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Abstract. A direct limit G = lim G~ of (finite-dimensional) Lie groups has Lie algebra 9 = H m g~ and 
exponential map exp6 : g ~ G. Both G and g carry natural topologies. G is a topological group, and g is 
a topological Lie algebra with a natural structure of real analytic manifold. In this Letter, we show how 
a special growth condition, natural in certain physical settings and satisfied by the usual direct limits of 
classical groups, ensures that G carries an analytic group structure such that expc is a diffeomorphism 
from a certain open neighborhood of 0 ~ g onto an open neighborhood of Ic ~ G. In the course of the 
argument, one sees that the structure sheaf for this analytic group structure coincides with the direct 
hmit limm cg~'(G~) of the sheaves of germs of analytic functions on the G~. 
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I. Introduction 

Direct limits of topological groups and topological vector spaces have been studied 
extensively [7], but little has been done outside the topological category for direct 
limits of Lie groups. In this Letter, we take a first step in that direction by defining 
the differentiable structure. Our main result is Theorem 8.2, which lets us consider 
the direct limit as an 'infinite-dimensional Lie group' in a reasonable sense. 

On the most classical level, an infinite particle system can be viewed as a limit of 
finite particle approximations. Thus, its natural symmetry group is a direct limit of 
finite-dimensional Lie groups. The case where the approximating finite systems 
consist of independent particles, as in [2], leads to direct limit groups of the form 
(see (5.9) below) studied by Ol'shanskii [9] in his work on infinite classical groups. 
The groups studied in this Letter allow the possibility that the particles in the 
approximating finite systems are coupled. It is natural to assume that the coupling 
forces on each particle are bounded, corresponding to a certain spectral growth 
condition (see (5.3) below). That spectral growth condition is the key to our 
construction. 

Our construction depends on an analysis of direct limits of linear Lie algebras. 
Those limits include algebras such as the gl~ whose basic representation plays a key 
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role in the boson-fermion correspondence. See the exposition and references in the 
third edition of V. Kac's book [6, w 

Ol'shanskii [9] studies (countable strict) direct limits of classical finite dimen- 
sional Lie groups and some of their representations. These direct limit objects have 
only been seen as topological groups. Our construction allows these direct limit 
groups to be seen as infinite-dimensional Lie groups. 

In general, there is no consensus on the definition of infinite dimensional Lie 
group, except for the case of Banach Lie groups [3]. Milnor's exposition [8] 
describes the basic ideas and references up to 1984. Prominent examples of 
infinite-dimensional groups include the loop groups [1, 10] and more general 
K a c - M o o d y  groups [11]. There are several other constructions in [5]. 

2. Preliminaries on Direct Limits 

In this section, we record some basic facts on direct limits of systems based on Lie 
groups with finite-dimensional representations. This material cannot be new, but 
our viewpoint is very specific and we have not found any appropriate references. 

Fix a directed set A. Thus A is a partially ordered set, say with order relation ~<, 
such that if ~,/3 E A then one has ? ~ A with ~,/3 ~< 7. Now consider a directed 
system 

{G,, q~#,~ ; V,; r/#,~ ; rc~}. (2.1) 

First, by definition, ~ and/3 run over A, each G~ is a (finite-dimensional real) Lie 
group, say with real Lie algebra g,, and if ~ ~</3 then ~b#,~ : G, ~ G# is an analytic 
homomorphism. We require the standard 

qS~.~ = qS~.# �9 ~b#.~ for ~ ~</3 ~< ? and ~b~.~ = ident~ for all ~. (2.2) 

Second, each of the V, is a finite-dimensional complex vector space, and if e <~/3 
then ~/#., : V~ ~ V# is a linear transformation. As above we require the standard 

r/~,~ = r/~,# �9 r/#,~ for ~ ~</3 ~< 7 and r/~.~ = identv~ for all ~. (2.3) 

Third, ~ is a continuous representation of G~ on V~, and one has the consistency 
condition that for e ~</3 the left hand diagram of 

~:t d~ct 
G~• ,V~ g~,• ,V~ 

0'" l "B'" l n,," d0"" I ""~ I n,," (2.4) 
re# dn#> 

g#• 

is commutative. If ~ ~</3 then q~#,~ defines a Lie algebra homomorphism 
d~b#,~ : g~ ~ g#. The Lie algebra representations dn, satisfy the consistency condition 
that comes out of the condition for the rc~. So the right hand diagram of (2.4) is 
commutative. 
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The direct limit or injective limit group G = li_m G~ consists of  the equivalence 

classes [g~] o f  sets {g~ } where each g~ e G~ and, for  some fl ~ A, if fl ~< ~, then 
g~ = ~b~.~(g~). The equivalence relation is such that  [g~] is determined by the 
eventual behavior  o f  [g, }. Precisely, 

{g~} ~ ['g~} when, for  some fl ~A,  i f f l  ~<7 then g~. = 'gT.  (2.5) 

G is a group with the operat ions 

[g~] �9 [ 'g,] = [h~] where each h~ = g~ - 'g~ and [g~] ~ = [g~-~]. (2.6) 

We have homomorph isms  

~b B : Gr~ ~ G by ~bt~(x ) = [g~] where g~. = @.p(x) for fl ~ 7, g~ = la,. otherwise. 

(2.7) 

Those  homomorph isms  define a topology on G: 

A subset U c G is open in G if and only if ~b~- ~(U) is open in G~ 

for every fl ~ A. (2.8) 

G is a (Hausdo r f0  topological  group with the operat ions (2.6) and the topology 
(2.8). 

Similarly the direct limit Lie algebra g = lim g~ consists o f  the equivalence classes 

[~]  o f  sets { ~ }  where each r ~g~ and, for some /~ E A, if fl ~<7, then 
~ = dqSr.a(~a). The equivalence relation is the Lie algebra version of  (2.5). g is a Lie 
algebra, one has Lie algebra homomorphisms  dtka" g~ ~ g ,  and these homomor -  
phisms define a topology on O as in (2.8). Now .q is a topological Lie algebra, and 
the exponential  map  

expa:  g ~ G defined by exp~([r = [expa~(~)] (2.9) 

is well defined and continuous.  

The direct limit vector space V = lira V~ is defined as in (2.5). It is a vector space 
in a manner  analogous to (2.6), one has linear t ransformations ~/a: V~ --* V as in 
(2.7), they define a topology on V as in (2.8), and V is a topological  vector space. 

The direct limit representat ion ~r = lira ~ is the representat ion 

n([g~])([v~]) = [rr~(g~)(v~)] (2.10a) 

o f  G on V. Here  rc is well defined and is a cont inuous topological group represen- 
tation. Similarly 

dg([r = [dg~(r (2.10b) 

is a well defined cont inuous representat ion of  g on V. The exponential  power  series 
exp(drt([~]))([v~]) converges for every [~]  ~ g and every [v,] ~ V, and 

g(expa  ( [~  ]))([v, ]) = exp(dn([r  ]))([v~ ]). (2.10c) 
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We do not yet have a differentiable structure on G so it does not yet make sense 
to say that dn is the differential of n. But, when we do construct that differentiable 
structure, dn will be the differential of n. 

In any case, (2.4) now gives us commutative diagrams 

G~xV~ ,v~ g~xv~ ,v~ 

G x V  , V g x V  , V 

that are useful for our construction of the differentiable structure on G. 

(2.11) 

3. Injective Quotient System 

It will be convenient to work in the case where the maps of the directed system are 
injective. In this section, we describe the appropriate quotient of (2.1). 

3.1. PROPOSITION. Consider the directed system of  Section 2. Define 

G~=G~/Ker~b~ and ~ : G ~ c ~ G ;  V~=V~/Kern~ and f l ~ : V ~  V. 

(3.2) 

l f  ~ <<, [3 then q~a,~ induces an injective Lie group homomorphism dpa,~ : d~ ~ da and ~la,~ 
induces an injective linear transformation fla,~ : V~ ~ Va" The projections p~ : G~ ~ d~ 
and q~" V~ ~ V~ give transformations 

{G~,~ba.~}~,{d~,q~a.~} and {V~,r/a.~}e-~{IT~,rTa.~ } (3.3) 

that induce topological isomorphisms 

p: G --- l i~ G~, dp: 9 ~ lim g~ and q: V ~- lim I7~ (3.4) 

of  the direct limits. Finally, the ~ induce a well defined continuous representation ~ 
o f  G~ on V~, and the isomorphisms (3.4) induce r~ _~ lira ~ and drt ~- ~ d'~. 

Proof. To see that ~b,,~ induces a well defined homomorphism q~a,~ : G~ ~ G, we 
use  

G~ ~'~, G, 4,a G 

with ~b~ = ~ba-~ba, ~ to see that ~,,~, as indicated above, is well defined by 
q~ = q~, " ~a,~. Then it is immediate that ~a,~ fills in the above diagram as indicated 
and is an injective Lie group homomorphism. The argument for r/a,~ and ffa,~ is 
similar. 
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In the diagram above, p, and p~ are surjective. Now the associated transforma- 
tion p" G ~ li_m G~ is an isomorphism. Similarly q: V ~ li__m 17, is an isomorphism. 

Finally, combine (2.11) and (3.4) as above to see that ~=~limmff~ and 
dn ~ lira d ~ .  [] 

We now have a directed system, quotient of (2.1), 

{G~, 4S~.~ ; I7~, f/~,~; ff~}. (3.5) 

with canonical isomorphisms 

lira tT~ - G, lim ~ ~ g and lim if, ~ V (3.6) 

such that the maps ~ . , ,  qS~, Oa,~ and q, injective. We will take the canonical 
isomorphisms (3.6) as identifications. Then pull-backs are reduced to intersections 
and it is easier to keep track of eigenvalues. 

4. Discreteness of the Lie Algebra Spectrum 

Our first application of the construction of Section 3 is 

4.1. PROPOSITION. I f  ~ �9 9 then dn(~) has discrete spectrum. 

This proposition is an immediate consequence of the following lemma, which is 
essentially constructive despite its transfinite appearance. 

4.2. LEMMA. Let ~ �9 g. I f  2 �9 C let V(~ : 2) denote the space o f  all generalized 
2-eigenvectors ofd~z(~), So v �9 V(( :2) just  when there is an integer n = n(r :2) such 

that (dn(~) - 2)"v = 0. Then V = E ~ c  V(~ : 2), algebraic direct sum. 

Proof  Let d consist of all subsets S c A  such that Vs = Z ,~s  f/~(IT~) is of the 
form Z ~ c  Vs(~: 2), algebraic direct sum, where Vs(~ :2) is the space of all 
generalized 2-eigenvectors of dn(() that are contained in V s. ~ has partial order 
given by inclusion. 

Let 5P = {S, In = 1, 2 , . . . }  be a linearly ordered subset of ~/. Set S = 0 ,  S,. 
Then V s = U ,  Vs," If  v �9 V s then v belongs to some Vs, and v = ~ v~, finite sum 
with v~ �9 Vs, (~ : 2). So V s is the algebraic direct sum of subspaces Vs (~ : 2). Thus 
S �9 d and is a maximal element for 5p. 

Zorn's Lemma now says that ~1 has a maximal element M. If fl ~< 7 and 7 �9 M 
then f/p(/7~) ~ f/~(/7 ) = V M so fl �9 M. If M 4: A choose fl �9 A \ M .  As just seen, we 
may replace fl with any index ~> fl, so we may assume that we are out along the 
ordering of A far enough so that fl ~< ), implies ~ = f/~,B(~a)- Now (2.4b) and (2.11) 
show that drc(r preserves f/a(ITa) and acts there just as dga(~p) acts on YB- So 
V{p} = f/p(lT~) is of the form Z ~ c  V~p)(~ : 2), algebraic direct sum. Compare this 
with V~t = E;.~c VM((:2)  to see that Vu = Z ~ c  Vu(~ : 2), algebraic direct sum, 
when N = M w {fl}. Thus M -< N, contradicting maximality. Now M = A. Lemma 
4.2 follows. [] 
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5. Control of the Imaginary Spectrum 

In this section, we discuss a spectral condition that ensures the existence of  a certain 
open neighborhood (9 of 0 in g; that is the condition (5.3) which, we remarked in 
the Introduction, corresponds to boundedness of coupling forces on any given 
particle in an infinite particle system. Later we will see that expG carries the analytic 
structure from g to G in such a way that it is a diffeomorphism from (9 to an open 

set in G. 
Let ~ = [~] ~9 with each ~ e ~ .  Define 

,~(r = max{llm 21 I2 is an eigenvalue of  dr~(r (5.1) 

If a ~< fl then every eigenvalue of d ~ ( ~ )  is an eigenvalue of d~a(dq~a,~(r It 

follows that t~(~)~< ~a(dq~a,~(~)). Let f l e  A such that ~r = d~r,a(r for fl ~< 7- 
Define t(r ~< oo by 

,(~) -- sup{lIm112 is an eigenvalue of dn(r 

= sup {Jim 2112 is an eigenvalue of d~r(r 

= lim sup {llIm 211 't is an eigenvalue of dz~(r (5.2) 
0 t ~ A  

As 7 increases past the 'stability point'  fl, the real number tr(~r) increases toward 
t(~). We will need a spectral growth condition on n 

if r ~ g then ~(r < oo. (5.3) 

In other words, for each fl there exists c a > 0 such that if ~ = [r e g, and if fl ~< 
implies ~r =q~.a(r then t(~)~<ca.t~(r If  c a exists then l~<ca < oo. The 

uniform case is 

there exists c~ = c({G~, ~ba.~; V~, r/a.~; n~}) > 0 such that 
(5.4) 

if r = [~] e g, and if fl <~ ~ implies ~ = ~S~.~(~), then ~(~) ~< ca �9 t~(~), 

Again, if c~ exists then 1 ~< c~ < oo. The point of  this is 

5.5. PROPOSITION. I f  the spectral growth condition (5.3) holds, then 

(9 = {3 e g I '(~) < n} (5.6) 

is an open neighborhood of 0 in g. 
Proof. Evidently 0 e 6 so we need only prove that (9 is open in g. The functions 

~ :g--,  ~ of  (5.1) are continuous. The second equality of (5.2) tells us that 

�9 d~= = sup ~r " dqS~.=. (5.7) 

Our hypothesis (5.3) says that t takes finite values. Thus (5.7) presents ~ �9 d~= as a 
finite supremum of continuous functions. Now t �9 dq~= is continuous, so we have 

(9~ = { ~  e fi~ I , ( d q ~ ( ~ ) )  < ~z} = d ~  -~ ((9) (5.8)  

open in ~ .  Thus (9 is open in g. [] 
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We mention an important case: direct limits of classical groups as studied 
by Ol'shanskii. Those are given by sequences of classical matrix groups 
~% :G~ ~ GL(V~) of  the form 

G1 c~ G2 ~ G3 ~ " '"  (5.9a) 

where the directed system maps are specified on the matrix level by 

o) 
Here the identity matrix I has size dim V , + k - - d i m  V,. The point is that 
d ~ + k ( q ~ + ~ , ~ . ) )  and d~.(~,) have the same spectrum, so (5.3) and (5.4) are 
automatic with c G = 1. A typical example would be the case where G~ is the 
indefinite unitary group U(p, n) acting in the usual way on V~ = C (p''~. 

The spectral growth condition (5.3) is automatic when each G~ acts on its space 
V~ as a unipotent group, or, more generally, as an Q-split linear group. That occurs 
(see below) for the Heisenberg groups. 

Each sequence of classical real reductive Lie groups gives us interesting cases that 
satisfy the spectral growth condition (5.3) but do not fit the pattern (5.9). We 
illustrate this with the sequence of real symplectic groups. Let V~ denote N2- with 
the antisymmetric bilinear form that has matrix with 

'0) 
down the diagonal 
sider the mapping 

in the basis {e I . . . .  e:~}. Let G. = Sp(V.) -~ Sp(2 " -  1; ~). Con- 

corresponding to the map q.+ l,n: e, ~ e, + e,+2. of  V n into V.+ 1. Then (5.3) is 
automatic as ~ e 9. and its image in 9~ +1 have the same spectrum. 

Now let E.  c V. be totally isotropic (./.-null) subspaces such that 

t/n+ l.n(En) c En+ 1. Then the groups 

Q,, = {g ~ G. I g]E. ~ identity} 

satisfy qn+ 1,.(Q.) ~ Q.+ 1- These groups have structure [12, w 

Qn ~ N s , , , 2 ( 2 , , - l  _ s,,) " SP( 2n - 1 _ s. : ~), 

where Ns.2, is a generalized Heisenberg group [12, (8.4)]. If  s = 1 then Ns.2t reduces 
to the ordinary Heisenberg group of  dimension 2t + 1 with Sp(t; g~) acting in the 
usual way. So the case where each s. = 1 corresponds to a certain particle coupling 
scheme in classical mechanics. In that case the variations (~., in which the reductive 
parts Sp(2"-1 _ 1; ~) are replaced by the oscillator group g~(2" -  ~ - 1; R), give the 
initial setting for quantization. 
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6. Local Injectivity 

Now we can start the proof  that expa carries the analytic structure of  (9 (5.6) to G. 

6.1. PROPOSITION. I f  the spectral growth condition (5.3) holds, and i f  

dTr: g ~ End(V) is injective, then expa: (9 ~ G is injective. 

We will prove Proposition 6.1 as a consequence of 

6.2. LEMMA. Let  S and T be linear transformations o f  a finite-dimensional complex 

vector space F. Suppose that every eigenvalue 2 o f  e r satisfies IIm 2] < ~r. / f  S 
commutes with e r then S commutes with T. 

Proof. S commutes with every (e r -  b) n, preserving its null space, so S preserves 

every generalized eigenspace of e r If  21 ~ ~'2 a re  eigenvalues of  T, then lira 2, I < n 

ensures that e ~ ~ e ~2. Now S preserves every generalized eigenspace of  T. The 
proof  is reduced to the case where T = 21 + N with N nilpotent. Then e r = e~e N, so 

S commutes with e N. As N is nilpotent now S commutes with N. So S commutes 
with T = 21 + N. [] 

Proo f  o f  Proposition. Let ~, ( ~ 0 with expo(~) = expo(O. Express ~ = [~] and 

= [(~] with ~ ,  (~ ~ ~ .  Fix an index fl such that fl ~ y implies ~ = d ~ , o ( ~ )  and 

(~ = d6~,/~(~/~). 
Fix y f> ft. Denote F = IY~, S = d~(~r) ,  and T = d ~ ( ~ ) .  We will show S = T. By 

definition (5.6) of (9, every eigenvalue 2 of  S or T satisfies lira X[ < ~. Since 
expo(~) = exp6(0  we have e s = e r. In particular, e s commutes with e r. With two 

applications of  the Lemma we see that S commutes with T. Now F is the direct sum 
of  the F~,v where F~,~ is the intersection of the generalized 2-eigenspace of  S with the 
generalized #-eigenspace of  T. Each F~,, is stable under both S and T. So the proof  

that S = T is reduced to the case where S = 2I + L and T = #I  + M with L and M 
nilpotent. Comparing eigenvalues of e s = e r we see e ~ = e ". Now IIm ,~[, ]Im #[ < 
says 2 =/~. So the proof  that S = T is reduced to the case where S and T are 

commuting nilpotent matrices. Putting them simultaneously in upper triangular 
form we see that e s = e r implies S = T. 

We have just proved that d ~ ( ~ )  = d~((~)  for fl ~< ?. That  proves dn(~) = dn(0.  
Since dn is injective now ~ = ~. [] 

7. Local Ditferentiability 

In this section, we see when exp~ : (9 ~ expo ((9) is diffeomorphic at each finite stage 
of  the injective direct limit process. 

7.1. PROPOSITION. Assume that the spectral growth condition (5.3) holds, and 

suppose that dn: g ~ End(V) is injective. Then 

(1) U = expo(O) is an open subset o f  G; 

(2) expa: (9 --* U is a homeomorphism; and 
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(3) for each index ~ ~ A the map expG : dq~-1((9) ~ 4S~ -l (U) is a diffeomorphism. 
(Here recall from Proposition 5.5 that (9 is an open subset of g.) 

We have two elements to combine: injectivity of  expa~ on d4S21((9) and nonsingu- 
larity of  d expa ~ at every point of  dq~g-1((9). The injectivity relies on Proposition 6.1. 
The nonsingularity depends on 

7.2. LEMMA. The differential d expa~ : Tr  ~ Tx~(tT~), xs = expa~(~), is non- 
singular unless ad~, (~)  has an eigenvalue that is a nonzero integral multiple of 
2 n x / / ~ .  

Proof It is known [4, p. 105] that the differential 

e. dL,~ I - e-ada:, (e~' d expa" = �9 (7.3) 
" IG a ada~(~) 

where Lz~ is left translation by xs on Gs. Consider this on the complexified tangent 
spaces. Look at the restriction to the (dLx~ lie )-image of the generalized 2-eigen- 
space of ada~(~s). If 2 = 0 we expand 

I -- e-ada, (r ada, ((~) ~_ add~(~) 2 
-- I . . . .  I + nilpotent, 

ad~(r 2! 3! 

which is nonsingular on that generalized eigenspace. If 2 # O, it is nonsingular on 
that generalized eigenspace just when I = e-~dr (r is nonsingular there, i.e. when 
e~r  1, which of  course happens exactly when 2 is not an integral multiple of  
2nx/-S]-. [] 

Proof of Proposition. Since ada is a subrepresentation of dn | dn*, the eigenval- 
ues 2 of  ada (r all are of  the form # - v where/~ and v are eigenvalues of  dn(~). If  

~ (9 then I/tl, Iv] < n, so 12] < 2n. By the Lemma, expa~ is nonsingular at every 

point of d4S~- 1 ((9). 
Denote (9 s = dq~;~-l((9) as in (5.8), U = exp6((9), and U~ = q3-~-l(U). In the proof  

of  Proposition 5.5 we saw that (9~ is open in gs. Proposition 6.1 and the Implicit 
Function Theorem say that Us is open in (7~ and that expa ~ maps (9~ diffeomorphi- 
cally onto U~. 

U is open in G because the U~ are open. Since expa~ : (9~ ~ Us is a homeomor- 
phism for each ~, expa: (9 ~ U also is a homeomorphism. [] 

8. T h e  D i f f erent iab le  S truc ture  

We construct the differentiable structure on G from the components of  Proposition 
7.1. The point is to do it in a way that shows invariance under the group 
operations. This uses the direct limit of  the structure sheaves of  the G~ as structure 
sheaf of G. 

If  M is any finite dimensional real analytic manifold we denote the sheaf of  germs 
of  real analytic functions by cg'~ Associated to our directed system (2.1) and its 
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injective quotient (3.5) we have direct limit sheaves 

~~ = l i~ c~'(G~) and r = l i~ c~,o(~). (8.1) 

By definition, if S is an open subset in G, then a function f :  S ~ C is a section of 
~'~ over S if and only if, for each index ~, f .  ~ : ~ -  1(S) ~ C is a section of 
~~ in other words is a C ~ function on ~-1(S).  That specifies the presheaf 
and thus specifies the sheaf c~~ over G. The sheaf c~,~(g) over g is defined 
similarly. 

Recall the usual analytic structure on g. Let f :  B ~ C where B is open in g. 
Then f is analytic just when f .  l is analytic in the usual sense for every affine 
l: ~---,g. It is immediate from (8.1) and finite dimensionality of the fi~ that c~,o(g) 
is the sheaf of germs of real analytic functions on g. 

~~ is stable under the group operations on G. In other words, g ~ g-~ 
induces an automorphism of c~'~ and (g,h)~--~gh induces a morphism 
~'~ ~c~'~ x G). In particular left and right translations induce automor- 
phisms of ~'~ So G is a "ringed group" in the ringed structure for which 
~'~ is the structure sheaf. The corresponding 'ringed algebra' structure on g, 
the structure for which ~,o(g) is the structure sheaf, is just the usual analytic 
structure on g. 

By Proposition 7.1, expcl~ induces an isomorphism exp*t~: c~~176 
That defines a real analytic structure on U modeled on the topological vector 
space g. The invariance described just above, allows us to translate this analytic 
structure to an open neighborhood of any point of G, defining a C ~ Lie group 
structure on G. In summary, 

8.2. THEOREM. G has a C ~ Lie group structure modeled on the topological 

vector space g, such that 

(1) the (exp~l~)-~. Lg_~: gU-~(9 ~ g form a local coordinate cover on G; and 

(2) c~~ (defined in (8.1)) is the sheaf o f  germs o f  C ~ functions on G. 

Further exp~ ; (9 ~ U is an analytic diffeomorphism and the dp~" G~ --* G are analytic. 
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