Observability and Harish-Chandra Modules

JOSEPH A. WOLF

Abstract.

In an earlier note [10] we interpreted some questions of discrete observability of finite linear systems dx/dt = Ax in terms of finite dimensional group representation theory. The main result said that a certain sort of observability can be cast into the language of group representation theory. Then, discrete observability comes down to whether the representation in question is cocyclic (dual to a cyclic representation) with the observation set up as a cocyclic vector (cyclic for the dual representation). Here we describe a setting in the representation theory of semisimple Lie groups where analogous results hold for infinite linear systems.

1. The Representation-Theoretic Interpretation of Observability.

In this section we recall the principal results of [10] connecting discrete observability and group representation theory.

1.1. Definition. Let π be a representation of a group G on a vector space V of dimension $n < \infty$. Fix a vector $x_0 \in V$, a (co)vector c' in the linear dual space V' of V, and a subset $S = \{g_1, ..., g_n\} \subset G$. The triple (π, c', S) is discretely observable if we can always solve for x_0 in the system of equations

$$(1.2) c' \cdot \pi(g_i)x_0 = e_i, 1 \leq i \leq n$$

Discrete observability of (π, c', S) is equivalent to nonsingularity of the matrix

(1.3)
$$M = M(\pi, c', S) = \begin{pmatrix} c' \cdot \pi(g_1) \\ \vdots \\ c' \cdot \pi(g_n) \end{pmatrix}.$$

The notion of discrete observability for a linear system dx/dt = Ax with constant coefficients, corresponds to the case of a 1-parameter linear group, where G is the additive group of real numbers, A is an $n \times n$ matrix,

 $\pi(t) = exp(tA)$, and $g_i = t_i$ for some real numbers t_1, \ldots, t_n , so that $\pi(g_i) = exp(t_iA)$. See [6].

This interpretation has a useful formulation [10]:

1.4. Theorem. Let π' denote the dual of π , representation of G on the linear dual V' of V. Let H denote the subgroup of G generated by S. If (π, c', S) is discretely observable then c' is a cyclic vector for $\pi'|_H$.

In particular, in Theorem 1.4, c' is a cyclic vector for π' , so π' is a cyclic representation, i.e. π is a cocyclic representation.

1.5. Corollary. There exist $c' \in V'$ and $S \subset G$ such that (π, c', S) is discretely observable, if and only if the representation π is cocyclic.

In order to be able to use this result, we proved [10]

1.6. Theorem. Let π represent a group G on a finite dimensional vector space over a field \mathbf{F} . Then π is cocyclic if and only if every \mathbf{F} -irreducible summand of the maximal semisimple subrepresentation of π has multiplicity bounded by its \mathbf{F} -degree.

2. Harish-Chandra's K-Multiplicity Theorem.

In this section we describe certain results from the representation theory of semisimple¹ Lie groups. These results give a multiplicity bound much like that in Theorem 1.6.

Let G be a connected semisimple Lie group with finite center. Every compact subgroup of G is contained in a maximal compact subgroup, and any two maximal compact subgroups are conjugate. Now fix a maximal compact subgroup $K \subset G$; because of the conjugacy it doesn't matter which one we use.

2.1. Definitions. Let π be a representation of K on a complex vector space V. A vector $v \in V$ is called K-finite if $\pi(K) \cdot v$ is contained in a finite dimensional subspace of V. A subspace $U \subset V$ is called K-isotypic if it is $\pi(K)$ -invariant, if the resulting action of K on U is a direct sum of copies of some irreducible representation of K, and if U is not properly contained in a larger subspace of V with those properties. If ψ is the irreducible representation of K in question, then U is called the ψ -isotypic component of V, and the representation of K on U is called the ψ -isotypic component of π .

Let g_0 denote the (real) Lie algebra of G and g its complexification.

¹The results of this section are true in somewhat greater generality than the setting described here. See the Appendix.

Similarly \mathfrak{k}_0 will be the (subalgebra of \mathfrak{g}_0 that is the) real Lie algebra of K and \mathfrak{k} is the complexification of \mathfrak{k}_0 .

2.2. Definition. A (\mathfrak{g}, K) -module is a complex vector space V that is simultaneously a \mathfrak{g} -module and a K-module, say through representations $\pi: \mathfrak{g} \longrightarrow End(V)$ and $\pi: K \longrightarrow End(V)$

in such a way that (i) every vector $v \in V$ is K-finite, (ii) the differential of π as a representation of K coincides with the \mathfrak{k} -restriction of π as a representation of \mathfrak{g} , and (iii) if $k \in K$ and $\xi \in \mathfrak{g}$ then $\pi[Ad(k)\xi] = \pi(k) \cdot \pi(\xi) \cdot \pi(k)^{-1}$.

2.3. Definitions. By Harish-Chandra module for (\mathfrak{g}, K) we mean a (\mathfrak{g}, K) -module in which the K-isotypic subspaces are finite dimensional. A Harish-Chandra (\mathfrak{g}, K) -module V is **irreducible** if it is irreducible as a \mathfrak{g} -module, **indecomposable** if it is indecomposable as a \mathfrak{g} -module, **cyclic** if it is cyclic as a \mathfrak{g} -module, etc.

The point of these definitions is a celebrated series of foundational results of Harish-Chandra, a few of which can be summarized as follows.

- **2.4. Theorem.** Let π be an irreducible unitary representation of G, say on the Hilbert space V_{π} , and let V be the space of all K-finite vectors in V_{π} . Then V dense in V_{π} and V is an irreducible Harish-Chandra module for (\mathfrak{g},K) .
- **2.5.** Theorem². Let V be an irreducible Harish-Chandra module for (\mathfrak{g}, K) . Let π denote the representation of K on V. If ψ is any irreducible representation of K and if U is the ψ -isotypic component of V, then $\dim(U) \leq \deg(\psi)^2$, that is, the multiplicity of ψ in π is bounded by the degree of $\overline{\psi}$.

One needs somewhat more than plain topological irreducibility of a continuous representation π of G, say on a complete locally convex topological vector space (or even a Banach space) V_{π} , for the sort of result just described. The appropriate general notion is that of topologically completely irreducible (TCI) representation. One proves that π is TCI if and only if the space V of all K-finite vectors in V_{π} is an irreducible (\mathfrak{g}, K) Harish-Chandra module and is dense in V_{π} . See [7] or [9]. In the context of semisimple groups it is usually more convenient to use the notion of admissible representation: π is admissible if V is dense in V_{π} and V is a (\mathfrak{g}, K) Harish-Chandra module. One can prove that every (\mathfrak{g}, K) Harish-Chandra module is the space of all K-finite vectors for an admissible representation of G.

²This is due to Harish-Chandra for linear groups as an easy consequence of his Subquotient Theorem [1]. For non-linear groups Harish-Chandra proved $\dim(U) \leq c \pi \cdot \deg(\psi)^2$, for some integer $c_{\pi} \geq 1$. That is not quite good enough for our purposes. Later Lepowsky gave an algebraic argument [5] for Theorem 2.5, and more recently Casselman proved a Submodule Theorem [1] which strengthens the Subquotient Theorem so that Theorem 2.5 follows easily.

The connection between unitary representations, Harish-Chandra modules, and discrete observability, is given by comparing the multiplicity statements in Theorems 1.6 and 2.5. One concludes, for example,

2.6. Theorem. Let V be an irreducible Harish-Chandra module for (\mathfrak{g}, K) , let W be any finite dimensional K-invariant subspace, and let ϕ denote the representation of K on W. Then the representation ϕ is cocyclic. In other words, there exist $c' \in W'$ and $S \subset K$ such that (ϕ, c', S) is discretely observable.

3. Approximate Observability.

Let V be an irreducible (\mathfrak{g},K) Harish-Chandra module. Write \widehat{K} for the unitary dual of K, i.e. the (set of equivalence classes of) irreducible unitary representations. Given a Cartan subalgebra $\mathfrak{t}_0 \subset \mathfrak{k}_0$ and a root ordering, $\psi \in \widehat{K}$ is specified by its highest weight $\nu \in \sqrt{-1}\mathfrak{t}_0^*$, which we abbreviate by $\psi = \psi_{\nu}$. Given $m \geq 0$ we have the finite set

$$\widehat{K}_m = \{ \psi_{\nu} \in \widehat{K} \mid ||\nu|| \leq m \}$$

of representations of K. For each $\psi_{\nu} \in \widehat{K}$ let $V[\nu]$ denote the ψ_{ν} -isotypic subspace of V. Then $m \geq 0$ specifies a finite dimensional K-invariant subspace

$$V_{m} = \sum_{\psi_{n} \in \widehat{K}_{m}} V[\nu].$$

We are going to obtain a variation on Theorem 2.6 for V by applying that theorem to the V_m as $m \to \infty$.

We start by realizing V as the underlying Harish-Chandra module of a TCI Banach representation π of G on a Hilbert space V_{π} , in such a way that $\pi|_K$ is unitary. This is a standard procedure, using Casselman's Submodule Theorem [1] (which strengthens Harish-Chandra's Subquotient Theorem [2]) to locate V as a submodule of the Harish-Chandra module underlying a nonunitary principal series³ representation of G. Let π' denote the dual representation. Its representation space is $V_{\pi'} = V'_{\pi}$, and the subspace V'

³The "principal series" or "unitary principal series" of G consists of the representations of the form $Ind_{P}^{G}(\mu\otimes\alpha)$ where P=MAN is a minimal parabolic subgroup of G, where A is the vector group part of a maximally noncompact Cartan subgroup of G and α is a unitary character on A, where μ is an irreducible representation of the centralizer M of A in K, and where N is a certain nilpotent normal subgroup of P. Since M is compact, μ is finite dimensional and may be assumed to be unitary. Implicitly $\mu\otimes\alpha$ is extended from MA to P=MAN by triviality on N. The "nonunitary principal series" is obtained by dropping the requirement that α be unitary, i.e. by taking α to be any 1-dimensional complex representation of A. In any case, $Ind_{P}^{G}(\mu\otimes\alpha)|_{K}=Ind_{M}^{K}(\mu)$ and thus is unitary.

of K-finite vectors is the Harish-Chandra module dual to V. The finite dimensional subspace $(V')_m$ is naturally identified with the dual $(V_m)'$ of V_m , so we simply denote it by V'_m .

The cardinality of \widehat{K}_m is bounded by a polynomial p(m) because highest weights ν are confined to a lattice in $\sqrt{-1}\mathfrak{t}_0^*$. So it is easy to see

3.1. Lemma. Choose cyclic vectors $c'_{\nu} \in V'[\nu]$, for every $\psi_{\nu} \in \widehat{K}$. Then the c'_{ν} can be rescaled so that $\sum c'_{\nu}$ converges absolutely in V'_{π} .

With this in mind, we define

- **3.2.** Definition. Let π by a TCI Banach representation of G such that the space V of K-finite vectors in V_{π} is a (\mathfrak{g},K) Harish-Chandra module. A vector $c \in V_{\pi}$ is approximately cyclic for K if $c = \sum c_{\nu}$, absolutely convergent in V_{π} , where each c_{ν} is a K-cyclic vector in $V[\nu]$. A vector $c' \in V'_{\pi}$ is approximately cocyclic for K if $c' = \sum c'_{\nu}$, absolutely convergent in V'_{π} , where each c'_{ν} is a K-cyclic vector in $V'[\nu]$.
- 3.3. Definition. Let π be a TCI Banach representation of G. Fix $c' \in V'_{\pi}$. Then (π, c') is approximately discretely observable for K just when $c' = \lim c'_m$ absolutely convergent with $c'_m \in V'_m$, and we have an increasing sequence of subsets $S_m \subset K$ with cardinality $|S_m| = \dim V'_m$, so that we can always solve the system of equations

$$c' \cdot \pi(g_i)x_0 = e_i, \qquad 1 \leq i \leq n$$

for $x_m \in V_m$.

The idea of Definition 3.3 is that, in a clearly measured way, one can come as close as desired to observability – at the price of sufficiently many observations. Now Theorem 2.6 and Lemma 3.1 combine to yield

3.4. Theorem. Let π be a TCI Banach representation of G. Then π' is approximately cocyclic. Let $c' \in V'_{\pi}$ be an approximately cocyclic vector. Then (π, c') is approximately discretely observable.

Appendix. K-Multiplicities for General Semisimple Groups.

In this Appendix we indicate how the results of §2 extend to a class of reductive Lie groups that contains all connected semisimple groups and all groups of Harish-Chandra class.

The general semisimple groups studied in [3], [4] and [8] are the reductive Lie groups G (i.e. $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{z}$ with \mathfrak{s} semisimple and \mathfrak{z} commutative) that satisfy the conditions

(A.1) G has a normal abelian subgroup Z which centralizes the identity component G^0 of G and such that $Z \cdot G^0$ has finite index in G, and

(A.2) if $x \in G$ then conjugation Ad(x) is an inner automorphism on the complexified Lie algebra \mathfrak{g} .

This is a convenient class in which to do representation theory.

Fix a general semisimple group G. There is no loss of generality in expanding Z to $Z \cdot Z_{G^0}$ where Z_{G^0} is the center of G^0 .

Let $Z_G(G^0)$ denote the centralizer of G^0 in G. Denote $G^{\dagger} = Z_G(G^0) \cdot G^0$. Many arguments for a general semisimple group G go from G^0 to G^{\dagger} to G.

The analog of maximal compact subgroup for G^0 is just the full inverse image K^0 of a maximal compact subgroup in the connected linear semisimple Lie group G^0/Z_{G^0} . The analog of maximal compact subgroup for G^{\dagger} is just $K^{\dagger} = Z_G(G^0) \cdot K^0$, which in fact is the full inverse image of a maximal compact subgroup in $G^0/Z_{G^0} = G^{\dagger}/Z_G(G^0)$. The analog of a maximal compact subgroup K for G can be equivalently defined as the G-normalizer of K^0 , the G-normalizer of K^{\dagger} , or the full inverse image of a maximal compact subgroup in G/Z or in $G/Z_G(G^0)$. We refer to these groups K, K^{\dagger} and K^0 respectively as maximal compactly embedded subgroups of G, G^{\dagger} and G^0 . If Z is compact, they are just the maximal compact subgroups.

By Cartan involution of G we mean an involutive automorphism whose fixed point set is a maximal compactly embedded subgroup. All the standard results hold: every maximal compactly embedded subgroup of G is the fixed point set of a unique Cartan involution, and every Cartan involution of g_0 extends uniquely to a Cartan involution of G. See [8].

A technique developed in [8] reduces the proofs of Theorems 2.4 and 2.5 for connected reductive Lie groups G^0 to the case where Z_{G^0} is compact, and there one can use Harish-Chandra's arguments without change.

Passage from G^0 to G^{\dagger} is based on two straightforward facts.

- (A.3) The irreducible representations of G^{\dagger} are just the $\pi^{\dagger} = \xi \otimes \pi^{0}$ where ξ is an irreducible, necessarily finite dimensional, representation of $Z_{G}(G^{0})$, where π^{0} is an irreducible representation of G^{0} , and where ξ and π^{0} agree on $Z_{G^{0}}$.
- (A.4) The irreducible subrepresentations of $\pi^{\dagger}|_{K^{\dagger}}$ are just the $\psi^{\dagger} = \xi \otimes \psi^{0}$ where ξ is the irreducible finite dimensional representation of $Z_{G}(G^{0})$ mentioned above, and where ψ^{0} is an irreducible representation of $\pi^{0}|_{K^{0}}$.

In Theorem 2.4 now $V_{\pi^{\dagger}} = E_{\xi} \otimes V_{\pi^{0}}$. Since the representation space E_{ξ} of ξ is finite dimensional, the spaces of K^{\dagger} -finite and K^{0} -finite vectors are related by $V^{\dagger} = E_{\xi} \otimes V^{0}$. The validity of the assertion passes directly from G^{0} to G^{\dagger} . In Theorem 2.5 the Harish-Chandra modules are related by $V^{\dagger} = E_{\xi} \otimes V^{0}$, so again the result for (\mathfrak{g}, K^{0}) Harish-Chandra modules implies the result for $(\mathfrak{g}, K^{\dagger})$ Harish-Chandra modules.

Passage from G^{\dagger} to G uses a variation on the classical Schur's Lemma.

(A.5) If π^{\dagger} is an irreducible unitary representation of G^{\dagger} then the induced representation $Ind_{G^{\dagger}}^{G}(\pi^{\dagger})$ is a finite sum of irreducible unitary representations of G. If π is an irreducible unitary representation of G then $\pi|_{G^{\dagger}}$ is a finite sum of irreducible unitary representations of G^{\dagger} . The multiplicity of π in $Ind_{G^{\dagger}}^{G}(\pi^{\dagger})$ is equal to the multiplicity of π^{\dagger} in $\pi|_{G^{\dagger}}$.

Let π be an irreducible unitary representation of G, say on a Hilbert space V_{π} , and let V be the space of K-finite vectors. Realize π as a sub-representation of $Ind_{G^{\dagger}}^{G}(\pi^{\dagger})$ for some irreducible unitary representation π^{\dagger} of G^{\dagger} . The representation space of $Ind_{G^{\dagger}}^{G}(\pi^{\dagger})$ is the space

$$Ind_{G^{\dagger}}^{G}(V_{\pi^{\dagger}}) = [L^{2}(G) \otimes V_{\pi^{\dagger}}]^{G^{\dagger}}$$

of G^{\dagger} -fixed vectors, where G^{\dagger} acts on $L^2(G)$ by right translation and on $V_{\pi^{\dagger}}$ by π^{\dagger} . G acts on $Ind_{G^{\dagger}}^G(V_{\pi^{\dagger}})$ by left translation on the $L^2(G)$ factor. The subspace of K-finite vectors is

$$Ind_{G^{\dagger}}^{G}(V^{\dagger}) = [L^{2}(G)'' \otimes V^{\dagger}]^{G^{\dagger}}$$

where $L^2(G)''$ consists of the elements of $L^2(G)$ that are K-finite on the left and the right. If we assume Theorem 2.4 for the representation π^{\dagger} then it follows that the space $Ind_{G^{\dagger}}^G(V^{\dagger})$ of K-finite vectors for $Ind_{G^{\dagger}}^G(V_{\pi^{\dagger}})$ is dense and is a Harish-Chandra module, i.e. that Theorem 2.4 holds for π .

The restriction of ξ to Z_{G^0} is a multiple of a unitary character ζ . The left regular representations of the groups K^0 , K^{\dagger} and K relative to ζ are

$$\lambda^0 = \operatorname{Ind}_{Z_{G^0}}^{K^0}(\zeta), \quad \lambda^\dagger = \operatorname{Ind}_{Z_{G^0}}^{K^\dagger}(\zeta), \quad \lambda = \operatorname{Ind}_{Z_{G^0}}^K(\zeta).$$

Induction by stages says that $\lambda = Ind_{K\uparrow}^K(\lambda^{\dagger})$. Theorem 2.5 for the $(\mathfrak{g}, K^{\dagger})$ Harish-Chandra module V^{\dagger} just says that the representation π^{\dagger} of K^{\dagger} is equivalent to a subrepresentation of λ^{\dagger} . It follows that the induced representation of K is equivalent to a subrepresentation of λ . In other words, Theorem 2.5 follows for the (\mathfrak{g}, K) Harish-Chandra module V.

Theorems 2.6 and 3.4 now hold for irreducible Harish-Chandra (\mathfrak{g}, K) modules and TCI Banach representations π of G, where G is a general
semisimple group and K is a maximal compactly embedded subgroup.

Research partially supported by NSF Grant DMS-88-05816.

References.

- [1] W. Casselman, Jacquet Modules for Real Reductive Groups, in "Proceedings of the International Congress of Mathematicians", Helsinki, 1978, pp. 557-563.
- [2] Harish-Chandra, Representations of Semisimple Lie Groups II, Trans. Amer. Math. Soc., vol. 76 (1954), pp. 26-65.
- [3] R. A. Herb and J. A. Wolf, The Plancherel Theorem for General Semisimple Groups, Compositio Mathematica, vol. 57 (1986), pp. 271-355.
- [4] R. A. Herb and J. A. Wolf, Rapidly Decreasing Functions on General Semismple Groups, Compositio Mathematica, vol. 58 (1986), pp. 73-110.
- [5] J. Lepowsky, Algebraic Results on Representations of Semisimple Lie Groups, Trans. Amer. Math. Soc., vol. 176 (1973), pp. 1-44.
- [6] C. Martin and D. I. Wallace, Observability and Transcendental Number Theory, to appear.
- [7] G. Warner, "Harmonic Analysis on Semi-Simple Lie Groups", I, Springer Verlag, 1972.
- [8] J. A. Wolf, "Unitary Representations on Partially Holomorphic Cohomology Spaces" (The Action of a Real Semisimple Lie Group on a Complex Flag Manifold, II), Memoirs Amer. Math. Soc., Number 138, 1974.
- [9] J. A. Wolf, Foundations of Representation Theory for Semisimple Lie Groups, in "Harmonic Analysis and Representations of Semisimple Lie Groups" ed. Wolf, Cahen and DeWilde, in series "Mathematical Physics and Applied Mathematics", vol 5 (1980), Reidel, Dordrecht, pp. 69-130.
- [10] J. A. Wolf, Observability and Group Representation Theory, "Proceedings of the Conference on Computation and Control" ed. Bowers and Lund, in series "Progress in Systems and Control Theory", vol. 2 (1989), Birkhauser, Boston, to appear.

Reprinted from

M.A. Kaashoek, J.H. van Schuppen, and A.C.M. Ran Editors

Progress in Systems and Control Theory 4

Robust Control of Linear Systems and Nonlinear Control Proceedings of the International Symposium MTNS-89, Volume II

o 1990 Birkhäuser Boston.

Printed in the United States of America

Birkhäuser Boston Basel Berlin