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Observability of Evolution Equations for
Invariant Differential Operators*

Dorothy 1. Wallacet Joseph A. Wolft

Abstract

A strong form of discrete observability is proved for solutions of
evolution equations D, f(z : t) + & f(z : t) = 0 on a compact homo-
geneous space X = G/K, where D is a G-invariant closed normal
operator on L?(X). Some interesting special cases are (i) where D
is the Laplace-Beltrami operator, so that Do f(z : t)+ & f(z: ) =0
is the heat equation, and (ii) where X is a riemannian symmetric
space, e.g. a sphere. For example, if X is connected then any so-
lution f(z : 1) to the usual heat equation is discretely observable at
any time t, 2 0 on any neighborhood of an arbitrary point zo € X.

To fix the ideas we start by studying the heat equation on the
sphere S™. Considerations there are reduced to certain aspects of
the representation theory of the orthogonal group SO(n + 1). This
representation theoretic viewpoint allows us to carry the results over
to invariant evolution equations D f(z : t) + % f(z:t) =0 on com-
pact homogeneous spaces X = G/K. This becomes quite explicit
in the case of the heat equation on a normal riemannian homoge-
neous space. Finally, the technical condition on D is shown to be
automatic when X is a riemannian symmetric space.

1 Heat Equation on the Sphere
In this section we study the heat equation on the sphere
S" =50(n+ l)/SO(n)

and the observability properties of its solutions. In later sections we will
examine more general evolution equations on more general manifolds. But
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DOROTHY I. WALLACE AND JOSEPH A. WOLF

here we first fix the ideas by considering a concrete case that is of indepen-
dent interest.
The heat equation on S™ for initial data b(z) is given by

A,f(z:t)+§t-f(z:t)=0and f(z:0)=b(z), z€S*andt20 (1.1)

where A is the (positive) Laplace-Beltrami operator! on the sphere. The
function f(z : t) represents temperature distribution at time ¢ on S™ evolv-
ing from temperature distribution b(z) at time 0.

Observability is the study of just which types of data on (samples of)
the values f(z : t) allow us to reconstruct the function b(z) accurately.
We will study a restricted version of this question. Suppose that we have a
sequence of points {z1, z2,- - -} C S™ and we are allowed to sample (observe)
the f(z; : t) at some time ¢ > 0. We would like to see whether it is possible
to deduce b(z) = f(z : 0) for all z € S™ from this data. In particular we
would like to impose conditions on the z; that make this possible. These
conditions should be appropriate. For example, it is not reasonable to
choose a countable dense subset of S™ for the sequence {z,z2,---}. Our
conditions will be such that, given z5 € S™ and a neighborhood of z¢ in
S™, the sequence {z;} will be contained in the neighborhood.

Background material for this problem can be found in Sakawa [17],
in Gilliam, Li and Martin [9], in Gilliam and Martin {10],.in Martin and
Wallace [15], and in Wolf ([21], [22]).

Separating variables in the usual way we first consider functions u(z :
t) = k(z)h(t). Since Ayu = (Ak)h and %u = kh', we look for eigen-
functions ¢ : S* — C, say A¢ = A¢d. Any such eigenfunction ¢ defines a
solution u(z : t) = e~**¢(z) to (1.1).

On general grounds, each eigenvalue A 2 0, each eigenspace A(A) C
L?(S™) is finite dimensional, and there is a polynomial function p(r) that
bounds the number (with multiplicity) of eigenvalues < r2. See [11] for
example. We use that to formalize our notion of observability, as follows.

Definition 1.1 The heat equation (1.1) is discretely observable at z, €
S™ if, fort 2 0 and every neighborhood V of zo in S™, there is a count-
able subset {z1,z3,---} C V with the following property. Let E.(S") =
> i=0A(}) and let n, = dimE,(S™). If f is the solution to the heat equa-
tion (1.1) for initial data b € L%(S™), then the f(z; : t), 1 £ i £ n,,
determine the orthogonal projection of b(z) to E,(S™).

In our specific situation, with a certain normalization of the riemannian
metric on S™ (from the negative of the Killing form of SO(n + 1)), the

1'We use the sign of the Laplace-Beltrami operator corresponding to the Laplacian
2

A=- E 8%:5 on euclidean space, because this both usual and natural in differential
3

geometry and in group representation theory.
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OBSERVABILITY OF EVOLUTION EQUATIONS

eigenvalues and multiplicities are given as follows [1].

n eigenvalues A, | multiplicities dp, = dimA()\,) for
242m(e-1 2t— 3
20— 1 '"7%?-2 MACLT]2 S mbk £22,m>0
I+m(2¢-1 —1772¢-2m
20 | mpdeu %Ln—‘*— £21,m20

(1.2)
Now L2(S") = ¥_,. A(Am), Hilbert space direct sum of the eigenspaces

of A as indicated in table (1.2). For each m 2 0 choose
{¢m1 ., ,Pma,.}: orthonormal basis of A(Ap). (1.3)

Then the general solution to (1.1) is of the form

ety = Y Yo mge dmi(e), X lemsl? <c0 (14)

for x € S” and t 2 0. This corresponds to the choice of initial temperature

function b(z) = f(x 0) = X2 o9 em jbm,i(2)-

The question of discrete observai)lllty comes down to that of recovering
the coefficients ¢, ; in (1.4) from data f(zx : t). Fix ¢t 2 0 and zo € S™.
Our sample points will be of the form z; = s;'(z¢) for an appropriate
subset {s;x} C U where U is an arbitrary neighborhood of the identity in
SO(n + 1). So our observations or measurements will be of the form

flzx :t) = E:=QZ::IC'"JC-“M¢m,j($k)
= Z:zoz::zl Cmrje_txm[w(sk)¢m,j](30) (15)

where  is the left regular representation, [r(g)¢](z) = ¢(9~'z) for g €
SO(n+1) and z € S, of SO(n+1) on S™ = SO(n+1)/SO(n). Specifically,
for each number r > 0 we consider the question of recovering the finite set
of coefficients ¢, j, 1 £ j £ dm, m < r, from the observations (1.5).

The left regular representation  of SO(n +1) on L?(S™) breaks up as

T = Z:::owm , direct sum of the distinct irreducibles , (1.6)

where 7, is the action of SO(n + 1) on A(A,). We now write block form

matrices using the bases (1.3) of the A(Am). The observation (1.5) is given
by
e~ dg(20)

f(ze 1) =(Co ,Cy1 ) m(s1) - e_ﬂlél(zo) (1.7)
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DOROTHY 1. WALLACE AND JOSEPH A. WOLF

where

¢m,l
Crn=(cm1, ) Cmdn) a3nd &, = : . (1.8)
¢m,d,,.

In other words, the summand of (1.5) up to a given value of m is

r dm "
Cm i€ "™ i(x
Zm=0 j=1 m,) ¢mu.’( k)

To(Sk)
(Co -+, Cp) - x

Wr(sk)

fe(ze 2 1)

C_MO(I)Q(.’BQ)
s (19)
e~ ®,(zo)

= E:n—oc”‘ T (sk) - €7 B (20).

Note that f, corresponds‘to orthogonal projection of f from L?(S™) to
E,.(S"), for every fixed value of {. In summary, we have verified

Lemma 1.1 Fizr z9 € S® and a limet 2 0. Then heal equation (1.1) is
discretely observable at zq if, and only if, the following condilion holds.
For every neighborhood U of the identily in SO(n + 1) and every m 2 0,

there ezist {sm1 , -, Sm,d,} C U such that, if f is the solution to (1.1)
for L?(S™) initial data b = z;f:oz.?:lcm'qum,j(z), then we can always
solve for (Cy ,---, C,) in the system of equations

“O(Sm,j)

Tr(5m,j)
C-t'\o‘bo(l‘o)
: , (1.10)
e‘”"@,- (Zo)
for0Em<Erandl1 £j<dy,.
Now we check the condition in Lemma 1.1.

The column vector e=**»®,,(zo) € C4™ cannot be zero. For otherwise,
each ¢, ; vanishes at zo. Then every ¢ € A(An) vanishes at xo. Since

32



OBSERVABILITY OF EVOLUTION EQUATIONS

[*m(9)d](z) = #(g~1z) and SO(n + 1) is transitive on S™, now every ¢ €
A(As) vanishes at every £ € S™. That says A(Am) = 0, which is not the
case.

Let W be a neighborhood of zg in S™. Express W = U(zo) = {u(z0) |
u € U} where U is a neighborhood of the identity in SO(n + 1). Any
neighborhood of the identity generates the group SO(n + 1). Using the
bases (1.3) to identify A(Ap,) with C%=, and using irreducibility of m,y,,
we see that ®,,(zo) is a cyclic vector for 7, in Cé=. In other words,
Tm(SO(n + 1)) - ®u(z0) spans C¥=. So if U’ is a neighborhood of the
identity in SO(n + 1) then =, (U’) cannot stabilize any proper subspace of
Cém that contains ®,,(zo). Now choose U’ small so that U’ = (U’)~! and
(U cUforl £k £dn+1, and let Fi denote the subspaces of C4m
defined by

Fy is the span of mp,(U’) - ®m(20) and Fiy is the span of mp,(U') - Fy, .

Since dimFy_ 41 S d, we must have some Fiy; = Fi.. There, necessarily
Fi = C4m. We have verified that 7,,(U) - ®,,(z0) spans C=.

Now there isaset {sm 1, -, Sm,d,. } C U such that the column vectors
Tm(8m,j) - Pm(z0) span C?=. Of course we can multiply by a nonzero
scalar. So C has a basis of the form {mm(sm ;) - €™ P (o) where

{Sm,l 1y sm,d,,.} cU.
Now the column vectors
mo(Sm,j) e~ ®o(z0)
: , (1.11)
Tr(8m,j) e_ﬂ'q’r(%)
with

0Ssmsr 1SjSdm

form a basis of the space C*7, n, = Y., _,dm. So any 1 x n, row vector
(Co ,---, Cy) is determined by its inner product with the column vectors
(1.11). That is the condition of Lemma 1.1. So we have just proved

Theorem 1.1 The heat equation A f(z :t)+ & f(z:t) =0, z € S™ and
t 20, is discretely observable at every point o € S™.

2 Invariant Evolution Equations: General Theory

Let X be a homogeneous space G/K where G is a compact Lie group, and
let
D: LX) — L}(X) (2.1)
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be a closed? densely defined operator that commutes with the action

[L(9)f1(z) = f(g™'=) (2.2)

which is the left regular representation G on L2(X). The corresponding
evolution equation, analog of the heat (diffusion) equation, is

D, f(z:t)+ %f(z :t)=0 (2.3)

on X x R. The usual heat equation is the case where D is the Laplace-
Beltrami operator for a G-invariant riemannian metric on X. See Friedman
[7, Part 2] for the basic facts on evolution equations, and any standard
reference such as Riesz and Sz.-Nagy [16] for the few basic facts we use
concerning normal operators.

The following result is well known in the case of the heat equation;
Gilkey [8, Ch. 1, §6] and Yosida [23, Ch. XIV, §2] are convenient references.

Proposition 2.1 If D is a normal operator® on L%(X), then there is a
complete orthonormal set {¢;} in L%(X) of eigenfunctions of D. If {¢;} is
any such orthonormal set, D¢; = A;¢;, then the L2(X) solutions to (2.3)
are just the functions of the form

1) = ce—tAig. , € C 2.4
i)=Y ceNei(e), o€ (24
for z € X and fort €R in the range * such that 3~ ]eje="*|? < co.

Proof: The point is to use G-invariance and the compactness implicit in
the Peter-Weyl Theorem to replace compactness in the argument which
shows that the Laplacian A has discrete spectrum.

The Peter-Weyl Theorem gives a decomposition

L}G) = Ewea"* ® V; and L}(X) = Z,ea"* (VHX . (25)

Here G is the set of (equivalence classes of) irreducible unitary represen-
tations of G and V, is the (finite dimensional) vector space on which G is

2Recall the definition: if {fn} is a sequence in the domain of D, if {fn} converges
in L?(X) to some element f, and if {D(fn)} converges in L?(X) to some element h,
then f is in the domain of D and D(f) = h. In other words, the graph of D is closed in
L*(X) @ L*(X).

3 As usual, we say that D is normal if DD* = D*D. Since D is closed and densely
defined, its adjoint D* also is closed and densely defined. Here DD* = D*D means that
the domains of the compositions DD* and D*D are the same and are dense in L?(X),
and that D(D*(f)) = D(d*(f)) for every function f in that common dense domain.

*If all but finitely many of the c; vanish for Re); < O, then this range includes
t g 0. Similarly, if all but finitely many of the c; vanish for Re); > 0, this range
includes ¢ é 0. In particular, if only finitely many c; are nonzero, this range is all of R.
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OBSERVABILITY OF EVOLUTION EQUATIONS

represented by 7. We identify V; ® V¥ with the complex span of the matrix
coefficient functions for =,

v ® w* corresponds to the function z — (v , 7(z)w)

where w* € V* corresponds to inner product with w € V. Thus V, ®@(V;")K
is the subspace consisting of functions f € V; ® V! such that f(gk) = f(g)
for all ¢ € G and k € K. Those are the functions in Vy ® V;* that can be
(and will be) viewed as functions on G/K.

In the left regular representation (2.2) of G, the G-module structure
implicit in (2.5) is

L}(G) = deg(7r)X:’reaV,r and L?(X) = mult(1g, wIK)Z'eaV, (2.6)

where deg(7) is the degree of the representation = and mult(1k, 7|k) is
the multiplicity of the trivial representation 1 in the restriction «|x.
The linear operator D preserves each of the finite dimensional sum-

mands
A(m) = Ve @ (V)X C L3(X). (2.7)

Its adjoint D* is also G-invariant and thus preserves each A(7). As D is
normal, D|s(x) commutes with D*|4(x) and thus is diagonal relative to
some orthonormal basis of A(r). Diagonalizing each D|4(xy we have a
complete orthonormal set {¢;} in L2(X) consisting of eigenfunctions of D.

The remaining assertion follows as usual by Fourier expansion. m]
Express G as an increasing union of finite subsets G, :
Gr={m €G||lv|l<r} (2.8)

where 7, € G has highest weight® v. Any irreducible representation maps
the (second order) Casimir operator w from G to a scalar multiple of the
identity. Identifying that scalar multiple with the scalar one has 7, (w) =
Il + pl|> = |lp||* where p is half the sum of the positive roots. So the
filtration of G by the sets G, of (2.8) is equivalent to the filtration of G by
the sets R A ‘

By = {m € 8| mfw) < ).

Suppose that the riemannian metric on X comes from an invariant pos-
itive definite inner product on the Lie algebra g that extends the negative
of the Killing form. Then L(w) gives the action of the Laplacian A of X

5Trreducible unitary representations of compact connected Lie groups, more generally
irreducible finite dimensional complex representations of reductive Lie algebras, are pa-
rameterized by their “highest weights.” This is E. Cartan’s highest weight theory ([2],
[3]). As we will see in a moment in the formula for 7, (w), and as will be seen in §§3 and
4, the highest weight theory is extremely useful. There are a number of good expositions,
for example those of Dynkin [6, Appendix], Humphreys [12] and Varadarajan [18].
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DOROTHY I. WALLACE AND JOSEPH A. WOLF

on L%(X). (Here we use the sign such that A is a positive semidefinite
operator.) So the filtration of L2(X) given by (2.8), as an increasing union
of finite dimensional subspaces, is

L}(X) = Ur>0 E.(X) : (2.9)
where

— «\K _
E.(X) _EIIVHOV,,@(V,,) =Y mult(lx,wlx)zxeav,.

(2.10)

lvll<r

It is equivalent to the filtration of L%(X) by eigenvalues of A.

Note that the complete orthonormal set {¢;} in L2(X) of eigenfunctions
“of D, which we constructed in the proof of Proposition 2.1, is an increasing
union of orthonormal bases of the finite dimensional subspaces E,(X) C
L%(X) of (2.9) and (2.10). So we can fix one such complete orthonormal
set ® =J,,, ®r where

®, = {¢1, -+, ¢n,} is an orthonormal basis of E,(X) with D¢; = A;4;.
(2.11)
The finite dimensional spaces E,(X) are discretely observable in the
sense of [21] because the action of G on E.(X) is a subrepresentation of
the left regular representation of G on L%(G). More precisely,

Proposition 2.2 Fizzg € X. Then G has a countable subset S = Ur>0 Sy
with S, = {s1,---,8n,.} such that the function evaluations v; : [ —
f(s]'-'lzo), 1 £ j £ n,, form a basis of the linear dual space of E.(X).
IfU is an open subset of G that meets every connected component, then we

can find SCU.

Proof: Any point evaluation ¥(;)(f) = f(z) can be viewed as a linear
functional on E,(X). Let L* denote the dual of the action L of G on

E,(X). Then L*(g)(¥(s)) :  — f(g™"2).

Let U be an open subset of G that meets every topological compo-
nent. Define Fy, : G — C by Fy.(g) = f(¢9~'z). Since the summand
Ve ® V! of L%(G) consists of real analytic functions for each 7 € G, and
[ is constrained to E,(X), now Fj . is real analytic on G and thus de-
termined by its restriction to U. So {$(u-1z0)|E,(x) | ¥ € U} spans the
dual space of E-(X), and we have S, = {s1,--+,8n,} C U such that the
lp(a;lzo)lEr(x),l £ j £ n,, form a basis of E,(X).

If r < v then we can choose S}, = {sn,41,+,84,} C U so that
Yoo |Eo(X)LnEL (X)) Br < S 1y, s a basis of E.(X)' N Ey(X).

Then we may take S, = S, US; ,. Since {v € R | dim E,(X) < dim E,(X)
for all r < v} is a discrete set rg < ry < --- of non-negative real numbers
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that goes to infinity, this process of enlarging S, defines the countable set

S =J,5¢ S+ required by the proposition. ' |
Propositions 2.1 and 2.2 combine with (2.9) and (2.10) and (2.11) to

give a particular type of observability for the evolution equation (2.3).

Theorem 2.1 Let X be a homogeneous space G/K where G is a compact
Lie group. Let D be a closed densely defined G-invariant normal operator
on L*(X). Choose a complete orthonormal set ® =J,,, ®, in L*(X) as
in (2.11). Then the L%(X) solutions to the evolution equation (2.3) are just
the functions '

flz:t) =lim lejsanje-¢Ai¢j(z) (2.12)

for z € X and fort € R in the range such that Zj|cje“'\i|2 < oo. The
solution f(z :t) of the evolulion equation is observable at any time 1y 2
0 on any open subset of X that meets every topological component. In
other words, lel U be an open subset of G that meels every topological
component. Then there is an increasing union S = |J,, (S, C G with each
S ={s1,--+,8n,} CU such that each partial sum

@ity =3 o cjemNigi(2) (2.13)

is determined by the “observations” f,(sj'lzo 11g), 1 £ 7 < n,.

3 The Invariant Heat Equation

We specialize the results of Section 2 to the case where D is the Laplace-
Beltrami operator A with respect to a-G-invariant riemannian metric on
X = G/K, in a situation in which the spectrum of A has an explicit
description.
7 Let x denote the Cartan-Killing form on the Lie algebra g of the com-
pact Lie group G. Recall g = 3@ g’ where 3 is the center of g and g’ is the
derived algebra. Then «(3,8) = 0 and « is negative definite on g’. Suppose
that the G-invariant riemannian metric on X is induced by a bi-invariant
positive definite bilinear form # on g such that

B(,¢)=0and f=—-kong. 3.1)

In other words, X = G/K is a normal homogeneous space with a particular
normalization of riemannian metric; see [5, §1] and compare [13] and [14].

Let & = U(g) denote the universal enveloping algebra associated to
G. The Casimir element w € ® corresponding to the extension -8 of the
Cartan-Killing form, is given by

w=- ijﬁ}' where §; is any basis of gc and §; is the 4-dual basis.
(3.2)
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The point of the setup (3.1) and (3.2) is that
A is just the action of w on L?(X). (3.3)

In effect, one just has to check this at the base point zp = 1. K of G/K.
Let g = £+ p be the B-orthogonal decomposition. Choose a #-orthonormal
basis & of p and a f-orthonormal basis n; of & If f is C? at zo then
w(f)(zo) = = E2(f)(z0) = A(f)(z0), the latter equality because the &;
generate geodesics from zg.

Now we can describe the spectrum of A by means of highest weights
of representations of G, as in [1], at least when G is connected. But this
becomes slightly clumsy when G is not connected. Let #0 denote the unique
irreducible representation of the identity component G° that has highest
weight v. One has a finite set of highest weights v;, the images of v under
graph automorphisms of the Schlafli-Dynkin diagram of the Lie algebra
g, and the highest weights of the irreducible summands of the induced
representation Indg,(x0) are just the orbit G-v of v in ;. Every irreducible
representation of G with highest weight v is a summand of the induced
representation IndS,(72). To avoid this sort of nuisance, we now assume
that G is connected.

Fix a maximal torus T C G. The corresponding subalgebra t C g is
a Cartan subalgebra of g. Let ® denote the root system. Fix a positive
root system ®*. Let ¥ denote the corresponding system of simple roots.
Let A C /1t denote the lattice of integral weights, i.e. of those linear
functionals on t of the form dy, x € T. Now

A+={ueA|2(f;’—’¢'/’)>g0foran¢ew} | (3.4)

parameterizes G by highest weight. For every v € At we have the degree

(v+p,0)
ag®t  (p, a)

d(v) = deg(,) =] , (3.5)

the multiplicity

m(v) = mult(1k, 7, |k ) = multiplicity of 1x¢ as a summand of =, |k ,

(3.6)
and the eigenvalue
A¢ = (llv + ol = |lol|?)¢ for all ¢ € A(m,) 3.7)
where, as before, p is half the sum of the positive roots.
We modify (2.11) to fit our situation. Let {v1, ,---, v4(,),} be an
orthonormal basis of V, such that the subset {v}, ,---, Vn(v),v} of the
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dual basis of V; spans (V)X
A(m) = Ve, ® (V)X is

@, = {¢ijy | 1212 d¥), 1 2] < m(v)} (3-8)

. The corresponding orthonormal basis of

where
$iip(z) = dW)(vip , 7u(2)vj).
Decompose the set A of (3.4) according to (2.8) and (2.9) and (2.10):

At = UMA;‘ (3.9)

where

A;":{VGA|||VH<rand <$/) 1Z)))ZOfora.llt/,'E\Il}.

Thus (2.12) and (2.13) become
f(z:t)y=lim_ o fr(z: 1) (3.10)
with f.(z : t) given by
_ 2_ 11,0012
2ent¥ L gigan, rgsgmn v T i s mulz)es)
(3.11)

Now we can deal explicitly with the ordinary heat equation

A f(z:t)+ %f(:c ) =0 (3.12)

on X x R. Fix a complete orthonormal set ® = |J,¢2+®, in L?(X) as in
(3.8). Then @ is the increasing union of finite subsets

e =|J yens = (81180}, mr = Zumm(u)d(u) (3.13)
as in (2.11).

Theorem 3.1 Let X = G/K be a normal homogeneous riemannian man-
ifold with metric normalized as in (3.1). Fiz b € L?(X), say

bz)=)_ 40} <i<dw), 1) SmnyCiw B T (@0i0) - (3.14)

with 3 casleijn]? < 0o, Then the heat equation (3.12) has a unigue
solution with initial data b(z); it is given by (3.10) and (3.11). In fact (3.10)
converges 1o a real analytic function f(z :t) on X x {t eR |t > 0}. This
solution f(z : t) to the heat equation is observable at any timeto 2 0 on any
neighborhood of an arbitrary point zo € X: If U is any open subset of G
there is an increasing set S = J,5oSr C G with each S = {s1,--,8,,} CU
such that each partial sum f.(z : t), as in (3.11), is determined by the
observations f,(s}‘lzo itg), 1S 7 < n,.
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Proof: For convergence of (3.10) to a real analytic function f(z : t) on
X x {t € R | & > 0} see any discussion of the heat equation on a compact
manifold, for example [23, Ch. XIV, §2] or [8, Ch. 1, §6]. Now our
assertions are a special case of Theorem 2.1. a

4 Symmetric Space Theory

We now specialize the results of Section 2 to the case where X = G/K is
a riemannian symmetric space. For the same reasons as in §3, we assume
that the riemannian metric is normalized as in (3.1).

We recall some standard facts about symmetric spaces; see [11]. The
algebra D(G/ K) of G-invariant differential operators on X is commutative.
If 7 € G recall the w-isotypic subspace A(r) C L3(G) of (2.7). There are
two possibilities: either the multiplicity m(x) of 1x in 7|k is zero and
A(m) =0, or m(7) = 1 and A(7) = V; as G-module. In the latter case 7 is
a class 1 representation of G, the algebra D(G/K) acts on A(7) by scalars,
and the corresponding associative algebra homomorphism x» : D(G/K) —
C specifies A(w).

Lemma 4.1 If D € D(G/K), with domain C*(G/K), then D has unique
closure D as a densely defined linear operator on L?(G/K), and D is a
normal operator on L%(X).

Proof: Observe that A(7*) = { f | f € A(n)}. Compute

/ f(9) D R(@)d(eK) / Df(9)h(@)d(sK)
G G

/ (DR AK)
/ I (Dh()d(aK)

for D € D(G/K) and f,h € A(w). This shows xx(D) = xx+(D) = x«(D*).
It follows that D* is a well defined element of D(G/K). Note D and D*
commute on each A(7). So their closures, from the dense domain of finite
linear combinations of functions in the A(x), must be given by D = D*
and (D)* = D* = D*. These are normal operators on L2(X). o

From now on, we will identify any D € D(G/K) with its L?(G/K)-
closure D. Then Theorem 2.1 applies directly to every D € DP(G/K). A
little bit of symmetric space theory makes this rather explicit.

The symmetry of X = G/K at the base point 1. K = z¢ defines an
involutive automorphism @ of the Lie algebra g. Decompose g = €4 p, sum
of the +1-eigenspaces of 6. Here t is the Lie algebra of K. Choose

a: maximal abelian subspace of p. (4.1)
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It is unique up to conjugation by an element of K, and a extends uniquely
to
t =t + a: Cartan subalgebra of g (4.2)

where { = tNtis a Cartan subalgebra of the centralizer of a in &.
The root system ® = ®(i¢c,gc) defines the restricted root system

®, = Pa(ac,8c) = {a|a | @ € P and o, # 0}. (4.3)
Every choice of positive restricted root system ®} is of the form
®t = {alo | a € ®* and o|, # 0} (4.4)

for an appropriate choice of positive root system ®+ = &+ (tc,gc). We fix
one such choice of positive restricted root system (4.5).
Consider the lattice

Ao = {uE\/—la‘ | 29 ¢ 7 or a11¢eg} (4.5)
« - {(%Y)
and the subset of dominant linear functionals
Aj:{ueA %) > 0 tor al ew} (46
1o 2 v (49

A famous theorem of Cartan [4], made precise by Helgason [11], says that
A} parameterizes the class 1 representations of G in case G is simply
connected and K is connected. See [20, Ch. III] for a concise proof. We
formulate the result to take account of the possibility that G may be non-
simply connected:

Theorem 4.1 (Cartan-Helgason Theorem) Suppose that G and K are
connected. Then the irreducible represeniation m, of G, with highest weight
v relative to &%, is of class 1 if and only if (i) v|¢, = 0 and (ii) v, € A}.

Now we proceed more or less as in §3. Denote
A;",, ={veAl||lvli<r}. (4.7

Let x(v) denote the associative algebra homomorphism x«, : P(G/K) — C
which gives the joint eigenvalue of D(G/K) on A(x). The degree of 7, is
given by the polynomial

- _ (v+p,a)
d(v) = deg(w,) = Ha@HW' (4.8)
Denote
vy : a choice of 7,(K)-fixed unit vector in V. 4.9
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It is unique up to multiplication by a complex number of absolute value 1.

Choose
{vi,y ,-++, v4),v} : any orthonormal basis of V4, . (4.10)

Then the corresponding space A(w,) of functions on G/K has orthonormal
basis

®, = {¢i, |1 £iZ<d(v)} where ¢;,(z) =d(¥)(vip , T(z)vy). (4.11)
Thus (3.10) and (3.11) become
fz:t)=lim_ oo fr(z: 1) (4.12)
with f.(z : t) given by
Eue/\t,rd(y)zl§i§d(v)ci’"e_tX(y)<vi’" 7(@)00)- (4.13)

Now we deal explicitly with the evolution equation
0
D,f(z:t)+§f(x:t)=0, d € D(G/K) (4.14)

on G/K x R. We have the complete orthonormal set ® = |J,2+®» in
L%(G/K). 1t is the increasing union of finite subsets

®, = UveA'.”,.q)y = {¢l’ v 'a¢nr}’ n, = ZueAt,d(V) (415)

as in (3.13). Now the analog of Theorem 3.1 is

Theorem 4.2 Let X = G/K be a compact riemannian symmelric space
with metric normalized as in (3.1). Fir b € L?(X), say

b(z) = EueAtd(V)Zlgigd(u)ci’" (vip , m(z)vy) (4.16)

with 37, e a+lciw|? < co. Then the evolution equation (4.14) has a unique
solution with initial data b(z); it is given by (4.12) and (4.13). In fact
(4.12)converges to a function f(-:t) € L*(X) for everyt € R in the range
Js,0 C R given by ‘

-t 2
ZyeAtzlgfga(u)lc"”e X < co. (4.17)

This solution f(z :t) to (4.14) is observable at any time t € Jy,p on any
neighborhood of an arbitrary point xo € X: If U is any open subset of G
there is an increasing set S = | ), oSy C G witheach S = {s1,---,8,,} CU
such that each partial sum f.(z : t), as in (4.13), is determined by the
observations f,(s;lzo :tp), 155 S n,.

This is a strong form of discrete observability for invariant evolution
equations on compact riemannian symmetric spaces.
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