relative discrete series representation 7r "1/J®e>- of infinitesimal character 
). + p. 

An interesting variation on this result realizes the relative discrete series on 
spaces of L2 bundle-valued harmonic spinors. See [20], [24] and [32]. 

Section 4. Harmonic Form Realizations 
of Tempered Representations. 

The representations of G that enter into its Plancherel formula are the tem-
pered representations. They are constructed from a certain class of real parabolic 
subgroups of G, the cuspidal parabolic subgroups, combining the relative discrete 
series construction for the reductive part of cuspidal parabolic with unitary in-
duction from the parabolic up to G. We start by recalling the definitions. 

Let H be a Cartan subgroup of our general semisimple (2.1) Lie group G. Fix 
a Cartan involution () of G such that B(H) = H. Its fixed point set K = G0 is 
a maximal compactly embedded (compact modulo Za(G0 )) subgroup of G. We 
decompose 

~o = to EB no and H = T x A 
where T = H n K, B(~) =-~on a, and A= expa(a0 ). 

( 4.1) 

Then the centralizer Za(A) of A in G has form M x A where B(M) = M. Now 
[31] M is a reductive Lie group in the same class (2.1), and T is a compactly 
embedded Cartan subgroup of M, so M has relative discrete series representa-
tions. 

Suppose that the positive root system <J>+ = <J>+(g, ~) is defined by positive 
root systems <J>+(m, t) and <J>+(g0 , a0 ). This means that 

(4.2a) 

and 

(4.2b) 

In other words, given ~' the Borel subalgebra 

( 4.2c) b = bn + br where br = ~ and b" = [b, b] = '""' 9-a 
L...-aE<I>+(g,(j) 

is chosen to maximize bnnbn. Note that bnnbn has real form (bnnbn)o = bnng0 , 

which is the sum I:-yE<I>+(go,ao) (g0 )-y of the positive restricted root spaces. 
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A subalgebra Po c go is a (real) parabolic subalgebra if its complexification 
p is a parabolic subalgebra of g, in other words if Po = p n g0 for some T-stable 
parabolic subalgebra p C g. A subgroup P C G is a parabolic subgroup of G if it 
is the G-normalizer of a parabolic subalgebra of g0 . A parabolic subgroup P c G 
is called cuspidal if the Levi component (reductive part) has a relatively compact 
Cart an subgroup. We now have the cuspidal parabolic subgroup P = MAN of 
G, where M and A are as above, where M A = M x A is the Levi component of 
P, and where N = expc((bn n bn)0 ). 

Let x E Hand consider the basic datum (H, b, x). The representation of b is 
determined because X represents H irreducibly: x(bn) = 0 and XlfJ is the differ-
ential of the representation of H. Decompose X = '1/J®e" ®eia, '1/J E z--;;(GO), e" E 
T, a- E a0. Suppose that v + Pm is <I>(m, t)-regular. Then '1/J ® e" specifies a rela-
tive discrete series representation Tf'I/J®ev of M. The Levi component M x A of P 
acts irreducibly and unitarily on HTI.P®ev by Tf'I/J®ev ® eia. That extends uniquely 
to a representation (which we still denote Tf'I/J®ev ® eia) of P on HTI.P®ev whose 
kernel contains N. Now we have the standard tempered representation 

(4.3) 

of G. One can compute the character of nx and see that it is independent of 
the choice of positive root system <t>+(g, ~)that is defined by choices of <t>+(m, t) 
and <t>+(g0 , a0 ). With H fixed up to conjugacy, and as '1/J and a- vary, we have 
the H -series of tempered representations of G. 

The various tempered series exhaust enough of G for a decomposition of £ 2 (G) 
essentially as 

"" "" ~ J H-rr... ® H; m(H: '1/J: v: a-)da-. L...,;HECar(G) L...,;'I/J@evET A o/,v,a ,P,v,a 

Here m(H : '1/J : v : a-)da- is the Plancherel measure on G. This was worked out 
by Harish-Chandra ([6], [7], [8]) for groups of Harish-Chandra class, and some-
what more generally by Herb and myself ([31]; [14], [15]; [17], [18]). Harish-
Chandra's approach is based on an analysis of the structure of the Schwartz 
space, while Herb and I use explicit character formulae (compare [3], [21], [14], 
[16]). 

Fix a B-stable Cartan subgroup H C G and a positive root system <I>+ = 
<t>+(g, ~) defined by positive root systems <t>+(m, t) and <t>+(g0 , a0 ) as in (4.2) 
above. Then we have the associated cuspidal parabolic subgroup P = MAN c 
G. 

We now need a complex flag manifold W ~ Gc/Q consisting of the Jnt(g)-
conjugates of a parabolic subalgebra q C g, and a real group orbit Y = G(w) c 
W, such that 

( 4.4a) 

( 4.4b) 

Y is measurable, hence partially complex and of flag type, and 
the normalizer N c ( Sw) of the holomorphic arc component 

Sw has Lie algebra Po· 
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Then Sw will be a topological component of the open M-orbit M(w) in the 
subflag M c ( w) C W. Thus AN will act trivially on Sw and the isotropy subgroup 
of G at w will be of the form U AN where U C M is of the M -centralizer of a 
subtorus ofT. Suppose in addition that 

( 4.4c) UIZc(G0 ) ={mE M I m(w) = w }1Zc(G0 ) is compact. 

Then M(w) ~ MIU will be a measurable integrable open orbit in Mc(w), 
U = ZM(M0 )U0 with U n M 0 = U0 , UM0 = Mt, and MIMt will enumerate 
the topological components of M ( w). 

It is straightforward to construct all pairs (W, w) that satisfy ( 4.4) and such 
that G(w) is integrable as well as measurable [31, §6.7]. They are given by: 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

uo c m0 is the m0-centralizer of a subspace of t, 
the corresponding analytic subgroup U c;:: M has compact 

image in MIZc(G0 ), 

t C m is a parabolic subalgebra with reductive part tr = u, and 
qw is the g-normalizer of tn + n. 

Then the considerations of [31, §6. 7] show that 

(4.6) q~ = tn + n and q~ = u + a. 

In the case U = T this constructs I W m I pairs (W, w) that satisfy ( 4.4), though of 
course there will be some identifications under the Weyl group of G. In particular 
there are many pairs (W, w) that satisfy ( 4.4). 

Now assume that the situation ( 4.4) is given. Then the holomorphic arc 
components gSw ~ Mt IU of Y = G(w) ~ GIU AN are topological components 
of the fibres of 

(4.7a) 
Y ---+ G I P, G-equivariant fibration with structure group M 
and typical fibre MIU 

given by gUAM r--+ g MAN. To say it in a slightly different way, M ( w) has 
finitely many topological components miMt(w) = miSw, as miMt ranges over 
M I Mt. The holomorphic arc components of Y are the fibres of 

(4.7b) 
Y ---+ G I pt, G-equivariant fibration with structure group Mt 
and typical fibre Mt IU 

where pt = Mt AN. The complex structure on the holomorphic arc component 
Sw, as complex submanifold of W, is the M~invariant complex structure on M IU 
for which LaE<I>+(m,t)\<I>+(m,u) ma is the holomorphic tangent space. 

Consider irreducible unitary representations 

(4.8a) J.L E fJ, with representation space EJ.L, and eia E A where (J E a~. 
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Let Pa = ~ L4>+(go,ao)(dimg¢)¢ as usual. This is the quasicharacter on UAN 
that must be inserted for ordinary induction to become unitary induction from 
U AN to G. Now U AN acts on EJ.L by 

(4.8b) "Y~-t,u(uan) = ePa+iu(a)JL(u). 

That specifies the associated G-homogeneous vector bundle 

(4.8c) 

This bundle has a natural CR-structure and is holomorphic over every holo-
morphic arc component of Y. Furthermore K is transitive on Y so the bundle 
has a natural K -invariant hermitian metric based on the unitary structure of its 
typical fibre Ew 

Restrict the holomorphic tangent bundle of W to Y and let 1' ~ Y denote 
the sub-bundle whose fibre at w' E Y is the holomorphic tangent space to Sw' 
at w'. The space of partially smooth (p, q)-forms with values in lE~-t,u is 

Ap,q (Y; lE~-t,u) : measurable sections of lE~-t,u ® f1P1'* ® A qj* 
(4.9a) 

that are c= on each holomorphic arc component. 

The subspace of square integrable partially smooth forms is defined just as one 
might guess. Let # denote the Kodaira-Hodge orthocomplementation mapping 
Ap,q (Y; lE~-t,u) ~ A n-p,n-q (Y; lE;,u) on each holomorphic arc component, and let 
1\ denote exterior product followed by contraction, so pointwise wl\#w is llwll 2 

times the volume element of the holomorphic arc component. Now we have 

(4.9b) 

Ap,q(Y·JE ) : all wE AP·q(Y·JE ) such that 2 l /-',U l /-',U 

{ wl\#w < oo a.e. k E K and 
Jskw 

f ( f wl\#w) d(kU) < oo. 
JK/U Jskw 

The Kodaira-Hodge-Laplace operators on the restrictions of lE~-t,u to the holo-
morphic arc components fit together to give us essentially self adjoint operators 
0 on the Hilbert space completions of the A~·q (Y; lE~-t,u). Their kernels are the 
spaces 

(4.9c) 
1tp,q (Y; lE~-t,u) : square integrable partially harmonic 

lE1-',u-valued(p, q)-forms on Y. 

We'll only use the 1tq (Y; lE~-t,u) = 1t0 •q (Y; lEI-',u). 
The natural action of G on 1tq (Y; lE~-t,u) is a unitary representation. It is 

unitarily equivalent to the representation of G on the Hilbert space of L2 sections 
of a certain homogeneous vector bundle 

(4.10) 
lHiq(M/U;lE~-tiM;u) ~ GjP, 

fibre 1tq(M/U;lE~-tiM;u), structure group P =MAN. 
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Here, as m the discussion of the realization of the relative discrete series, 
Hq(MIU; IEpiM;u) is the Hilbert space of L2 (MIU) harmonic, IEpiM;u-valued, 
(0, q)-forms on M IU. Let 77 denote the (necessarily unitary) representation 
of M on Hq(MIU; IEpiM;u ). Then MAN acts on Hq(MIU; IEpiM;u) by 77 0 
ePa+ia(man) = eP•+ia(a)ry(m) and lHiq(MIU; IEpiM;u)---+ Gl Pis the associated 
vector bundle over G I P. Again the Pa means that the natural action of G on 
L2 sections is unitary for(!, f') = JK(f(k), f'(k))dk. 

Theorem 3.5 combines with the considerations above to give the realization of 
standard tempered representations described in Theorem 4.9 below. Originally I 
proved Theorem 4.11 only for the case where v + Pm is "sufficiently" nonsingular 
[31, Theorem 8.3.4], so that the realization for the corresponding relative discrete 
series representation of M would be available. As described just before Theorem 
3.5, we can now drop that condition. 

The representation J-t E fJ is of the form lndgt(J-tt) where ut = ZM(M0 )U0 , 

where U0 = U n M 0 , and where pt = '1/J 0 p0 in such a way that '1/J E z;(Mo) 
agrees with p0 E U0 on ZMo = ZM(M0 ) nU0 . Here p0 has some highest weight, 
say v, relative to cp+(u, t), and v + Pu is .P(u, t)-nonsingular. In general we will 
just refer to v as the highest weight of f-t· 

4.11. THEOREM. Let J-t E [j with highest weight v. If v + Pm is .P(m, t)-
singular then every Hq(Y;IEp,a) = 0. Let 

q(v+pm) = l{o: E .PknM: (v+pm,o:) < O}l+ 1{,6 E .P"t;KnM: (v+pm,,B) > Oj. 

Then Hq(Y;IEp,a) = 0 for q -=f. q(v + Pm), and G acts on Hq(Y;IEp,a) by the 
standard H -series representation 7r,p,v,a = Inlfj,(ry,;;0 ev0eia) ofG of infinitesimal 
character v + Pm + ia. 

A variation on this theorem realizes the tempered series on spaces of L2 
bundle-valued partially harmonic spinors. See [32]. 

Whenever a E a0 is cp+(g0 , a0 )-regular, the standard H-representation 7r,p,v,a 
is irreducible. Plancherel measure for G thus is carried by the irreducible repre-
sentations among the H -series representations realized above, as H varies over 
the conjugacy classes of Cartan subgroups of G. 

Section 5. Sheaf Cohomology Realizations 
of Tempered Representations. 

An important variation on the Kostant-Langlands Conjecture result - which 
in fact preceded its solution- is Schmid's Dolbeault cohomology realization [22] 
of discrete series representations of connected semisimple Lie groups with finite 
center. Suppose that G has a compactly embedded Cartan subgroup T and that 
we are in the situation of (3.3). Then the open orbit Y = G(w) ~ Gl Lin W 
contains K ( w) ~ K I L as a maximal compact complex submanifold. We denote 
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s = dime K ( w). Whenever 

(5.1) 
.A+ pis Y -antidominant: (.A+ p, 'Y) < 0 for all (3 E <J>+(g, t) \ <J>+(I, t), 

(.A, a) ~ 0 for all a E <J>+ (1, t) 

we haves= q(.A + p). This is the case where the associated holomorphic vector 
bundles Ex --+ Y, X E L with highest weight .A, are negative vector bundles. 

If 1r is a relative discrete series representation of G, we can choose the positive 
root system <J>+(g, t) so that 1r = 7rx where the highest weight .A of x satisfies 
(5.1). This is because [is the reductive part of a parabolic subalgebra of g. Thus 
there is no restriction on 1r 1/J®e>. in 

5.2. THEOREM. Let x E L with highest weight .X. Suppose that the infinitesi-
mal character .A+p is Y -antidominant (5.1). Then Hq(Y; O(Ex)) = 0 for q-=/= s, 
H 8 (Y;O(Ex)) has a natural structure of infinite dimensional Fnichet space, and 
the natural action of G on H 8 (Y; O(Ex)) is a continuous representation of in-
finitesimal character .A+ p. Express x = I ndi t ('lj; ® x0 ). The representation of 
G on H 8 (Y; O(Ex)) is infinitesimally equivalent1 to the relative discrete series 
representation 1r 1/J®e>.+p . • 

Theorem 5.2 was proved by Schmid [22] in the case where G is connected 
with finite center, L = T, and .A is sufficiently nonsingular. It follows by now-
standard techniques [31, §3] for general semisimple groups G with L = T, and 
.A is sufficiently nonsingular. The analogous statement for Zuckerman's derived 
functor modules now holds without the requirement of sufficient nonsingularity, 
because of their analytic continuation properties [29]. In view of [27, §9] the 
same holds for our cohomology modules. That proves Theorem 5.2 completely 
for the case L = T. The result as stated now is more or less immediate from the 
Leray spectral sequence for the holomorphic fibration G /T --+ G / L. Compare 
[33]. 

In Theorem 5.2, the infinitesimal equivalence is 

(5.3) 

as a map on spaces of K-finite vectors. That is the map that sends an £ 2 

harmonic form to (the sheaf cohomology class that corresponds to) its Dolbeault 
class. 

We now look at the tempered case. Fix a Cartan subgroup H = T x A as in 
(4.1), a positive root system <J>+(g, ~) as in (4.2), and a measurable open orbit 
Y = G(w) C Won a complex flag manifold W ~ Gc/Q as in (4.4). We are going 
to replace Hq(M/U;Ef.LIM;u) by the partial Dolbeault cohomology space that 
realizes the relative discrete series representations T],pe;,ev of M and T],pe;,ev ® ei<7 

1 Let 1r and ¢ be continuous representations of G on complete locally convex topological 
vector spaces Vrr and V,p. Let (Vrr)(K) and (V,p)(K) denote the respective subspaces of K-
finite vectors. They are modules for the universal enveloping algebra U(g). An infinitesimal 
equivalence of Vrr with V,p means a U(g)-isomorphism of (Vrr )(K) onto (V,p)(K)· 
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of MA and P =MAN. The space (KnM)(w) S=! (KnM)/U is a maximal 
compact complex submanifold of Y S=! GjUAN. Lets= dime (K n M)/U. 
Whenever v + Pm is Sw-antidominant (5.1), that is 

(v + Pm, "!) < 0 for all {3 E <J>+ (m, t) \ <J>+(u, t) and 
(5.4) 

(v,a) ~ 0 for all a E <J>+(u,t), 

we haves= q(v + Pm)· As before, this is the case where the bundle ElliM;u ___, 
M /U is negative. 

Let Oq (Ell) ___, Y denote the sheaf of germs of c= sections of Ell ___, G /Y that 
are holomorphic along the holomorphic arc components of Y, i.e. holomorphic 
along the fibres of Y ___, G / P. By irreducibility of f..L, these are the sections 
annihilated by the right action of qn. See (5.8) below for the condition when f..L 
may be reducible. 

Given a relative discrete series representation 77 of M, we need a positive root 
system <J>+(g, ~) such that: 

(1) <J>+(m, t) satisfies (5.4), 
(2) <J>+(g0 ,a0) is arbitrary, and 
(3) <J>+(g, ~)is defined by <J>+(m, t) and <J>+(g0 , a0 ). 

Given a choice of <J>+(g, ~) as above, we realize the corresponding standard H-
series representations of G on partial Dolbeault cohomology as follows. Given 
Ell,a ___, Y as above, we have the sheaf 

(5.5a) 
Oq (Eil,a) ___, G /U A : germs of c= sections f of Ell,a ___, G /U A 

such that f(x; ~) + x(~) · f(x) = 0 for all x E G and~ E q. 

Ell,a ___, G/U A pushes down to a bundle Ell,a ___, Y = G(q) = G(w) c W, so the 
sheaf Oq (Eil,a) ___, G /U A pushes down to a sheaf 

Oq (Eil,a) ___, Y : germs of c= sections f of Ell,a ___, Y 

such that f(x; ~) + x(~) · f(x) = 0 for all x E G and~ E q. 
(5.5b) 

The germs in Oq (Eil,a) ___, U A are equivariant along fibres of G jU A___, G jUAN 
S=! Y, and the collapse of the Leray spectral sequence of G jU A ___, G /U AN S=! Y 
yields natural G-equivariant isomorphisms 

(5.5c) 

When X is irreducible, (5.5a) and (5.5b) reduce to: f(x; ~) = 0 for all x E G 
and ~ E qn. In the more general case considered here, (5.5) is the appropriate 
condition; see [28]. Now we can state 

5.6. THEOREM. Let f..L E [) and u E a0 as in (4.8a), let v be the high-
est weight of f..L, and suppose that the infinitesimal character v + Pm is Sw-
antidominant (5.4). So s = q(v + Pm)· If q =/:- s then Hq(Y; Oq(Eil,a)) = 0. 
Express f..L = I nd~t ( 'ljJ 0 J.L0 ). Then H 8 (Y; Oq (Eil,a)) has a natural structure of 
infinite dimensional Frechet space, the natural action of G on H 8 (Y; Oq (Eil,a)) 
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is a continuous representation of infinitesimal character v + Pm + iO', and this 
representation of G is infinitesimally equivalent to the standard H -series repre-
sentation 1r,p,v,a = Ind~(ry,p 0 ev ® eia). 

The Fh~chet space structure on the cohomologies Hq(Y; Oq(EJ.L,a )) is de-
scribed, in a larger context, in §7 below. 

On the flag manifold X of Borel subalgebras of g, our cohomology construction 
for standard tempered representations can be formulated as follows (compare 
[27]). Fix a basic datum (H, b, x): H is a Cartan subgroup of G, b is a Borel 
subalgebra of g such that I) C b, and X is a finite dimensional representation of 
(b, H). We have the associated homogeneous vector bundles Ex ___, G I Hand the 
sheaf Ob (Ex) ___, G I H of germs of sections defined by the right action of b. Note 
that Y ~ G I H N here and the partial complex structure ( CR structure) induced 
on G(b) by X is the one for which the holomorphic tangent space of the typical 
fibre M(b) ~MIT of GIHN ___, GIP is LaE<I>+(m,t) rna. 

Now the case of Theorem 5.6, where W is the flag manifold X of Borel sub-
algebras of g, can be reformulated as 

5. 7. PROPOSITION. Every standard tempered series representation 1r '1/J,v,a of 
G, 1/J®ev®eia E fi and HE Car( G), is realized up to infinitesimal equivalence as 
the natural action of G on a partial Dolbeault cohomology space H 8 (Y, Ob (EJ.L,a)), 
Y = G(b) C X, for a basic datum (H, b, x) as follows. b is maximally real subject 
to the condition I) c b; J-L = I ndgt ( 1/J ® J-L0 ) E fJ where J-L0 has highest weight v; 
X is given on H = T x A by 1/J ® ev ® eia+p., on I) by the differential, and on bn 
by 0; and s =dime (KnM)IT. Here H 8 (Y,Ob(EJ.L,a)) has a natural Frechet 
space structure and the action of G is continuous. 

We may assume (v + Pm, 'Y) < 0 for all 'Y E <JI+(m, t). With that assumption, 
if q -I s then Hq (Y, Ob (EJ.L,a)) = 0. 

Except for the Frechet space structure on the cohomologies, Proposition 5. 7 
is the starting point of [27] for the construction of standard admissible represen-
tations. The Frechet space structure itself comes out of some variations (see §§6 
and 7 below) on the methods of [27]. 

In our more general context, a basic datum corresponding the the setup of 
Theorem 5.6 is of the form (U A, q, x) where U A is a Levi component (reductive 
part) of the isotropy subgroup of G at w E W, where q is the parabolic subalgebra 
of g represented by w in the complex flag manifold W, and where x is a finite 
dimensional representation of (q, U A). Then the appropriate sheaf is given by 
(5.5), and we have natural G-equivariant isomorphisms Hq(GIU A; Oq(Ex) '=" 
Hq(Y; Oq(Ex)· Then one has the analog for W of Proposition 5.7. 

Section 6. Representations for Open Orbits 

Fix a complex flag manifold Wand a measurable open C-orbit Y = G(w). 
Let q = qw C g denote the parabolic subalgebra represented by w, and let L 
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denote the isotropy subgroup of Gat w. Then L contains a fundamental Cartan 
subgroup H of G, L = Zc(G0 )L0 and £ 0 = L n G0 , by the argument of [31, 
Lemma 7.1.2]. The image LofLin G = G/Zc(G0 ) C Gc has Lie algebra q0, 
real form of a Levi component qr of q. 

We write s = sy in for the complex dimension of the maximal compact 
subvariety K(w) ~ K/(K n L) of Y. 

For two classes of representations TJ of (q, £) we'll describe a bundle IE'I--+ Y 
and a sheaf Oq(IE'I) --+ Y, and we'll discuss the representations of G on to 
Hq(Y; Oq(IE'I)). 

First, consider the case where TJ is finite dimensional. Then the main result 
is Theorem 6.1 below. It was proved in [27] for the case where W is the flag of 
Borel subalgebras of g, and in [34] the argument of [27] was reworked to apply 
to general W. The argument of [34] is for connected linear semisimple groups 
G, but those restrictions on G can be dropped by the techniques of [31] and [9, 
Appendix]. 

6.1. THEOREM. Suppose xis a finite dimensional representation of (q,L). 
Then the 8 opemtor for the Dolbeault complex of Ex --+ Y has closed mnge. 
Hq(Y; Oq(IEx)) is an admissible G-module with finite composition series. Its 
underlying Harish-Chandm module is the Zuckerman derived functor module 
Aq(G, L, q, x). If Ex has infinitesimal chamcter with Harish-Chandm pammeter 
.A+ PI (corresponding to highest weight .A} and ifx(qn) = 0 then Hq(Y; Oq(Ex)) 
has infinitesimal chamcter .A + p; and then if .A + p is Y -antidominant then 
Hq(Y; Oq(IEx)) = 0 for q =/:. s. 

Second, we consider the case where TJ may be infinite dimensional but is con-
strained to be one of the cohomology space representations described in Theorem 
6.1 for an open £-orbit on the flag manifold of Borel subalgebras of [ = qr. As 
we saw in §5, this includes all fundamental series2 representations of L, and a 
moment's thought shows that it includes all standard representations of L whose 
character has support that meets the elliptic set3 in G. In particular this class 
of representations TJ contains all the representations in the analytic continuation 
of the fundamental series. 

Let X denote the flag manifold of Borel subalgebras of g and consider the 
natural projection 

(6.2) p: X--+ W defined by b C p(b) for all bE X. 

The typical fibre of p: X--+ W is the complex flag manifold F ~ Qr j(BnQr) 
of all Borel subalgebras 'b c qr. The real group L acts on F just as G acts on 

2 The fundamental series for G is the tempered series associated to a fundamental Cartan 
subgroup. It is the relative discrete series in case that fundamental Cartan subgroup is compact 
modulo Zo(G0 ). 

3 The elliptic set in G is the union of the G-conjugates of T n G' where H = T x A is a 
fundamental Cartan subgroup, T = H n K, and G' is the regular set. In other words, the 
elliptic set in G is the set of all G-conjugates of G-regular elements of K. 
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X. Let L(x) C F be an open orbit. Since L contains the fundamental Cartan 
subgroup H of G, and all fundamental Cartan subgroups of L are £ 0-conjugate, 
we may assume that H is the isotropy subgroup of L at x. Let b = bx C g 
denote the Borel subalgebra represented by x E X; then 'b = 'bx C qr is the 
Borel subalgebra represented by x E F. Note that band 'b determine each other 
by: 'b=bnqrandb='b+qn. 

Let x be a finite dimensional representation of (b, H). Let 'x be its restriction 
to a representation of ('b, H). consider the associated homogeneous holomorphic 
vector bundles of finite rank 

(6.3) lEx---... G(x) ~ GjH and 'lEx---... L(x) ~ LjH; so 'lEx= lEx/L(x)· 

They define the sheaves of germs of holomorphic sections 

(6.4) Ob(lEx)---... G(x) and CJ,b('lEx)---... L(x). so Ob('lEx) = Ob(lEx)/L(x) 

which conversely define the holomorphic structure of the bundles [28]. 
We now suppose that x, as a representation of H, is G(x)-antidominant with 

infinitesimal character >.. We also suppose that x(bn) = 0. Denote dimensions 
of maximal compact subvarieties by 

(6.5) u =dime K(x), t = dimc(K n L)(x), and s =dime K(w); sou= t + s . 

Then HP(L(x); CJ,b('lEx)) = 0 for p =/:- t and Hq(G(x); Ob(lEx)) = 0 for q =/:- u by 
Theorem 6.1. Thus the Leray spectral sequence of G(x) ---... G(w) collapses at 
E2, 

(6.6) E;,b = Ha(G(w); Oq(lHib(L(x); CJ,b('lEx)))) with d2: E;,b---... E;+2,b-l 

where JHIV(L(x); CJ,b('lEx)) ---... G(w) is the homogeneous vector bundle whose 
typical fibre is the (q, £)-module Hv(L(x); CJ,b('lEx)· Thus 

(6.7) Hq(G(x); Ob(lEx)) = L Ha(G(w); Oq(lHib(L(x); CJ,b('lEx)))). 
a+b=q 

Again by the vanishing of Theorem 6.1, the left side vanishes for q =/:- u and the 
right side vanishes for b =/:- t, so (6.5) forces 

(6.8) Hs+t(G(x); Ob(lEx)) = H 8 (G(w); Oq(lHit(L(x); CJ,b('lEx)))). 

Modulo the Frechet space results described in §7 below, we have proved 

6.9. THEOREM. Let 'Tf denote Ht(L(x); CJ,b('lEx)) as a representation of(q, L) 
and let V,., ---... G ( w) denote the associated homogeneous vector bundle. Then 
Hq(G(w); Oq(V,.,)) = 0 for q =/:- s, H 8 (G(w); Oq(V,.,)) has a natuml Prechet space 
structure, and the natuml action of G on H 8 (G(w); Oq(V,.,)) is a continuous 
representation. Further, that action ofG on H 8 (G(w); Oq(V,.,)) is an admissible 
representation with finite composition series. It has infinitesimal chamcter >. + p. 
Its underlying Harish-Chandm module is the Zuckerman derived functor module 
As+t(G,H,b,x) = As(G,L,q,ry). 
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Section 7. Representations for Measurable Orbits. 

Fix a parabolic subgroup P C G, not necessarily cuspidal. In this Section we 
study measurable integrable orbits Y = G(w) C Win complex flag manifolds. 
For the appropriate choices of (W, w), which means q = qw such that p = q + Tq, 
we show that the fibres of Y ---+ Gj P are (up to topological components) the 
holomorphic arc components of Y. With this, we study representations induced 
from P from the viewpoint of our orbit picture, extending the scope of our 
geometric construction of the standard tempered representations. 

We now look for all complex flag manifolds W ~ Gc consisting of the Int(g)-
conjugates of a parabolic subalgebra q C g, and all real group orbits Y = G( w) c 
W, such that 

(7.1a) 

(7.1b) 

(7.1c) 

Y is measurable, thus partially complex and of flag type, 

Y is integrable, so qw + Tqw is an algebra, and 
the normalizer N a ( Sw) of the holomorphic arc 

component Sw has Lie algebra Po . 

Recall the Langlands decomposition P = MAN. Let H denote a funda-
mental Cartan subgroup of a Levi component pr of P, let no denote the "split 
component" of the center of Po, 

(7.2) 
ao = { ~ E ~ n [go, go]l a(~) E lR for all a E IJ>(g, ~) 

and a(~)= 0 for all a E ll>(pr, ~)}. 

Then pr = M x A and H = J x A where A is the analytic subgroup of G for 
ao, where jo = a~ n ~o, and where m = j + I:aE<I>(pr,~) g"'. Also, here, J is a 
fundamental Cartan subgroup of M and N is the analytic subgroup of G for the 
real form n0 = n n g0 of n = pn. The real parabolic P is cuspidal if and only if 
JfZa(G0 ) is compact. 

Given (7.1), the algebras p and q are related by 

(7.3a) uo c mo is the rna-centralizer of a subspace of j, 
(7.3b) t C m is a parabolic subalgebra with reductive part tr = u, and 
(7.3c) q = qr + qn where qr = u +a and qn = tn + n. 

Conversely, given P and its Langlands decomposition, (7.3) gives the construc-
tion of all q that satisfy (7.1). The proof is essentially the same as the proof 
[31, §6.7] of the case (4.5) where the analytic group U for u0 is compact modulo 
Za(G0 ). 

Now fix a complex flag manifold W and a measurable integrable orbit Y = 

G(w) as in (7.1). Then W consists of the Int(g)-conjugates of a parabolic 
subalgebra q = qw C g that satisfies (7.3). In particular G has isotropy subgroup 
UAN at w, and M has isotropy subgroup U at w, where U/Za(G0 ) may be 
non compact but the conditions immediately following ( 4.4c) remain valid. The 
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holomorphic arc components of Y are the gSw = S9w 3'! Mt IU, and gSw is the 
topological component of w in the fibre of Y 3'! G IU AN --+ G I MAN = G I P 
over gP. 

Sw is a measurable open M -orbit on the sub-flag M d w) C W and AN acts 
trivially on Sw. Now consider representations 

(7.4) f3: representation of (t +a, U A), admissible and of finite length on U A. 

Let Pa = ~ L:<I>+(go,ao) (dim gq,)¢ as before. Then as in ( 4.8), U AN also acts on 
the representation space E(3 by 'Yf3(uan) = eP"(a)f3(ua), and that specifies a ho-
mogeneous vector bundle E'Yil --+ Y 3'! G IU AN. Then "{(3 is also a representation 
of q = t + n because f3 is defined on t and we defined 'Y(3 to annihilate n. Now 
"{(3 is a representation of (q, U AN). Thus we have 

(7.5a) 
(7.5b) 

1f(3,q: representation of G on Hq(Y; Oq(E'Yil)) and 

'TJ(3,q: representation of MAN on Hq(MIU;Or(EI'IliM;u)) 

such that 1f(3,q = Ind~(TJ{3,q)· 
First consider the case where f3 is finite dimensional. Apply Theorem 6.1 to 

M(w) c Mc(w). The 8 operator for the Dolbeault complex of E~'ll --+ M(w) 3'! 
MAIUA has closed range. The cohomologies Hq(M(w);Oq(E'Yil)) are admissi-
ble Frechet M A-modules with finite composition series and underlying Barish-
Chandra modules A 8 (M A, U A, t +a, 'Y(3)· The representations here are the 'TJ(3,q 
of (7.5b). 

Given gP E G I p we have the a operator for the Dolbeault complex of 
El'lli 9 M(w)--+ gM(w). The base space there is the fibre of 

Y 3'! GIU AN--+ GIMAN = Gl P over gP. 
These Dolbeault operators 89 p for the fibre-restrictions of E'Yil fit together to 
form 

By : Cauchy-Riemann operator for 

the partial Dolbeault complex of E'Yil --+ Y. 
(7.6) 

The partial Dolbeault complex here consists of the spaces c-w (Y; E'Yil 0 1\ •Ny) 
with the operators By. Here c-w denotes hyperfunction sections. Ny --+ y 
is the antiholomorphic tangent bundle, intersection of the complexified tangent 
bundle of Y with the antiholomorphic tangent bundle of W, so 18:.1'13 0 1\ qN¥ --+ Y 
consists of the 18:.1'13 -valued (0, q)-forms on Y. 

The cohomology of that partial Dolbeault complex is computed from a sub-
complex with hyperfunction coefficients that are coo along the fibres of Y --+ 

G I P. More precisely the inclusion 

of that subcomplex in the partial Dolbeault complex of E'Yil induces isomorphisms 
of cohomology. The point is that the subcomplex has a natural Frechet topology 
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adapted to the fibration Y ---+ G I P, and in that topology the operator Dy is 
continuous. This is the content of [27, §7]. 

7.8. LEMMA. Each Dy : cc;;p(Y; JE'Y13 ® NN¥) ___, cc;;p(Y; JE'Y13 ® N+ 1N¥) 
has closed range. 

PROOF. For each fibre gM ( w) of Y ---+ G I P and each integer q ~ 0 we write 
c;P for the space C 00 (gM(w); (lE'Y13 ® NNy )igM(w)) of C 00 bundle valued forms 
over that fibre, we write z;p for the kernel of DgP : c;p ---+ c;tl' and we write 
B;p for the image of DgP : c;?1 ---+ c;p. We know from Theorem 6.1 that 
z;p and B;p are closed subspaces of the Frechet space c;p· In particular DgP 
induces a Frechet space isomorphism of c;P1z;P onto B;f1 . 

Now write Cq---+ GIP, zq---+ GIP and !Bq---+ GIP for the G-homogeneous 
Frechet bundles over GIP with fibre over gP given by c;P, z;P and B;p, 
respectively. Ca/p(Y; lE'Y/3 ® NNy) is the space of c-w sections of cq ---+ G I P, 
and there the kernel and image of Dy are the respective spaces of c-w sections 
of zq---+ GIP and !Bq---+ Gl P. 

If¢ E C0/p(Y; lE'Y13 ®NN¥) then By(¢)= 0 <¢==? each D9 p(¢1 9 M(w)) = 0. It 
follows that the sub bundle zq ---+ G I p is the kernel of Dy : cq ---+ Cq+l. Thus Dy 
induces an injective bundle map 'Yq : Cq IZq ---+ JBq+l. But 'Yq is invertible on each 
fibre, so it must be invertible. Now 'Yq is surjective, so Dy maps cq onto JBq+l. In 
other words, the range ofDy: Ca/p(Y; lE'Y13 ®NN¥)---+ Ca/p(Y; lE'Y13 ®N+1N¥) 
is the space of c-w sections of the Frechet sub bundle JBq+l ---+ G I p of cq+l ---+ 
G I P. Thus Dy has closed range as asserted. 0 

Now we have a serious extension of Theorem 6.1: 

7.9. THEOREM. Let fJ be a finite dimensional representation of (r +a, U A). 
Then the cohomologies Hq(Y; Oq(lE'Y13 )) are admissible Frechet G-modules with 
finite composition series. Their underlying Harish-Chandra modules are the 
Zuckerman derived functor modules Aq(G, U A, r+ n, fJ). If Ef3 has highest weight 
A, then the representation 1f(3,q ofG on Hq(Y;Oq(lE'Y13 )) has infinitesimal char-
acter A+ Pm· If A+ Pm is Bw-antidominant (5.4), then Hq(Y; Oq(lE'Y13 )) = 0 for 
q =I= SSw· 

Finally we consider the case where fJ may be infinite dimensional but is con-
strained to be one of the cohomology representations of Theorem 7.9 for an open 
M-orbit on the flag manifold of all Borel subalgebras of m. 

Start with the projection p : X ---+ W from the flag manifold of all Borel 
subalgebras of g, as in (6.2). Fix a Borel subalgebra b = ~ + L:aE<I>+(g,~) 9-a C q 
where ~ = j + a corresponds to a fundamental Cartan subgroup of M A = pr 
and where Tcll+(m,j) = -cp+(m,j). Now p(x) = w where b = bx and M(x) is 
open in the flag manifold Mc(x) of Borel subalgebras of m. 

Let x be a finite dimensional representation of (b, H). Then we have the bun-
dles and sheaves of (6.3) and (6.4), except that those over G(x) are holomorphic 
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only over the holomorphic arc components. Now suppose that x, as a represen-
tation of H, is G(x)-antidominant with infinitesimal character A. Suppose also 
that x(bn) = 0. Essentially as in (6.5) write 

(7.10) u = dimc(K n M)(x), t = dimc(K n U)(x), and 
s=dimc(KnM)(w); sou=t+s. 

Then HP(U(x);O,b('Ex0eP•)) = 0 for p =/= t and Hq(G(x);Ob(Ex®eP•)) = 0 for 
q =/= u by Theorem 7.9. As in (6.6) and (6. 7), the Leray spectral sequence of 
G(x)---> G(w) collapses at E 2 and 

(7.11) Hq( G(x); Ob(Ex@eP•)) = L Ha( G( w); Oq(lHib(U(x); O'b ('Ex®eP•)) )). 
a+b=q 

Here we use the fact that the isotropy subgroup U AN of G at w has orbit 
U AN(x) = U(x) because a+ n C b. The vanishing in Theorem 7.9 now tells us 
that 

It also follows from Theorem 7.9 that the space (7.12) has a natural Frechet 
space structure for which the action of G is a continuous representation. Now 
we have the extension of Theorem 6.9 from measurable open orbits to measurable 
integrable orbits: 

7.13. THEOREM. Let rt denote Ht(U(x); Q,b('Ex®eP• )) as a representation of 
( q, U AN) and let V '1 ---> G( w) denote the associated homogeneous vector bundle. 
Then Hq( G( w); Oq(V'l)) = 0 for q =/= s, H 8 (G( w); Oq(V'l)) has a natural Frechet 
space structure and the natural action ofG on H 8 (G(w); Oq(V17 )) is a continuous 
representation. Further, that action ofG on H 5 (G(w); Oq(V17 )) is an admissible 
representation with finite composition series. It has infinitesimal character A + 
Pm· Its underlying Harish-Chandra module is the Zuckerman derived functor 
module As+t(G, H, b, x) = A 8 (G, U A, q, ry). 

Section 8. Open Problems. 

The first obvious open problem is to remove the requirement of finite dimen-
sionality from the representations x of Theorem 6.1. This is done, but only in 
special cases, in Theorem 6.9. The problem divides into several parts: a clean 
functorial definition of the topology of the Dolbeault complex, the closed range 
problem for the a-operator, keeping track of the infinitesimal character, and a 
vanishing theorem for the antidominant case. It would be especially interesting 
here to understand whether the infinitesimal character and the vanishing theo-
rem really need x( qn) = 0, even in the finite dimensional case. Most of this was 
done by H.-W. Wong [34] for finite dimensional x, but it is not at all clear how 
to proceed in the infinite dimensional case. 
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The second obvious open problem is to remove the requirement of finite di-
m~nsionality from the representations (3 of Theorem 7.9. This is done, again only 
in special cases, in Theorem 7.13, respectively. The problems include those of 
the measurable open orbit case, but here one must first find a good subcomplex 
of the partial Dolbeault complex that computes the cohomologies, and then one 
must have the solution to the first problem for the holomorphic arc components. 

Third, it would be good to use this geometric setting to obtain character 
formulas. This is done in another setting by Hecht and Taylor [13]. 

Fourth, one needs a better connection between representations constructed 
as in this paper from the C-orbit structure of a complex flag manifold W and 
those constructed by localization methods from the K c-or bit structure. This is 
fine up on the flag of Borel subalgebras of g ([9], [10]), but not yet satisfactory 
in general. 

Finally, of course, one can ask how much of this goes over to the quantum 
group setting. 
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