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THE UNCERTAINTY PRINCIPLE FOR GELFAND PAIRS
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ABSTRACT. We extend the classical Uncertainty Principle to the context of Gelfand pairs. The Gelfand

PAir setting includes riemannian symmetric spaces, compact topological groups, and locally compact
abelian groups. If the locally compact abelian group is R™ we recover a sharp form of the classical
Heisenberg uncertainty principle.

SECTION 1. INTRODUCTION.

The classical uncertainty principle says that a function and its Fourier transform cannot both be
mostly concentrated on short intervals: if f(t) has has most of its support in an interval of length ¢,
and its Fourier tranform f(r) has has most of its support in an interval of length £ then £.7 21-9
where 1) is specified by the precise meaning of “most of its support”. In quantum mechanics this says
that the position and momentum of a particle cannot be determined simultaneously [9]. In signal
processing it says that instantaneous frequency cannot be measured precisely [8]. And of course
the Heisenberg Lie algebra and its commutation relations are the basic building block in harmonic
analysis on nilpotent Lie groups (10], and thus in the associated theories of Cauchy-Riemann spaces,
Heisenberg manifolds, and hypoellilptic operators ([6], [1], [7]).

A few years ago, D. L. Donoho and P. B. Stark proved [4] a sharp classical extension of the
uncertainty principle: [T|-|W| 2 1- 5 whenever f(t) has most of its support in a set (not necessarily
an interval) T' of measure |T'| and f(7) has most of its support in a set (not necessarily an interval)
W of measure [W|. :

Let T be a measurable set, 17 its indicator (= characteristic) function, and I-1l=1l1lp, an L,
norm. We say that '

f € Ly is € - concentrated on T if ||f — 17.£|| £ €||]|. (1.1)
The precise form of Donoho and Stark’s stronger L; version mentioned above is [4]

Let f,f e Ly(R), let €,6 2 0, and let T,W C R be measurable sets.
Suppose that f is e-concentrated on T and f is 6-concentrated on w. (1.2)
Then Lebesgue measures satisfy |T| - W2 (1-e-6)>2

The key point in the Donoho-Stark L; argument is the operator norm inequality

IQPI* < IT|-|W| where Pf = 17f and Qf = (1w f)" (1.3)
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where “denotes Fourier transform as usual and V is its inverse.

K. T. Smith [11] extended the uncertainty principle (1.2) to locally compact abelian groups by
extending the inequality (1.3). In this paper we modify Smith’s arguments so that they apply more
generally to Gelfand pairs, thus to riemannian symmetric spaces and compact topological groups as
well as locally compact abelian groups.

In the notation to be specified just below, we have two apparently different generalizations to
Smith’s extension of the uncertainty principle. Fix a Gelfand pair (G, K). Theorem 4.3 extends the
uncertainty principle to functions on K\G/K. It depends on the spherical transform for the Gelfand
pair (G,K) and the resulting decomposition of Ly(K \G/K) by positive definite zonal spherical
functions. Theorem 6.7 extends the uncertainty principle to functions on G/K; it depends on the
vector valued transform corresponding to a direct integral decomposition of Ly(G/K). These two
extensions are in fact equivalent because the underlying L, decompositions use the same Plancherel
measure.

In Section 2 we summarize function theory on K\G/K for a Gelfand pair (G,K). We start with
the basic definitions, describe the spherical transform, and discuss the consequences for L,(K\G/K).
Then in Section 3 we prove analogs of (1.3) for K\G/K. The corresponding uncertainty principle
is in Section 4.

In Section 5 we describe the direct integral decomposition of L2(G/K) and the corresponding
vector valued transform on G/K. Then in Section 6 we verify the analogs of the operator norm
inequalities of §3 and derive the uncertainty principle for G/K.

The reader will notice that we spend more space reviewing Gelfand pairs than we spend proving
our uncertainty principles. That is the nature of the situation: we are showing that certain classical
considerations are valid without essential change in a much broader context. Of course the reader
familiar with Gelfand pairs need only glance at Sections 2 and 5 to catch the notation.

SECTION 2. COMMUTATIVE FUNCTION THEORY OF GELFAND PAIRS.

The theory of Gelfand pairs includes many of the general aspects of hamonic analysis on locally
compact abelian groups and on symmetric spaces. There are some excellent treatments available, for
example [2] and [5]. But we only need the basic structural facts. In this Section we summarize those
aspects of Gelfand pair theory that correspond most closely to the Pontrjagin-Plancherel theory
for locally compact abelian groups and to the analysis of central functions on compact groups. For
brevity, we defer to [2] and [5] for references to original sources.

A. Some Basic Definitions.

Let G be a locally compact topological group and K a compact subgroup. Let mg be Haar
measure on G, subject to the usual convention: counting measure if G is infinite and discrete, total
mass 1 if G is compact. Let mx be Haar measure of total mass 1 on K.

Convolution on G is the action of functions under the left regular representation:

fie o) = /G 11(2) falz™ g)dmg ). (21)

As in the case G = R, Young’s Inequality
[If *hllp < 1Ifll1lIh]ly for f € Ly(G) and h € L,(G) (22)

is immediate.
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A function f on G is called K-bi-invariant if f(k;zk;) = f(z) for all z € G and k; € K. We say
that a function f : G — C vanishes at oo if, given ¢ > 0, there is a compact subset C, C G such
that |f(z)| < e for z ¢ C. . Each of the spaces

Co(G):  continuous functions G — C with compact support
Cw(G) :  continuous functions G — C vanishing at oo
L,(G): standard Lebesgue space of measurable functions G — C, 1SpSo©

projects onto its subspace
Co(K\G/K), Cwo(K\G/K), Ly(K\G/K), 1S£pSoo

of K-bi-invariant functions, by f — f! where fi(z) = Ix Jx f(kazko)dmyc (k1 )dmg (k).

Co(G) is an associative algebra under convolution. Note that Co(K\G/K) is a subalgebra. Sim-
ilarly, this time using Young’s Inequality, L;(K\G/K) is a subalgebra of the convolution algebra
Ly(G). If z € G then G carries a unique K-bi-invariant probability measure m,, defined by

/f(y)dm,(y):/ / J(kyzks)dmg (ky)dmg (k2) : (23)
G KJK ) »

with support KzK.

2.4. Lemma. The following conditions are equivalent:
(1) The convolution algebra Co(K\G/K) is commutative.
(2) The convolution algebra Li(K\G/K) is commutative. ;o
(3) If z,y € G then KzK - KyK = KyK - KzK.
(4) Kz,y€ G thenm, +m, =m, s m,.
If those conditions hold, then G is unimodular.

2.5. Definition. (G, K) is commutative, i.e., is a8 Gelfand pair if the conditions of Lemma 2.4
obtain.

If G is a locally compact abelian group, and we set K = {1}, then of course (G, K) is commutative.
But there are other interesting examples, riemannian symmetric spaces and compact groups, as
follows. ,

The name “Gelfand pair” comes from I. Gelfand’s result

2.6. Theorem. Let G be a locally compact group and 0 an involutive automorphism of G such
that G = SK where
(1) K is a compact subgroup of G,
(2) ifk € K then 6(k) = k, and
(3) ifs € S then 0(s) = s~1.
Then G is unimodular and (G, K) is commutative.
2.7. Corollary. Let M be a connected riemannian symmetric space, let G be any group of isome-

tries of M that contains the identity component of the group of all isometries, and let K be the
isotropy subgroup of G at some point of M. Then (G, K) is commutative. '
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2.8. Corollary. Let M be a compact topological group. Let G = M x M, so G acts on M by
(z,y) : m > zmy~1. Let K be the stablizer of the identity element of M,so K = {(z,z"') |z €
M} = AM, the diagonal M in G. Then (G, K) is commutative.

The special case of Corollary 2.7 is due to E. Cartan. In modern language, Cartan proved that
the commuting algebra for the left regular representation of G on L3(G/K) is commutative, i.e. that
this left regular representation is multiplicity—free. Corollary 2.7 includes the Lie group case.

B. The Spherical Transform.

In the special case of a locally compact abelian group G; the spherical transform is the map
=1
f@)= [ fehleims(e), wed (29)

from L,(G) to L,(G) with the usual % + ‘% = 1. This generalizes the classical Fourier transform.

Here G is the Pontrjagin dual of G. By definition, G consists of all unitary characters on G, i.e.,
all continuous homomorphisms w : G — {z € C | |z| = 1} with group composition (wyws)(z) =
wi(z)ws(z). In a certain topology, the case K = {1} of the one described in (2.18) - (2.22) below,
Gisa locally compact abelian group.

Zonal spherical functions are the analog of continuous homomorphisms
G—{zeC|z#£0},

and positive zonal spherical functions are the analog of unitary characters.
Now fix a Gelfand pair (G, K).

2.10. Definition. A nonzero Radon measure u on G is spherical if
(1) it is K-bi-invariant: p(kyEk;') = p(E) for measurable E C G, and
(2) 8 : Co(K\G/K) — C is an algebra homomorphism, i.e., u(f * b) = u(f)p(h), where u(f)
means [ f(z)du(z).

2.11. Definition. A continuous function w : G — C is a zonal spherical function or zsf if
du(z) = w(z~')dmg(z) defines a spherical measure.

All continuous homomorphisms w : G — {z € C | z # 0} (often called quasi-cb’aracters) are zsf.
Every spherical measure 4 is absolutely continuous with respect to Haar measure mg, so it has form
du(z) = w(z~!)dmg(z) where w is K-bi-invariant. Here we may choose w continuous, hence zsf,
and check w(1) = 1. So the notions of spherical measure and zsf are essentially equivalent. They
correspond to quasi-characters on locally compact abelian groups. The following shows that they
enjoy properties close to those of quasi—characters.

2.12. Proposition. These are equivalent for a function w : G — C:
(1) w is a zonal spherical function on G.
(2) w (i) is continuous, (ii) is K-bi-invariant, (iii) satisfies w(1) =1, and (iv) if f € Co(K\G/K)
there is a constant A; € C such that f+w = \jw.
(3) w is not identically zero, and if z,y € G then w(z)w(y) = [x w(zky)dmy (k).

The Fourier transform, whether on R or an arbitrary locally compact abelian group, only uses
unitary characters. So we recall
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2.13. Definition. A function ¢ : G — C is positive definite if J_ &c;¢(z; z;))20 vwb‘eAnever
n21, {c,...,¢x} CC, and {z1,...,2,} CG.

Note that a positive definite function ¢ satisfies é(1) 2 |¢(z)| and ¢(z~1) = é(z) for all z € G.

2.14. Theorem. Let ¢ be a continuous positive definite function on G with é(1) = 1. Then there
is a unitary representation x of G, and a cyclic unit vector u in the representation space H,, such
that ¢(z) = (u,x(z)u) for all z € G. The pair (¥, u) is unique up to unitary equivalence.

The connection with Gelfand pairs is

2.15. Theorem. Let ¢ be a positive definite zonal spherical function and (x,u) the corresponding
cyclic unitary representation, ¢(z) = (u, #(z)u). Then « is irreducible and u spans the space HK of
*(K)-fixed vectors. Conversely, if x is an irreducible unitary representation of G and MK is spanned
by a unit vector u then ¢(z) = (u,7(z)u) is a positive definite zonal spherical function.

Write S = S(G, K) for the set of all zonal spherical functions f:G — C, and write P = P(G, K)
for the set of all positive definite zonal spherical functions.

2.16. Definition. The spherical transform is the map f — f, from K-bi-invariant [unciions
on G to functions on S = S(G, K), given by

f@) = pu(f) = /G f(2)o(z™ )dme (=), | @17)

If f € Li(K\G/K), in particular if f € Co(K\G/K), then the integral is absolutely convergent.
Map . -
S =TI € by w = (f(w)) as £ ranges over Co(K\G/K). (2.18)

This is injective, and we now view S as a subspace of the topological product space Il C;. The

subspace topology on S is the weak topology for the functions f with f € Co(K\G/K). Since
positive definite functions are bounded by their value at the identity element 1 € G,

P =P(G,K) C [ Dy where Dy = {2y € C; | |z/| £ |Iflls). (2.19)
If w € S, a calculation shows that

w € P if and only if (f * £*) 2 0 for all f € Co(K\G/K). (2.20)
Here f*(z) = f(z~1) because G is unimodular. Combining (2.19) and (2.20), one proves that

P has closure cl(P) consisting of all z € H Dy such that v
a) f— z; is a linear functional on Co(K\G/K),
b) Zpeta =24,24, for all h,f2 € Co(K\G/K), and
€) zpge20forall fe Co(K\G/K).

(2.21)

From this

2.22. Proposition. P is locally compact. Either P is compact and equal to its closure in Ine,,
or clP = PUQO is the 1-point compactification of P.

Proposition 2.22 gives us an analog of the Riemann-Lebesgue Lemma:
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2.23. Corollary. If f € Li(K\G/K) then f € Cw(P), ie., f is a continuous function on P
vanishing at co.

C. The Godement-Plancherel Theorem for K\G/K.

Godement’s extension of the classical Pontrjagin-Plancherel Theorem from locally compact abelian
groups to Gelfand pairs is

2.24. Theorem. Let (G, K) be commutative. Then there is a unique positive Radon measure v
on P, concentrated on a certain subset M, such that

if f € Co(K\G/K) then f € La(P,v) and ||fllL,(pv) = IfllLaa) - (225)

Moreover f — f extends by continuity to a Hilbert space isomorphism of Ly(K\G/K) onto L,(P,v)
which intertwines the (left) convolution representation

£: Co(K\G/K) on Ly(K\G/K) by {(f)h = f*h (2.26a)
with the (left) multiplication representation

£: Co(K\G/K) on Ly(P,v) by i(f)q = fq . (2.26b)

v is called Plancherel measure for (G, K). The uniform closure of £(Co(K\G/K)) in the algebra
of bounded linear operators on Ly(K\G/K) is a commutative C* algebra, and M is its maximal
ideal space. If f € Co(K\G/K) then £(f) has dual £(f)~, function on M given by £(f)~(m) = ¢(f)
modulo m. If m € M there is a unique zonal spherical function wy, such that

()~ (m) = /G £(2)om(z~ ) dmg(z) . (227)

Furthermore wy, is positive definite, so M is identified with a subset of P, and M < P extends to
a homeomorphism of M U {0} onto a closed subset of P U {0}. Also,

if f € Co(K\G/K) then £(f)"(m) = f(wm), ie., &(f)" = flu . (2.28)
With these identifications, the construction of Plancherel measure proceeds along the same lines
as the standard construction of Haar measure. Along the way one gets the analog of Bochner’s
Theorem
2.29. Corollary. f(z) = [, wm(z)f(m)dv(m).
and the analog of the Fourier inversion formula
2.30. Corollary. f € Ly(P,v) and f(z) = [p f(w)w(z)dv(w).
for f in the dense subspace

finite linear combinations Za.-,- Ji » f; where the f; € Co(K\G/K)

of Ly(K\G/K):
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For comparison it is worth recalling the Pontrjagin-Plancherel Theorem for a locally compact
abelian group G. There is a unique normalization of Haar measure mg on G such that f — f

defines! an isometry of Ls(G) onto L,(é). We always use that normalization for mg. The inverse
Fourier transform is given by

¥(z) = /& b(w)o(z)dmg(w). (2.31)

This is essentially the same as the Fourier transform on G. So here the Titchmarch Inequality for
G (compare [3, §51]), :

.. IIfllpr S1Ifllp whenever 1< p< 2 and f € L,(G) (2.32)

and the corresponding inequality for G, combine for p = 2 to give the isometry of the Plancherel
Theorem.

SEcCTION 3. OPERATOR NORM INEQUALITIES.

In this section we prove certain operator norm estimates on Gelfand pairs. Just as K. T. Smith
used an extension [11] to locally compact abelian groups of the Donoho-Stark estimate (1.3) to
prove his uncertainty principle, the estimates we prove will be used in §4 to extend that uncertainty
principle to spaces K\G/K where (G, K) is a Gelfand pair.

Fix a Gelfand pair (G, K). To adapt (1.3) we use the spherical transform (2.17) and its inverse
(2.30),

fw) = /G F(@)o(z"Y)dme(z) and h¥(z) = /P h(w ) (z)dv(w). (31)
As in the classsical case, straightforward computation gives
flleo £ IIf1lx for f € Li(K\G/K) and ||h¥ lloo £ |Ibllx for b € Ly(P,v),

80 Riesz-Thorin interpolation gives us the analog for K\G/K of the Titchmarch Inequality

Wfllpr SNl for f€Ly(K\G/K), 1SpS2,

3.2
A< B, for heLy(Py),  1SpS2, (32)

with the usual  + % = 1. Compare [3, §51].

Fix subsets T = KTK C G and U C P of finite measure. Let 17 and 1y denote their respective
indicator functions. Define operators P = Pr and Q = Qu by

Pf=17f and Qf=(lwf) . (3.3)
3.4. Proposition. If 1 Sp<2,¢21 and f € L,(K\G/K) then

IPQSlly £ ma(T)/*w(U)2|f]l, -

1In fact map f ~ f is initially defined only for f € L1 (G) N L2(G) and then is extended by continuity as in
Theorem 2.24. :
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Case p = g: the operator norm on L,(K\G/K) satisfies 1PQll, £ ma(T)MPu(U)V?,
Proof. We compute

PQRf(z) = 17(z)Qf(z)
= 17(z)(lv f)Y (2)

= 17(2) /P (1o ) (@) (z)dv(w)
=12 [ 1w [ Sty Yima(s) b w(e)iv(o)
=1 [ 10 { [ Ty (@o(y™Ye(z)db(e) | dme(y).

Asw(y Vw(z) = Jx w(ykz)dmg(k) and f is K -bi-invariant, now

PQfe) =12 [ 16){ [ 10tr )} dmat) = (1.5
G P
where k:(y) = 17(z) [p ly(w)w(y~lz)dv(w) = 17(z)1(y~'z). Using Hélder,
1PQS (=)l = (£, k) S 1I£llpllE:llp = 11l LY llpr |12 (2))-
Integration f; |PQf(z)|?dmg(z) and the inequality (3.2) give
IPQSlly < 1lfllp NG 1l ma(T)M L Il l11ullp ma(T) M4 = ma(T)Me v |fllp .
That completes the proof of Proposition 3.4. O

Proposition 3.4 is sufficient for the uncertainty principle of Theorem 4.3 below. But there are
some other useful operator norm estimates for Gelfand pairs.

The estimate analogous to that of Proposition 3.4, but in the other order, is
3.5. Proposition. If1Sp<2,¢2 7, and f € L,(K\G/K), then?

IQPSlly £ ma(T)/1u(U)?|Ifll, and [IQPly € ma(T)VPu(U)7||PF|), .

Proof. As in Proposition 3.4, compute

@P1(z) = [ 106) { / 1T(y>f<y)~(y-‘)dma(y>} w(@)dv(w) = (£,77)

where jz(y) = 17(y)15(y™*2). So |QPf(2)| £ Ifllplljellp+ and

1/p') ¢ 1/q
IQPflly = lIfllp ( /a { ( /G lr(y)llﬁ(y"z)l"dma(y)) } dma(r-)) :

2There is a typographical errar (a misplaced prime) in the published statement of {11, Theorem 3.2). The carrection
is implicit in the argument below. The argument for the second inequality of Proposition 3.5 follows [12).
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Now
) I s
1277l < 1Al ( {Car s m5P @)} dmee)
= A1 (ICr * P lgspe) '
< 171l (Il Y P )" by Young's Inequality, using ¢ 2 7

= 1fllema (@M1 (II(1 P M*

= |I£llpma(T) 1|15 lp

S Ifllbma(T)Y4||1y]lp by Titchmarch (3.2), using 1 Sp < 2
= mg(T)/w(U)/?||flly -

That proves the first inequality of Proposition 3.5. For the second inequality replace f by Pf in
the first inequality and use P? = P:

QP fll, £ ma(T)/ (V) /?||Plp - ®
Ifr=4%and } + 5 =1then
WP£II = (PSP, 1r)
S IAPSIYll- ll1zllr by the Hélder inequality (i)
= (WPAIY Wizl sincerp=gqand ;=2
Use W = % -1 ¢ to combine (i) and (ii) as

IIQPfII. < mg(T) /1w (U)V/?||Pfllyma(T)*"" = ma(T)Pv(U)"/?||Pf|l, -
That completes the proof. O

If K\G/K has finite measure, then G is compact, and one has a stronger form of part of (3 2),
analog of the Hausdorff-Young Inequality (again compare [3, §51]):

Iflle S 17l for £ € L,(K\G/K) with 1 SpS o and - Smin(,3) . (36)
Similarly, if P has finite measure, for example if P is compact, then
¥l € [IBll, for h € L,(P,v) with 1 £ p € 0o and % < min(%,% : 3.7

These lead to slightly stronger f?rms of Propositions 3.4 and 3.5.

SECTION 4. THE UNCERTAINTY PRINCIPLE FOR K\G/K.

As in §3 fix a Gelfand pair (G, K) and subsets T = KTK C G and U C P of finite measure.
Define operators P = Pr and Q = Qu as in (3.3). Given ¢ 2 0 we say that

f € L,(K\G/K) is L, ¢ — concentrated on T if ||f — 17 fll, < €||f|lp (4.1a)
and similarly, given § 2 0, :
h € Ly(P,v) is Ly § — concentrated on U if ||h — 1uh||pr £ 8]|h|l,r (4.1b)

Somewhat analogously, we say (compare [4] and [11]) that
f €Ly,(K\G/K) is L, § — bandlimited to U if there exists

— 42
fu € Ly(K\G/K) with fy supported in U and |If — fullp < 611flly - “

|
|
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4.3. Theorem. Suppose that 0 # f € L,(K\G/K) with 1 SpS2ande¢b 20 such that f is
i ¢—concentrated on T and §-bandlimited to U. Then

l1—-¢-§

mg(T)/Pu(U)'/? 2 ||PQ|l, 2 Y

And if p = 2 then, further, ||PQ||3 21— ¢ - 6.

Proof. The first inequality is the case p = ¢ of Proposition 3.4. Note fy = Qfy because f(; is
supported in U, and of course ||P|| £ 1, to compute

£l = 1PQSl, < IIf ~ PQSl, '
SIf = Pfllp + IPf = Pfull + 11PQfv — PQfll,
S ellfllp + 811£llp + 11PQIIp611 £l
= (e+8+6/1PQIIp)IIA,
s0 |IPQfllp 2 (1 - ¢ = 8= 8||PQIIp)IIf|lp- Now ||PQIlp 2 1~ €~ & — 6]|PQ]], so
(A+)IPQllp21-€~6.

That proves the general assertion. If p = 2 we can take f,; = Qf so that Qf = Qfy and the
|1PQfu — PQf||, term does not occur. O

SECTION 5. NONCOMMUTATIVE FUNCTION THEORY OF GELFAND PAIRs.

In this Section we describe the vector-valued transform that leads to an analysis of L,(G/K)
where (G, K) is a Gelfand pair. As before, we defer to [2] and [5] for reference to original sources.

Recall Theorem 2.15. Every positive definite zonal spherical function w € P determines an

! essentially unique irreducible unitary representation 7, and unit vector u, € H, = H,_ such that
w(z) = (uw, % (2)un)yy, for all z € G. It is immediate that
if f € L1(G/K) and z € G then (f *w)(z) = (rw(f)uw,tw(z)uw)uw . (5.1)

On the other hand, a calculation shows that
if f € C(G/K) N Li(G/K) and z € G then f(z) = / (f +w)()dv(w) . (5.2)
P .

So f *w € C(G/K) N L1(G/K) corresponds to x,(f)u, € M, . In fact (5.1) and (5.2) combine to
prove

5.3. Lemma. If f € Co(G/K) and z € G then

f(z) = /P (T ()t (2, () a0 11720y = /P e (f) e, diw) -

We need the details of the notion of direct integral. Let (Y,7) be a measure space. For each
Yy €Y let M, be a Hilbert space. Let {s,} be a countable family of maps Y — Uyey My such that

sa(y) € Hy and {s.(y)} spans H, for all y € Y, and




The Uncertianty Principle for Gelfand Pairs 393

the functions y — (sa(y), 5a(y))s, belong to Ly(Y, 7).

Then the direct integral % = [, H,dr(y) modeled on the {s,} is the linear span of all the maps
8:Y = U,cy Hy such that

s(y) € Hy ae. (Y,7) and the functions y — (s(y), £a(y)), belong to Ly(Y,7).
* is a separable Hilbert space with inner product (s, 8'), = fy (s(v), 8'(v)) 5, dr(¥)-

More generally, fix 1 £ p £ co. Then the L, direct integral H, is the linear span of the maps
8:Y = ey My such that

s(y) € Hy a.e. (Y,7) and the functions y — (s(y), s(y 12 belong to Ly(Y, 7).
( y Hy P

. . pl2 1/p <
M, is a Banach space with norm ||s|, = (fp(s(y),s(y)),") for 1 £ p < o0, norm ||s|lec =

ess sup(p,,)(s(y), s(y));{/f. Of course H3 is the Banach structure underlying the Hilbert space struc-
ture of H.

Let BL(M,) denote the algebra of bounded linear operators on the Hilbert space Hy. Let T :
Y = U,ey BL(H,) such that

T(y) € BL(H,) a.e. (Y,7), and if 5,8’ € H then y — (T(y)s(y), s'(y)) belongs to L1(Y,7).

Then s — Ts € H, Ts(y) = T(y)s(y), defines an element T € BL(H). This element is denoted
T = [, T(y)dv(y) and is called the direct integral of the T(y)-

In our case, (P, v) is the measure space; for w € P we have the Hilbert space M,,; for f € Co(G/K)
we have 8;(w) = %,(f)u, , and {8} = {s;,} where {f,} is a countable dense subset of Co(G/K).

5.4. Definition. The Fourier transform on G/K is the map
F: L(G/K) — / Hodu(w)
P
given by F(f)(w) = 8;(w) = x,(f)us -
Now Lemma 5.3 gives us the Godement-Plancherel Theorem for G/K:

5.5. Theorem. Let (G, K) be commutative and let v be its Plancherel measure. Then the Fourier
transform

F:Co(G/K)—H, whereH =/ Hodv(w) , - (8.7)
P

satisfies

1) = /P (F ), (2, () and [|F (D)l = IS llzagaraey - (58)

Moreover f — F(f) extends by continuity to a Hilbert space isomorphism of L2(G/K) ontoH which
intertwines the (left) regular representation

A: Ly(G) on Ly(G/K) by M(¥)f = ¢+ f (5.92)
with the direct integral representation
x= / %, dv(w):
F (5.9b)

L;(G) on’H = /P Hodv(w) by =(¥)= jp %o (V)dv(w) .
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The standard Plancherel-type formula is of the form
f(z)= ﬁ trace (£(z~1)f) du(x), (5.10)
G

where G is the unitary dual of G and £(y)f(g9) = f(y~'g). The connection with Theorem 5.5 is
given by

trace 7, (£(z™1)f) = (7 (f)th, T (2) ). (5.11)
Formula (5.11) depends on the fact that if v, L u, in H, and f € Ly(G/K) then n,(f)v, = 0.
The same calculation shows that if # € G has no K-fixed vector and f € L;(G/K) then x(f) = 0.
So for functions on G/K, only the x,, occur in the expression (5.10). :

SECTION 6. THE UNCERTAINTY PRINCIPLE FOR G/K

We now modify the considerations of §§3 and 4 to carry them from K\G/K to G/K. We start
with the formulae for the Fourier transform (5.4) and its inverse (5.8),

F(f)w) = xu(f)u, and F~(v)(z) = /P(v.,,, T (Z)ty )y dv(w). (6.1)
Again as in the classical case,
IF(Hlleo = ess suppu) IIF(f)@)lln, = ess sup(puy |1mu(fuwlin,
< esssup(py) lIflh = |Ifllh
for f € L;(G/K), and
120l = estsup [ (o), 7 (@, () $ [ 1)l (o) = ol
for v € H;. So as before, Riesz-Thorin interpolation results in a G/K analog of the Titchmarch
Inequality
WFAll  S1flle for feLy(G/K), 1SpS2,
IF W)l S llvlly  for veH,, 1spS2,
with the usual 2 + L = 1.
Fix sets T = TK C G and U C P of finite measure. As in (3.3) define
Pf=1rf and Qf=F'(lwF(f)) . (6.3)
6.4. Proposition. If1<p<2,¢21 and f € L,(G/K) then

IPQSll £ ma(T)/ (V) ?|f]l, -
Case p = q: the operator norm on L,(G/K) satisfies ||PQ|l, £ mg(T)/Py(U)'/>.

(6.2)

Proof. We compute essentially as in the proof of Proposition 3.4:

PQf(2) = 12(z)F(lu F(f))(z)
= 12(2) | (1o()m (s T,

=1 [ 1w { [ PO R A (1)} ()
= 12) [ 1) { [ 10X, s Db, )} dmc(e)

= (f,k2)1,6/x)
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where
k() = 1r(2) /P 10/() 8o Fu(Y™22) 11 V(W)

= 1p(2)F Y (w ~ ly(w)u,)(y"'z) .
Using Hélder, integration [ |PQf(z)|*dmg(z), and the inequality (6.2), we see, as before, that

1PQSlly S I1£1lp 17~ (@ = 1y (w)us)llp ma(T)/*
< I1llp 11 llp ma(TYM* = ma(T) /4 w(U) |I£llp -

That completes the ‘p}oof of Proposition 6.4. O

One can also prove operator norm inequalities corresponding to (3.5), (3.6) and (3.7), but we
Jeave their formulation and proof to the reader. :

We now proceed as for K\G/K in §4. Given € 2 0 we say that
f.e L,(G/K) is L, ¢ — concentrated on T if ||f — 17 f|l, < €llflly (6.5a)
and similarly, given 6 2 0, ’
v € My is Ly 6 — concentrated on U if |lv — 1y v|lps £ 6|lv]lp (6.5b)
Analogously,

f €L,(G/K) is L, § — bandlimited to U if there exists 66)
fu € L,(G/K) with F(fu) supported in U and ||f — fullp < élifllp - ’

We proved Theorem 4.3, the uncertainty principle for K\G/K, as a formal conequence of Propo-
sition 3.4. Now exactly the same argument proves the uncertainty principle for G/K as a formal
consequence of Proposition 6.4:

6.7. Theorem. Suppose that 0 # f € L,(G/K) with 1 £ p £ 2 and ¢,6 2 0 such that f is
e—concentrated on T and §-bandlimited to U. Then
1-¢-6

ma(T)Pu(U)"? 2 IPQllp 2 775~

And if p = 2 then, further, ||PQ|l2 2 1—¢—6.

There is an equivalent uncertainty principle for the operator-valued transform f — F(f) where
F(f)(w) = x,(f) for f € L,(G/K) and w € P. See the discussion surrounding (5.10) and (5.11).
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