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To Jacques Tits on his 60th birthday

SECTION 1. INTRODUCTION.

Let G be a semisimple Lie group that has discrete series representations. If W is a
complex flag manifold of the complexification of G then G has only finitely many orbits on
W, so it has open orbits. If Y is an open orbit, s is the complex dimension of its maximal
compact subvarieties, and V — Y is an appropriate homogeneous holomorphic Fréchet
vector bundle, we see (Theorem 6.5 below) that the natural action of G on the Dolbeault
cohomology H*(Y; O(V)) is a discrete series representation specified explicitly by certain
data defining V — Y, and we see that every discrete series representation of G arises this
way. The result is particularly interesting (Theorem 5.5 below) when G acts transitively
on & bounded symmetric domain D and W is the compact hermitian symmetric dual to
D. There it exhibits every discrete series representation of G in a manner quite similar to
the construction of the holomorphic discrete series.

We then discuss the question of using this geometric setting to construct the unitary
structure of the discrete series representations in question.

Since the proofs are no more difficult than for Harish-Chandra class ({4], [5], [8]) I work
with the class [16) of “general semisimple groups.” These groups and their relative discrete
series representations are described in §2. The connection with Dolbeault cohomology is
recalled from [10] and [13] in §3. In §4 I review the orbit structure of hermitian symmetric
spaces, using it in §5 for explicit realizations of relative discrete series representations in
a setting analogous to that of the holomorphic discrete series. In §6 we see that this
goes through essentially unchanged in the general setting of open orbits on complex flag
manifolds. Then in §7 I try to indicate the connection with indefinite metric quantisation
methods ([9)], (18], [19]) for unitarizing representations of semisimple Lie groupe.
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SECTION 2. DISCRETE SERIES FOR GENERAL SEMISIMPLE GROUPS,

In this Section we specify the class of Lic groups with which we work and recall the
description of its (relative) discrete series representations. See [16] and [7] for details.

First recall the notion of relative discrete series. Let G be a unimodular locally compact
group, Z a closed normal abelian subgroup. We write G and Z for their unitary duals. Z
has left regular representation £z = | z¢ d(, so the left regular representation of G is

@.1) to = Indf (1) = nd3(tz) = / , 150 .

Solg=[3 Ind$(¢a ¢) d¢ where g ¢ = IndF(¢). Here ¢g ¢ is the left regular representa-
tion of G on the Hilbert space

(22) L*(G/2,()={f:G = C| f(g2) =((2)"' f(g) and / oz IF(9)f* d(92) < oo}.

Now L}(G) = [ L*(G/Z,() d{ and G is the union of subsets
(2.3) Ge={[x] € G | ¢ is a subrepresentation of x|z}.

We say that a class [x] € G is ¢-discrete if x is eqmvnlent to a subrepresentation of £g .
All such classes [r] form the (-discrete series G.aiec of G. The relative (to Z) discrete
series of G is

(2() adhc = UCEQ 6@.,.‘.

IonscentmlmGtheueveryclus[r]eGspectﬁeaachuucta(eZby xjzisa
multiple of ¢. In this cue,G is the disjoint union of the G(

When Z is central in G and { € Z, one knows (see (18], §2) that the following are
equivalent.

(2.5a) x is a (-discrete series representation of G,
(2.5b) every coefficient f, o(z) = (u,x(z)v) belongs to L’(G/Z ¢), and
(2.5¢) for some nonzero u,v € Hy, the coefficient f, , € L*(G/Z,().

Given (2.5) one has a number deg(x) > 0 such that the L?(G/Z,()-inner product of
coefficients of x is given by

(2.6a) (fawsfog) = (u,l)m for s,t,u,v€e H,.

1
deg(x)
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Furthermore, if x' is another (-discrete series representation of G, and is not equivalent to
x, then
(2.6b) (fu,0s furw) =0foru,v € Hy and u',v' € He.

These orthogonality relations come out of convolution formulae. With the usual

2.7 [ * h(z) = [la,()RI(z) = / oz FWh(y~'z) d(y2)
we have
(2.8a) Jao* fa,l =

deg(u-)("’t)f"' for a,t,u,ve H,

for [x) € G-disc, and

(2.8b) Jup* fat,p = Oforu,v € He and v',v' € Hy

whenever [x] # [*'] in G.disc-

If G is a Lie group we write G° for its identity component, go for its Lie algebra, and g
for the complexified Lie algebra go®gC. Here we will work with the class of reductive Lie
groups G such that

(292) G has a normal abelian subgroup Z which centralizes the identity component G°
of G and such that Z - G° has finite index in G, and

(2.9b) if z € G then conjugation Ad(z) is an inner automorphism on the complexified Lie
algebra g.

This is a convenient class in which to do representation theory and harmonic analysis.

It includes all connected semisimple Lie groups, and if a reductive Lie group G satisfies

(2.9) so does the Levi component of every cuspidal parabalic subgroup. We will refer to

reductive Lie groups G that satisfy (2.9) as general semisimple groups.

From now on, G is a general semisimple group. Without loes of generality we expand 2
to Z - Zge where Zge is the center of G°. In other words we assume that Z contains Zge.

If [x] € G then O, denotes its distribution character and y is its infinitesimal character.
The condition (2.9b) ensures that the latter exists.

Let Zo(G®) denote the centralizer of G° in G. Denote G' = Zg(G®) - G°. Many
constructions for a general semisimple group G go from G® to Gt to G.

The analog of maximal compact subgroup for G? is just the full inverse image K® of a
maximal compact subgroup in the connected linear semisimple Lie group G°/Zqs. The
analog of maximal compact subgroup for Gt is just Kt = Z5(G®)- K®, which in fact is the
full inverse image of 8 maximal compact subgroup in G°/Zge = G'/Zg(G®). The analog
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of & maximal compact subgroup K for G can be equivalently defined as the G-normalizer
of K°, the G-normalizer of K1, or the full inverse image of 8 maximal compact subgroup
in G/Z or in G/2(G®). We refer to these groups K, K' and K respectively as maximal
compactly embedded subgroups of G, Gt and G°. If Z is compact, they are just the
maximal compact subgroups.

By Cartan involution of G we mean an involutive automorphism whose fixed point set
K = G’ is a maximal compactly embedded subgroup. All the standard results hold: every
maximal compactly embedded subgroup of G is the fixed point set of a unique Cartan
involution, and every Cartan involution of go extends uniquely to a Cartan involution of
G. See [16).

Fix a Cartan involution 8 of G and let K = G’. Every Cartan subgroup of G is Ad(G®)-
conjugate to a §-stable Cartan subgroup. In particular, G has compactly embedded Cartan
subgroups if and only if K contains a Cartan subgroup of G.

G has relative discrete series representations if and only if it has a compactly embedded
Cartan subgroup. Suppose that G has such Cartan subgroups, and fix a Cartan subgroup
T C K of G. Let & = (g, t) be the root system, $* = &*(g, t) a choice of positive root
system, and let p = 13" 4+ @, half the trace of ad(t) on 3" ,cq+ Ga-

If x is a relative discrete series representation of G and O, is its distribution character,
then the equivalence class of x is determined by the restriction of O, to T'N G’ where G’
is the regular set. So the relative discrete series of G is parameterized by parameterization
of those restrictions. Here we follow (3], {18] and [4].

Let G' = Zg(G®)G® coincides with TG®. The Weyl group Wt = W(G!,T) coincides
with W° = W(G®,T®) and is a normal subgroup of W = W(G, T).

Let x € T. Since T is commutative, x has differential dx(€) = A(¢)I where A € it} and
where [ is the identity on the representation space of x. Suppose that A + p is regular,
i.e., that (A +p,a) # 0 for all « € ®. Then there are unique

(2.10a) [x} € (&3)<.....¢ and [#}] = [x]zo(cv) ® 73] € (G Ye-dises l2g0 = €240
whoee distribution characters satisfy

o 8i w(d+p)
(2.10b) Ors(2) = i% and ©(22) = x(2)8x3(2)

for z € Zg(G®) and z € T° N G'. These representations have infinitesimal character of
Harish-Chandra parameter \.

The same datum x specifies a relative discrete series representation
(2.11a) 7y = IndG,(n}) € G¢.ainc
characterized by the fact that its distribution character

. s - -1
(2.11b) O, is supported in G' , and there Oy, = Y gige Ot "%
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where {1,...,7-} is any system of coset representatives of W modulo W1,

Every relative discrete series representation of G is equivalent to a representation r, as
just described, and [r,] = [ry] in G if and only if ' = x - w™! for some w € W.

SECTION 3. DISCRETE SERIES AND DOLBEAULT COHOMOLOGY.

We fix a Cartan subgroup T C K of G. The root system ® = $(g,t) decomposes as
the disjoint union of the compact roots & = (L, t) = {a € ¢ : go C t} and the
noncompact roots $g/x = ¢\ k. A choice ¥+ = d*(g, t) of positive root system
defines a G-invariant complex manifold structure on G/T such that }_ .4+ 8a represents
the holomorphic tangent space.

Fix a choice of ®*. Write &} for &+ N &x and &3 for % N &g k.
Let x € T. Then dx = I for some integral A € stj where I is the identity transformation

of the representation space E,. When X is nonsingular, we have the relative discrete series
representation 7.

The usual geometric realization of 7, is on a space of square integrable harmonic forms.
Let

(3.1) Ex — G/T: hermitian homogeneous holomorphic vector bundle associated to x.
and )
(3.2) O: Kodaira-Hodge-Laplace operator 39" + 3" on E,,.
Then we have spaces
(3.3) HY(G/T;E,) : harmonic L? E,-valued (0, g)-forms on G/T
on which G acts naturally and the natural action of G is a unitary representation. The
basic fact here is the positive solution to the Kostant-Langlands Conjecture:
3.4. Tueorem ([11], [12], [16]). I A + p is singular then every H¢(G/T;E,) = 0. If
A + p is regular let , '

gA+p) = {a € B : (A +p,0) <O)| + |{B € 84, : (A+p,8) > O}).

Then H(G/T;E,) = 0 for ¢ # ¢(A + p), and G acts irreducibly on H**+#(G/T;E,) by -

the relative discrete series representation x.

An important variation on the Kostant-Langlands Conjecture result — which in fact
preceded its solution — is the Dolbeault cohomology realization [10]. Note that X/T is a
maximal compact complex submanifold of G/T and denote s = dim¢ K/T. Whenever

(3.5) A + p is antidominant: {A 4 p,7) < 0 for all y € &+
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we have s = ¢(\ + p). This is the case where the bundle E, — G/T is negative.

If » is a relative discrete series representation of G, we can choose the positive root
mtemi*uoth:trar,whm:\-dxumchthd A 4 p is antidominant. Thus there
is Do restriction on wy in

3.6. THEOREM ([10}], [13]). Suppose that ) + p is antidominant, so s = g(A + p). Then
HYG/T;O0(Ey)) =0 for ¢ # s. H*(G/T; O(E,)) has a natural Fréchet space structure,
G acts an H*(G/T; O(E,)) by » continuous representation, and this rcpmsentut:on is
infinitesimally equivalent to x.

This is the result that we will transport to the setting of open orbits and hermitian
- symmetric spaces.

SECTION 4. ORBIT STRUCTURE OF HERMITIAN SYMMETRIC SPACES.

Let G be a general semisimple Lie group, @ a Cartan involution, and K = G* a maximal
compactly embedded subgroup. Suppose that the riemannian symmetric space M® =
G*/K?® has a G®-invariant complex structure, i.e., is an hermitian symmetric space. Then g
is a 8-stable direct sum of simple ideals g; and, using (2.9b), M° = [] M? global product of
irreducible hermitian symmetric spaces, where M? = G?/K?. The dual oompact hermitian
symmetric space also decomposes, W & [[W; mth W; of the form Int(g;)/Q; for an
appropriate parabolic subgroup Q; C Int(g;) and where M? is realized as a convex open
GY%-orbit, the orbit of the identity coset in W;. Thus the complex flag manifold W, the
bounded symmetric domain M?° sitting in W as a convex open G°-orbit, more generally all
G®-orbits on W, and the representations we will construct for G, all break up as products.

We can view W as the flag variety of all parabolic subalgebras of g that are Int(g)-
conjugate to q. In view of (2.9b), G acts on W by conjugation. Let M = G - g, open
G-orbit in W with M® = G° - q as one of its topological components. Also by (2.9b), no
element of G can permute the W; nontrivially.

Now we will suppose that the Lie group G is simple. Then hermitian symmetric space
M C W is irreducible. So the identity component K® = K N G® has 1-dimensional center
Zxes. Let Z34 denote the identity component of Zxs. Either
(4.1s) K is the centralizer Zg(2Z%.) of Z%s in G and M is connected
or
(4.1b) Za(Z%) has index 2 in K and M has two topological components.

See Lemma 4.8 below. Then we have
T C K : Cartan subgroup of G and #* : positive root system
suchthat q=t4p. where p_= Z”“ 9-p

aIx

(4.2)
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In other words ([1], [17], [18]) the simple root system has form £ = {09, -+ ,0¢} where
0o is the only noncompact simple root and every root has form a = ¥ i, nioi with
ne=0o0r 1. Then

(43)  et=t4+3Y  Ga b=

with p; representing the holomorphic tangent space of W.

Every # € ®g/x determines a three dimensional simple (TDS) subalgebra g[f] C g,
isomorphic to si(2;C) under

e (O 00 hae (10

AT\ 0P 1 00T \0 1)
We have g = ¢+ p under 8, where p = p_ + p, and the corresponding go = ¥ + po. Then
gu = o + /—1pq is the compact real form of g, and

I mdp+=p-=z

llo--H

Po has R-basis: the 25,0 =g+ e_g and ypo = V=1(ep —e-p), B € &%/

4.4
(44 Vv=1po has R-basis: the 29 = vV~1(eg + e_g) and yp = —(es —e—p), f € 03/,‘

Recall that roots §' and 8" are strongly orthogonal if neither of 8’ + " is a root.
Kostant’s downward cascade construction for & maximal set W = {¢y,--- , v} of strongly
orthogonal noncompact positive roots is: ¢, is the maximal root, and t;,, ia maximal

among the noncompact positive roots orthogonal to {¢,-- ,¥;}. Here the zy 0, ¢ € ¥,
span the ay of an Iwasawa decomposition G = KAN. . .

For every subset ' C ¥ we have the partial Cayley transforms
n
(4.50) er = [I pev where ey = exp(vy) € Int(s).
Let zo denote the identity coset 1-q € W and define
(4.5b) zr,a = crci(zo) for T,A C ¥.
Then ([14], [15])

4.6. THEOREM. The G®-orbits on W are just the G*(zr ) where I' and A are disjoint
subsets of ¥. An orbit G*(zyr: a) is in the closure ofG“(zr,A) if and only if the cardinalities
|A’\ '] S |A\T} and [AUT] £ |A' UT|. In particular
() G%(zr,a) = G(zr,a) if and only if |A'\ I'| = |A \ T and [A UT| = |A' U TY),

(i) The number of G®-orbits on W is §(€+ 1)(¢ + 2),

(iii) G°(zr,a) is open in W if and only i T is empty, so there are ¢ + 1 open arbits, and

(iv) the boundary of an open orbit G%(z¢ 4 ) is the union of the arbits G%(zr+ a+) such

that A'\I'CA C A'UT".

43
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The Bergman-Shilov boundary of M° in W is G(ze 4); it is in the closure of every orbit
and is the unique closed orbit.

Now let us look at the G-orbit structure, extending (4.1). Recall Gt = Z5(G®)-G° and
Kt = Zg(G®) - K° = K NG from §2. Note that Zg(G®) acts trivially on W because it
acts trivially on g, so

(4.7) G® and G have the same orbitson W: G°(zr.a) = Gl(zr,a) for aliT,A C V.
On the other hand,

4.8. LEMMA. Kt = 2g(Z%.), the centralizer of Z%, in G, and either G' = G or G! has
index 2 in G.

PROOF. For the first assertion it suffices to prove Zg(Z2%s) C G, because Zg(Z%.)
meets G° in K° . Let k € Z2g(Z2%.). We have k, € K° such that kk; normalizes 7° and
preserves &7;. Since kk, centralizes 2, it also preserves &7, /- Now kk; centralizes T°, 80
kky € T C T-G° =G'. Ask, € K° it follows that k € G!. We have proved Kt = Zg(Z%,).
It follows that Gt = Zx(Z%.)-G°. But Z%, is a connected 1-dimensional group normal in
K, 8o either it is central in K or its K-centralizer has index 2 in K. So, finally, G* either
is all of G or is a subgroup of index 2 in G. This completes the proof. QED

4.9. THEOREM. If G = G' then the G-orbits on W are just the G®-orbits, G(zra) =
G*(zr ), as given in Theorem 4.6. If G # G' then G has index 2 in G and the G-orbits
on W are the G%(zr a)U Go(zl‘,'\(l‘uA)) where I', A C ¥ are disjoint.

PROOF. The case G = G is (4.7). Now assume G # G'. For the proof we may divide
out G by the kernel Zg(G®) of its action on W. In other words, we assume G C Int(g).

In view of Lemma 4.8, there is an element k¢ € K that normalizes t and conjugates
any element of the center of ¢ to its negative. As is already implicit in (4.1), G(zo) =
G®(x0) UG®(kozo). The orbit G®(kgzo) must be of the form G°(zr,4) for some T',A C ¥.
The isotropy subgroup of G° at zr 4 is conjugate to the isotropy subgroup at kgzg, thus
compact. It follows ([8], [20], (15]) that G®(zr,a) = G°(z¢,¢) and that the bounded
symmetric domain M is of tube type.

Since M is of tube type, the square c} of the Cayley transform normalizes G° in Int(g)
and k;'c} centralizes Z%,. The subgroup G C Int(g) has two components, and by
the same reasoning the subgroup (G U &4 G) C Int(g) has two components. Thus G =
GC'UGG® =G UGS

In view of Theorem 4.6 the G-orbits on W are of the form G%zr,a) U G°(c}:r,g .
Suppoee that I' and A are disjoint. Then cjzr,a = chc}chy(rya)¥o- But [20] ¢4, cf € K°.
Thus G°(c}2r,a) = G®(2r,e\(rua)). This completes the proof of the Theorem. QED

!
!
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4.10. COROLLARY. If the bounded symmetric domain M® is not of tube type, then every
G-orbit on W is connected.

4.11. COROLLARY. Suppose that the bounded symmetric domain M® is of tube type. If
G = G! then every G-orbit on W is connected. Now suppose G # G!. Then an orbit
G(zr,a) is connected if and only if T = § and |A| = }|¥|.

When G is not necessarily simple, we obtain the G-orbit structure more or less directly
from Theorem 4.9 and its Corollaries, as follows. G acts on each of the flag manifolds W;
by conjugation, inducing a group G; C Int(g;) of transformations of W;. Theorem 4.9
and its Corollaries apply directly to give the G;-orbit structure of W;. Let G denote the
subgroup of Int(g) induced by G, as in the proof of Theorem 4.9. Then @ is a subgroup
of [] G; and its orbits sit accordingly in W =[] W;.

SECTION 5. REALIZATION OF THE DISCRETE SERIES: HERMITIAN CASE.

Retain the setup of §4, in particular the Cartan subgroup T C K of G and the positive
root system &t = &+(g,t) of (4.2). Since T is compactly embedded we have relative
discrete series representations of G.

Let X denote the flag variety of all Borel subalgebras of g. The open G-orbits on X
are the orbits G - b such that b N gy is the Cartan subalgebra of gg corresponding to a
compactly embedded Cartan subgroup of G; see [14]. Any such Cartan subgroup of G is
G*-conjugate to T. Thus ‘

5.1. LEMMA. The open G-orbits on X are the G- b where b is a Borel subalgebra of g of
the form

b(27) = t+ Locet 0-a
where &} is a positive root system for (g, t).

Let x be a relative discrete series representation of G. One has a positive root system
&} = ®}(g,t) such that x = xy where A = dx and A + p, is antidominant. Here p,
denotes half the sum of the elements of 3}. Denote

(5.2) by = b(#}) : Borel subalgebra t+ Y g-acfg

acé}

Then we have the open orbit G- b, = G/T in X.
Consider the G-equivariant holomorphic ibration

(5.3) $:X —+ W defined by g - b(®*) =+ g« ¢ for all g € Int(g).
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As ¢: X — W is open and there are only finitely many G-orbits on X (see [14]), the open
G-orbits in W are just the ¢(G - b(®7)) where &} ranges over the set of all positive root
systems for (g, t). Thus we have holomorphic fibrations

(54n) ¢:G by G qy = G(z9,4) with qxoftheformc’A-q= z4,4 for some A C ¥
In view of the results of §4, the fibration can be expressed in terms of coset spaces of G:

(5.4b) ¢:G/T = G/Ka, fibre Ka/T, with 85 = & - ¢.

Here K3 is determined by ta, which is specified by (5.4b) because (see [30]) c2 - ¢ is the
complexification of its intersection with go. The group Ka = Zg(G®)- K3 unless G! # G
and |A] = }|¥[; in that case Zg(G®) - K3 has index 2 in Ka. See Corollary 4.11 above.

Note that the total space and the typical fibre of (5.4) are open orbits in flag varieties
of Borel subalgebras. That is an important ingredient in the proof of

5.5. THEOREM. Let sp = dimc(K/(K N Ka)), dimension of the maximal compact
subvariety of G/Ka = G(zy,); and let ta = dime(K N K)/T, dimension of the
maximal compact subvariety of Ka/T. Let V, — G(zg4) denote the homogeneous
holomorphic Fréchet bundle associated to the relative discrete series Fréchet representa-
tion ny of Ka on V,, = H'(Ka/T;O(E|xasr)). Then HY(G/Ka;O(V,)) = 0 for
g # s5. H**(G/Ka;O(V,,)) has a natural Fréchet structure, the natural action of G on
H*2(G/Ka;O(V,,)) is a continuous representation, and this representation is infinitesi-
mally equivalent to x,.

PROOF. The vanishing statement in Theorem 3.6 says that H*(Ka /T; O(E, |, /r)) =0
for v # ta. So the Leray spectral sequence of G/T — G/K, collapses at E,,

E3® = HY(G/Ka,OH*(Ka/T; O(Ex|Ko/T1)))) and dj : E}** — Eytae-t
and
HY(G/T;O(Ey)) = Xy ymw H*(G/Ka,OMH*(Ka/T; O(Eylk,/1))))-
Again by the vanishing statement in Theorem 3.6, the left side vanishes for w # 34+ 14
and the right side vanishes for v 3 ta. So the result of the spectral sequence is
H*+'4(G/T; O(E,)) = H*4(G/Ka,O(H's(Ka /T; OEx|xa/T))))-
Appealing to Theorem 3.6 once more, we see that this is the content of our assertion. QED
Theorem 5.5 exhibits any relative discrete series representation 7, of G in way that
is reminiscent of Harish-Chandra’s construction [2] of the holomorphic discrete series.

Interpret the latter as holomorphic sections of negative homogeneous vector bundles over
M = G/Ky, where s5 = 0, to see that it is the case A = # of Theorem 5.5.
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SECTION 6. REALIZATION OF THE DISCRETE SERIES: GENERAL CASE.

G is a general semisimple Lie group, # is a Cartan involution of G, and K = G’ a
maximal compactly embedded subgroup. We assume that

(6.1) G has a Cartan subgroup T C K, i.e. has relative discrete series representations.
Fix a positive root system $+ = $*(g,t) and denote

(6.2) b: Borel subalgebra t + Z. P-aofg.

o+
So G - b 2 G/T is an open G-orbit in the flag variety X of Borel subalgebras of g.

Let q be a parabolic subalgebra of g. Then [14] we may replace q by an Int(g)-conjugate
and assume

(6.3a) tC b C qand qNgp = [p where { is a Levi component of q.

In particular we have a G-equivariant Int(g)-equivariant holomorphic fibration

(6.3b) " $:X — W defined by g- b+ g - q for all g € Int(g).

The double coset space W(t, t)\W (g, t)/W((,t) of Weyl groups parameterizes the open
G-orbits on W. So the open orbits don’t have as clean a parameterization in the general
case as in the hermitian case. Still, ¢ : X — W is open and the number of G-orbits is
finite, so the open G-orbits in W are the ¢-images of the open G-orbits in X. For example,
the open orbit G- q 2 G/L is just ¢(G - q) & G/T. Thus, we have holomorphic fibrations
of open G-orbits in X as in (5.4),

(6.40) $:G-b, — G- qy for all x € T with x, € Gajc.

Here we choose w, € W(g,t) such that w, : b(®+) = b, and define q, = w, - q. Since
t C qy, the Levi component w, - [ of q, is the complexification if its intersection with go.
It follows that (6.4a) has coset space expression

(6.4b) ¢:G/T = G/Ly, fibre Ly/T, where |y m w, - I,

Here L} is determined by Iy, which is specified by (6.4b) because (sce [20]) Iy is the
complexification of its intersection with go. The group L, is the normalizer in G of the
nilradical of q, so its components are just the cosets gL where ¢ € G normalizes T and
represents an element of the Wey! group that preserves tﬁesetofrootsfor the root spaces
contained in the nilradical of q. See [14] for the techniques to make this explicit.

Now we have the general result corresponding to Theorem 5.5:
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6.5. THEOREM. Let s, = dimc(K/(K N L), dimension of the maximal compact sub-
varieties of G/L,; and let t, = dime(K N L,)/T, dimension of the maximal compact
subvarieties of L, /T Let V,, — G - qy denote the homogeneous holomorphic Fréchet vec-
tor bundle associated to the representation ny of Ly on Vy, = H'x(Ly/T; O(Ey|. /1))
Then H*(G/L,; O(V,,)) vanishes for ¢ # s,. H*x(G/L,;O(V,,)) has a natural Fréchet
space structure, the natural action of G on H*x(G/L,; O(V,, )} is a continuous represen-
tation, and this representation is infinitesimally equivalent to x,.

The proof of Theorem 6.5 is the same as that of Theorem 5.5. This general result does
not have the geometric interest of the hermitian case because the setting is not as natural.
There is, however, a special case (described just below) that at least reflects the structure
of the symmetric space G/K. And there is some reason to expect that Theorem 6.5 is
of analytic interest as the general setting for constructions in indefinite metric geometric
quantization [9].

Suppoee that the Lie group G is simple but that the irreducible symmetric space M°
is not necessarily hermitian. Then ([1], [17], [15]) there is a simple root system & =
{00, ,0,} where oy is the only noncompact simple root. The maximal root is of the
form p = 00 + Y2,5igy N0 f M® is hermitian, u = 20 + Tigige nioi if M® is not
hermitian. Write a for a root 3,<;<, 9a. We have decompositions

l=t+2~_° Oay and g = [+t wheret=3" _ ga, and

(6.6)
!=l+!wbere‘=z:..-ﬂ Ga, and g=t+p wherep =

no=mtl fa-

Of course ¢ = {, p = tand ¢ = 0 in the hermitian case. In any case, these give us parabolic

subalgebras

- dx =4+ s_. Ctwheres; = Z...-*z 0o , and
q=1+rt_C g where t*==l*+z..-:u o -

If we choose &% to be the positive root system corresponding to I, and use the parabolic

q of (6.7) to define the flag variety W, then the setting of Theorem 6.5 is related to the

geometry of the riemannian symmetric space G/K.

SECTION 7. INDEFINITE METRIC QUANTIZATION.

Theorems 5.5 and 6.5 provide an hermitian symmetric space version and a general flag
manifold version of Theorem 3.6, the Dolbeault cohomology realization of the relative
discrete series. Now we look at the poesibility of proving an hermitian symmetric space
version or a general flag manifold version of the L? cohomology realization, corresponding
to Theorem 3.4.

BRSSP -
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Consider an open orbit Y = G- q5 = G/L as in Theorem 6.5. We want to study
the square integrable V,-valued harmonic differential forms on G/L where 9 is a unitary
representation of L, where V, is the representation space, and where V, — G/L is the
associated holomorphic homogeneous hermitian vector bundle.

There are some serious problems here, solved only under restrictive additional conditions;
see [9], [18] and {18). The notion of square integrability is clear for sections of V,, but one
must clarify it for V,-valued differential forms of higher degree. There are several obvious
candidates for the notion of harmonic, and one must decide on the appropriate one. Then
there are nondegeneracy and signature questions for the global inner product induced on
spaces of square integrable harmonic V,-valued forms. Finally, the relation to Dolbeault
cohomology is not obvious.

The problem of square integrability can be settled as in [9, §7]. The flag variety W in
which Y sits as an open G-orbit has a positive definite hermitian metric that is invariant
under the action of a compact real form of Int(g). This auxiliary positive definite hermitian
metric is not G-invariant in general, but one can see that G does not distort it too much.
Specifically, the argument of {9, Lemma 7.3] holds in our somewhat more general case and
proves

7.1. LEMMA. If g € G then its tangent space maps on Y are uniformly bounded with
respect to the auxiliary positive definite hermitian metric, with bound continuous in g.

Let w be a measurable V,-valued differential form on Y 2 G/L. Suppose that w is square
integrable in the sense that the pointwise norm, relative to the Hilbert space structure of
V, and the auxiliary positive definite hermitian metric on Y, is square integrable. Then
its image by g € G has the same property, by the uniformity of the bound of Lemma 7.1.
So Lemma 7.1 can be reformulated as

7.2. LEMMA. Let puy be the measure on Y defined by the auxiliary positive definite
hermitian metric. Given integers p,q 2 0, the natural action of G on bundle-valued (p, ¢)-
forms induces a bounded representation of G on the Hilbert space L;' ")(G/L;V,; py) of
V,-valued (p,¢)-forms on Y that aresquare integrable with respect to py.

The notion of “harmonic” is a little more subtle. This time we use the G-invariant
indefinite-hermitian metric on Y and the corresponding Kodaira-Hodge-Laplace operator
0=35 +33on V,-valued differential forms. Thus 3" is adjoint to J relative to the
G-invariant metric, and (J is G-invariant. In order of increasing severity, several candidates
for harmonicity of a V,-valued form w are

O"(w) = 0 for some integer n > 0 (generalized weakly harmonic)
(7.3) Ow)=0 (weakly barmonic)
S(w)=0and ' (w)=0 (strongly harmonic)
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Since our priority is construction of irreducible representations, we look for strongly har-
monic V,-valued forms. So we look to

(1.4) HP9(G/L;V,) : strongly harmonic L’(GkL’“Y) Vy-valued (p, g)-forms on G/L,
ig’") : representation of G on ﬂ(’")(G/Lﬂ/q)'

Consider the map from harmonic forme to Dolbeault cohomology,
(7.5) é: HON(G/L;V,) = H®9(G/L; O(V,)) given by w — [w].
In [8] we proved, in certain circumatances, that

(7.6a) ¢ maps the subspace HY(G/L; V) x) of K-finite L? harmonic (0, s)-forms onto the
subspace H*(G/L; O(V4))(x) of K-finite Dolbeault cohomology classes,

(7.6b) the kerne! of ¢ there is the kernel of the global inner product on ﬁ'(G/L;V,,)(K),

(7.6c) the G-invariant global hermitian inner product induced on H*(G/L; O(V,))(x) is
(positive or negative) definite.

Wbeu one has t.hia, the geometric setting corresponding to Theorem 5.5 or Theorem 6.5
provides the unitary structure as well as the underlying Harish-Chandra module for the
representation of G on Dolbeault cohomology.

7.7. PROPOSITION. In the setting of Theorem 6.5, suppose that
(i) the G-invariant global hermitian inner product on H*(G/Ly; Vy, J(x) is not iden-
tically zero and
(i) ¢ € L*(G/Ly; Ve iny),Bp = 0 and O = 0 imply T" = 0 (i.e. weakly
harmonic and 3-closed imply strongly harmonic in L(:""(G/LX;V,,,‘; uy)).
Then (7.6) holds, so the G-invariant global hermitian inner product on H*x(G/L,; Vy)

indv:lcea tbe pre Hilbert space structure on H*x(G/L,; O(Vy, ))x) With respect to which
%y is unitary.

PROOF. Express Y as an increasing union of submanifolds Y,, with compact
closure. Hw € Fox(G/Ly;Vy.) and if y € Fox(G/Ly; V. ) represents the zero Dolbeault
class then (¢,w) = limp—co {¥n,w) Where ¢ = 38, B, is the truncation of # on Y, so
B = limp_.0ofp, and ¢y = 3,3» But (¢m‘*’) = (6ﬂua“’) = (ﬁma.w) = 0. Now (¥,w)
= 0. We have shown that the kernel of ¢ is contained in the kernel of the G-invariant
g'::lllm‘: el;ier:;ltém mner ;:r?duct on H’x(G/L,;V,). So that global inner product induces a

n -invariant inner uct -fini . ;
e e i product on the K-finite part H*x(G/L,; O(V,))k) of the

The irreducibility of Theorem 6.5 shows that the universal enveloping algebra & = U(g)
acts irreducibly on H*x(G/Ly; O(Vy))(x). So the induced globa.l inner product is a real
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multiple of the positive definite inner product obtained by viewing H*x(G/Ly; O(Vy) )1
as the underlying Harish-Chandra module for the unitary representation xy. But (i)
ensures that it is not identically zero. That simultaneously completes the proofs of (7.6)
and of Proposition 7.7. QED
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