Observability and Harish-Chandra Modules
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Abstract.

In an earlier note [10] we interpreted some questions of discrete observ-
ability of finite linear systems dz/dt = Az in terms of finite dimensional
group representation theory. The main result said that a certain sort of
observability can be cast into the language of group representation theory.
Then, discrete observability comes down to whether the representation in
question is cocyclic (dual to a cyclic representation) with the observation
set up as a cocyclic vector (cyclic for the dual representation). Here we
describe a setting in the representation theory of semisimple Lie groups
where analogous results hold for infinite linear systems.

1. The Representation-Theoretic Interpretation of Observability.

In this section we recall the principal results of [10] connecting discrete
observability and group representation theory.

1.1. Definition. Let 7 be a representation of a group G on a vector
space V of dimension n < oo . Fix a vector o € V, a (co)vector ¢ in
the linear dual space V' of V, and a subset S = {g1,...,9n} C G. The
triple (w,c’, S) is discretely observable if we can always solve for z¢ in
the system of equations

(1.2) ¢ - m(gi)zo = €, 1£isn

Discrete observability of (x,¢/, S) is equivalent to nonsingularity of the
matrix

¢ - 7m(g1)
(1.3) M=M(rd8)=

c - m(gn)
The notion of discrete observability for a linear system dz/dt = Az with

constant coefficients, corresponds to the case of a 1-parameter linear group,
where G is the additive group of real numbers, A is an n x n matrix,
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n(t) = exp(tA), and ¢; = t; for some real numbers ty,...,t,, so that
7(gi) = exp(t; A). See [6].

This interpretation has a useful formulation [10]:

1.4. Theorem. Let 7’ denote the dual of 7 , representation of G on the
linear dual V' of V. Let H denote the subgroup of G generated by S. If
(m,¢', S) is discretely observable then ¢ is a cyclic vector for #'|gy .

In particular, in Theorem 1.4, ¢’ is a cyclic vector for #’, so 7' is a cyclic
representation, i.e. 7 is a cocyclic representation.

1.5. Corollary. There exist ¢ € V' and § C G such that (7, ¢/, S) is
discretely observable, if and only if the representation 7 is cocyclic.

In order to be able to use this result, we proved [10]

1.6. Theorem. Let 7 represent a group G on a finite dimensional vector
space over a field F . Then = is cocyclic if and only if every F-irreducible
summand of the maximal semisimple subrepresentation of 7 has multiplicity
bounded by its F-degree.

2. Harish-Chandra’s K-Multiplicity Theorem.

In this section we describe certain results from the representation theory
of semisimple! Lie groups. These results give a multiplicity bound much
like that in Theorem 1.6.

Let G be a connected semisimple Lie group with finite center. Every
compact subgroup of G is contained in a maximal compact subgroup, and
any two maximal compact subgroups are conjugate. Now fix a maximal
compact subgroup K C Gj because of the conjugacy it doesn’t matter
which one we use. ’

2.1. Definitions. Let 7 be a representation of K on a complex vector
space V. A vector v € V is called K-finite if 7(K) - v is contained in a
finite dimensional subspace of V. A subspace U C V is called K-isotypic
if it is 7(K)-invariant, if the resulting action of K on U is a direct sum
of copies of some irreducible representation of K, and if U is not properly
contained in a larger subspace of V' with those properties. If ¢ is the
irreducible representation of K in question, then U is called the ¥-isotypic
component of V, and the representation of K on U is called the 9-isotypic
component of 7.

Let go denote the (real) Lie algebra of G and g its complexification.

1 The results of this section are true in somewhat greater generality than the setting
described here. See the Appendix. '
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Similarly &, will be the (subalgebra of go that is the) real Lie algebra of K
and ¢ is the complexification of €.

2.2. Definition. A (g, K)-module is a complex vector space V that is
simultaneously a g-module and a K-module, say through representations
7:9— End(V) and =:K — End(V)
in such a way that (i) every vector v € V is K-finite, (ii) the differential of =
as a representation of K coincides with the E-restriction of 7 as a represen-
tation of g, and (iiil) if ¥ € K and £ € g then x[Ad(k)¢] = x(k)-m(€)-m(k) 1.

2.3. Definitions. By Harish-Chandra module for (g, K) we mean
a (g, K)-module in which the K-isotypic subspaces are finite dimensional.
A Harish-Chandra (g, K)-module V is irreducible if it is irreducible as a
g-module, indecomposable if it is indecomposable as a g-module, cyclic
if it is cyclic as a g-module, etc.

The point of these definitions is a celebrated series of foundational results
of Harish-Chandra, a few of which can be summarized as follows.

2.4. Theorem. Let = be an irreducible unitary representation of G, say
on the Hilbert space Vi, and let V be the space of all K-finite vectors in
V. Then V dense in Vx and V is an irreducible Harish-Chandra module
for (g, K).

2.5. Theorem?. Let V be an irreducible Harish-Chandra module for
(8, K). Let 7 denote the representation of K on V. If ¢ is any irreducible
representation of K and if U is the t-isotypic component of V', then dim(U)
< deg(v)?, that is, the multiplicity of ¢ in n is bounded by the degree of
R

One needs somewhat more than plain topological irreducibility of a con-
tinuous representation 7 of G, say on a complete locally convex topological
vector space (or even a Banach space) V;, for the sort of result just de-
scribed. The appropriate general notion is that of topologically completely
irreducible (TCI) representation. One proves that = is TCI if and only if
the space V of all K-finite vectors in V; is an irreducible (g, K) Harish-
Chandra module and is dense in V;. See [7] or [9]. In the context of
semisimple groups it is usually more convenient to use the notion of admis-
sible representation: = is admissible if V' is dense in V; and V is a (g, K)
Harish-Chandra module. One can prove that every (g, K') Harish-Chandra
module is the space of all K-finite vectors for an admissible representation
of G.

2This is due to Harish-Chandra for linear groups as an easy consequence of his Subquo-

tient Theorem [1]. For non-linear groups Harish-Chandra proved dim(U) £ ¢ »-deg(¢)?,
for some integer ¢ 2 1. That is not quite good enough for our purposes. Later Lep-
owsky gave an algebraic argument [5] for Theorem 2.5, and more recently Casselman

proved a Submodule Theorem [1] which strengthens the Subquotient Theorem so that

Theorem 2.5 follows easily.
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The connection between unitary representations, Harish-Chandra mod-
ules, and discrete observability, is given by comparing the multiplicity state-
ments in Theorems 1.6 and 2.5. One concludes, for example,

2.6. Theorem. Let V be an irreducible Harish-Chandra module for
(8, K), let W be any finite dimensional K-invariant subspace, and let ¢
denote the representation of K on W. Then the representation ¢ is cocyclic.
In other words, there exist ¢ € W’ and S C K such that (¢, ¢/, S) is
discretely observable.

3. Approximate Observability.

Let V be an irreducible (g, K') Harish-Chandra module. Write K for the
unitary dual of K, i.e. the (set of equivalence classes of) irreducible unitary
representations. Given a Cartan subalgebra ty C ¥ and a root ordering,
¥ € K is specified by its highest weight v € Vv=1t§, which we abbreviate
by ¥ = ¢,. Given m 2 0 we have the finite set .

Bm={bvek | |WISm)

of representations of K. For each v, € K let V[v] denote the t,-isotypic
subspace of V. Then m 2 0 specifies a finite dimensional K-invariant
subspace

Vin = Z%em Vv
We are going to obtain a variation on Theorem 2.6 for V by applying that
theorem to the V;,; as m — oo.

We start by realizing V' as the underlying Harish-Chandra module of a
TCI Banach representation 7 of G on a Hilbert space Vg, in such a way that
7|k is unitary. This is a standard procedure, using Casselman’s Submodule
Theorem [1] (which strengthens Harish-Chandra’s Subquotient Theorem
[2]) to locate V as a submodule of the Harish-Chandra module underlying
a nonunitary principal series® representation of G. Let 7’ denote the dual
representation. Its representation space is Vz» = V!, and the subspace V'

3The “principal series” or “unitary principal series” of G consists of the representations
of the form I ndg (4 ® a) where P = M AN is a minimal parabolic subgroup of G, where
A is the vector group part of a maximally noncompact Cartan subgroup of G and o
is a unitary character on A, where u is an irreducible representation of the centralizer
M of A in K, and where N is a certain nilpotent normal subgroup of P. Since M is
compact, 4 is finite dimensional and may be assumed to be unitary. Implicitly 4 ® a is
extended from M A to P = M AN by triviality on N. The “nonunitary principal series”
is obtained by dropping the requirement that o be unitary, i.e. by taking o to be any
1-dimensional complex representation of A. In any case, Ind §(u® a)|x = Ind¥(u)
and thus is unitary.
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of K-finite vectors is the Harish-Chandra module dual to V. The finite
dimensional subspace (V'),, is naturally identified with the dual (V,,)’ of
Vin, so we simply denote it by V...

The cardinality of K, is bounded by a polynomial p(m) because highest
weights v are confined to a lattice in /—1t§. So it is easy to see

3.1. Lemma. Choose cyclic vectors ¢, € V'[v], for every 9, € E. Then
the ¢}, can be rescaled so that }_ ¢, converges absolutely in V.

With this in mind, we define

3.2. Definition. Let 7 by a TCI Banach representation of G such
that the space V of K-finite vectors in V; is a (g,K) Harish-Chandra
module. A vector ¢ € Vi is approximately cyclic for K if ¢ = } ¢,
absolutely convergent in Vy, where each ¢, is a K-cyclic vector in V[v]. A
vector ¢ € V] is approximately cocyclic for K if ¢/ = }_ ¢}, absolutely
convergent in V], where each ¢}, is a K-cyclic vector in V'[1/].

3.3. Definition. Let 7 be a TCI Banach representa’tion of G. Fix
¢’ € V!. Then (r,c') is approximately discretely observable for K
just when ¢ = lim¢}, absolutely convergent with ¢/, € V;},, and we have an
increasing sequence of subsets S, C K with cardinality [Sy,| = dimV,,, so
that we can always solve the system of equations

- m(g:i)zo = &, 1£isn

for z,, € V.

The idea of Definition 3.3 is that, in a clearly measured way, one can
come as close as desired to observability — at the price of sufficiently many
observations. Now Theorem 2.6 and Lemma 3.1 combine to yield

3.4. Theorem. Let 7 be a TCI Banach representation of G. Then 7' is
approximately cocyclic. Let ¢’ € V! be an approximately cocyclic vector.
Then (7,¢') is approximately discretely observable.

Appendix. K-Multiplicities for General Semisimple Groups.

In this Appendix we indicate how the results of §2 extend to a class of
reductive Lie groups that contains all connected semisimple groups and all
groups of Harish-Chandra class.

The general semisimple groups studied in [3], [4] and [8] are the
reductive Lie groups G (i.e. g = $®} with s semisimple and 3 commutative)
that satisfy the conditions

(A.1) G has a normal abelian subgroup Z which centralizes the identity
component G° of G and such that Z - GO has finite index in G, and
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(A.2) if z € G then conjugation Ad(x) is an inner automorphism on the
complexified Lie algebra g.

This is a convenient class in which to do representation theory.

Fix a general semisimple group G. There is no loss of generality in
expanding Z to Z - Zgo where Zgo is the center of G°.

Let Zg(GP°) denote the centralizer of G° in G. Denote Gt = Z(G%)- G°.
Many arguments for a general semisimple group G go from G° to G to G.

The analog of maximal compact subgroup for G© is just the full inverse
image K° of a maximal compact subgroup in the conrected linear semisim-
ple Lie group G°/Zgo. The analog of maximal compact subgroup for G1 is
just Kt = Zg(GP)- K°, which in fact is the full inverse image of a maximal
compact subgroup in G°/Zge = G'/Z5(G®). The analog of a maximal
compact subgroup K for G can be equivalently defined as the G-normalizer
of KO, the G-normalizer of Kt, or the full inverse image of a maximal
compact subgroup in G/Z or in G/Zg(G®). We refer to these groups k,
Kt and K° respectively as maximal compactly embedded subgroups
of G, G! and G°. If Z is compact, they are just the maximal compact
subgroups.

By Cartan involution of G we mean an involutive automorphism whose
fixed point set is a maximal compactly embedded subgroup. All the stan-
dard results hold: every maximal compactly embedded subgroup of G is the
fixed point set of a unique Cartan involution, and every Cartan involution
of go extends uniquely to a Cartan involution of G. See [8].

A technique developed in [8] reduces the proofs of Theorems 2.4 and 2.5
for connected reductive Lie groups G° to the case where Zgo is compact,
and there one can use Harish-Chandra’s arguments without change.

Passage from G° to G is based on two straightforward facts.

(A.3) The irreducible representations of G! are just the 7t = £ ® 7° where ¢
is an irreducible, necessarily finite dimensional, representation of Zg(G°),
where 70 is an ireducible representation of G°, and where ¢ and 7° agree
on ZGo.

(A.4) The irreducible subrepresentations of #t|g+ are just the ¥t = £ ®
¥° where ¢ is the irreducible finite dimensional representation of Zg(G°)
mentioned above, and where ° is an irreducible representation of 7%|go.

In Theorem 2.4 now V,+ = E¢ ® V0. Since the representation space
E¢ of ¢ is finite dimensional, the spaces of K!-finite and K°-finite vectors
are related by Vt = E¢ ® V0. The validity of the assertion passes directly
from G° to G!. In Thedrem 2.5 the Harish-Chandra modules are related
by V1 = E, ® V°, so again the result for (g, K°) Harish-Chandra modules
implies the result for (g, K') Harish-Chandra modules.

g
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Passage from G' to G uses a variation on the classical Schur’s Lemma.

(A.5) If xt is an irreducible unitary representation of G! then the induced
representation I ndg,(w') is a finite sum of irreducible unitary representa-
tions of G. If 7 is an irreducible unitary representation of G then 7|t is a
finite sum of irreducible unitary representations of G'. The multiplicity of
7 in Ind§,(w') is equal to the multiplicity of x' in =g+ .

Let m be an irreducible unitary representation of G, say on a Hilbert
space Vg, and let V be the space of K-finite vectors. Realize m as a sub-
representation of Ind$, (n') for some irreducible unitary representation !
of G'. The representation space of Indg, (') is the space

Indgf(vrf) = [LQ(G) ® erf]Gt

of G!-fixed vectors, where Gt acts on L%(G) by right translation and on
Vet by 7t. G acts on Indg, (Vi) by left translation on the L*(G) factor.
The subspace of K-finite vectors is

Ind$, (V') = [L}(G) © V!¢

where L?(G)" consists of the elements of L?(G) that are K-finite on the
left and the right. If we assume Theorem 2.4 for the representation #t then
it follows that the space IndZ, (V') of K-finite vectors for Ind$,(Vy+) is
dense and is a Harish-Chandra module, i.e. that Theorem 2.4 holds for =.

The restriction of £ to Zgo is a multiple of a unitary character (. The
left regular representations of the groups K°, K' and K relative to  are
[4 1
A0 =1Ind§ (¢), At=Indf (¢), X=Ind§ (¢)
Induction by stages says that A = IndX,{A!). Theorem 2.5 for the (g, Kt)
Harish-Chandra module V! just says that the representation 7' of Kt is
equivalent to a subrepresentation of At. It follows that the induced repre-

sentation of K is equivalent to a subrepresentation of A\. In other words,
Theorem 2.5 follows for the (g, K) Harish-Chandra module V.

Theorems 2.6 and 3.4 now hold for irreducible Harish-Chandra (g, K)-
modules and TCI Banach representations = of G, where G is a general
semisimple group and K is a maximal compactly embedded subgroup.
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