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Abstract

In arecent paper [4] we studied discrete observability for invariant evolu-
tion equations on compact homogeneous spaces, e.g. for the heat equation
on the sphere. The observations there were given by simultaneous measure-
ments, corresponding to function evaluations. The initial data was observed
as a limit of truncations deduced from a finite number of measurements.
That procedure naturally involves two types of errors. First, observations
qua evaluation functionals are restricted to a finite part of the Fourier Peter
Weyl expansion; that restriction implicitly involves a convolution. See (1.4)
and (1.6) below. We think of the resulting error as the error in the head of
the approximation. Second, the actual initial data minus the truncations
are the usual type of error terms; we think of them as the error in the tail
of the approximation. In this paper we show that the error in the head
depends linearly on the error in the tail. We then investigate the extent to
which smoothness of the initial data function controls the tail error through
a set of Sobolev inequalities. We also investigate consequences of polyno-
mial spectral growth conditions on the rate of vanishing of the tail error.
Finally, we specialize these results to riemannian symmetric spaces.
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1 Introduction

We recently [4] studied discrete observability for evolution equations

D.f(z:t)+ -(%f(z :t) =0 and f(z:0) = bz) (11)

on compact homogeneous spaces X = G/K, where D is a closed densely
defined G-invariant operator of L?(X). The initial data is given by the
function b € L?(X). Our result (see Theorem 2.14 below for a precise
statement) was that the evolution equation is discretely observable at any
time ¢o and near any point zo € X. In other words, given a neighborhood
U of zo that meets every component of X, there is a sequence of locations
{z1, z3,"-+, zq ---} C U such that the solution matching the observed
values

{f(z1 :t0), f(za:t0), -+, f(zn :t0), ---} (12)
is unique.

In practice one proceeds by decomposing the set of all representations
of G as an increasing union of finite subsets. This gives us L?(X) as a G-
invariant increasing union of finite dimensional invariant subspaces E, (X),
and we use the first n, = dim E.(X) observations

{f(z1:t0), f(z3:t0), -+, f(zn, :t0)} (1.3)

as follows. For each t we have the orthogonal projection f.(- : t) of f(. : t)
to E.(X). It is determined by f.(- : to), and f-(- : to) is uniquely defined
by the values f(z; :to), 1 £ k < n,, of (1.3). This determination can be
viewed as solving a linear system defined by restriction of the evaluation
functionals ¥ (¢) = ¢(zx) from L?(X) to E,(X). That restriction is convo-
lution with the sum of the characters of the irreducible summands (ignoring
multiplicity) of the representation of G on E,(X). We do not want to have
to compute this convolution. So instead we use the approximations f, to
fry Fe(- 1 t) € E.(X) for all t, defined by the evaluation functionals without
any restriction,

ﬁ(zg :tp) = f(zk :to)for LSk < n, . (14)

Now we have two approximation errors, for the total approximation error

f(z:t)=fulz: 1) (1.5)
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splits as the sum of the error in the head of the approximation, the “head
error”,

frle )= Filz ) (16)
and the more standard “tail error”
f(z:t)—- fr(z:t). 7

In this paper we show how the head error depends linearly on the tail
error, and we discuss the decay rates of those errors.

2 Invariant Evolution Equations

In order to be more specific we must recall some of the general results of
[4). Let X be a homogeneous space G/K where G is a compact Lie group,
and let

D: L}(X) — L*(X) (2.1)
be a closed densely defined operator that commutes with the action
[L(9)f)(=) = f(g™ =). ‘ (2:2)

The action (2.2) is the left regular representation G on L?(X). The corre-
sponding evolution equation (analog of the heat equation) for initial data
b(z) is

D f(z:t)+ %f(z :t) =0 and f(z:0) = b(z) (23)

on X x R. The usual heat equation is the case where D is the Laplace-
Beltrami operator for a G-invariant riemannian metric on X.

In this context, observability is the study of just which types of data on
(samples of) the values f(zx : t) allow us to reconstruct the function ¥(z)
accurately. Here, as in [4], we consider a restricted version of this question.
Suppose that we have a sequence of points {z;,z3,---} C X and we are
allowed to sample (observe) the f(z; : t) at some time ¢y. In [4] we saw just

-when it is possible to deduce ¥(z) = f(z : 0) for all z € X from this data.

In particular we imposed conditions on the z; that make this deduction
possible. The conditions were such that, given zo € X and a neighborhood
of zg in X, the sequence {z;} will be contained in the neighborhood. We
need a little more structure theory in order to describe those conditions.

The following, well known in the case of the heat equation, is one of the
basic results of [4].
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Proposition 2.4. If D is a normal operator on L3(X), then there is a
complete orthonormal set {¢;} in L*(X) of eigenfunctions of D. If {¢;} is
any such orthonormal set, Dé¢; = Aj¢;, then the L*(X) solutions to (2.3)
are just the functions of the form

)= e~Pigi(z), a;€C 2.5
)= aeNidie), o€ (25)
for z € X and for t € R in the range such that 3";|aje~**|* < co.

This is well known in the case of the heat equation. The idea of our
proof is to use G-invariance and the compactness implicit in the Peter-
Weyl Theorem to replace compactness in the argument which shows that
the Laplacian A has discrete spectrum. The Peter-Weyl Theorem gives a
decomposition

L}G) = Z,eav" ® V? and L}(X) = Z,eav' (V)X . (26a)

G is the set of (equivalence classes of) irreducible unitary representations of
G and Vj is the (finite dimensional) vector space on which G is represented
by #. We identify Vx ® V; with the complex span of the matrix coefficient
functions for =,

v® w" corresponds to the function z — (v, 7(z)w)

where w* € V* corresponds to inner product with w € V. Thus V4 (VK
is the subspace consisting of functions f € V; ® V; such that f(gk) = f(9)
for all g € G and k € K. Those are the functions in V4 ® V; that can be
(and will be) viewed as functions on G/K.

In the left regular representation (2.2) of G, the G-module structure
implicit in (2.6a) is ‘

L}G) = Z’eadeg(w)V, and L3(X) = Zre&mult(lx,wlx)V, (2.6b)
where deg(r) is the degree of the representation = and mult(1x, x| ) is the

multiplicity of the trivial representation 1x'in the restriction 7|g.

The key observation in the proof of (2.4) is that linear operator D and
its adjoint D* preserve each of the finite dimensional summands

A(x) = Ve ® (V) c LA(X). 2.7)

Express G as an increasing union of finite subsets G, :

G, ={m €G|lvll<r) (2.8)
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wglere m, €EG hfxs h'ighest weight v. This filtration of G defines a filtration of
L?(X), expressing it as an increasing union of finite dimensional subspaces

xy=J,,, E(X) (2.9a)

where

— s \K |
E,(X)-E”ynav,,@(v,,) =Z"v”«mult(lx,mlx)V,. (2.9b)

The complete orthonormal set {¢;} in L2(X) of eigenfunctions of D in
Proposition 2.4 can be constructed as an increasing union of orthonormal
bases of the finite dimensional subspaces E,(X) C L?(X) of (2.9). So we
can fix one such complete orthonormal set ¢ = Ur)O &, where

®, = {¢1, - ,dn,} is an orthonormal basis of E,(X)

with Dq‘, = ’\J'¢J" (210)
Deﬁnition' 2.11. The evolution equation (2.3) is discretely observable
{at zg € X if, for every time ty and every neighborhood V of xy in X, there
is a counfable subset {z1,z3,---} C V with the following property. If f is
the solution to the heat equation (2.3) for initial data b'€ L?(S"), and if
fr(: : to) denotes the orthogonal projection of f(- : tg) to E.(X), then the
fr(zi 1 t0), 1 £i < n,, determine f,.

The finite dimensional spaces E,(X) are discretely observable in the
sense of [7] because the action of G on E,(X) is a subrepresentation of the
left regular representation of G on L*(G). More precisely, in [4] we prove

Proposition 2.12. Fix zo € X. Then G has a countable subset S =
U,so Sr with S, = {81, ,8a,} such that the function evaluations ¢; :
¢ ¢(sj‘lzo), 1 £ j £ n,, form a basis of the linear dual space of E.(X).
If U is an open subset of G that meets every connected component, then
we can find S C U.

To prove Proposition 2.12, one views the point evaluations ¥(;)(¢) =
¢(z) as linear functionals on C*°(X) and argues that {¥(u-1:,)lE,(x) |
u € U} spans the dual space of E,(X). That gives

S, = {81, ,8a,} CU (2.13a)
such that |

the ¥,-1.,)|E.(x), 1 £ j S nr, form a basis of E,(X). (2.13b)
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Then if r < v we choose S} , = {8n,+1,°-* ,8n,} C U so that
{(¥(u5120)|E(X)20E(X) In, <jn, 18 8 Dasis of B (X)" NE,(X) (2.13¢)
and we take S, = S, US, .

Propositions 2.4 and 2.12 combine with (2.9) and (2.10) to give a par-
ticular type of observability for the evolution equation (2.3).

Theorem 2.14, Let X be a homogeneous space G/K where G is a com-
pact Lie group. Let D be a closed densely defined G-invariant normal
operator on L?(X). Choose a complete orthonormal set & = J,5, ®- in
L*(X) as in (2.10). Then the L?*(X) solutions to the evolution equation
(2.3) are just the functions

fz:t) =lim, .0 z':a,-c"""qs,-(:c) (2.15)
j=1

for z € X and for t € R in the range such that 3 ; laje=**i[? < co. The
solution f(z : t) of the evolution equation is discretely observable at any
time ty on any open subset of X that meets every topological component.
In other words, let U be an open subset of G that meets every topological
component. Then there is an increasing union S = J,, ,Sr C G with each
S = {81, ,8n,} C U such that each partial sum

Ne
fr(z:t)=)_aje™Pigi(z) (2.16)
ji=1
is determined by the “observations” f(s; 126 :t5), 1< 5 < n,.

The point of this paper is to work out estimates for the head and tail
errors at each finite stage in the observability process of Theorem 2.14.

3 The Head-Tail Estimate

We now derive the head-tail estimate mentioned at the end of §1, com-
paring the errors (1.6) and (1.7).

Define di = f(zs : to) for 1 £ k < 0o. Then we have

di = f(z1 1 to) = ) _aje™"3¢;(z;) = 'C - V(2 : to) (3.1)

i=1
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where
1 are~14,(z)

C= (1) and V(z:t)= a2e™"*2(z) (3.2)
are infinite column vectors. Note that T = s{lzo implies ¢;(z:) =
[L(sk)é5](z0), s0

Vizr :t) = L(se) - V(2o : t). (3.3)
Define
dl 'C . L(sl)
D= (dﬂ) and M=|'C-L(sa) |, (3.4)

Then (3.1), (3.3) and (3.4) combine as
D=M-V(zo: to). (3.5)

In other words, we “solve” the system (3.1) in the form V(zq : &) =
M-1.D.

Thg approximate truncation f; of (1.4) is similarly determined by the
de = fo(zi : to), this timefor L Sk Sn, ,

Ne N
diy = fe(zp 1 t0) = Zajc-"’x"#ﬁj(zk) ='C - Vi(za:t0)  (36)

j=1
where
1 Gye=M14y(z)
C, = 1 and Vi(z:t)= 529"'\:’¢2(3) (3.7
1 e~ ther 4o (2)
are n, X 1 column vectors. As before,
Vize :t) = Lo(s1) - V(20 : ). (3.8)
where L.(s) = L(s)|g,(x). Let
d; *C - L(s1)
D, = d:’ and M, = ‘c :L(”) (3.9)
dn, 'C L(sn,)
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Then (3.6), (3.8) and (3.9) combine as
D, = M, - Vy(zo : to). (3.10)

So, similarly, we “solve” the system (3.6) in the form V,.(::o :t0) = M 1-D,.

Now let us compare (3.5) and (3.10). Separating off the part that corre-
sponds to E.(X) we split

Dr Cf V"
D=(D:.)_’ C=(C,'.) and V=(Vrl) (3.11)

into pieces of sizes n, x 1 and oo x 1, and

L(s):(L'és) L;‘b) and M:(% 1’:’,) (3.12)

Then (3.5) and (3.10) say
M, - Vp(zo : to) = Dy = M, - V(2o : to) + Ny - V(20 : ta). (3.13)
In other words,
M, - {Vi(2o : to) = Vi(zo : to)} + Ny - V(2 : to) = 0. (3.14)
That gives the head-tail estimate

Proposition 3.15. The head error V;(zo : to) — Vi(zo : to) and the tail
error V/(z¢ : tg) are related by

Ve(zo : to) = Vi(zo : to) = MY - N, - V(0 : to). (3.16)

4 Bounds Derived From Unitarity of the Regular Representation

In order to use the head-tail estimate (3.16) one needs decay information
on the matrices M~! and N,. In this section we describe that part of the
needed information that comes out of unitarity of the regular representation
of G on L(X).
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We start by enumerating the irreducible constituents of the regular rep-
resentation,
T, (8)
L(s) = ”v:(s) (4.1)

where 7, denotes the irreducible representation of highest weight v, where
for each 4, v; occurs at most deg =,, times, and where |l || £ ||| £ --- .
The rows of M are infinite row vectors,

'C-L(sk) = (mu(s) mas) ) (42)
where m;(s) is a row vector of length d(v;) = deg =,,,
m,-(s) = (m,',l(s) m,-_g(s) LR m;’d(,i)(s) ) . (43)

In view of (4.1) we can express

1
m;(s) = ‘ci - m,,(s) where ¢; = ( ) is d(y) x 1. (4.9)
1

So m;(s) is the coordinate expression of !c; in the orthonormal frame com-
posed of the rows of the unitary matrix =,,(s). That says

d(vi)

Ima(s)I? = 3 Imi () = d(ws). (4.5)

i=1

We view (4.5) as a bound on the growth of any row 'C - L(s;) of M
— and thus also of its submatrices M, and N, — in terms of the degree
polynomial d(-). Lemma 4.10 below uses this bound to give us an estimate
on the column vectors

T lvilize 18 Sd(we) ™ (81)ai,je ™43, (o)
Sivilizr o145 <d(v ) Mi.i (82)ai je iy (2o
Ny ooty = | SNeiller Disssateamis(e2)ei; 3(z0)

il 2r 20185 S d(vi) ™ (80, )i je™ 240 8 (o)
(4.6)
Here we converted to multi-indices following the pattern of the m; ;.

The Schur orthogonality relations give us |¢; j(z)| £ d(v;); compare [4,
3.8). Combine this with (4.5) for

L gisuuylmia @3 @ £ 6. (47




334 D. 1. WALLACE AND J. A. WOLF

We have the initial condition function b = b, € L3(X) with b, €
A(m,). Write
/\(V.‘) = minxg,-éd(,‘_)Re A,’J (4.8&)
so that \ Ao
. e tii2 < 2 ,—tA(v;
Zlgjéd(w)'am‘ i1* < byl e . (4.8b)

Combine (4.7) and (4.8) for

doie isdtey|mii (e )aije™ M i (o) < d(vi)®|lbu;|IPe ). (4.9)

We summarize as follows.

Proposition 4.10. The typical entry in the column vector N, - V/(zg : t)
of (4.6) has upper bound

o Y Imij(se)aizem i (o)l
H2r 1S5Sd(v;

lvill2r 1S85Sd(w;) (4.11)

S 30 dw)liby|Pe= 0,

Hwill2r

Propositions 3.15 and 4.10 show just how the rate of decay of the head
error depends on the decay rate of the ||b,,]|, the growth rate of the A(v;),
and the lowest eigenvalue of M, as a function of r.

5 Example: The Heat Equation on the Sphere

The heat equation on the sphere S" = SO(n+1)/SO0(n), for initial data
b(z), is given by

Azf(z:t)+ %f(a::t):Oand f(z:0)=b(z), z€S*andt20 (5.1)

where A is the (positive) Laplace-Beltrami operator! on the sphere. The
function f(z : t) represents temperature distribution at time ¢ on S™ evolv-
ing from temperature distribution b(z) at time 0.

1We use the sign of the Laplace-Beltrami operator corresponding to the Laplacian
2
A=-Y 52—',- on euclidean space, because this both usual and natural in differential
geometry and in group representation theory.

d
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Suppose n > 1. Then the negative of the Killing form of SO(n + 1)
induces a riemannian metric of constant positive curvature on S®. This is
the multiple of the standard curvature 41 metric for which A has eigenvalue
[lv+pl|>~|lpl|? on A(m,), as follows. Setting aside those v for which A(7,) =
0 we are left with a 1-parameter family of highest weights v, A 2 0, for
SO(n+1). This one parameter family satisfies mult(1so(n), 7v[som)) = 1.
In other words? each x, occurs exactly once on L%(S™). It follows that A
has spectrum

multiplicities
dy = dimA(n,,)

eigenvalues
A = llow +2l12 = |lol1?

(n=1)h+h? n=142h TI"-2 k+h
n-2 n—1 Hm—f—

(5.2)

for h 2 0. See [1] or compare [4].

Here vy = hvy and [|n]]? = 55, so llwl|* = s22-. Thus |[ua 2 r as

in (4.11) if and only if A 2 r/2n — 2. So we denote

h(r)=rv2n-2forr 20 (5.3)
in order that summation over the range ||u;.|| 2 r be the same as summation
over h 2 h(r).

The initial data function b € L(S"™), s0 Y _p=¢ ||bua |I* < co. This forces
[1B,, JI> — 0, that is?, ||b,,}|> = o(1) as h — co. Along with (5.2), now
Proposition 4.10 reduces in the present context to

Lemma 5.4, In the case of the heat equation (5.1) on the sphere S",
n > 1, the typical entry of the column vector N, - V!(zo : t) of (4.6)
satisfies

Yo Y imas(a)anie én (=)l

h2h(r) 1SjSda

=o ( ) {d?.exp (-‘%ﬂ")})

h2h(r)

(5.5)

2The connection is given by the Frobenius Reciprocity Theorem.
3We use the standard definition: p = o(q) as s — 3¢ if, for every ¢ > 0, there is a
neighborhood U of 3¢ such that [p(s)] < eq(s) for s € U\ {20}.
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- -2
as r — oo, where dy, = ("—"-1:*1——[]" ’L‘{—)

The column vector N, - V/(zq : t) of (4.6) has height n, = do+dy+---+
dp(r)-1- Since h(r) is a multiple of r and dj, is polynomial of degree n — 1
in A this says that

n, is a polynomial of degree n as a function of r. (5.6)

Now combine Proposition 3.15, (5.3), Lemma 5.4 and (5.6) to see the first
assertion (5.8) of

Proposition 5.7. In the case of the heat equation (5.1) on the sphere
S",n > 1, the head error

Ve(zo : 1) = Vilzo : 0)]

=0 (”Mr-l”rn ) {d?.exp ( (n —2:)11;11’) }) (5.8)

h2h(r)

as 7 — 0o, where dy = (23422 [[1542). Fix t > 0. Then the h(r)
summand eventually dominates,

Vi(zo :8) = Volza : )] = o (IM7Y] - 1403 . = C™4rV/-D7D) - (5.9)

as r — oo. In particular, if

limsup ||MY]-r¥n=3 . o=t 4rV/(n-1/2) ¢ o (5.10a)
=00
then _
limy oo [Vi(zo : 8) = Vi(zo : £)] = 0. (5.10b)

Proof. We noted that (5.8) follows from Proposition 3.15, (5.3), Lemma
5.4 and (5.6). Evidently, (5.9) and (5. IOa) imply (5.10b). So we need only
check that (5.8) implies (5.9).

Fix t > 0. Notice limy o, dp41/dy = 1. Also note that, for h > 0,
exp( tgn-l)(h+1)+(h+1)’

Zn—2 = exp (_i) exp( t2h+1)
exp (—t‘_‘%—";,f"'m) 2 2n—
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Now for r 3> 0 we have

(n— 1+ 2h(r) 'ﬁk+h(r))s exp( ,(n = Dh(r) + h(r)? )
k

n—-1"- 2n -2
> (n—1+2h"1:flc+h)a (n= D12

2 exp( ————-——————-) .
v n-1 Pt k 2n -2

Thus (5.9) follows from (5.8). O

A glance at [1] will convince the reader that the story is essentially the
same for the heat equation on any compact symmetric space of rank 1. In
fact it is essentially the same for the heat equation on any symmetric space
of compact type. In this connection see §9 below.

6 General Bounds on the Head Error

In this section we work out the general results that correspond to the
specific results of §5. Our main result is Theorem 6.16, which exhibits the
delicate interplay between the spectral properties of D and the M, and
smoothness properties of the initial data function b € L?(X).

We will need to apply the Sobolev Inequalities to the initial data function
b(-) = f(- : 0) in order to control decay of the norms |[b,, || and the terms
d(v1)3||b., ||? that occur (with i instead of h) in Proposition 4.10. This en-
hances the role of the term h~¢ that occurs in (5.5) and (5.8), and the term
r~¢in (5.9) and (5.10). In Theorem 6.16 this shows how increased smooth-
ness for b implies faster convergence for certain bounds on the head error
[Vi(zo : t) — V,(zo : t)|, allowing us the describe some general conditions

under which limy o |V (20 : t) = V(20 : t)] = 0.

The Sobolev Inequalities are essentially the same for homogeneous spaces
X = G/K where G is a compact Lie group, as for euclidean spaces. We
recall the basic facts from Wallach’s book [5, §5.7]. Let

2 - o \K __
$elX)=) Vu @V =3 5Am)  (61)
and decompose ¢ as the sum of its components,

$=) st with $eVr () =Am). (62

", €G
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For each real number s 2 0, the s** Sobolev norm is given by
613 = 3= 5 L+ IV 118 lEacx) (6.3)

and the s** Sobolev space is defined to be
e

H*(X) = {$ € LX) | 412 < o0} Y (64)
The Sobolev space H*(X) is a Hilbert space with inner product
290 =22 8 A+IPIPY (8, P)rax) - (65)

In particular H%(X) = L?(X). As in the classical euclidean case, if s < ¢
then the inclusion H*(X) — H*(X) is completely continuous (compact).

As usual if k is a non-negative integer we write C*(X) for the space of
functions f : X — C that are k times differentiable, with all k** deriva-
tives continuous. We write C*(X) for ()5, C*(X). Differentiability and
Sobolev norms are related by

Sobolev Lemmas 6.6. Let n = dimy G and let k be an integer 2 0. If
¢ € C*(X) then ¢ € H*"/?~¢(X) for every ¢ > 0. If ¢ € H*+"/2+¢(X)
for some ¢ > 0 then Ew.eé ¢, converges absolutely and uniformly to an
element of C¥(X). In particular, $ € H*(X) for all s 2 0 if, and only if,
$ € C=(X).

We now consider the implications for the initial data function b € L?(X).
Here, for book keeping purposes, we renumber the highest weights to elimi-
nate repetitions. Thus ¥, occurs just once, but r,, occurs with multiplicity
mult(1x,x,, |x) on L3(X). Here it is possible that mult(1x, 7, |x) = 0.

If b € H*(X), then
o0
813 =D (1 + 1al®)* b I? < 0o (6.7)
h=1

where b,, is the orthogonal projection of b to A(r,,) and ||b,, || stands for
”b""Lz(x). It follows that

Wouu II? = o((1 + |lnli?)™*) as k — co. (6.8)

S
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The degree d(vy) = deg(n,,) is a polynomial function of degree bounded
by the number m of positive roots, as a function of v, according to Weyl’s
degree formula. So*

d(vn) = O((1 + ||valf*)™?) as h — oo. (6.9)
Combine (6.8) and (6.9): ‘
d(wn)®|Ibu, II? = o((1 + llwall?)*+C™/D) as h — co. (6.10)

We have enumerated the v, by increasing length, ignoring the multiplic-
ities that occur in the decomposition L*(X) =}, . 5 mult(1k,7|x)Vs. So
the growth of the ||vx|] is given by the growth of the euclidean norms of
the lattice points in a Weyl chamber. This growth has the same order h!/¢
as that of the non-negative integral £-tuples where £ = rank G. Note that
G has dimension n = £+ 2m. So (6.10) says

Lemma 6.11. Let b € H*(X) with s 2 0, let £ = rank G, and let m be
the number of positive roots. Then

d(Vh)anbu.”z = o(h(-2-+3m)/¢) as h — oo, (6.12)

Now we try to proceed as for the heat equation on the sphere. Combine
Proposition 4.10 and Lemma 6.11:

Lemma 6.13. The typical entry of the column vector N, - V!(zo : t) of
(4.6) has growth

)IEDY

Iall2r  1S5Sd(m)

(6.14)
=o ( Z h(-2st3m)/L e""("“)) .as r — 00.

Neali2r

Imaj(se)an je ™ 3 dn i (z0))?

The column vector N, - V!(zq : t) of (4.6) has height n, given by
ne= Y, dimA(m,)S ). dw).

limali<r llwall<r
The number of irreducible representations of G with highest weight of a
given length v grows as a constant multiple of v¢~!. So Lliaji=o 3im A(r,,)
grows at most as a constant multiple of v?™+¢~1, Thus
n, is bounded by a polynomial of degree n = 2m + £ in r. (6.15)
Proposition 3.15 and Lemma 6.13 combine with (6.15) to give

4Here too we use the standard definition: p = O(g) as s — so if there exist a
neighborhood U of 30 and a number B > 0 such that |p(s)| < B q(s) for s € U \ {s0}.
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Theorem 6.16. Let b € H*(X) with s 2 0. Then head error
Vi(zo : 8)— V(20 : 8)]

=0 (”M—ln p2mtt Z p(=2s+3m)/t -e“"(”")) (6.17)
lleali2r

asr — 00,

In the next two Sections we will specialize Theorem 6.16 to reflect various
sorts of spectral behavior of D, i.e. various growth rates of the A(v1,). Then
in Section 9 we will sharpen all these results for the case of symmetric
spaces.

7 Spectrum of Logarithmic or Faster Growth

In this Section we show that the head error goes to zero, for sufficiently
smooth initial data and also for sufficiently large time, provided that the
spectrum of D has at least logarithmic growth. This growth condition is
that the A(vy) = min;¢;<q4(,,) Re An,; satisfy

AMuvp) 2 ¢ logh for h>»0 (7.1)
where ¢ = cx,p > 0 is a constant that depends only on X and D.

In order to combine (7.1) with Theorem 6.16 we will need

Lemma 7.2. If the eigenvalue patterns of D and the M, give us numbers
s and ¢ > 0 such that

—~254+3m _ tA(vn) <

7 logh = —(14¢) for h >0 and (7.3a)
[IM;t]] r2™+¢ is bounded for r > 0 (7.3b)

then _
limy_, oo |[Ve(zg :t) — V(20 :t)| = 0. (7.3¢)

Proof. Note that (7.3a) ensures convergence of the sum in (6.17), in fact
implies

T A =) < % () -1 forr>0  (14)
lwali2r
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where h(r) is chosen so that summation over h 2 h(r) is the same as
summation over |jv,]| 2 r. In effect, (7.3a) says

h(—21+3m)/l . c—tA(v;.) g h—l-c for h > 0’

and of course : .

Y hieeg / ” h"“dh:-:-(h(r)—l)“.

A2A(r) h(r)-1
That proves (7.4).
Combine (6.17) and (7.4) to obtain

Wi(zo :1) = Vi(zo : ) = 0 (uM:‘n P 2 (h(r) = 1)“) (7.52)

as r — co. Since (h(r) — 1) is of the order of r¢, also r2™+!(h(r) — 1)~¢ is
of the order of r3m+¢r—¢! and we can write (7.5a) in the form

Vezo : 1) = Vumo : )] = o (1M || #*™+0=%) asr 00 (7.5D)
for some ¢ > (. That, of course, implies
Vi(zo : ) = Vo(zo : )l = o (1M M| ™) asr — 0. (76)

But (7.3b) says, exactly, that the term ||M-1|| r?™*¢ in the right hand side
of (7.6) is bounded as r — oo. This completes the proof of (7.3), thus of
Lemma 7.2. O

Lemma 7.7. Fixt,e > 0 and assume (7.1). If b is sufficiently® differen-
tiable, or if t is sufficiently® large, then (7.3a) holds.

Proof. For h » 0 we have A(v3) 2 ¢ log h. Write that as

’
257 43m A0 < (14 forhp 0
; logh =
SDifferentiability of any class k > mx{%(Sm + (24 e~tc)e), %(2m +£)} is sufficient.
This will come out of the proof. Here we use n = 2m + £. In particular C* will always
ensure (7.3a).
8The proof will show that time ¢ > (14 ¢+ 9%)/(: is sufficient to ensure (7.3a).
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where &' = }(3m + (1+ e —tc)t). Let n = dima G. Suppose b € C*(X) for
some integer k > max{s’ + n/2,n/2}. Then the Sobolev Lemmas say that
b € H*(X) for some real s 2 max{s’,0}. Now

—2s+3m  tA(v) <_
4 logh =

(1+¢) for h >0,

which is just (7.3a).

Now look at (7.3a) with s = 0. It reduces to A(va) 2 }(1+ €+ 3P2)logh.
This is automatic whenever ¢ 2 (1 + ¢ + 3P)/t, ie. whenever
t2(1+e+ 2/ O

Combine Lemmas 7.2 and 7.7 to obtain

Proposition 7.8. Suppose that the spectrum of D has logarithmic or
faster growth (7.1). Fixt > 0. Suppose that either the initial data function
b is sufficiently differentiable or the time t is sufficiently large. If

[|M2| r2™+¢ is bounded for r > 0 (7.9a)
then the head error at time t tends to zero,

lim, o0 |V (2o : 8) = V(20 : 8)] = 0. (7.9b)

8 Spectrum of Polynomial Growth

In this Section we suppose that the spectrum of D has polynomial growth
of degree ¢ 2 1. In other words, the A(v3) = min;¢;<4.,,) Re Ay ; satisfy

A(va)2cht  for  h>0 (8.1)

where ¢ = qx,p 2 1 and ¢ = ¢x,p > 0 are constants that depend only on
X and D. Given polynomial growth (8.1) we show that the head error goes
to zero exponentially fast.

The polynomial growth condition (8.1) says e~} (") < ¢=t¢h* 30 (6.14)
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becomes

Y Y Imni(e)angeP g j(zo)?

h2A(r) 1SiSd(n)

o ( Z p(=2s+3m)/L e-tch') 88 r — 00 2)

hZh(r)

= 0( Z e—tch'+((—2:+3m)/t)logh) as r — 00.

h2h(r)

Fixt > 0. If 1 > 5 > 0 then for A > 0 we have
((—28 + 3m)/¢) logh < ntch!,

80
e

e tehH(-243m)/O)logh < o =1e'A" where ¢! = (1 —p)c > 0. (8.3)

Now the last sum in (8.2) is bounded by
Z c-tc'h' < Z hg-le-tc'h'
h2h(r) A2h(r)

e 1
< / hg-le—tc’h'dh - _____c-tc’h(r)'.
= Jagry-1 qtc'

(8.4)

Thus Lemma 6.13 becomes

Lemma 8.5. Assume the polynomial growth condition (8.1). Then typical
entry of the column vector N, - V!(zq : t) of (4.6) has growth

Yo Y Ims(sr)angeign i(zo)P = ofe=* -1y (8.6)
h2h(r) lgjsd(lu)

as r — 0o, whenever 0 < ¢’ < ¢, where c is given by (8.1).

Note that the functions e=~*'(*(r)=1)' apq p2m+¢ =1 (3(r)~1)* have the
same growth rate as r — 0o, because e*'(*(")-1)* grows faster than any
polynomial function of r. With this in mind, we combine (8.6), (6.15) and
Proposition 3.15 to obtain the following specialized form of Theorem 6.16.
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Theorem 8.7. Assume the polynomial growth condition (8.1) on the spec-
trum of D. Then the head error

Vizo : ) = elzo : )] = o (1M ] < BO-D") asr 00 (88)
whenever 0 < ¢’ < ¢ with ¢/ as in (8.1).

Corollary 8.9. Assume (8.1) and suppose that | M,}|| has at worst ex-
ponential growth in the sense

1M = O(e‘""(')) for some ¢’ > 0 as r — co. (8.10a)
If t is sufficiently large” then the head error at time t tends to zero,

limy oo [Vi(zo : t) = V(20 : )] = 0. (8.10b)

Proof. The o bound on the head error |V, (2o : t) — V,(zo : t)] in (8.8) is
"Mr_l” c-tc'(h(r)-l)' < Cec”h(r)—tc’(h(r)-—l)',

which tends to zero as r — oo whenever we can maintain t > (c¢"/c')h(r)}~¢
for all r 3» 0. Since ¢ 2 1 the function h(r)!~¢ is non-increasing, so we
just need t > (c”"/c’')h(ro)!~? for some number vy > 0. With ry fixed, we
may increase ¢’ to ¢ for this conditionon t. O

9 The Case of Riemannian Symmetric Spaces

In this Section we see how the general results of Sections 6, 7 and 8 take
considerably sharper form when our homogeneous space is a symmetric
space. In effect, when X = G/K is a riemannian symmetric space, we
will see that £ can be reduced from rank G to the symmetric space rank
rank G/K, and that n, is bounded by a polynomial of degree m + £, which
is somewhat less the bound for the general case. Furthermore, nonconstant
invariant differential operators D turn out to have spectra of polynomial
growth in the sense of (8.1).

Let X = G/K be a compact riemannian symmetric space. Thus G is a
compact Lie group. We assume that G, and thus also X, is connected. We

"The proof shows that it suffices to have t > (c”/c)h(ro)*=9 for ro > 0.
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also assume that the riemannian metric is induced by a positive definite
symmetric bilinear form on the Lie algebra g of G of the form 8 =y + 5
where f; annihilates the derived algebra (the “semisimple part”) of g and
P is the negative of the Killing form of the derived algebra. In other words,
the riemannian metric is normalized as in [1].

We recall some standard facts about symmetric spaces; see [1] and [3].
The algebra D(G/K) of G-invariant differential operators on X is comr
mutative. If # € G there are two possibilities for the w-isotypic subspace
A(m) € L¥G): either the multiplicity m(1k,7|x) = 0 and A(7) = 0, or
the multiplicity m(1x,7|x) = 1 and A(n) = V; as G-module. In the lat-
ter case we say that = is a class 1 representation of G. Then the algebra
D(G/K) acts on A() by scalars, and the corresponding associative algebra
homomorphism

xx : D(G/K)—C 9.1)

specifies A(7). In particular, (4.8a) simplifies to
A(v) = xx.(D) (9.2)

Note here that A(v) is the actual eigenvalue, not just its real part.

We saw [4, Lemma 4.1} that every D € D(G/K), viewed as having
domain C*°(G/K), has unique closure D as densely defined linear operator
on L?(G/K), and that D is a normal operator. A glance at the proof shows
that we could start with domain the algebraic sum of the A(w,), where the
invariance just means scalar action on each A(wx,). So in general we have
the analog

Xx, : D C by Df = xx, (D)f for all f4€ A(wy) (9.3)

of (9.1) and (9.2).

The symmetry of X = G/K at the base point 1. K = z¢ defines an
involutive automorphism @ of the Lie algebra g. Decompose g = t+ p, sum
of the t1-eigenspaces of 8. Here ? is the Lie algebra of K. Choose

a : maximal abelian subspace of p. (94)

It is unique up to conjugation by an element of K, and a extends uniquely
to
t = t¢ + a : Cartan subalgebra of g (9.5)

where t = t Nt is a Cartan subalgebra of the centralizer of a in L.
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The rank £ = rank G is, of course, just dim t. The symmetric space
rank of X = G/K is denoted £x = rank X = rank G/K and is defined by

{x = dim a. (9.6)
For example, in the case of complex projective space
P*C) = SU(n + 1)/U(n)

we have(:n and &y = 1.

The root system & = ®(tc, gc) defines the restricted root system
®, = ®o(ac,8c) = {als | @ € ¢ and al, # 0}. 9.7
Every choice of positive restricted root system &} is of the form
&} = {a|s | @ € ®* and a|, #0}. (9.8)

for an appropriate choice of positive root system &+ = ®+(t¢,gc). We fix
one such choice of positive restricted root system (9.8).

Consider the lattice

_ — o1 (1 ¥) }
A.—{VE\/_fu I—(¢.¢)EZfora]l¢re\I' (9.9)
and the subset of dominant linear functionals
+ o (V) ¢') > }
A,_{VGA.|(¢,¢)=0forall¢€\I' (9.10)

A famous theorem of Cartan [2], made precise by Helgason [3], says that A}
parameterizes the class 1 representations of G in case G is simply connected
and K is connected. See [6, Ch. III] for a concise proof. We formulate the
result so that G need not be semisimple or simply connected.

Theorem 9.11 (Cartan, Helgason). Suppose that G and K are con-
nected. Then the irreducible representation x, of G, with highest weight v
relative to ®*, is of class 1 if and only if (i) v|, = 0 and (ii) v, € A}.

Here the polynomial growth condition corresponding to (8.1) is

IXx,, (D) 2cht  for  h>0 (9.12)
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wherec>0and ¢ 2 1.

Let us agree to look only at class 1 representations of G in the expression
(6.1) of L3(X) and more generally as we run through the considerations of
Sections 6, 7 and 8. For, as we discussed just before (9.1), those are precisely
the representations of G that occur on L?*(X).

We have the class 1 highest weights v, ordered by increasing length. So
the growth of the ||v|| is given by the growth of the euclidean norms in the
parameter space A} for the class 1 representations of G. This growth has
the same order h'/¢x as that of the non-negative integral £x-tuples where
Lx = rank X. Thus we can convert between growth rates ch? as used in
§8 and in (9.12), and growth rates ¢’|[u,]|*’ to be used shortly, by means of

growth ch! is equivalent to growth ¢’|jv, |[*1. (9.13)

Consider the case where the operator D is differential, i.e. where D €
D(X). The Helgason-Harish-Chandra correspondence from the algebra of
Weyl group invariant polynomials on a to D(X) (see [3, Chapter X, §6.3]
where it is done for noncompact symmetric spaces in a way that is valid
for compact symmetric spaces) expresses A'(v) = x«, (D’) as a polynomial
pp(v) such that the degree of pp as polynomial is equal to the degree deg D
of D as a differential operator. We combine this with (9.12) and (9.13):

Lemma 9.14. If D € D(X) then its spectrum satisfies (9.12) with ¢ =
Ux deg D, ie, |xx,, (D) 2 chix 4 D for h 3 0.

Now we incorporate this information into the considerations of Sections___
6, 7 and 8. Since we only look at class 1 representations of G, Lemma 6.11
becomes

Lemma 9.15. Let b € H*(X) with s 2 0, let £x = rank X, and let m be
the number of positive roots of G. Then

d(vn)?|[by, |1 = o(h(=2++3m)/tx) ag h — co. (9.16)
This forces a slight change in Lemma 6.13, which becomes

Lemma 9.17. The typical entry of the column vector N, - V!(zg : t) of
(4.6) has growth

P Y Imaj(sr)anje gy 5(zo)l?

Huall2zr  185Sd(va)

(9.18)
=o( E R(=2043m)/tx |c-'x-..,,(D)|)

Hoall2r
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asr — 00,

Now we come to the most important change: The column vector N, .
‘,’.'(zo . t) of (4.6) has helght n, = E"v."(r dim A(ﬂ.y.) = E"y“”<r d(V}.) .
The number of irreducible representations of G with highest weight of length
v grows as a constant multiple of v¢*~1, So Llmll=v dim A(x,,) grows

at most as a constant multiple of y™+¢x~1 Thyg
n, is bounded by a polynomial of degree m + £x in r. (9.19)

Now combine (9.19) with Lemmas 9.17 and 8.3. Then Theorem 6.16, Propo-
sition 7.8, Theorem 8.7 and Corollary 8.9 become

Theorem 9.20. Suppose that X = G/K is a riemannian symmetric space
of compact type. Let b € H*(X) with s 2 0. Then head error

[Ve(zo : t) — V(2o : t)|

9.21
=o0 (”Mr—l” pmHx Z h(=2s+3m)/tx Ie—tx.,. (D)I) ( )
livalizr

&8 r — 00.

Corollary 9.22. Suppose that X = G/K is a riemannian symmetric space
of compact type. If the eigenvalue patterns of D and the M, let us arrange
numbers s > 0 and € > 0 so that

-25+4+3m _ thtu,‘ (D)|

< -
T Togh = (1+¢) for h>» 0 (9.23a)
and
M) rm+ex s bounded for r 3 0 (9.23b)
then -
limy oo |Ve(z0:8) = Vi(z0: t)] = 0. (9.23¢)

In particular, if the spectrum of D has logarithmic or faster growth
Ixx., (D)] 2 ¢ logh for h»0, (9.24)

if either the initial data function is sufficiently differentiable or the time t is
sufficiently large, and if (9.23b) holds, then the head error at time t tends
to zero.
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Corollary 9.25. Suppose that X = G/K is a riemannian symmetric
space of compact type. Assume the polynomial growth condition (9.12),

Ixx,,(D)| Z ch? for h > 0, which is automatic if D is a nonconstant
invariant differential operator of degree degD 2 £xgq. Then the head error

Vilzo :t) - Vi(zo : )] = 0 (||M,"|| e-“'("(')*‘)') asr—oo (9.26)
whenever 0 < ¢/ < ¢ with ¢’ as in (9.12).
Corollary 9.27. Suppose that X = G/K is a riemannian symmetric space
of compact type. Assume polynomial growth (9.12) on the spectrum of D,
automatic if D is a nonconstant invariant differential operator. Suppose
that || M }|| has at worst exponential growth in the sense
[IM7 ]| = O(e<"™)) for some ¢” > 0 as r — oo. (9.29a)

If t is sufficiently large then the head error at time t tends to zero,

limy oo |V (20 : 8) — V(20 : 8)| = 0. (9.29b)

We end with an example. Suppose that X = G/K is the sphere " =
SO(n+1)/SO(n) and D is the Laplace-Beltrami operator A as in Section
5. Then £x = 1 and pp(v) = ||v + p|I* — ||p||*. So (9.12) holds with ¢ = 2,
h(r) is a constant multiple of r, and Corollary 9.25 says

Vi(zo:t) = Vi(zo: t)] =0 (nM:*n e-'°”<'-1>‘) asr—oo  (9.30)

for some constant ¢’ > 0. That is equivalent to (5.9).
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