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Annals of Mathematics, 136 (1992), 541-555 

The Stein condition for cycle spaces of 
open orbits on complex flag manifolds 

By JOSEPH A. WOLF* 

Introduction and statement of results 

Let G be a connected, reductive, real Lie group, go be its real Lie algebra 
and g = 9OORC be its complexified Lie algebra. As usual, Int(g) denotes 
the complex, connected, semisimple Lie group of all inner automorphisms of 
g, consisting of the automorphisms Ad(g) as g runs over any connected Lie 
group Go with Lie algebra g. Given 

(0.1) p: any parabolic subalgebra of g, 

we have the complex flag manifold 

(0.2) X = Gc/P: all Int(g)-conjugates of p, 

where P is the parabolic subgroup of G.: that is the analytic subgroup for p. 
Here G acts on X through its adjoint action on g. Since we will only be 

interested in the G orbits and their structure, we may, and do, assume that 

(0.3) Gr is simply connected and semisimple, and that G C GC. 

The G-orbit structure of X is well understood (see [13]). There are only 
finitely many orbits, in particular there are open orbits. If x E X, let Px be the 
corresponding parabolic subalgebra of g; that is, if x = gP, then Px = Ad(g)p. 
Let ( " - denote the complex conjugation of gc over g. Then Px n px contains 
a Cartan subalgebra of g of the form [ = io OR C, where ho is a Cartan 
subalgebra of go. Let A = A(g, [) denote the root system. Fix 

(0.4a) A+= A+(g, j): positive root system 

*Research partially supported by N.S.F. Grant DMS 88-05816. 
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542 J.A. WOLF 

such that the corresponding1 Borel subalgebra 

(0.4b) b = [) + g g, is contained in P, 

Then there is a set 4) of simple roots such that 

(0.5a) PX = Pr + p=n, P = + S P pn 0 - 5 3 
, avr 3eC:fn 

where 
(r consists of all roots that are linear combinations from 4X, 

(0.5b) VDn consists of all positive roots that are not contained in r 

Here pen is the nilradical of Px and Pr is a reductive complement. Given j 
and A+(g, [), every parabolic subalgebra of g is Int(g)-conjugate to one of the 
forms (0.5) for a unique set 1D of simple roots. 

In the context of equations (0.4), one knows from [13], Thm. 4.5, that 

(0.6) G(x) is open in X if and only if [ and A+ 
can be chosen such that A+ =-A+. 

Here note that A+ = -A+ implies that Do contains a regular elliptic element, 
so that [o is a fundamental (as compact as possible) Cartan subalgebra of go. 

We now fix 
D = G(x) c X: open real group orbit on the complex 

flag manifold X, 

(0.7) A+, : Cartan subalgebra and positive root system, 
as in (0.6), and 

K: maximal compact subgroup of G such that t n [ 

is a Cartan subalgebra of I, 

where to and t = to 0 C are the real and complexified Lie algebras of K. Then 
the isotropy subgroup of G at x is 

(0.8) V = G n Px; then D rV G/V and to = Px n px 

where, of course, too and to = too ? C are the real and complexified Lie algebras 
of V. 

1 Note that our parabolic subalgebras-including Borel subalgebras-have nilradicals that are sums 
of negative root spaces. This is so that holomorphic tangent spaces will be spanned by positive root spaces 
so that, in turn, positive linear functionals will correspond to positive vector bundles. 
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THE STEIN CONDITION FOR CYCLE SPACES 543 

The most interesting case for current applications is the case (cf. [13], ?6) 
of a measurable open orbit-the case where D carries a G-invariant measure. If 
D is measurable, then, in fact, the measure is induced by the volume form of a 
G-invariant, indefinite-Kaihler metric. The following conditions are equivalent, 
and D is measurable if and only if they hold ([13], Thm. 6.3): 

(V is the centralizer of a torus subgroup Z of K n V, 

I P n Pa is reductive, 
(0.9) j 

IPx n Px = poxl 

Here pn = g o. Note that, in general, D = G(x) is open in X if and only 
if Pn C px, which is implied by the last equality of conditions (0.9). For pn 
represents the holomorphic tangent space to X at x, thus to D at x in the case 
of an open orbit; so in that case, Pn represents the antiholomorphic tangent 
space. 

Conditions (0.9) are automatic if K contains a Cartan subgroup of G, that 
is, if rank K = rank G, in particular if V is compact. They are also automatic 
if P is a Borel subgroup of G. More generally they are equivalent (cf. [13], 
Thm. 6.7) to the condition that p be Int(g)-conjugate to the parabolic sub- 
algebra of g that is opposite to p. 

Whether D is measurable or not, t n Px is a parabolic subalgebra of t, for 
A+ consists of all roots whose value on some element ( E to n [ has a positive 
imaginary part. It follows that 

Y = K(x) -? K/(K n V) V Kc/(Kc n Px) 
(0.10) is a complex submanifold of D. 

Furthermore Y is not contained in any compact complex submanifold of D of 
greater dimension. So Y is a maximal compact subvariety of D. We will refer 
to 

(0.11) MD = {gY I g E Gc and gY c D} 

as the linear cycle space or the space of maximal compact-linear subvarieties 
of D. Since Y is compact and D is open in X, then MD is open in 

(0.12a) MX = {gY I g E Gc} - GcIL 

where 

(0.12b) L = {g E Go I gY = Y}, a closed complex subgroup of G&. 

Thus MD has a natural structure of a complex manifold. The point of this 
paper is to prove the following theorem: 
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544 J.A. WOLF 

THEOREM 0.13. Let D be a measurable open G orbit on a complex flag 
manifold X = Ge/P. Then the linear cycle space MD is a Stein manifold. 

Some time ago, R.O. Wells, Jr. and I gave an argument for Theorem 0.13 
in the case where V is compact (see [12], Thm. 2.5.6). That argument made 
essential use of an exhaustion function of W. Schmid [9] and techniques from 
integral geometry. Recently D.N. Akhiezer and S.G. Gindikin found some 
combinatorial problems2 with the proof, and I found a problem3 in the use of 
Schmid's exhaustion function. 

The new elements in the present proof of Theorem 0.13 are the idea 
behind the reorganization that settles the combinatorial problems in [12]; the 
somewhat more serious use of semisimple structure theory and the structure 
of bounded symmetric domains; an exhaustion function [10] for D, whose Levi 
form has the appropriate number of negative eigenvalues; and a variation on 
classical methods (see [6] and [2]; or [5], ?2.6) for constructing certain sorts of 
strictly plurisubharmonic exhaustion functions. 

In the situation we consider in Section 3, the circle of ideas considered by 
Docquier and Grauert in [3] and by Andreotti and Narasimhan in [1] suggests 
the path from a certain plurisubharmonic function OM on MD to a strictly 
plurisubharmonic exhaustion function and, thus, to the Stein condition on 
MD. I wish to thank Alan Huckleberry for steering me to the work of Docquier 
and Grauert [3] and Andreotti and Narasimhan [1]. 

1. Structure of the complex isotropy subgroup 

In this section we work out the structure of the Gc-stabilizer L of the 
maximal compact-linear subvariety Y in our open orbit D = G(x) _ G/V. At 
this point we do not need to assume measurability of D. The starting point 
is the following lemma, which is obvious. 

LEMMA 1.1. The kernel of the action of L = {g E GC I gY = Y} on Y is 

(1.2) E= f kPzk-1= f kPk-1 
keK kEKc 

and KCE C L C KcP,. 

In general, G(C, P, X, D, K and Y break up as direct products according 
to any decomposition of go as a direct sum of ideals or, equivalently, any 

2 These problems are settled as a consequence of the material in ??1 and 2 below. 
3 The Levi form of that function has n - s = dimc D - dimc S negative eigenvalues, but in [12] it 

was also assumed to have s positive eigenvalues. This problem is not amenable to a simple patch, but it is 
avoided in the arguments of ?3 below. 
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THE STEIN CONDITION FOR CYCLE SPACES 545 

decomposition of G as a direct product. Here we are taking advantage of 
assumption (0.3). So for purposes of determining the group L specified in 
equations (0.12) and just above, we may, and do, assume that G and go are 
noncompact and simple. This is equivalent to the assumption that G/K is an 
irreducible Riemannian-symmetric space of noncompact type. 

We will say that G is of hermitian type if the irreducible Riemannian- 
symmetric space G/K carries the structure of a hermitian-symmetric space. 

Let 0 be the Cartan involution of G with the fixed point set K. We also 
write 0 for its holomorphic extension to GC and its differential on go and g. 
Now g decomposes as t+s into ?1-eigenspaces of 0. Our irreducibility assump- 
tion says, exactly, that the adjoint action of K on so = go nf i is irreducible. 
Thus G is of hermitian type if and only if this action fails to be absolutely 
irreducible. Then there is a positive root system 'A+ = 'A+(g, [) with the 
following property: s = s+ + s, where a+ is a sum of '+-positive root spaces 
and represents the holomorphic tangent space of G/K, ands- = s+ is a sum 
of 'A+-negative root spaces and represents the antiholomorphic tangent space. 
Write S? = exp(s?) c Gc. Then G/K is an open G orbit on GC/KCS-. 

The complex Lie algebra g has the compact real form gu = to + -1 so. In 
other words, the corresponding real-analytic subgroup Gu of Gc is the compact 
real form of GC and, thus, is a maximal compact subgroup. The maximal 
compact subgroup of G satisfies K = G n G,. Clearly K is its own normalizer 
in G, but its normalizer NG. (K) in Gu can have several components. 

PROPOSITION 1.3. Either G is of hermitian type and L = KCE = KCS?, 
connected, or4 L = KCNGu (K) with the identity component LO = Kc. In 
either case, G n L = K. In general, if V is compact, then L = KCE and L is 
connected. 

Proof. We first run through certain structural possibilities for G and p. 
The group V = G n P, is compact in Cases 1 and 2 below, is noncompact in 
Cases 3 and 4, and can be either compact or noncompact in Cases 5 and 6. 

Case 1. G is of hermitian type with P, C KCS-. Then S+ n PX = {1}. 
Since p, is a parabolic subalgebra of g, it contains one or both root spaces g?, 
for every root a. Now S_ c P,. As K normalizes S_, it follows that S_ C E. 
So KcS_ c K?E c L C Gc. But KCS_ is a maximal parabolic subgroup of 
GC and, thus, is a maximal subgroup. We conclude that L = KCE = KCS_ 
and G n L = K. 

Case 2. G is of hermitian type with P, C KCS+. Arguing as in Case 1, 
we conclude that L = KCE = KCS+ and G n L = K. 

4 This latter situation occurs both for G of hermitian type and for G not of hermitian type. 
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546 J.A. WOLF 

Case 3. G is of hermitian type with Pa ? KCS-, PX ? KrS+ and 
S- c Pa. Since s+ and s together generate g, and s C p, the intersection 
px ns + C s+. But K acts irreducibly on s+ by conjugation. It follows from 
equation (1.2) that e ns+ = 0, where e is the Lie algebra of the complex group 
E. Now the complex group L has the Lie algebra [ = #c + ,s. As in Case 
1, now L must be equal to the corresponding maximal parabolic subgroup of 
GC. We conclude that L = KrE = KVS- and G n L = K. 

Case 4. G is of hermitian type with Px 9 KCS_, Px ? KCS+ and 
S+ c P, Arguing as in Case 3, we conclude that L = KrE = KrS+ and 
G n L = K. 

Case 5. G is of hermitian type with Px 9 KCS_, Px 9 KrS+, S- 9 Px 
and S+ 9 Pa. Then e n s+ = 0, as in Case 3, and e n s = 0 similarly. Thus 
= #c; that is, Lo = Kc. 

If the isotropy subgroup V of G at x E D is compact, then L = Kc, for 
every component of L meets its maximal compact subgroup, which is L n Gu. 
If e E L n Gu, we choose k E K C Gu such that ?k leaves x fixed. Now 
fk E Gu n P, But X - Gc/Px A Gu/(Gu n Px) is simply connected and so 
Gu n Px is connected. However Gu n Px = V C K whenever V is compact. So 
e E K c LO, proving L = Kr when V is compact. 

Whether V is compact or not, G n L = K, because K is a maximal 
subgroup of G. 

Case 6. G is not of hermitian type. Then t is a maximal subalgebra of g; 
so the identity component Lo = Kr. As in Case 5, it follows that G n L = K 
in general, and L = Kc when V is compact. 

Now the proof of Proposition 1.3 is almost complete. In fact, it is complete 
if V is compact or if we are in the situation of Cases 1, 2,3 or 4 above. To 
complete the proof in all cases we must prove that 

(1.4) NGu (K) n Px C L and meets every topological component of L. 

Let g E NGu(K) n Px. In order to show that g E L we must prove the 
following: if k1 E K, then there exists k2 E K such that gkl(x) = k2(x). In 
other words, we must show that if k1 E K, then there exists k2 E K such that 
Ad(g)Pk1(x) = Pk2(X) By assumption on g we can use k2 = gk1g-1. 

Let ?eE L. We must show that its topological component ?LO meets 
NGu(K) n Px. Arguing as in Case 5 above, we may assume that e E Gu n Px. 
There is nothing to prove except in Cases 5 and 6 above, where I = t, so we 
may suppose that e normalizes t. Now e normalizes gu n t = to and, hence, 
normalizes K. Thus e E NGu(K) n Pi, as required. 

We have proved condition (1.4), completing the proof of Proposition 
1.3. 
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THE STEIN CONDITION FOR CYCLE SPACES 547 

COROLLARY 1.5. Either L is a parabolic subgroup KrS? of Gc and MX = 
G(/L is a projective algebraic variety, or L is a reductive subgroup of GC with 
the identity component K? and MX = G?:/L is an affine algebraic variety. 

2. The case where MX is projective 

We now consider the first of the two cases of Corollary 1.5. 

THEOREM 2.1. Suppose that MX is a projective algebraic variety. Then 
the open orbit D C X is measurable and MD is a bounded symmetric domain. 
In particular MD is a Stein manifold. 

Note that G is of hermitian type and L = KCS?, a maximal parabolic 
subgroup. We can replace 'A+ by its negative if necessary and assume that 
L = KCS_. Thus we are either in Case 1 (when V is compact) or in Case 3 
(when V is noncompact) of the proof of Proposition 1.3. Also Mx = GV/L is 
the standard complex realization of the compact hermitian-symmetric space 
GU/K. Denote 

(2.2) Gc{D} = {g E Gc I gY c D}. 

It is an open subset of GC, and MD C Mx V GC/L consists of the cosets gL 
with g E Gc{D}. Evidently MD is stable under the action of G. Thus 

(2.3) GC{D} is a union of double cosets GgL with g E GC. 

The proof of Theorem 2.1 will consist of showing that only the identity double 
coset occurs in GC. 

The case where V is compact is so much easier than the general case, here, 
that we indicate the argument separately. With V compact we have P, c L 
and thus have the holomorphic fibration 

(2.4) 7r: X- MX given by gP, --gL. 

Here 7r(D) is the bounded symmetric domain {gL I g E G} and the gY, 
g E Gr, are the fibers of (2.4). Thus MD is the bounded symmetric domain 
{gL I g E G}, as asserted. 

We return to the general case, where V may be noncompact. The double 
cosets GgL of statement (2.3) are in one-to-one correspondence with the G 
orbits on MX. Those orbits are given as follows ([13], Ch. III, or see [14], ?7): 

Roots a, 3 E A = A (g, [) are called strongly orthogonal if neither of a ?p 
belongs to A. A root a Ei A is called compact if the root space ga, C t and 
noncompact if g, C s. Kostant's cascade construction for 

(2.5) IF= {I1,... , HOW}: maximal set of strongly 
orthogonal, noncompact, positive roots 
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548 J.A. WOLF 

is: 4' is the maximal root; 0,r+1 is a root maximal among the noncompact 
positive roots that are orthogonal to Oj for 1 < j ? r. 

Each 4 E T leads to a 3-dimensional simple subalgebra g[o] = g_+ + 
[gp, gp] + gp C g, the corresponding complex group Gc [4] V SL(2; C), and 
the Riemann sphere Z[4] = G? [4] (z), where z is the base point 1 L E G? /L = 
Mx. The real group G[4] = G? [4] n G has three orbits on Z[0]: the lower 
hemisphere D[4] = G[4] (z), the equator G[4] (cVpz), and the upper hemisphere 
G[4] (c2 z), where cfp E Go [4] is the Cayley transform for Z[4]. 

If 4, 4" e t with 4 $ 4', then strong orthogonality says that 
[g[4],g[4"]] = 0. If IF C J, we then have the direct sum g[F] = EZrcr g [-Y], 
the corresponding complex group Gea[F] = fJe Gc[-y], the product Z[F] = 

Gc[F](z) = Hcrr Z[-y] of Riemann spheres, and the Cayley transform cr = 

HeFr co. 
In [13], Theorem 10.6, I proved the following statement: 

PROPOSITION 2.6. The G orbits on Mx are the G(cFc2z), where F and E 

are disjoint subsets of T. Two such orbits G(cFc2z) = G(cFrc2,z) if and only 
if the cardinalities II7 = IjF' and jEj = jVI. The open orbits are the G(c2z). 
An orbit G(cpc2CZ) is in the closure of G(crc2 z) if and only if 1VI < 1E1 and 

Note that Gc{D} is open in GC and the map GC -) G(/L = Mx is open. 
So Gc{D}(z) is open in Mx. Thus, if cf'cS, E G {D} and if G(c2 c/,z) is 

in the closure of G(crc2z), then crc2 E Gc{D}. Now statement (2.3) and 
Proposition 2.6 combine to give us the following corollary: 

COROLLARY 2.7. There is a (necessarily finite) set C of transforms crc2, 
where F and E are disjoint subsets of T such that 

(i) if crcEcr/c2 C C with IrI = Ir'I and }jE = IVI, then F = F' and 
E = I', and 

(ii) Gc{D} = Uc~c GcL. 
So, if crc2 E C, then cruE, E C for every subset A' C E. In particular, if 
c2 f C whenever 0 $ E c 41', then C = {1} and Gc{D} = GL. 

Now proving Theorem 2.1 is reduced to the proof that c2 f C for all 
nonempty subsets E c T. 

Since S_ C L n Px, Q = L n PX is a parabolic subgroup of GC and 
W = Gc/Q is a complex flag manifold. Consider the holomorphic projections 

1r': W X by gQ F-- gPx, 

| fiber F' = ir' l(x) Vc (w) _ V 0c/Vc n L, 

(2.8) r W - Mx by gQ gL, 
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THE STEIN CONDITION FOR CYCLE SPACES 549 

where g runs over Gc and w is the base point 1 Q in W. The restriction of 
ir' to D= G(w) is 

(2.9) r': D D by g(w) i-g(x), 
fiber D n F' = V(w) _ V/K n v, open in F'. 

Since F' is a complex flag manifold of V1C, since V(w) is open in F' and since 
K is a maximal compact subgroup of V, here V(w) is a bounded symmetric 
domain and F' is its compact dual. 

We have the usual positive definite hermitian inner product on g, given 
by 

(2.10) 77) = -b((,-r7) for C, E P, 

where b is the Killing form. Use the associated length function to define 

(2.11) 11(11: operator norm of Ad((): g -* g for ( E g, 

where t = P', the complexified Lie algebra of V. A convexity theorem of 
R. Hermann (see [14], p. 286) says that the bounded symmetric domain 

G(z) = 7r"(D) = {exp(()(z) ( E s+ with 11(11% < 1}. 

We will need that result in the following form: 

LEMMA 2.12. Everyg E G has the expressiong = exp((i+?2).k.exp(rj), 
where i7 E s-, k E Kc, (2 E Ad(k)(to ns+), and where (1 E s+ is orthogonal to 
Ad(k)(0 n s+). There is a number a = aG > 0 such that, in this expression, 

11(ijg <aGs 

Proof. The inclusion G c exp(s+)Kc exp(.s), say, g = exp(() . k exp(7.), 
is standard. It is one of the main steps in the proof of the Harish-Chandra 
embedding gK -*( E s+ of G(z) = G/K as a bounded symmetric domain in 
the complex euclidean space s+. 

Let 11f11 (no subscript) denote the norm on g associated to the positive 
definite hermitian inner product (2.10). Let a aG > 0 be large enough that 
II(II < aGII(I for all ( E s+. Then, since we know 11Ki + 4211p < 1, the triangle 
inequality for the euclidean norm | gives us |i < aG (1 < aG|| < aG, 
as asserted. 

We now pull back our operator-norm information from G(z) to D. 

LEMMA 2.13. Decompose g E G as above, g = exp((1 + (2) * k exp(71), 
where i7 E s-, k e Kc, (2 E Ad(k)(u nrs+), and where (1 E s+ is orthogonal to 
Ad(k)(v nrs+). Define f: G -* R1 by f(g) = 114111P. Then f(gx) f(g) is a 
well-defined function f: D -* R. If gx E D, then 0 < f (gx) < aG, where aG 
is given by Lemma 2.12. 
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550 J.A. WOLF 

Proof. Suppose that two elements of G carry x to the same point of D, 
say, 

(2.14) exp((i + (2) * k exp(71)(x) = exp(4j + (2) * k' exp(71')(x), 

as in the statement of Lemma 2.13. We must prove that Ki1g = 
In the situation (2.14) we have v E V such that 

(2.15) exp((1 + (2) * k exp(71) v = exp(4j + (2) * k' exp(7'). 

Since -s c Px, we can decompose exp(77) E S_ = exp(.s) as v"p", where v" 
belongs to the reductive part Vc = Px' of Px and p" belongs to the unipotent 
radical Px-; = exp(pX-). Of course, Ad(v-1) keeps v" in V1c and keeps p" in 
Plan. We may assume that the parabolic subalgebras Px and t + s are defined 
by the same positive root system, so that Px-n C KcS-; now Ad(v-1)p E 

KCS_. Consequently equation (2.15) becomes 

(2.16) exp((1 + (2) * k exp(i7) v = exp((1 + (2) * k v"' k"' s"' 

with v"1 E 17c, k"' E 0xen n Kc and s"' E Px-1 n S_ 
Suppose for the moment that 

(2.17) v"' E exp(to n s+)(Vc n Kc) exp(to n s) c S+KcS_ 

say, v"' = exp((3)k3 exp(773). Then equation (2.16) becomes 

(2.18) exp((1 + (2) * k . exp(7j) . v 
= exp((i + (2 + Ad(k)(3) * kk3k"' .Ad(k"')-1(exp(73))8 

The right-hand side of (2.18) is decomposed as in the statement of Lemma 
2.13. The reason is that Ad(k"')-1(exp(i73))s"' E S-, kk3k"' E Kc, and 
(i + (2 + Ad(k)(3 E s+. Evidently k3 E Vc n Kc normalizes t n S+. Simi- 
larly k"' E Px-0 n Kc normalizes Px n s+. But, since s- C Px and t = Pr we 
have Px n s+ = t n s+. Now 

(2 + Ad(k) 3 E Ad(k)(t n s+) = Ad(kk3k"')(t n s+) 

and 

(1 E s+ is orthogonal to Ad(k)(t n s+) = Ad(kk3k"')(t n s+), 

as asserted. 
Given equation (2.14) and assumption (2.17), we have proved that (1 = 

and, in particular, that Hli % = K %. But our construction is such that 
v"' = 1 when v = 1, and v"' varies continuously with v E V. This shows that 

lP= Kl for v"' in the dense open subset exp(0ns+)(VcnKc)exp(tnsf) 
of V1c. Now it follows for all v E V that equation (2.15) implies H'IIg = K Hg. 
We have proved that f: D --+1 is well defined. 
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Obviously 0-< I(1IIg = f(g) = f(gx). Lemma 2.12 says that f(gx) = 

K1 g < aG, where the number aG > 0 is specified in the lemma. This com- 
pletes the proof of Lemma 2.13. C1 

Proof of Theorem 2.1. Let 0 $& 3 c IQ with c2 E C in the notation 
of Corollary 2.7. Conjugation by an element of K amounts to changing 
our base point from x to another point on the maximal compact subvari- 
ety Y C D. In the notation (2.5), an appropriate such conjugation carries E 
to .1,.... ,0m} C 1 with 1 < m < e. According to Corollary 2.7, GC{D} 
contains the diagonal subgroup Gd [E] _ SL(2; C) in Gc[Y]$ Since 4'i is not 
a root of p' = t, the orbit Xd [E] = Gd [E] (x) is a Riemann sphere contained 
in D. 

Let EA consist of all roots in 3 that are not roots of t. It is nonempty 
because it contains 4a Now the diagonal subgroup Gd [E'] _ SL(2; C) in 
Gc[E'] has these properties: 

G [El'] (x) = Xd [E'] is the same Riemann sphere Xd [s], 

(2.19) ) gd[EI] n s+ is orthogonal to v nm +, and 

1 Gd [E'] n Kc is contained in the Cartan subgroup H 
with Lie algebra b. 

Now look at the corresponding orbits in the hermitian-symmetric flag 
variety Mx = Gc/KcS-. The orbit Gd [E'](z) again is a Riemann sphere; 
this time it is the diagonal Zd[s'] in Z[E'], and its intersection with the 
bounded symmetric domain G(z) is the hemisphere Gd[EY](z), where Gd[E'] = 
Gn GC[E']. Let f* denote the restriction of the function f, of Lemma 2.13, from 
G to Gd [E']. Then f* is real analytic and has a unique real-analytic extension 
f t to Gd3[E'] n exp(s+)Kc exp(.s), because . and 1 are proportional on 
gd[El] n s+. Evidently f t is unbounded. 

We now come back to X. The function f, of Lemma 2.13, is real analytic 
on the lower hemisphere of the Riemann sphere Xd[3] = Xd[p'], and its 
restriction to that hemisphere has a unique real-analytic extension h to the 
complement Xd[E] \ c2(x) of the pole opposite to x. That extension is defined 
by f t just as f is defined by f. In view of properties (2.19), h is just the 
restriction of f from D to Xd[Y] \ c (X). Since ft is unbounded, it follows 
that f is unbounded. This contradicts Lemma 2.13. 

We conclude that C cannot contain any c2 with 0 $& 3 c IQ. According 
to Corollary 2.7, that completes the proof of Theorem 2.1. E 

3. The case where Mx is affine 

The second case of Corollary 1.5 is settled in the following fashion: 
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THEOREM 3.1. Suppose that the open orbit D C X is measurable and 
Mx is an affine algebraic variety. Then MD is an open Stein subdomain of 
the Stein manifold MX. 

The first step in the proof is to bring in the exhaustion function on D. 
Schmid and I proved5 that D has a real analytic exhaustion function q, whose 
Levi form 

(3.2) ?(X) =/00 

has at least n - s positive eigenvalues at every point of D (see [10]). Here n = 
dimc D and s = dimc Y. Since b is an exhaustion function, the subdomains 

(3.3) DC = {z E D I (z) < c} 

are relatively compact in D. 
The next step is to transfer b to MD. Define OM: MD - R+ by 

(3.4) qM(gY) = SUPyEY q(9(Y)) = SUPkEK(gk(x)). 

LEMMA 3.5. OM is a real-analytic plurisubharmonic6 unction on MD. If 
YOO is a point on the boundary of MD in MX, and {Yj} is a sequence in MD 
that tends to Y,,, then limyi~y. bM(Yi) = oo. 

Proof. Let W = Gc{D} = {g E Gc I gY C D}. It is an open subset 
of GC. Define s: W x K --+IR+ by 4(g, k) = b(gk(x)). Since W is a C' 
manifold and b is a C' function on it, the set defined by the vanishing of the 
differential in the K-variable, 

Z = {(g, k) E W x K I dK0(g, k) = 0}, 
is a C' subvariety of W x K. Observe that Z is a union of subvarieties, one 
of which is 

Z = {(g, k) E W x K I b(g, k) = supkEK44(gk(x))} 

We have a well-defined CO map f: Z -* MD given by f(g, k) = gY. If 
(g, k) E Z, then q(gk(x)) = b(g,k) bM(gY). Since f: Z -* MD is CO and 
surjective, and since 4iz is CW, now OM is C. 

5 The result unfortunately is stated in [10] for arbitrary open orbits, but it is obvious that the proof 
there is for the measurable case. It is not clear whether the result holds in the nonmeasurable case. We 
constructed this exhaustion function in order to show that D is (s + l)-complete, in the sense of Andreotti 
and Grauert, so that cohomologies Hq(D; F) = 0 whenever q > s and Y -* D is a coherent analytic sheaf. 
The measurable case was sufficient for our representation-theoretic applications [11], where the parabolic 
subgroup P is a Borel subgroup of G. 

6 A C2 function f on a complex manifold is called plurisubharmonic if the hermitian form L(f) is 
positive semidefinite at every point, and strictly plurisubharmonic if L(f) is positive definite everywhere. 
See [6], [2] or the exposition in [5], ?2.6. 
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By construction, b(g, k) is constant in the second variable k E K. The 
Levi form ?(Q) has its positive eigenvalues in directions transversal to the 
compact subvarieties gY = gK(x). So the Levi form 1(4M) on MD is positive 
semidefinite. In other words, the function OM is plurisubharmonic. 

Since D is the increasing union of the open sets D, defined in (3.3), MD 
is the increasing union of its subsets 

(3.6) MC = {9Y E MD I qM(gY) < C}. 

The definition (3.4) of OM shows: if c < c', then c < OM(gY) < c' whenever 
gY E Me \ Mc. Now let YOO be a point on the boundary of MD in MX and 
{Yi} be a sequence in MD that tends to YOO. Passing to a subsequence, we 
have positive numbers {ci} T oo such that Ycj_? E Mc,-, \ Mc, for all i. Now 
limy,,y. OM(Yi) = oc. This completes the proof of Lemma 3.5. 0 

The next step in proving our theorem is to modify OM to obtain a strictly 
plurisubharmonic exhaustion function on MD. As mentioned at the end of 
the Introduction, the idea behind this modification is suggested by results of 
Docquier and Grauert ([3], or see [1]). 

LEMMA 3.7. Let M be an open submanifold of a Stein manifold M. Sup- 
pose that M carries a Cr plurisubharmonic function (, r E {2, 3,... , Oc, W}, 
that blows up on the boundary of M in M in this sense: if yOO E bd M, and 
{jy} C M tends to yO,, then limiz F(yi) = oo. Then M carries a Cr strictly 
plurisubharmonic exhaustion function. 

Proof. Since M is Stein, we have (see [2], [7]; or [5], Thm. 5.3.9) 

(3.8) F: M C2m+l proper holomorphic embedding 

as closed analytic submanifold, 

where m = dime M. Now the norm square function 

(3.9) N: M -* R+ defined by N(m) = JIF(m)112 

has a positive definite Levi form. Moreover the sets {m E M I N(m) < c} are 
relatively compact. Let ( be the given plurisubharmonic function on M and 
define 

(3.10) 4> M - R+ by C(m) = ((m) + N(m). 

Now we have the Levi form L(() = ?(()+L(N). It is positive definite, because 
?(() is positive semidefinite by hypothesis and l(N) is positive definite by 
construction. Now ( is strictly plurisubharmonic. Since N is differentiable of 
class CO, the function ( is at least as differentiable as (. 
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The function ( tends to oo at every boundary point of M in M, because 
( has that property by hypothesis and N has values > 0. So every set 

(3.11) Mc= {m e M I ((m) <c} 

has a closure contained in M. But F is a proper embedding of M in C2m+l; 
hence the sets M(,c of equation (3.11) have a compact closure in M. Now each 
M(,c has a compact closure in M. This completes the proof of Lemma 3.7. D 

Proof of Theorem 3.1. Lemma 3.5 tells us that Lemma 3.7 applies di- 
rectly to MD C MX and the real-analytic plurisubharmonic function O$M. 
Thus Lemma 3.7 constructs a C' strictly plurisubharmonic exhaustion func- 
tion there. Recall Grauert's solution to the Levi problem from [4]: A complex 
manifold is Stein if and only if it has a C' strictly plurisubharmonic ex- 
haustion function7. We have just constructed such a function on MD, thus 
completing the proof of Theorem 3.1. D 

Proof of Theorem 0.13. Theorem 0.13 follows from Theorem 2.1 when 
MX is a projective algebraic variety; it follows from Theorem 3.1 when MX is 
an affine algebraic variety. By Corollary 1.5, these are the only cases. D 
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