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let G be a semisimple Lie group, g the complexified Lie algebra, and X the flag
variety of g. The mechanism of geometric quantization suggests that the various
G-orbits in X should give rise to represeniations of G. On the other hand,
Zuckerman’s derived functor construction attaches algebraic representations of g
to G-orbits. In this paper we show that geometric quantization leads to Fréchet
representations of finite length, which are the maximal globalizations of the derived
functor modules. We give two alternate realizations of the representations, as
cohomology spaces of &, complexes with hyperfunction cocfficients, and as local
cohomology groups along G-orbits in X. We use the latter realization to implement
the dualily between the derived functor modules and the Beilinson Bernstein
modules, as cup product between local cohomology group followed by evaluation
over the fundamental cycle. € 1990 Academic Press, Inc.
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1. INTRODUCTION

In this paper we examine certain conjectures, first proposed in the sixties
and seventies, on geometric realizations of representations of semisimple
Lie groups.

To simplify the discussion in the Introduction, we suppose that G is a
connected, linear, semisimple Lie group; these hypotheses will be relaxed in
the main body of the paper. As a general rule, we denote the Lie algebra
of a Lie group by the corresponding lower case German letter with sub-
script zero, e.g., 94, and the complexified Lie algebra by the same German
letter without subscript, e.g., g. The G-orbit through some Z in the dual
space g* is said to be regular semisimple if it has a Cartan subgroup
H =G, as centralizer. The orbit can then be identified, as G-homogeneous
real analytic manifold, with the quotient G/H. If the restriction of 4 to b
lifts to a character y: H — C*, one calls the orbit through 4 integral. The
datum of y associates a G-equivariant line bundle |, —» G/H to the prin-
cipal bundle H - G - G/H. In the language of geometric quantization, the
choice of a Borel subalgebra beg with h<b provides a G-invariant
polarization for G/H, which turns out to carry a natural G-invariant sym-
plectic structure. The line bundle and polarization determine a complex of
differential forms on G/H, on which G acts by translation; its complex of
global sections is isomorphic to

(C(G)Y®L,®An*} d, (1.1

via pullback from G/H to G. Here n= [b, b] is the nilradical of b; C*(G)
is considered as H- and n-module by right translation; L, denotes the
one-dimensional representation space of y, endowed with the trivial action
of n; the suprscript H refers to the space of H-invariants; and d, is the
coboundary operator of the standard complex of Lie algebra cohomology
with respect to n. A brief note of Kostant [14] suggests this construction
as source of interesting representations of G.

If the Cartan subgroup H happens to be compact, the choice of polariza-
tion b amounts to that of a G-invariant complex structure for G/H.
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Moreover, the line bundle I, - G/H can be turned into a homogeneous
holomorphic line bundle, ie., a holomorphic line bundle to which the
action of G lifts. In this situation, the complex (1.1) coincides with the
Dolbeault complex of L, .and thus computes the sheaf cohomology groups
HP(G/H, (L)) Accordmg to [18], under appropriate negativity condi-
tions on the dlfferentldl 4 of x, these groups vanish except in a single degree
p=s, and the remaining group is a non-zero Fréchet G-module. As had
been conjectured by Langlands [157, the L? cohomology of L, is concen-
trated in the same degree 5. and G acts on it according to a representation
of the discrete series [21]. The natural map from L? to sheaf cohomology
identifies the former with a dense subspace of the Fréchet G-module

H(G/H, ¢(L))); this follows, for example, from the results of [19, 9]. In
particular, H (G/H, ¢(L,)) has the same Harish-Chandra module (in other
words, the same underlying infinitesimal representation) as the L°
cohomology of L, in degree s.

Still in the case of a compact Cartan subgroup H, the cohomology of the
complex (1.1) does not change if we replace C”“(G) by the space of
distributions €~ (G) or by the space of hyperfunctions C “(G): the
Dolbeault lemma remains valid in the context of distributions or hyper-
functions, so the Dolbeault complex with either distribution or hyperfunc-
tion coefficients provides a soft, respectively flabby, resolution of the sheaf
a(L).

A‘t the opposite extreme, when H splits over R, the polarization b is the
complexified Lie algebra of a Borel subgroup B« G. The inclusion Hc B
induces a G-equivariant fibration of G/H over the compact homogeneous
space G/B, with Euclidean fibres, and L, drops to a homogeneous C” line
bundle L, —» G/B. In this setting, (1.1) can be interpreted as the complex of
relative dlfferentlal forms for the fibration, with values in [L,. An applica-
tion of the Rham’s theorem along the fibres shows that ( 1) has no
cohomology in positive degrees; in degree zero, the cohomology is precisely
the space of C* sections C*(G/B, L,). We can argue similarly if C*(G)
in (1.1) is replaced by C *(G) or C “(G). the higher cohomology
groups still vanish, but in degree zero one obtains the space of distribution
sections C~™(G/B, L), respectively the space of hyperfunction sections
C “(G/B,L,). Thus, unlike in the previous situation, the degree of
regularity of the coefficients has an effect on the cohomology. However, in
all three cases the underlying Harish-Chandra module is the same; it
belongs to the principal series of representations.

If H is an arbitrary Cartan subgroup, we call a polarization b for G/H
“maximally real” if it maximizes the dimension of b n b, subject to the con-
dition h < b, of course. To identify the cohomology of the complex (1.1)
in the case of a polarization of this type, one can combine the arguments
from the previous two cases: under a suitable negativity condition, the
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cohomology vanishes in all but one degree and is a non-zero Fréchet
G-module in that remaining degree; the resulting representations constitute
the standard modules attached to the Cartan subgroup H [28].

Until now, the complex {1.1) has not been studied in the situation of an
arbitrary polarization. It is not at all clear whether the coboundary
operator has closed range. In order to circumvent problems of this sort,
among other reasons, Zuckerman introduced his derived functor construc-
tion [26]. We shall show that certain complexes, closely related to the
complex (1.1), produce Fréchet representations of G; the underlying
Harish-Chandra modules are naturally and functorially isomorphic to
those which Zuckerman’s construction attaches to the same data. We also
shall use these Fréchet generalizations of the Zuckerman modules to
reinterpret the duality of Hecht er al. [7] as a cup product pairing between
local cohomology groups.

In order to describe our results more precisely, we recall that there exist
canonical ways of lifting Harish-Chandra modules to representations of G:
the C* and distribution globalizations constructed by Casselman and
Wallach {277, as well as the minimal and maximal globalizations [227. All
four are exact functors from the category of Harish-Chandra modules to
the category of representations of G on complete, locally convex, Hausdorff
topological vector spaces. If the Cartan subgroup H is compact, the
cchomology groups H7{G/H, (*(L,)) of the complex {1.1) are known to
coincide with the maximal globalizations of the underlying Harish—Chan-
dra modules [22]. As was remarked earlier, the complex (1.1) with distri-
bution or hyperfunction coefficients has the same cohomology as in the
C* case; in particular, the cohomology groups are maximal globalizations,
regardless of whether we use C™, distribution, or hyperfunction coefficients.
On the other hand, if H splits over R, the cohomology of the complex
(L1), te., C7(G/B.L,), is the C* globalization of the underlying Harish-
Chandra module (essentially by definition of the C'* globalization). The
cohomologies of the analogous complex with distribution or hyperfunction
coefficients, ie., C “(G/B,1,)and C “(G/B, L)), are, respectively, the dis-
tribution globalization and the maximal globalization of the same Harish--
Chandra module; in other words, the three different choices of coefficients
lead to three different globalizations.

The case of a maximally real polarization on G/H, for a general Cartan
subgroup, lies somewhere between the extreme cases of a compact or a split
Cartan subgroup. Typically, the cohomology of the complex (1.1) with €™,
distribution, or hyperfunction coefficients does depend on the choice of
coefficients, but C” or distribution coefficients produce “mixed” topologies
on the cohomology; only hyperfunction coefficients yield one of the four
canonical globalizations—namely the maximal globalization. For polariza-
tions which are not maximally real, the situation may be even more com-
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plicated: although examples are cumbersome to work out, there is evidence
to suggest that coboundary operator of the complex (1.1)}—with C~*
coefficients—need not have closed range. In any event, one cannot expect
uniform statements about the cohomology unless one works with hyper-
function coefficients. Thus, from now on, we replace the complex (1.1) by
its hyperfunction analogue

{C AGYQL,@An* 1, d,. (1.2)

The space of hyperfunctions on a non-compact manifold does not carry a
natural Hausdorff topology. Nonetheless, the cohomology groups of the
complex will turn out to be Fréchet spaces; the crux of the matter is a
fibration of G/H over a compact homogeneous space, with the property
that the restriction of d,, to the fibres behaves partly like exterior differen-
tiation, partly like the J operator.

The datum of the homogeneous space G/H along with a polarization b
is equivalent (up to an appropriate notion of conjugacy) to that of a G-
orbit in X, the flag variety of the Lie algebra g: to (G/H, b), we associate
the orbit S=G-bc X. Since H normalizes b, there exists a natural G-
invariant fibration G/H — S. As homogeneous real analytic submanifold of
the complex modifold X, S has the structure of CR manifold. The line
bundle |, —» G/H descends to a G-equivariant CR line bundle over S. Thus
it makes sense to talk of the CR Dolbeault complex on S with hyperfunc-
tion coefficients and values in L,. Though L, may not extend from S to all
of X, it does extend to a g- equlvarlant holomorphlc line bundle [L over a
germ S of a neighborhood of S in X. Closely related to the CR Dolbeau]t
complex on S is the Dolbeault complex on S, with values in [, and coef-
ficients which are hyperfunctions on S supported on §; this latter complex
computes the local cohomology groups H%(S, C’([L,, ).

Our first main result asserts that the following are isomorphic as G-
modules: (i) the cohomology groups of the complex (1.2); (ii) those of the
CR Dolbeault complex on S with hyperfunction coefficients and values in
L,; (iii) the local cohomology groups H%(S, ("(El)), with a shift in degree
by the real codimension of S in X; and (iv) the maximal globalizations of
the Harish-Chandra modules which Zuckerman’s derived functor construc-
tion assigns to the line bundle L, - G/H and the polarization b. This state-
ment remains correct for any homogeneous CR vector bundle E— § in
place of I,. All the isomorphisms are functorial in £ and have geometric
descrlptlons The main ingredients of our proof of these isomorphisms are
the exactness of the maximal globalization [227 and certain intertwining
operators between the cohomologies corresponding to neighboring
G-orbits. The latter are the G-orbit analogues of the intertwining operators
of Beilinson and Bernstein [3, 8]. Together, these allow us to reduce our
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statement, in several stages, to the geometric realization of the discrete
series [18].

In the special case of a compact Cartan subgroup, the cohomology
groups (i), (ii), (ii1) coincide for trivial reasons, even on the level of com-
plexes; the remaining isomorphism in this situation was proved by Aguilar
Rodriguez [ 1]. Hecht and Taylor [10] have developed a notion of analytic
localization, which leads to results similar-—but not equivalent--to ours.

We already mentioned that Kostant [14] first called attention to the
complex (1.1). Zuckerman introduced his derived functor construction as
an algebraic analogue of geometric quantization; implicitly, at least, he
conjectured a direct connection between his construction and the complex
{1.1). Zuckerman also suggested a link between both of these and local
cohomology along G-orbits in the flag variety X [30].

Let K be a maximal compact subgroup of G, and K. the complexifica-
tion of K. The Beilinson-Bernstein construction [2] attaches Harish
Chandra modules to K -orbits in X. As was established in [7], these
Beilinson-Bernstein modules are dual to the derived functor modules
which correspond to G-orbits in X. The results of this paper lead to a more
directly geometric description of the pairing constructed in [7]. Both types
of modules can be described in terms of local cohomology—in one case
along a G-orbit S, in the other case along a K.-orbit Q. If the two orbits
are dual in the sense of Matsuki [17], the two cohomologies are paired by
cup product into the local cohomology along S~ Q, with values in the
canonical sheaf €2, n =dim_ . X. This latter cohomology maps naturally to
H"'(X. 2,)=C (by evaluation over the cycle [ X']). Our second main result
asserts that the pairing between the two types of modules is given by cup
product, followed by

HY o (X, Q1) — H'(X, Q1) = C.

In the case of the discrete series this is due to Zab¢cic [29].

Our first main result was announced in [24]. A more detailed discussion
of the motivation for our project, along with a sketch of our arguments,
can be found in [23].

We are indebted to Dragan Mili¢i¢ and Kari Vilonen for helpful discus-
sions.

2. CLASSICAL CONSTRUCTIONS

In this paper G will be a real reductive Lie group such that

G has a closed normal abelian subgroup Z that centralizes the identity
component G" and such that |G/ZG°| < o, and
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if xe G then Ad(x) is an inner automorphism of the complexified Lie
algebra g.

This is the class studied in [287]. Harish—Chandra class is specified by the
additional conditions

[G®, G°] has finite center and G/G" is finite.

For simplicity of exposition we will write as if G were of Harish-Chandra
class, but everything will be valid for the larger class specified above, using
the methods of [28,77.

Recall the classical approach to geometric quantization of semisimple
co-adjoint orbits. One can start with a hasic datum (H, b, y), where

H is a Cartan subgroup of G,
b is a Borel subalgebra of g with h < b, and {2.1)

z 18 a finite dimensional representation of (b, H).

In effect, b is an invariant polarization on G/H and y is a finite dimen-
sional representation of H with a choice of (b, H)-module structure on the
representation space. Denote the space by £= E . Since

b=10h+n, where n=[b, b]is the nilradical of b, (2.2)

necessarily n acts trivially on £ in the important case where H acts
irreducibly on F.
We now have a homogeneous vector bundle

E=[E, - G/H associated to (H, b, y). (2.3)

The right action of n on C*(G) with the given action on E defines an
action of n on local C* sections of E. In the complex setting described
below, one considers the G-modules that are the cohomologies of the sheaf
¢, (E): germs of €~ sections f of F — G/H such that )4
: (2.4)

Flx 8 +2(8) f(x)=0forall vye Gand Eeb.
In order to accommodate “mixed polarizations™ it is better to consider

the cohomologies of the complex

(T H-TE Ry ARI*RY A (D) S\
LGN R U 70 & 0.9 Js 140

JATy a3 V4 SEA] [{FN J

defined as follows. N — G/H is the homogeneous vector bundle with fibre
n and N¥* is its dual Let (g/h)* = {deg*: #(h)=0} represent the com-
plexified cotangent space of G/H. Let ¢: (g/b)* —» n* denote the restriction
dual to n=b/h s g/h. Then the map

(A/H*Q@EQ A™n* > EQ A" 'n* by (¢, e, W)= e® (g(d) A w) (2.6)
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is the symbol of a unique first-order G-invariant operator
d,:C(G/H;EQA'N*) - C"(G/H; E@ A7+ 'N*), (2.7)

The maps (2.7) specify the complex (2.5}
The bundles E® A’N* — G/H pull back to trivial bundles on G. There,
the complex (2.5) becomes

[CGYRE@An* M d,, (2.8)

where {...}"” denotes the space of H-invariants with H and n acting on
C7(G) from the right, and where 4, is the coboundary olperator for Lie
algebra cohomology of n.

Let nfi=0, ie., suppose that the polarization b is totally complex. This
is always the case when H is compactly embedded in G, and in general it
requires that H be as compact as possible in . Then G has an invariant
compiex structure for which n represents the antiholomorphic tangent
space, £ — G/H has the structure of holomorphic vector bundle (see [25 or
191}, and &, (E) - G/H is the sheaf of germs of holomorphic sections. Here
d, is the Dolbeault operator ¢ and the sheaf version of (2.5) is the
Dolbeault resolution of ¢, (E). Thus

H¥CHG/H EQAN*, d,y= H*G/H, ¢ (E). (2.9)

This leads, for example, to the C” fundamental series representations of G.

Let n =1, Le., suppose that the polarization b is real. Thus H is as non-
compact as possible in G, g, is quasi-split, and b is the complexification of
the Lie algebra b, of a minimal parabolic subgroup B« G. Suppose further
that n acts trivially on E (automatic if H 1s irreducible on E). Under the
fibration G/H — G/B, the bundle E— G/H pushes down to a bundle
t—G/B and the sheaf ¢ (F)— G/H pushes down to the sheaf
%" (FE)— G/B of germs of C” sections over G/B. The Poincaré lemma for
the euclidean fibres nx H\ B of G/H — (/B implies

HYCH(GIH EQ AN*), d )=H"(G/H, ¢ (E))
=C"(G/B E) it p=0,
=0 if ps#0. (2.10)
Now consider the general case of a maximally real polarization. Thus H
is arbitrary but nnf is maximal for that choice of H. Choose a Cartan
involution § of G such that 0H = H. It defines the maximal compactly
embedded subgroup K= {xe G: 0x=x! of G, we decompose h=t + a into

+1 eigenspaces of 0, and we split H=TxA, where T=HnK and
A=exp,(ay). Then Z,(a)=Mx A with OM =M. Let P= MAN, be an
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associated cuspidal parabolic subgroup of G. If 5=y ® 1" is a relative dis-
crete series representation of Z,,(M°)M°, where n° has Harish-Chandra
parameter v+ p,, € it¥, and if o €aqf, then one has the H-series tempered
representation

_ G i
Tyva= Indz”(,wn.uu N (n®eT).

See [28 or 11]. Suppose that the parameterization is such that v is
M-antidominant and let s =dim (K n M)/T. Then, combining [18, 19, 287,

HIN(C"(G/HE®Q AN*),d )=0 for p#s,

and
Gactson H'(C"(G/H, EQ AN*), d) by .- (2.11)

There are several serious problems with (2.5) for general (H, b). First,
the complex (2.5) is not acyclic, in general, so it will compute the hyper-
cohomology of a complex of sheaves rather than the cohomology of a
single sheaf. Second, there is no reason, in general, to expect d, to have
closed range, and, in fact, closed range is a delicate point in the cases
described above. These problems are avoided in the algebraic version of
(2.5), which (see Section 3 below) leads to the Zuckerman derived functor
(g, K)-modules. In this paper we describe some geometric complexes, varia-
tions on (2.5), which effectively yield all standard representations of G, and
we relate them to the Zuckerman modules.

3. HARISH-CHANDRA MODULES AND (GLOBALIZATIONS

By representation of G we will mean a continuous representation (7, ¥)
of G, on a complete locally convex Hausdorff topological vector space,
such that (n, 7’) has finite composition series. By Harish-Chandra module
for G we mean a #(g)-finite K-semisimple (g, K)-module } in which every
vector is K-finite and the K-multiplicities are finite.

If (r, V) is a representation of G, then V= {ve V: x is K-finite} is dense
in 7, is a Harish—-Chandra module for G, and consists of smooth vectors.

If ¥ is a Harish-Chandra module for G, and if (7, ¥) is a representation
of G such that V is (g, K)-isomorphic to the space of K-finite vectors in ¥,
then we say that (x, 17) is a globalization of V.

Zuckerman’s derived functor is an  algebraic version of
H*(C™(G/H:E® A'N*), d,) that results in Harish-Chandra modules for
G. Let .#(g, K)ix, denote the category of K-finite (g, K)}-modules,
A(a, HK) - k) the same thing with K replaced by Hn K, and

I #(g, HANK) gy oox) = - #1(0, K) k) (3.1)
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the functor that sends a module to its maximal f-finite f-semisimple sub-
module. Then [26]7, I is left exact and its right derived functors R”I" are
the Zuckerman functors. So the basic datum (H, b, ) of (2.1) specifies
{g. K)}-modules

AP(G, H, b, 3)= (R*TY{Homy (#(a), E)or o - (3.2)

They are Harish- Chandra modules for G.
To relate the Harish-Chandra modules (3.2) to the cohomologies of the
complex {2.5), denote

™" (H ~ K)-finite formal power series sections at 1-He G/H. {3.3)

Evaluation at 1. H in the version (2.8) gives

C(G/H: E® ATN*) = Hom, (#(g), E® A™*) 1 1 4.

Here d, acts on the left-hand side giving a complex of (g, H)-modules. The
kernel for p =0 is isomorphic to Hom (#(q), E) - x,- Resolve that by the
complex C™(G/H;E® A'N*), d,. Since this is an injective resolution, we
conclude

AP(G H, b, 1) = HY(CP(G/H E® A N*) 1), d)). {3.4)

Note that (3.4) defines a map from the cohomology of the K-finite version
of (2.5) to the derived functor module. That is the coefficient morphism,

H(C(G/H E® AN*) gy, dy) = HH{CO(G/H, E® AN*) 5, d), (3.5)

defined by the Taylor series expansion at 1 - H.

We will use (3.5) in showing that certain geometrically defined represen-
tations of ¢ are a particular globalization of the Zuckerman modules (3.2),
(3.4). There ar four functorial globalizations—the C” and distribution
globalizations of Casselman and Wallach [27] and the minimal and maxi-
mal globalizations of [227]. Because of its topological properties, the maxi-
mal globalization is the one that is appropriate here.

Let ¥ be a Harish-Chandra module for G and let (m ¥) be any
globalization. Every vector v in the dual Harish-Chandra module

V' K-finite vectors in the algebraic dual of ¥

extends to a continuous linear functional on V. If re ¥ and v'e V', the
coefficient,

fal G- C by /tl(\,) = (lf,, H(X)l’),
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is € and its Taylor series at 1 depends only on the action of #(g) on V.
Any finite set {v}, .., ,} of #(q)-generators of V' now defines an injection

Vs CUGY by v (freon fro) (3.6)
The induced topology on V is independent of choice of {v!}! and
V nax - completion of ¥ in the induced topology {3.7)

is a globalization of V. We call it the maximal globalization because, if V
is any globalization, then the identity on V extends to a (-equivariant
continuous injection Vg V,,,,.

If (m, 7} is a Banach globalization of V, then the subspace 7 of analytic
vectors has a natural complete locally convex topology and ¥ again is a
globalization of V. Now let ¥ be a reflexive Banach space, 7’ the dual
Banach space, and 7’ the dual of n. Then

V' :strong topological dual of (V') (3.8)

is the space of hyperfunction vectors of V. 1t is another globalization of V,
and the point here is [22, p. 317] that

the inclusion ¥ “g V,,,, is a topological isomorphism. (3.9)
Using this, one knows [227] that
V= V... 1S an exact functor. (3.10)

Look back at the examples in Section 2. The Dolbeault lemma holds
with any (C*, C 7, C ) coefficients, so (2.9) holds with C™ replaced by
C ©, and thus each Dolbeault cohomology group (2.9) is the maximal
globalization of its underlying Harish-Chandra module. In contrast, in the
case (2.10) of real polarization, the maximal globalization of C*{(G/B; ) 4,
is the space C “(G/B; E) of hyperfunction sections.

4. THREE GEOMETRIC COMPLEXES

In view of (3.9) and the subsequent discussion, note that the differential
d, of (2.5) extends naturally to hyperfunction sections, so we have a
complex

C-“(G/H; E® A'N*), d,. (4.1)

The space of hyperfunctions on a noncompact manifold does not have a
natural topology. We topologize the cohomology of the complex (4.1) by
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comparison of (4.7), (4.8) with the cohomology of the Cauchy-Riemann
complex (4.5) described below. In order to identify the resulting G-modules
we also need to study the local cohology groups (4.9). In fact, these three
are related a priori because hyperfunctions can be defined as certain local
cohomologies.

Let X denote the flag variety of Borel subalgebras of g and consider the
fibration

G/H>S=G bc X. (4.2)

X has a natural G-invariant complex structure and S is a homogeneous
submanifold. Thus S has constant Cauchy-Riemann (CR) dimension. In
particular,

N : intersection of the complexified tangent bundle of S

with the antiholomorphic tangent bundle of X (4.3)

is a G-homogeneous vector bundle based on n/(n~ii). The part of the
Dolbeault operator ¢ contangent to S is the Cauchy—Riemann operator

O: C(S; ATN%) > C7 (S A7V IN¥). (4.4)

See the Appendix for details. There N is denoted T*'(S). Extend y to the
G-stabilizer of b by exponentiating the action of nng, on the (b, H)-
module E,. Then [ — G/H pushes down to a G-homogeneous bundle F — S
and we have the Cauchy-Riemann complex

C(S:F® AN¥), 8 (4.5)

with hyperfunction coefficients. If we pull back to G as was done for (2.8),
we see that it is isomorphic to the complex

(C(G)QE@A (n/nni)*}"m 5 (4.6)

mnon

for relative Lie algebra cohomology of (n, n~ft) and hyperfunction coef-
ficients.

G/H — § has euclidean space fibres. Apply the Poincaré lemma to those
fibres to see that inclusion of the complex (4.6) in the complex (4.1)
induces an isomorphism of cohomology. Thus

H*(C “(G/H;EQ A'N*), d,)
=~ H*(C “(S;:E®ANY%), dy)

;H*({C U(G)®E®A(n/nmﬁ)*}nmnﬁ,é (47)

mnmn )'

Let S denote the germ of an open neighborhood of S in X. Then F — §
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has a unique holomorphic g-equivariant extension F — §. Consider the
Dolbeault complex

Co(S;T@AaTY"), ¢ (4.8)

with coefficients that are hyperfunctions on S with support in S. One
knows [13] that

HI(C (S E@ AT, &)= HYS: (b)), (4.9)

where the right-hand side of (4.9) is local cohomology along S.

5. FIRST MAIN THEOREM

Fix a basic datum (H,b,y) as in (2.1), let S=G-bc X, and let
u=codimy (S X). The result is

5.1. THEOREM. There are canonical isomorphisms
H(C (G/HEQ AN*), d, )= H(C “(S;E®@ A'NF), &)
~ H2. (8: ((F)).

These cohomologies carry natural Fréchetr topologies. The isomorphisms
are topological and the action of G is continuous in these topologies. The
resulting representations of G are canonically and topologically isomorphic to
the action of G on the maximal globalization of A™(G, H, b, y).

5.2. Remark. The three complexes of the theorem do not have obvious
reasonable topologies. The problem is that there is no reasonable topology
for the space of hyperfunctions on a noncompact manifold. The topological
part of the theorem must be understood in one of two equivalent ways.
First, we will see that the cohomology of the Cauchy-Riemann complex
can be calculated from a certain subcomplex that does have a good
topology; that topology carries to the cohomology, carries over to the
other two cohomologies by the isomorphisms, and makes Theorem 5.1
precise. See Section 7 below. Second, the topology is determined by the
underlying Harish--Chandra module 4”(G, H, b, x) because the topology of
the maximal globalization can be defined purely in algebraic terms. See
[22].

5.3. Remark. The identification of the cohomologies will be seen, in the
proof, to be explicit and geometric, in fact induced by the natural map
(3.5).

The proof of Theorem 5.1 is distributed over Sections 6 through 13 of
this paper.
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6. ISOMORPHISMS OF THE COHOMOLOGIES
In this section we start the proof of Theorem 5.1 by showing

6.1. PROPOSITION.  There are canonical isomorphisms
H(C “(G/HEQ AN*), d Y= H'(C “(S;ER® AN, dg)
xHE (S b))
as G-modules without topology, where u=codim_ (S < X).

Proof. The first isomorphism is (4.7), so we only need to show that the
complexes (4.1} and (4.8) have naturally isomorphic cohomologies with a
shift of degree by wu.

As before, we fix a base point b in X, b= + n, with b stable under both
# and complex conjugation. Let Y denote the variety of ordered Cartan
subalgebras. As homogeneous space,

Y>~G./H,, (6.2)

where G is the adjoint group of g, and H . is the connected subgroup with
Lie algebra b. Since H normalizes b, there is a natural projection

p: Y- X, (6.3}
with fibre
p '(by~expn (6.4)

over the base point b. We let T, denote the complexified relative tangent
bundle of the fibration p, and T}y, T/, the subbundle of holomorphic,
respectively antiholomorphic, relative tangent vectors. Because of (6.4),

T}y is modeled on n, (6.5)

as homogeneous vector bundle over ¥ >~ G /H,.
The G-orbit S, through the base point in Y,

Sy=G-hcV, (6.6)
lies over S=G - b, and
p:Sy— Shasfibre exp(nngy) =expnniingg) (6.7}
at the base point. We note that §, ~ G/H, so

Sy s a real form of the complex manifold Y. (6.8)
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In view of (6.4), dim.Y=2dim. X=2n, hence dim, S,=dim, Y=
dim,, X =dim S+ codim (S < X). This shows:

u=dim, (n ) is the fibre dimension of p: §, — §. (6.9)

Let ¢,”(Y;..) denote the sheaf of hyperfunction sections of ... with
support in S, ; analogously % ; ”(X) is the sheaf of hyperfunctions on X
with support in §. Exterior differentiation along the fibres turns
s (Y; A T% ) into a complex. We claim

0, k+#2n—u

%7[( (6'::) YA‘"’* —_ 610
([J* Sy ( s Y|/\)) {%/S(’)(X)s /‘:2}1_“ ( )

This is really a local statement. We may view the variables on the base as
parameters, which reduces the statement to a problem along the fibres.
Over a point of S, p: Y - X has fibre C" ~ R*, with the fibre of p: S, — S
corresponding to the subspace R“<R*. Thus (6.10) comes down to the
following statement: the de Rham complex on R*", with hyperfunction coef-
ficients supported along R", has cohomology only in degree 2n—u; in that
degree, the cohomology has dimension 1. This is standard in the two extreme
cases u=2n and u=0 [13]. The general case follows from an argument
which combines the two extreme cases.

Interpret ¢ ; “(X) as a complex of sheaves concentrated in degree zero.
Then (6.10) becomes a quasi-isomorphism between complexes of sheaves,

6 X [u—2n] = p 6 (Y ATE ) (6.11)

here [u—2n] denotes a shift of indexing by 2n —u. Twisting the quasi-
isomorphism with the Dolbeault complex of the vector bundle T over the
germ § of a neighborhood of S gives

€S E@A T ) u—2n]
~p €5 (p 'Sy prE@ATEH @A TH @A PTLY). (6.12)

The H -invariant splitting g=b+n,, with n, equal to the sum of the
positive root spaces, puts a G-invariant holomorphic connection on the
fibre bundle

expn—o>G./H =YX,

this connection is flat since [n,,n, ]J<n, . In other words, there exists-a
G --invariant isomorphism

PPIy@Tlyv=T,, (6.13)
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which is compatible with the complex structure and Lie bracket. Hence-
forth we shall write T instead of p* 7T ,, to simphfy the notation. Then

ATE, AT =~ AT L;’:@ A'T?z);@ AT
~AT ’,??@ /S'IUM{;‘ '*

so the right-hand side of (6.12) can be identified with
P p (SR pERAT L @ATH") (6.14)

The local cohomology sheaves of ¢!, along the real form S, vanish except
in degree dim .S, = 2n, and coincide with ¥ “(S,), the sheaf of the hyper-
functions on S, in degree 2n [ 13]. Equivalently,

@ SR AT I2n) =% (S,) (6.13)

{(here we identify 4 "(S,) with a shcaf on ¥, or on p (S), having trivial
stalks at points outside §,). We take cohomology with respect to the
second index in (6.14), and use (6.15), to find

€5 (p Sk P ERAT @ AT 20]
=% Sy p*E@ ATV
hence (6.12) becomes

COUSE@ATY N = p, & (S, p E@A TNl (6.16)

The higher direct images of the flabby sheaves ¥ “(S,:..) vanish. Thus,
by Leray and (6.16),

HHS. C(E)=H*Cy (S E@ATY™))
=H S, ¢ S E@Aa T )
=H*S, p& S, p E@A T ~u])
=H*(p "5).% S, pPE@A TN —ul)
=H* “(C “(Sy; prE@ATE N {6.17)

Yix

At the second step and at the last step, we used th fact that the hyper-
cohomology of a complex of flabby sheaves is computed by its complex of
global sections. The homogeneous vector bundle p*E over S,~G/H
is modeled on the H-module E. Recall (6.5) and observe that the
isomorphism (6.15) rclates differentiation by a real analytic vector field &

SRS
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on Sy to Lie derivative along the holomorphic extension of & on Y. Thus
C ””(S)»;p*E®A'TT',:‘,’}) coincides with the complex (4.1) (Here recall
(6.5).) Now (6.17) implies Proposition (6.1).

7. A SuBcoMPLEX OF THE CR COMPLEX

In this section we describe a subcomplex of the Cauchy-Riemann
complex (4.5) that has several key properties. First, it has the same
cohomology as (4.5). Second, it has a natural Fréchet topology. Third
(we will see this in later sections), its differentials have closed range, so the
cohomology inherits a Fréchet structure.

Fix a Cartan involution 0 of G with 0H=H. Thus H=Tx A with
T=Hn K and 4 =exp(a,), where

K =G": maximal compactly embedded subgroup of G
h=1+a: £ 1 eigenspaces of 0.

We have our orbit S=G-b, h=b. We are going to define a related orbit
Smax =G -b.,, where b, and b, is maximally real for that condi-
tion. Then, as described before (2.11), G has a cuspidal parabolic subgroup
P=MAN,, Z(ay)=MxA, OM=M, and b,,, =p. We will do this in
such a way that

7.1. PROPOSITION. GnBcGnB,,,, so gbrs gb, .. defines a fibration
S>> 8- G B, <P, so g-b .+ gP defines a fibration S, — G/P.
The fibres of each of the three fibrations are complex submanifolds of X:

S
szlx — G/P

Our subcomplex of ((4.5) depends on S— G/P, and we will need
S = S 10 Section 10.

7.2. LEMMA. Let @7 be a positive root system for (g, b). If there is no
complex' simple root % such that € —®*, then &~ is maximally real.

Proof. Let £€a, and neit, such that &* = {oe d(g,h): a(E+1)>0}.
If xe®™ is simple, then either «|,=0 and a(n) >0, or a(&) > |a(n)|. So, if
ae @™, either a|,=0 and a(n)>0, or a(¢)>0. In other words @ T is the

"A root z is called complex if % # +x.
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maximally real system defined by @ ¥ (n, t)={xe @ 2|,=0 and a(y) >0}
and @ (g, a)= {xeP:a(f)>0]. QED.

7.3, LEMMA. Ler a be u complex simple root for @ such that 3¢ — .
and let s, be the Wevi reflection. Then
(5, @ )N (s, ) =(@ "D )U {a d)
Proof. Notes, @' =(@* \{a})u {—a}. QED.

Combine Lemmas 7.2 and 7.3:

7.4. LemMA.  Let @7 be a positive root system for (g, ). Then there are

sequences {%y, .. 2,y of roots and {@* =@, .. OF =D | of positive
root systems, such that
(1} =, is complex simple for @7 with 3,6 —® 7,
. £
(11) Sa,(pf+ =7,
(i) @7 =&/  is maximally real, and

(v {aedt:a|, =0} is independent of i.
1 i a )] p #

Now the Borel by, =b+3, 4: 8 ,and the orbit S\, =G by =X
are defined. Note from Lemmas 7.3 and 74 that @' n @  « Pt ~ne! .
Thus

bnbcb,,nb 1e, gonbegyM b, (7.5)

max?»

Each topological component of G n B, or of G n B,,,,, contains every coset
of T modulo T° Thus

GNnBcGnB,,,, so S fibres over S, .. (7.6)

The fibre of S — S, is a complex submanifold of X, as a consequence of

7.7. LEMMA,  Define q=bnb_,, N Dby... Then qis a complex subalgebra
of g, normalized by G~ B and contained in b, such that

q+3=bpu b .. and  qng=bnb.

In other words [5] the fibre of S — S, is a complex submanifold of X and
q/(b " b) represents its antiholomorphic tangent space.

Proof.  We defined q as an intersection of complex subalgebras of g that
contain b and, by (7.6), are normalized by G~ B. So q is a complex sub-
algebra, G ~ B normalizes g, and h<q.
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Write ¥=&*nd! ~nd! . so that q=h+3¥,q ,. Now
PrAP D AP gives VAT =D D' s0qni=bnb.

Look at the negativetsystem. That gives (— @ )n (=P ) (—D, )
(=@ ). Take complements: @' U 5@ Ud . Thus YU F=
(@ LD )N (DL, NP V=D AP s0q+F=Db,,. Nb.... QED.

The assertions of Proposition 7.1 regarding S — S, now are proved. As
for S,..— G/P, note that b, +b.,,=p, so b, is a totally complex
polarization for the fibre (=M/T) of S,,.. = G/P. Now we combine these.

7.8. LEMMA. Define v =q+ (bnm). Then v is a complex subalgebra of g
such that t+T=p and t"t=bnDb. In other words, t is a totally complex
polarization for the fibre of the composition S — S,... = G/P. which thus is
a complex submanifold of X, and the fibre of S —> S, is a complex sub-
manifold of the fibre of S — G/P.

Proof. Note from Lemma 7.4(iv) that bnm=b,,, ~m Since
b nax N Dax 15 the sume of h with the g , such that «(¢) >0 for a certain
Leay, now [bnm, q] <q, and it follows that r is a subalgebra of g. Now
compute

r+t=q+q+(bnm)+(bnm)
=q+q+m
=m+(bL,nD

max )

=m+bh+n,=p

and
tnt=(@Nna)+(@nbam)+(Gnbam)+t
= (b~ b)+ (subspaces of b b)
=bnb.
That completes the argument. Q.E.D.

The proof of Proposition 7.1 is complete. Now we proceed to describe a
certain subcomplex of the Cauchy-Riemann complex (4.5). For that, we

want to talk about hyperfunctions that are smooth along the fibre of
S—G/P.

7.9. LEMMA. Let W U be a C* fibration. Then the sheaf of germs of
hyperfunctions on W, which are C* along the fibres, is well defined.
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Proof. The basic ingredients of the theory of hyperfunctions make
good sense with C'* dependence on parameters. See Komatsu [13]. In
particular, hyperfunctions on sets U,x U,, U, open in R", with C”’
dependence on the R"™ variable, can be patched together. In other words,
such hyperfunctions constitute a sheaf.

Now we sheck that change of local trivialization preserves the sort
of hyperfunction just described. So, let w(u,,u,) be a hyperfunction
on U,xU, that is C” in wu,. Let F:U, xU,-»U,xU, be a C”
difffomorphism of the form F(u,, us)=(u,, f(u,,1,)). We want to see
that wiu,, f(u;, u,)) is C 7 in (uy, u,) and C* in u,.

Let U, = C" be a Stein neighborhood of U,. Let #(i,. u,) be a cocycle
on U, representmg the hyperfunction w(u,, u,), C” parameter u;. Shrink-

ing U,, U,, and U,, we can suppose that f extends to f: U, x U, - U,
holomorphic in T,. Then w(i,, f(i,, u,)) represents a hyperfunction with
C” dependence on u-. Q.ED.

Combining (7.1) and (7.9) we have a well-defined sheaf,

6 ;'7(S): germs of hyperfunctions on S that are C”*
along the fibres of S — G/P. (7.10)

Caution: this notation should not be confused with the notation of
Section 6, where the subscript refers to support. (7.10) defines (using () a
complex of sheaves

C S E@ANE): germs of sections of E® AN ¥ — S,
coefficients in C2 5.8 . (7.11)

Taking global sections we arrive at a subcomplex
C.AS:E@ANE) O (7.12)

of the Cauchy-Riemann complex (4.5). The basic facts about the complex
(7.12) are

7.13. PROPOSITION.  The inclusion of (7.12) in the Cauchy- Riemann com-
plex (4.5) induces isomorphisms of cohomology.

7.14. PROPOSITION. The C_(S;EQ A’NE)  have natural Fréchet

topologies. In those I()pologles ¢

Fréchet representations.

Cy Is continuous and the actions of G are

We first prove Proposition 7.13.
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7.15. LEMMA. Let V — Z be a holomorphic vector bundle. Then the sheaf
(V) > Z of germs of holomorphic sections has resolution by the complex
€ (Z; VR AT"Z)*), &} of germs of V-valued (0, -)-forms with hvper-
Jfunction coefficients.

(This is proved in Komatsu [13].)

7.16. LeMMa. The inclusions 6 ;0(S;EQ@ A'NE) =€ “(S; EQ A’N¥)
of the sheaves (7.11) into the sheaves corresponding to the Cauchy—Riemann
complex, induce isomorphisms of cohomology sheaves.

PPN Tha Lo dla ;n PRUIS P mand Anly mreon +ha far oprala
[IUU/ 1 ¢ ounaic is lllClCVallk, wE 11Cca Ulu_y pruyve Llllb W SCdia

forms on an open set Ux V< R“x R’ that are C"“ on U and C” o

Komatsu’s argument [13] for the hyperfunction Dolbeault lemma is vahd

with C* parameters. This reduces the proof to the usual Dolbeault lemma.
Q.E.D.

-t

7.17. LEMMA. The sheaves ¢ “(S;E@ATNE) and 6 (S, EQ A'NE)
are soft.

Proof. Softness is local. We must show t

neighborhood U such that any section over a closed subset of U extends to
a global section. For this we may assume that U has compact closure, that
E— 5 and Ng— § are irivial over U, and that U 1s the inverse image of 4
locally trivializing open set for S — G/P. With respect to the latter we write
U=U,xU,.

Let F= U be a closed set. Since F is compact, any section of ¢ “ over
F extends to a neighborhood W of F, cl(W)c U. It is standard that
a hyperfunction on W extends (not uniquely) to a hyperfunction on U
with support in cl(W), then of course by zero to all of S. That is the
(standard) argument that ¢ “(S;E® A’N¥) is soft. We modify it for
€ p(SiE® A'NE).

First suppose F=F, x F,, F,< U, Apply the above argument to F, c U,
with C* parameters in F,. Thus any section of % over F extends to a

w

o b over F, and

t every yec S hag o
Ut CyLly Xco lias d

w

olnhnl section. For the OPanI case, let ¢ be a section of €.

G an extension of ¢ to an open neighborhood W of F w1th (W)= U.

Cover F by a finite number of sets F,xV,, F, compact, V, open,

F,xV,c W. Let &, be a section over U x ¥V, that agrees with 6 on F_ x V,

and has support 1ns1de cl(W). Let {¢,} be a C™ partition of 1 for the
us) (u

covering {Vg,} of |JV,. Let 5 denote ¢ (u,). Then 3 5 ., extends
o to U with support in cl(W), s ‘l extends further by O to a global section
of € %. Q.E.D.

A general result in sheaf cohomology [6] says that, from Lemma 7.16,
the inclusion of sheaves induces an isomorphism of hypercohomology.
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Since both complexes consist of soft sheaves by Lemma 7.17, the hyper-
cohomology is just the cohomology of the associated complex of global
sections. That completes the proof of Proposition 7.13.

Now we deal with Proposition 7.14. First noticc that the theory of
hyperfunctions with values in a reflexive Banach space is developed in
exactly the same way as for complex valued hyperfunctions. Thus,

7.18. LEMMA.  Let V> M be a C” vector bundle over a compact C”
manifold M, whose typical fibre is a reflexive Banach space V, and let
V* — M be the dual bundle, modeled on V*. Then the space C (M, V) of
hyperfunction sections has a natural Fréchet topology. which is the strong
dual to the natural topology on C”(M; V*).

Now let F denote the typical fibre of S— G/P. So C”(F) is a Fréchet
space , limit of Sobolev spaces V, of functions on F. That expresses C™(F)
as a topological limit of Hilbert spaces V,. The corresponding bundle
C™*(F) thus is a limit of Hilbert bundles V,. Lemma 7.18 applies to the
V, — G/P. Now

C,iS)=C “(G/IP;CH(F))=1lim C “(G/P;V,) {7.19)

has a natural G-invariant topology in which { is continuous. The limit
topology here is given by the union of an increasing family of seminorms,
so it is Fréchet. Proposition 7.14 follows.

8. THE TENSORING ARGUMENT

In this section we use tensoring arguments to reduce Theorem 5.1 to a
special case.

8.1. DEFINITION.  An admissible Fréchet G-module has property (MG) if
it is the maximal globalization of its underlying Harish-Chandra module.

8.2. DEFINITION. A complex (C, d) of Fréchet G-modules has property
(MG) if (i) 4 has closed range, (ii) the cohomolgies H?(C',d) are
admissible and of finite length, and (iii) each H”(C", d) has property (MG).

8.3. DEFINITION. Given a basic datum (H, b, y), the corresponding
homogeneous vector bundle E— S has property (MG) if the partially
smooth Cauchy-Riemann complex (7.12) has property (MG).

In view of Section 6, we want to prove that, for every (H, b, y), the
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homogeneous bundle E — S has property (MG). But Theorem 5.1 requires
more. Denote

H'(S:E)=H"(C "(S;E® A'N¥), &) (8.4)

Proposition 7.13 shows that H”(S; E) is calculated by a Fréchet complex.
As Jg and projection to K-isotypic subspaces commute, H”(S;E), is
calculated by the subcomplex of K-finite forms in that Fréchet complex.
These forms are smooth because they are smooth in certain directions by
definition and because K is transitive on the transverse directions. In
particular, K-finite forms in that Fréchet complex have formal power series
at 1. H, and so we can use (3.5} to define morphisms

HS, E)ixy— A7(G, H, b, y). (8.5)

The last aissertion of Theorem 5.1 is that these are isomorphisms.

8.6. DEFINITION. The bundle F - S has property (Z) if the maps (8.5)
are isomorphisms.

Tensoring has to start somewhere. So we consider the following condi-
tion on a pair (H, b).

There exist a positive root system @+ and a number >0
such that: if £ — S is irreducible, A = dy € b*, iy is the restric-
tion of 4 to the real form b, on which roots take real values,
and (A, 2>>Cforall xe @*, then E — S has both proper-
ties (Z) and (MG). (8.7)

In this section we prove

8.8. ProrosiTiON.  Fix (H,b). If (8.7) is true then, for arbitrary basic
data of the form (H,b, y), E > S has both properties (Z) and (MG).

For any (H, b), Proposition 8.8 reduces the proof of Theorem 5.1 to the
proof of (8.7). That will be done in Sections 9 through 13.

89. LeMMA. Let T:U—V be a continuous G-equivariant map of
admissible Fréchet G-modules. If U and V' have property (MG), then T has
closed range and both Ker T and Coker T have property (MG).

Proof. If Ker T=0, ie, T is an injection, this is the fact [22] that
“maximal globalization” is an exact functor on the category of Harish
Chandra modules for G.
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The case Ker T's U now shows that U/Ker 7 has (MG), and then the
case U/Ker T V shows that T has closed range and V/Im T has (MG).
QE.D.

Now consider the category of complexes of Fréchet G-modules with G-
equivariant differentials. Morphisms of such complexes are, by definition,
continuous and G-equivariant. The content of Proposition 7.14 is that the
partially smooth subcomplex (7.12) of the Cauchy-Riemann complex (4.5)
belongs to this category.

8.10. LEMMA. Given a short exact sequence of complexes of Fréchet
G-modules, the maps in the corresponding long exact cohomology sequence
are continuous.

Proof. Let 0> (C'»*C -»"(C"—>0 be the short exact sequence in
question. Since % and f consist of continuous maps, the induced maps

H(C')-"> H(C) " Hr(C)

are continuous. The connecting maps 8: H7(C") —» H” " '((') are induced
by « '-d-f# ', where d is the differential of C. So it suffices to show that
if Sc(C")"*" is a closed subset and is a union of cosets of the kernel of
the differential d' of C’, then Bd 'x(S) is closed in (C”)". Im x=Ker f§ is
Fréchet so the open mapping theorem says that the «: (C')* —» a(C') are
homeomorphisms. Now a(S) is closed in C”*' As d is continuous,
d 'a(S) is closed in C”. Since d 'x(S) is a union of cosets of x(C")”, B
maps the complement of d 'x(S) onto the complement of fd 'x(S). The
open mapping theorem for f: C/Ker f — C” says that f is open, so now
Bd 'x(S) is closed. Q.ED.

8.11. LEMMA. Let 0> C'—* C—"C" -0 be a short exact sequence of
complexes of Fréchet G-modules. If two of them have (MG) then the third
has (MG).

Proof. 1t suffices to show that the differential of the third complex has
closed range. Once that is done, the cohomologies are admissible and have
finite length because they fit into an exact sequence where the surrounding
terms have these two properties. Also, the long exact cohomology sequence
maps naturally into the corresponding sequence of maximal globalizations
of underlying Harish-Chandra modules, so cxactness of the maximal
globalization functor says that the cohomologies of the third complex have
(MG).

Write d, d’, d” for the differentials; B, B', B" for the coboundariecs:
Z, 7', Z" for the cocycles.
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Let ¢’ and C” have (MG). The H?(C") are Hausdorff so Ker{Z” —
HI(C) =B "B Y NZ'=a(Z')"+dC" " is closed and

a®d(Z)Yy®CT " (BYNZ"

is an open map. If we Z” is in the closure of B, it is in f '(B")” now, so
there are nets {¢,} = C” 'and {y,} =(Z')” with {¢,} >, {¥,} = .
where w=ay + d¢ and ay, + dg,, € B”. Now o)y, € B” so [y,]e H?(C") is
annihilated by «,: H(C')— H”(C), hence in the image of H” Ccry -
H"(C"). That image is closed by Lemma 8.9, so it contains [¥]. Now
o, [¥]1=0 ie, [w]=0,iec weB”

Let C and C” have (MG). Then an analogous argument shows that the
(B")” are closed.

Let C and C” have (MG). Then the image of H” '(C)— H” (") is
closed by Lemma 8.1, its pre-image fZ” '+ (B")” 'in (Z")" 'is closed
there, and thus Z7 '+ o(C")" "= {pzZ7 '+ (B")" '} is closed in
C” '. Now let w be in the closure of (B')”. Then we(Z') and there
is a net {¢,} <(C') ' with {d¢,} - . Since H”(C) is Hausdorff
and H”(C')" ' with {dg,} >w. Since H”(C) is Hausdorff and
H(C'y—= H?(C) is continuous, aw is of the form dy, yeC” ' Now
{dug,} — diy. B” is closed, so d: C” ' — B’ is an open map, and thus one
has {,} = C” ! with {,} - and dy, = dag,. Now the ,,, hence i, are
in the closed subspace Z7 '+ «(C) ' So aw=dped(C) '=
ad'(C')" ' =a(B')”. Since « is injective, now w e (B')”. Q.ED.

Let 0 < £, < --- < £, =F be a composition series for the (H,b)-
module E. In other words, the corresponding homogeneous bundles
Ock,c --- ck, =F over S satisfy: the quotient bundles L,=E;,/E, ;- S
are irreducible. By induction on k, Lemma 8.11 gives us

8.12. CoroLLARY. [f all the |, — § have (MG) then & — S has (MG). If
E— S and all but one of the L, — S have (MG), then the remaining L, — S
has (MG).

The corresponding result holds for property (Z):

8.13. LEMMA. If all the |, — S have (Z) then L — S has (Z). If £ - S and
all but one of the L, - S have (Z), then the remaining L, —> S has (Z).

Proof. The morphisms based on (3.5) induce morphisms (8.5) of long
exact cohomology sequences corresponding to a short exact sequence of
bundles. If two of these bundles have (Z) then the five-lemma ensures that
the third has (Z). That proves the version of Lemma 8.11, where (Z)
replaces (MG), and now the assertion follows as in (8.12). Q.ED.
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Let F be a finite dimensional G-module, F — § the associated homo-
geneous vector bundle. The g-equivariant extension F— .S to a germ of a
neighborhood is holomorphically trivial, so

the complex {C “(S:EQF®@ A N¥), (g} is the direct sum of
dim F copies of {C “(S;E@ ANF¥). I} (8.14)

Now, if ¢ has closed range for E then it has closed range for E®F. It
follows that

8.15. LemMma. If E— S has (MG) then EQF — S has (MG).

Similarly, from a glance at the origin (3.5) of (8.5},

8.16, Lemma. If £ — S has (Z) then EQF — S has (Z).

Now we have the analytic tools for the proof of Proposition 8.8. We still
need a geometric tool.

8.17. DEFINITION. Let F, .., F, be the irreducible finite dimensional
g-modules corresponding to the fundamental highest weights. Let Bch*
be an open ball of some radius with center at 0. Then peb? is accessible
from B if there exist o€ B, je {1, .../} and an extremal weight v of F; such
that u=p,+v, and u,+v' e B for any weight v/ # v of F,.

The idea is that the weight system of F, is in the convex hull of the
extremal weights, and appropriate translations v'+ u, + v' will keep all the
weights inside a large radius ball B except for one extremal weight. In fact,

8.18. LEMMA.  There exists ry>0 with the following property: If B<b*
is an open ball centered at 0, with radius r > ry, then

Bu {pebk: uis accessible from B
contains an open ball centered at O with radius >r.

Proof. We first check that it suffices to prove

if 5 is a hyperplaue in h¥ then there exist a parallel translate
s’ of s, an integer je {1, ., /} and an extremal weight v of F,
such that v is on one side of s’ and the other weights of F,
are on the other side. (8.19)

In effect, a unit vector # in b} determines a parallelism class of hyper-
planes, and if s is in this class then replace # by —# if necessary so that
s'={lebX:&.-n=r] for some r>0. We can deform 5 slightly, using the
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same j and v in (8.19), and the s" defined by & -y = r will still satisfy (8.19).
Now we have (J, v, r) associated to a neighborhood of # in the unit sphere.
A finite number of these neighborhoods cover. Let r, be the maximum of
their numbers r > 0. Now (8.19) implies the lemma.

We prove (8.19). Choose n € b%, unit vector orthogonal to s with s given
by ¢ -5 =r for some r>0. Since (8.19) is invariant under the Weyl group
we may assume # in the positive Weyl chamber. So # -2 >0 for all simple
roots %, n-2>0 for some simple root «. Choose je {1, ..,/} so the the
corresponding fundamental highest weight, say ¢, has &, -2 > 0 for a simple
root o with n-2>0. If v' is another weitht of F; then -v' <y -¢,. Now
(8.19) follows with v =¢,. Q.ED.

8.20. Proof of Proposition 8.8. Assume (8.7). If Proposition 8.8 fails,
then in view of Corollary 8.12 and Lemma 8.13, Proposition 8.8 must fail
for a basic datum (H, b, y) with E — S irreducible.

Let £ — S be irreducible, so dy=4iebh* Let C be as in (8.7), r, as in
Lemma 8.18, and 4,eb¥. If (A,, a) is suffciently large for all xe @ *, then
Ag — Aol <y forces all {4, a>>Cflorxe®™, soby (8.7) F— S has both
(Z) and (MG). Fix one such 4, and let

Fr=sup{r>0: i, — 2| <rimplies (Z) and (MG) for [F}.

Then r,2ry,. If r, <o then Lemma 8.18 provides r,>r, such that the
open ball B(r,), radius r, and center 0, is contained in B(r,)u {accessible
from B(r,)}. So (Z) and (MG) carry over from B(r,) to B(r,) by
Lemmas 8.15 and 8.16. That contradicts the choice of r,. Thus r, is infinite.
That proves Proposition §.8. Q.E.D.

9. MAXIMALLY REAL POLARIZATIONS

In this section we show that (8.7) holds for maximally real polarizations.
So the results of Sections 7, 8, and 9 combine to give

9.1. PROPOSITION.  Theorem 5.1 holds when the basic datum (H, b, y) is
such that b is a maximally real polarization.

We break the argument into small steps.

9.2. LEMmA (Aguilar-Rrodriguez [1]). If G is connected and H is com-
pactly embedded in G, then the (Z) part of (8.7) is true.

Proof. As H is compactly embedded, bnb=b, S=G/H is open in X,
and the complexes (4.1), (4.5), (4.8), and (7.12) all coincide, yielding
Dolbeault cohomology H' (S; E).
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Let E— S be irreducible, 2 =dzeb™.

Suppose first that G is relatively compact, ie., G=K. If E— S is positive
then the Borel-Weil theorem and its Zuckerman module analog say that
both sides of (8.5) are zero for p+#0, irreducible and isomorphic for p=0.
So it suffices to show the morphism of (8.5) not identically zero for p=0.
That is clear: the Taylor series of a nonzero holomorphic section is nonzero.

We have just proved (Z) for irreducible positive bundles when G =K. It
follows for irreducible negative bundles when G = K, either by Lemma §.16
or by passage to dual bundles.

Now we are in the general case of Lemma 9.2. If the irreducible bundle
£ — S is sufficiently negative, ie., if {1, > <0 whenever x>0, then [ 18]
HMNS; Ey=0 for p#dim.K/H, and for p=dim K/H is the underlying
Harish-Chandra module for the relative discrete series representation
n;,, of Harish-Chandra parameter A+ p. It is also known [26] that
A"(G, H, b, z) is 0 for p#dim, K/H, and for p=dim, K/H is the Harish-
Chandra module for n;,,. Thus again we need only check that the
morphism of (8.5} is not identically zero for p=dim  K/H. So. consider

HP(G//H; [E)u\') — HIY(K/H: E|qopy)

lf”(, J{Iﬂ]\

A(G, H, b, 1) —"— A"(K.H. bt y),

where my;, my are the morphisms (8.5) for G and K, and r,, r, are restric-
tions to the maximal compact subvarity. The diagram commutes, the r, are
surjective, and we just saw that m is nonzero. So m; is nonzero.  Q.E.D.

9.3. LemMA.  If H is compactly embedded in G then the (Z) part of (8.7)

is true.

Proof. Let Z=Z.(G"), centralizer of the identity component G* in the
full group G. Then ZG’=HG" and H=ZH". Note that y={® (x|
where { = y|,. Let E— § be irreducible and 4= dyeh* as before.

Lemma 9.2 says that there is a positive root system @ such that, for A
deep in the corresponding chamber, the

Hp(G()//H(); [EO)(K(), N A[)(GO, H(), b, x | H“)

are (g, K")-isomorphisms. Here F'=[ | for some component S°2> G/ H°
of S, Now tensor with { to see that the H?{ZG®H;E") ;x0, —
AP(ZG®, H,b, y) are (g, ZK°)-isomorphisms. Induction from (g, ZK")-
modules to (g, K)-modules carries these to isomorphisms H”(G/H; E) g, —
AM(G, H. b, y). Q.E.D.
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9.4. Lemma.  If'b is maximally real, then the (Z) part of (8.7) is true.

Proof. As described before, G has a cuspidal parabolic subgroup
P=MAN, associated to H, such that bcp. Here H=Tx A with
T=HnK and 4A=expla,), S=G/H-N,, and S fibres over G/P with
holomorphic fibres M/T.

Let E— S be irreducible. Note that y =y, ® y ,, where

dy=4reb*  yy=ylr.  dyr=4l. pa=explyl.)
If £|,,,, is sufficiently negative then, from Lemma 9.3, the
HY(M/T Bl yg) ik eman = A7(M, T b, ) (9.5a)

are isomorphisms of (i, K n M)-modules; those modules are nonzero just
for p=dim (KN M)/T. So any (Kn M)-finite E-valued closed form on
M/T with formal power series coefficients at 1-T is cohomologous to a
smooth one, and a smooth closed (K n M)-finite E-valued form on M/T is
exact just when its Taylor scries at 1- T is cohomologous to zero.

Let Z7 and B” denote the respective spaces of closed and exact smooth
(K n M )-finite E-valued (0, p)-forms on M/T, and let “Z” and "B’ denote
the corresponding spaces with “smooth” replaced by “formal power series”
for the coefficients. So (9.5a) says

ZP/B?=°Z"/"B? as (m, K~ M)-modules, (9.5b)

where the isomorphism is induced by Z” — "Z”, Taylor series at 1-7.

We compute A”(G, H, b, y) from the complex of K-finite E-valued forms
on G/H, formal power series coefficients at 1-H. Apply the Poincaré
lemma (valid in the context of formal power series) to the fibres =N, of
G/H— G/H-N,;=S. So we can compute 47(G, H, b, y) from the subcom-
plex of forms constant along right N, cosets that annihilate N, directions,
Le., forms that push down to S. Since these forms are K-finite, thus well-
defined functions on the K-orbit of the base point, we can compute
A”(G, H, b, ) from the complex of left K-finite, right Kn M invariant,
functions from K to the Zuckerman complex for M/T. In other words,

AP(G, H, b, x)= C(K; "Z") M/ CT(K; B )RS, (9.6a)
From (9.5b) we may take the values to be in the spaces of smooth forms,
ANG, H,b, x) = C(K; Z") M /CT (K BP) RO M. (9.6b)

Any such function K — Z” coms from a closed global K-finite form on S,
because M/T is fibre and K is transitive on the base of S - G/P = K/K ~ M.



GEOMETRIC QUANTIZATION AND DERIVED FUNCTOR MODULES 77

Conclusion: H?(S; E} ., — AP(G, H, b, x) is surjective. But here each side is
induced from the corresponding side of (9.5a), so the surjection is an
isomorphism. Q.ED.

9.7. Lemma. If H is compactly embedded in G, then the (MG} part of
(8.7) is true.

Proof.  As before we may assume that E is irreducible, Let A=dy be
deep in the negative Weyl chamber. Then the assertion is essentially con-
tained in [187]. There, it is shown that H7(S; E}=0 for p # p,=dim.K/H,
that ¢ has closed range, and that H™(S;[) is a certain representation
described above in Lemmas 9.2 and 9.3. This last is done by exhibiting a
topological isomorphism with the space of sections, of a certain vector
bundle over G/K, annihilated by a certain first-order operator &. The
maximal globalization maps to this space of sections by v+ F,, where
F.(x)=p{n{x} 'v}, p projection to the minimal K-type of 7. By maxi-
mality, this map is an isomorphism. Now use the tensoring argument.

QED,

9.8, LEMMA.  If b is maximally real then the (MG) part of (8.7) is true.

Proof. Again, we may assume that £ is irreducible. Let A=dy=v+ fo,
vertt deep in the negative Weyl chamber of @ (m, {). Then

H(S;Ey=H(Cy (S E® AN, Og)

vanishes except in degree po=dim. K,/7, Ky,=Kn M, and W=
H™(S; k) is the € induced representation Ind¥, ,,, (7 ®¢”). This is as in
{2.11), except that in the induction step one considers hyperfunctions
G — V, rather than measurable functions that are L? on G/P. The induced
module W has finite length because # is irreducible. It also has a good
Fréchet topology, which one sees as follows.

As b is maximally real, GnB=H -N, and S— G/P has fibre
P/H-N,=M/T. So the complex C,5 consists of forms which, as “func-
tions” on G, are smooth in the MAN,, directions and are hyperfunctions
in the transverse directions. The Leray spectral sequence argument relating
Dolbeault cohomology of E|,, .+ to sections of a vector bundle over M/K,,,
which is done explicitly in [187], is constructive and works with hyper-
function parameters. Thus the closed range argument of [18] proves
closed range here. In particular, W inherits a Fréchet topology from
CoHS EQAMPNE)

It remains only to show that W is (MG). The Casselman submodule
theorem [4] realizes the underlying Harish-Chandra module of V, as a
subpresentation of a {non-unitary) principal series (m, K,,)-module. The
latter has maximal globalization that is just the appropriate induced
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representation of M in the context of hyperfunctions [22]. Since V, is
(MG) by Lemma 9.7. now it is a closed subspace of a C “ principal series
representation space of M. Thus W is (MG). Q.ED.

Lemmas 9.4 and 9.5 combine to prove (8.7) for maximally real b.
Proposition 8.8 thus says that F — § satisfies both (Z) and (MG) when b
is maximally real. Combine this with Propositions 6.1, 7.6, and 7.14 to
obtain Proposition 9.1.

10. CHANGE OF POLARIZATION; STATEMENT

In this section we formulate a statement on change of polarization,
(10.9), and show how it completes the proof of Theorem 5.1. The statement
itself will be proved in Sections 11, 12, and 13.

The Cartan subgroup H< G is fixed. Let bc g be a Borel subalgebra
such that

hcb and b is not maximally real. (10.1)
Lemma 7.2 gives us a complex simple root « such that ¢ @*. Denote
D =5,0", by,=s,b, Sy=G -b,. (10.2)

As in the proof of Proposition 7.1, G B<=Gn B, so S fibres over S,,.
More precisely, q,=Db+ b, + b, is normalized by G~ B and satisfies

Q1+ﬁa:b0mﬁ() and Q,ﬁ(_]azbﬂf)

so the fibres of p,: S-S, are complex submanifolds of X. In fact,
Lemma 7.3 shows that the fibre

Po '(1-By)=exp(g,) - B=C =P (C)\ {0} (10.3)

Let b,=b+g,=by+g ,, let X, denote the flag manifold of parabolic
subalgebras of g that are Int(g)-conjugate to b,, and consider the orbit
S,=G-b,c X,. The natural projection p,: X — X, is holomorphic, so its
restrictions

P, S— S, (fibre C) and p,: Sy — S, (bijective)

are CR maps. Note that

pg:ISd:SUSU and Po=1(p.lg) ["(les)-

Despite that, p,, is not CR. Now observe
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10.4. LEMMA. The respective nilradicals n, n,, and n, of b, by, and b,
satisfy
n=n,+gq , and Ny=mn,+4q,

and
nAf=n,Nn, and MgNig=(n, ", +q,+q,.

Choose a generator w*e(g_,)*. We can view »” as an element of g* by
w*(h)=0 and w*(g;) =0 for f+# —a In either case ®* has h-weight a.
Since A(ng+g V¥ AMM)*® A(g . ,)*, exterior product with w* and
restriction from ny+¢q , to n define a linear map

e(w”): AngF — An*. (10.5)

10.6. LEMMA. Let V bhe a g-module. Then the
(=) e(@ ) V@A NEF > V@ A" In* (10.7a)

define a morphism of complexes ( for the Lie algebra cohomologies of ny and
n). This morphism restricts 1o an injective map of the subcomplexes for
relative Lie algebra cohomology of (ng, ngnig) and (v, nit),

(VR A (mg/mgnig)*) " > (VR A (n/many*)* ", (10.7b)
for which the image

e(w*) - (VR AT(1ymy mitg)¥) "M (V@ A7 ' (n/mnii4§,)%)" "o
(10.7¢)

Proof. Let peV® A’ng. Let &,, .., ¢, en such that each £, belongs
to a root space. As « is simple we cannot have 0#[&, ¢ ]eg .. So
(e(@”)-dp)(&os s Ep i) =0 =dle(w*)@) (&0, ..s €01 ) unless some Eeq_,.
And if £,eq , and the other ;e n, then

(e(w™) -dg)(&ys s i[) )= o(Ey) do(éy, §p+1)
= —dle(w™)$)N <o, o é,;+ 1)

Thus (10.7a) is a morphism of compiexes.

Lemma 10.4 says g ., = nnit < nyn iy, so e{w”) maps the annihilator of
n, N i, in And into the annihilator of n~ it in An* Note that w” is
n-invariant, for w”[n, n] =0 because « is simple. But e(w*) maps 11,1,
invariants to mnnfA invariants because nnitcangnn,. Now the
(—1)” e(w®) restrict as asserted to (8.7b). And (10.7b) is injective because
g_,Cng, g.,on, and g, ngni,. Thus also g,an,n,, and (10.7c)
follows. Q.ED.

SR0901-6
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Given fe ®(g, b) we associate a representation ¢”: H — C* as follows:
Recall Ad(G) < Int(g) and let J,, be the Cartan subgroup of Int(g) that
contains Ad,{H). Then f§ exponentiates to a quasi-character on the com-
plex torus J,, and e” is the lift of its restriction to Ad (H).

The bundle E, —» G/H pushes down separately to bundles £, » S and
E, — S,. Similarly the bundle L, G/H associated to e’ pushes down
separately to line bundles ;- S and L, - S,.

We now apply Lemma 10.6 with V=C “(G), using the identification
between the complexes (4.5) and (4.6). Thus the (—1)” e¢(w”) induce
G-equivariant morphisms of complexes

C “(GHE®QA'NY)>C “(G/H;EQL ,®@A7"'N¥) (10.8a)
which induces morphisms of subcomplexes
C Sy E@A'NE) »C “(SSE@L @47 'NZ).  (108b)

The change from F to E®L , in (10.8) is due to the fact that w* has
weight «. The content of (10.7¢) is that the image of (10.8b) consists of
forms that are holomorphic along the fibres of S — S.

We can now formulate the statement mentioned at the beginning of this
section.

Suppose that y is irreducible, so dy=4eb*, and suppose
further that 2{A+p —a, 2)>/<{a, a) is not a positive integer.
Then (10.8b) induces an isomorphism of cohomology groups.
In particular, H°(C “(S;E®L ), d¢)=0. (10.9)

The main point of this section is

10.10. PrROPOSITION.  Fix H, and suppose that (10.9) is true whenever y is
irreducible and b is not maximally real. Then, for arbitrary basic data of the
form (H,b, x), E > S has both properties (Z) and (MG). In other words,
Theorem 5.1 holds for arbitrary basic data of the form (H, b, ).

Since the image of (10.8b) consists of forms holomorphic on the fibres of
S —S,, and since S — G/P factors through S, » G/P by Proposition 7.1,
now (10.8b) restricts to a morphism of subcomplexes

(— 1) e(@™): Cop(So: E® A'NE) » Co oS E®L @47 'N¥),
(10.11)
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Similarly we can apply Lemma 10.6 with ‘V:C“"(G) as in (3.3), to
obtain

(=17 e(w™): C*(G/H; E@ A’NE) > CP(G/H E®L @477 'N¥)
(10.12)

Since e(w*) commutes with the Taylor series map, we have a commutative
diagram

CitSeiE@APNE) ) —— Co2(SIE®L @47 'N¥),, (10.13a)

| |

C'(G/H: E® ANy —— CO(G/HIE®L ,® 47" 'N#), (10.13b)

of morphisms of K-finite subcomplexes.

The same orbit §,,,, serves for both S and S, in Proposition 7.1, and by
Proposition 9.1 every E— S, has both (Z) and (MG). Thus we may
assume by induction on dim S —dim S,,,, that every £ — S, has both (Z)
and (MG). According to Corollary 8.12 and Lemma 8.13, we need only
prove (Z) and (MG) for irreducible F — S. Finally, the cohomologies
and maps that occur in Theorem 5.1 all are compatible with coherent con-
tinuation, so we may assume that 2{A+p —x, 2)>/{a, 2> is not a positive
integer, where dy =/eh*. Now, by (10.9), e(w*) induces H”(Sy:E)=
H (S, FQL )

The diagram

Co(Se E@APNE)— Co2(S;E@L ,®@A7"'IN%)  (10.14a)

C (S EQA'NE)— C “(SIERL_, @47 'N¥)  (10.14b)

commutes, and Proposition 7.13 says that the vertical inclusions induce
isomorphisms in cohomology. We just saw that (10.14b) induces an
isomorphism in cohomology. Now (10.14a) also induces an isomorphism
in cohomology.

10.15. LEMMA. The map (10.14a) is continuous, injective, and has closed
range.

Proof of Lemma 10.15. A glance at the definition (Lemma 7.20) of the
topologies shows that (10.14a) is continuous. It is injective by Lemma 10.6.
Use the identification of complexes (4.5) and (4.6) to write (10.14b)
as {C Y(GC)®E® AP (ny/ngniig)*}o ™" 5 (C “(G)QERC ,®
AT mmAR)* oM Using Lemma 104, this exhibits the image of



82 SCHMID AND WOLF

(10.14a) as all forms in Co5(S;E®L ,®A”*'N¥) which, as sums of
monomials in the w" € (g }.)*, (1) involve w?, (ii} do not involve »» * and
(ii1} are annihilated by the right action of g, and g,. So (10.14a) has closed
image. Q.E.D.

in view of Lemma i0.15 we have an exact sequence of Fréchet com-
plexes, from sequences

0 Co S E@ANE) = C u(SIE®L @47 'N¥) - 0F -0,

where the @7 are the quotient Fréchet spaces. Since (10.14a) is an
isomorphism in cohomology, all H”(Q')=0, and Q@ trivially has
property (MG). By induction on dimS—dimS,,,, the complex
Coo(Sq; EQ A N* ) has (MG) Now Lemmag&11l tells us that

VU,, has (MG) Now Lemmag&11 tell us that

(S [E®[L ®A N ¥) has property (MG).

The morphism (10 l3b) induces maps 4”(G H, by, y) = A" (G, H, b
/\.Of ) Consider the dual map of the dual Beillinson—Bernstein 1
[7]. In [8] it is proved to be an isomorphism. Thus (10.13b) induces an
isomorphism of cohomology. So does (10.13a), by our assumption of (10.9)
and passage to the K-finite subcomplex. Also, by induction on
dim S—dim S, the first vertical arrow in (10.13) is an isomorphism on
cohomology. Now the second vertical arrow in (10.13) is a cohomology
isomorphsim. Thus C;5(S;E®L ,® A N¥) has property (7).

This completes the proof of Proposition 10.10.

We end this section with a variation on (10.9). Let Cg”(S;
E®L_,&® A4 N¥) denote the subcomplex of C “(S;E®L ,® A N¥) con-
sisting of forms ¢ such that ¢ and d¢ vanish on (0, 1) vectors tangent to
the fibres of S— §,. The condition on ¢ says that the coefficients of ¢
are holomorphic along these fibres. Apply the Dolbeault lemma fibre by
fibre to see that

Ce(SEQL ,@AN¥sC “(S;EQL_,@AN¥)  (10.16)

induces isomorphisms on cohomology. But (10.7¢) says that e{w”)-

C™(So; E® A'NY,) is contained in Cg“(S;EQL ,® A'NE). Thus (10.9)
is equivalent to

x

Suppose that yx is irreducible, so dy=4ieb* and suppose
further that 2{A+p—a, 2)/<{a, o) is not a positive integer.
Then the morphism of complexes defined by the

(=17 e(@®): C (S EQ A"NE) » Co(SIEQL ,@A"'N¥)

induces isomorphisms of cohomology. (10.17)
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The point is that we can localize (10.17) with respect to S,. Let U, < S, be
an S,-open subset whose S, -closure U, is compact and has an X,-open
neighborhood over which p,: X > X, is holomorphically trivial. Let
Us=Synp,'U,and U=Sn p, 'U,. Then (—1)” ¢(w*) localizes to maps

C (U E®A'NE) > Co(UE®L @47 'N¥).  (10.18)

Some generalities on sheaf theory—-see the paragraph after the proof of
Lemma 7.17—say that if the morphisms (10.18) induce isomorphisms in
cohomology as U, ranges over a basis for the topology of S, then the map
in (10.17) induces isomorphism in cohomology. Thus (10.9) and (10.17) are
equivalent to

Suppose that y is irreducible, so dy=rebh*, and suppose
further that 2{J + p—a, 2>/{a, 2> is not a positive integer.
Then every x,eS, has an open neighborhood U, as just
before (10.18), such that (10.18) induces isomorphisms of
cohomology. (10.19)

11. CHANGE OF POLARIZATION: DUALITY ON THE FIBRE

We are going to prove (10.19), and thus complete the proof of Theorem
5.1, by reducing (10.19) to a certain dual statement in this section and the
next, and proving the dual statement in Section 13.

We identify (P'(C), {0}) with the fibre of the pair of projections

SuSy=p,'S,—S, and So— S, (11.1)

considered in Section 10. The isotropy subgroup G, of G at b,e X, acts
transitively on P'(C)\ {0}, the fibre of S— S,, with isotropy subgroup G,
at b. Then g, represents the holomorphic tangent space of the fibre, and the
polarization is given by q=b+ (n,nf,)+gq, Here gq+§=b,nb, and
qgnd=bnb as in the proof of Lemma 7.7.

In this section it will be convenient to distinguish between the
homogeneous vector bundles over S, S, and S, associated by y, in a some-
what more explicit way. We will write E, - S,, E— S, and E, — S, for the
bundles that come from the respective basic data (H, by, ¥), (H, b, ¥), and
(H,b,, y). Also, if y is integral, i.e., E, extends to E, — X, then we note that
£y s comes from the basic datum (H, b, y=s,).

Now define the (b,, G, )-module,

V=HP(C) {0} C(E*) = {C(G,,) @ EX}rm s ol (11.2)

For the moment let us assume
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11.3. LemMa. The strong topological dual V' is naturally identified
with the (bnw Gb,)'m()duk) (‘(’y[()}([E()lgerm of nbhd of 0 in PI(T ))’ where iE() s a
g-equivariant extension of £, to a germ of a neighborhood of S, in S S,,.

Since ¥’ is a (b,, G, )-module it defines an (infinite dimensional)
homogeneous CR bundle V, — §,. That pulls back to a homogeneous CR-
bundle V= p*V'’ — S, such that the identity on V" induces a CR bundle
map from V; to V{. Evaluation at 0 defines a (b,, G,,) equivariant map
V' — E, and thus a CR bundle map Vy— E,. Combining these two steps
we have

11.4. LEMMA. Pull back from S, to S, and evaluation V' — E at 0,
combine to give a CR bundle map V', - S, to t, > S,.

The map £* - V dual to V' — E, is (by, G, )-invariant but not (b,. G, )-
invariant; in fact £* is not a b,-module. So the induced bundle map from
E¥—- S to V-8, is not CR. Nevertheless we need to be more precise
about this map, and we will show that £* — V is given by

E* = {g,-invariants in (C* (G, )® E)"™ ™m0 &40
SH{CHG, )@ E it osllix (11.5)
In order to prove Lemma 11.3 and (11.5), we look at a single fibre for
(11.1) in the abstract.
Let h=() 9, e=(5¢), f=("9), standard generators for sI(2; C). They
act on the inhomogeneous coordinate z of P'(C)=Cu {oc} by hz= —2z,

ez = —1, fz=z% Consider the SL(2;C)-homogeneous holomorphic line
bundle of degree n, ne Z,

. a 0
at 0 associated to </7 [> —ua"
a

L, - PYC), fibre 5 (11.6)
. a
at oc associated to ( }> a
0 a
It has meromorphic sections o, and 7, related by 7, =:"s,, specified (to
constant multiple) by their divisors
(o,)=n - and (t,)=n-0. {11.7)

Now h-0,=no, and ¢-0,=0 from the definitions of L, and &,. The com-
mutation relations in sl(2; C) and the action of sl(2; C) on = now give

%6} =(n—=2k)o,. e(Fe )= ~kF o

ffe,)=(k—n) 2" g, (11.8a)

ne
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and, similarly,

h(z%t,)=(—-2k —n) z*1,, e(Ft,))=(—k—n)yz* '1,,
/(" Iu)_l\:k+ltn (118b)

for ke Z. 1In fact, for n=4eC these relations define sl(2: C)-equivariant
holomorphic line bundles

L,—>PHCH |} =C, which has spanning section ¢, (11.9a)
11
1

L, —» P(CHI0Y, which has spanning section ;. (11.9b)

As in (11.6), the fibre at 0 of (11.9a) is an AC + fC module, while the
fibre at oc of (11.9b) is the opposite #C + ¢C module. The respective spaces
of A-finite holomorphic sections are irreducible sl(2: C)-modules, sl(2; C)-
invariantly paired with dual bases {z *r;} and [(—1)"(})*s,}. Now if
A¢ {0,1,2, ..} then

HY(PYCN[0}; ¢ {Z a.z 'r,,:limsuplaAl”:O} (11.10)

has strong topological dual

{ Y bezfo,limsup b, < }: Cig (L), (11.11)
k=0
The condition A¢ {0, 1, 2, ...} ensures that the modules (11.10) and (11.11)
are irreducible; when they are reducible the duality fails. In the irreducible
case, relations (10.8) show that (11.10) and (11.11) are dual on the A-finite
level, and then the duality follows by looking at convergence.

Evaluation of germs at 0 now gives an /A-invariant map

G (L) =1L lo=L, (11.12)
which is dual to the inclusion
L ;=Ker{fon HAP'(CN{0}; (L))} s H(P(CINI0}: ¢(L,)). (11.13)

In the duality between (11.12) and (11.13), a¢ does not really play a
special role. For L, 1s a well-defined sl(2; C)-homogeneous line bundle
over P'(CN\K for any compact subset K< P'(C)\{0}, and (. (L;)=
Lm {Cpcy (L) K< PYC)\{0} compact}.

We now identify (P'(C), {0}) with the fibre of SUS,— S, and S, S,
as in (11.1), with {oc} corresponding to the base point of 5. Then
Lemma 11.3 follows from the duality between (11.10) and (11.11), and
(11.5) follows from the duality between (11.12) and (11.13).
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Some comments are in order. The root space g, stabilizes the fibre P'(C)
of X - X, over b,, operates nontrivially, and fixes b, =b + g, +11,. which
corresponds to 0 e P'(C). Similarly, f in the sl(2; C) considerations preser-
ves 0. So g, corresponds to Cf. Second, « is simple so b+ (n, ni,)+§, is
an ideal in b, b, =h+ (n,~71,)+3a,+g, so it does not matter whether
g, acts from the left or the right in (11.5). Third, z* lifts from H to G, =
H -expg (n,nit,) and induces

E* ~ {C/ (Gbl)@E*}(n,ﬁ Nyt oay+ g,;H‘ (1 114)

which is implicit in (11.5).

12. CHANGE OF POLARIZATION: REDUCTION TO DUAL STATEMENT

The CR canonical bundles K¢— S, Ky —S,, and Ky - S, are dis-
cussed in the Appendix. Following (6.4) and (6.6), their typical fibres at the
base points b, b, and b,, are the respective highest exterior powers of
(g/b)*, (g/by)*, and (g/b,)*. In view of Lemma 10.4 those CR canonical
bundles are

[]“ 2/’—_)S’ l 3/»4—27_>S()w ﬂ '_*)Sy- ‘12])

20 4 x

In particular, the analog of (A.9) for S, is

CN(Uy): F® A° "N,

C Uy E®@APNE ) = 12.2
(ot @ S = Copd vy r o gy R
where ¢ =dimqg S, and
F=E*®L ,,,,,, bundie over S, associated to the basic
datum (H, by, ¢*®e 1) (12.2b)

Forms in C "(U;E®L ,®A”"'N¥) can be viewed as forms in
C (U, ;H®A7"'N%), where H — S, has fibre over xe S, the space of
homomorphic sections of (E®@L )¢, 1,- The analog of (A9) for
C°(Us;H® AT ‘Nf{?’) and the fibre duality (11.5) combine as follows.
Let cl(U,)~ and bd(U,)~ denote germs of neighborhoods of ¢l(U,) and
bd(U,) in SuUS,. Let Cg(cl(U,)~;...) denote the space of € forms on
cl(U,)~ that vanish on sets of vectors, one of which is tangent to the fibre
and which are holomorphic along the fibre. Use the same convention for
bd(U,)~. Let F denote g-equivariant extension of F. Then

Cyel(Uo) ™ F@Aa "Ny
C5,(bd(Ug) i F@ A7 "Ny

CoP(UE®L ,@ A7 !IN¥) =~ (12.3)
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with ¢ and F as in (12.2). Here we went from p+1 to c—p=
(c+1)—(p+1) because c¢+1=dimgS,, and from E®L , to

F=(E®L )*®L ,,,, because of the S, part of (12.1).
Now consider three statements, as follows:

Restriction from cl{U,)~ to cl(U,),

Ceel(Uy) :FRANE) - C(cl(Uy); F® ANY)
and restriction from bd(U,)~ to bd(U,),

Co(bd(Uy) s F®ANE) - C(bd(Uy); F® A'NE,)

are continuous and surjective, (12.4)

The maps (—1)7 e(w?*) of (10.18),
C (UpE@ANE) - C (U EQL ,@47 " 'NY)

are dual via (12.2) and (12.3) to the restriction maps (12.4). (12.5)
The restriction maps (12.4) induce isomorphism in cohomology. (12.6)

The result of this section is

12.7. PROPOSITION.  Let y be irreducible, so dy = 4 € b*, and suppose that
2+ p—a,ay/{a,ay ¢ {1,2,3, ..}, Then statements (12.4) and (12.5)
hold, and if (12.6) holds then Theorem 5.1 holds for (H. b, 3).

At first we assume (12.4), (12.5), and (12.6), and we will deduce
Theorem 5.1 for (H, b, y). According to Proposition 10.10 it suffices to
prove (10.9), and for that we need only prove (10.19).

By (12.4) and functoriality of restriction, we have a commutative
diagram of complexes,

0= J{cl(Uy)™) — CG(cl(ly) s FRANZE) » C(cl(U,):; FRANE) -0

l | |

0= (bd(Uy) ™) - CLbd(U) " F @A NE) - C7(bd(Uy ) F® ANE ) - 0,

where the horizontal sequences are topologically exact. These spaces are
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complete locally convex and Hausdorff, so the horizontal sequences in the
dual diagram

0— Ccl(Uy): F@ANE) — Co(cl(Uy) ™, FRANEY - J(c{Uy)~ ) -0

| | |

0- Cobd(U); F®ANE) — ('f;)(bd(b})‘;@f@A'N;)’ - J(bd(Uy)~ ) =0

also are exact. By (12.6), the complexes J'(cl(U,) ) and J'(bd(U,) ) have
all cohomologies zero, so their differentials have closed range. Now
H*(J (cl(Uy)~))y=H*(J (cl(Uy) ™)) =0 and, similarly, H*(J (bd(U,)~)
=0. Now the horizontal arrows C”(..)’ - C¢(..)" in the dual diagram
induce isomorphisms of cohomology. By (12.5) those horizontal arrows
given by (—1)"e(w”). Now (12.2), (12.3), and the five-lemma say that
(10.18) induces an isomorphism in cohomology. That is the statement of
(10.19).

For small U,, (12.4) is just the fact that restriction of real analytic func-
tions from an open set W< R” to a set of the form W n R* is surjective.

Now Proposition 12.7 1s reduced to the proof of (12.5).

Let V' be as in (11.2) and V., — S, the CR bundle associated to V'
Just as noted after (12.2), we can identify CQ(U;E® A’NF¥) with
C°(U,; V,®A47*'N¥%). That gives us Cf;ﬂ(UO;E(@A”N;‘);C‘”(U,;
V,® A7 *'N¥). With this identification the restriction maps

CoT E@APNE) - C(Uy  EQ APNE ) (12.8)

are given as follows. Let ¥, e C”(U,:V}) and y,e C°(U,; A""' 'N¥).
Then y, pulls back to pXy,e C”(Uy; A7+ 'N%) and ¢, evaluates at 0,
as in Lemma 14, to y,(0)e C”(U,;E,). Now ,®, maps to
Y1 (0)® pfyre C/(Ug; Eg® A" INE ).

The dual of ¢, + ¢, (0), i.e., of evaluation V, — [k, at 0, is the inclusion
E¥ sV, given by (11.5). Thus, to dualize (12.8), we only need to dualize
pullback pJy: C°(U,; AN¥%)— C?(Uy: A"'N¥)) on scalar forms.

Since C* forms are dense in C “ forms, we may at this point simply
argue that the (—1)” e(w*) on C* forms are dual to the restrictions as in
(12.4) of C* forms. This is in sharp contrast to the situation of (12.6),
which is specific to the C setting and will be proved in Section 13.

Formal self duality of the Cauchy-Riemann complex, (A.8) for S, says
that C*(U,; A'N¥ ) is formally dual in complementary degrees to '

CHUL 5, ®@ANE)
={C7(m, 'U)®L 5, ,@A(b,/(b, "D, ))* ™™ (12.92)
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and C™{U,; A'N¥), similarly, is formally dual in complementary degrees
{o
(i-‘(l/](); [L - 2p ok Ix ® A‘st()‘
= {C/' (mq 1Uo)® L 3422 A (g /(g N itg))* noref o (12.9b)

Here n: G - S=G/Gy, ny: G — Sy =G/G,,, and 7,: G —» S, = G/G,, are the
natural projections. Since = "(U)=n, '(U,)=mn, '(U,), and since

(b, /(b, nb ) * = /(i) +§,1* s (W (nn i)™,

Lemma 10.6 says that ¢{w”) maps the right-hand side of (12.9b) to the
right-hand side of (12.9a),

(= 1) el@™): {C7{m "UIBL 5y 2, ® A7 (g {1g 1 i) 20
S {C (1 "VY®L 5, @A (b, /(b AD,)*I (1210)

We assert that

The maps (12.10) are formally dual to the
PEC(UANE) - CH Uy ANY) (12.11)
Before proving {12.11), let us show how it implies (12.5) and thus com-
pletes the proof of Proposition 12.7.
Asuming (12.11}, the formal dual of the restriction map (12.8) is given

by j®&(—1)”e(w”), where j is the map E*a V of (11.5) on values of
forms, dual to evaluation at 0. Thus the formal dual of (12.8) is given by

C U E*QL 5, 5, @ A'NT,
=[Cr(n IR [C7 (G )@ EX i rmrbidd
RL 5, @A, /(g Oit )y* e
S[C7n '@ {C7 (G, )@ E* el

QL 2122 & AP f{ng/{ng nitg))* Jr ot

RS [ D)@ (C (G )@ EX e
®L 3/)01®A,’+l(bxa‘#(bumBz))*]n”ﬁ"“:”
1O @ E*®L oy, @ AT /(i) 4 §, % | o0t et
;-C~(<;(DV*E*®B~ 2/)+1®AI’+IN:)‘

lie

This proves (12.5) for C* forms, and by continuity it follows as stated for
C“ forms.
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Finally we prove (12.11). We may assume U, small so that p, 'U, =
U,x P'(C) holomorphically with U,= {(w,1)e U, x P(C): 1=¢(w)}.
Here ¢eC”(U,) and a glance at CR dimensions shows that &,¢#0
everywhere, 0,=C,,. Now cvery CR form on U, has unique expression
w+(0,¢) A, where w, y are CR forms on U, transported to U,. As
dwy=t on U,, d¢p=0r=0 on U, so p,:U,—->U, pulls back
PEHO+(E,9) A )5 = o

Let 2, be a generating section of the CR canonical bundle L ,, ,,— S,.
Then Q,=(dr A p¥Q,)|,, 1s a generating section of the CR canonical
bundle I ,,,,, = S,. Let w, A &, denote an L ,, ., ,,-valued CR forms on
U,. either w, or both @ and ¥ compactly supported. Then we pair

<p;k(w+‘1¢ AW, A 2405,

=W, 0y ALy )5 = ' W AW AL
Ry

- ’

w AW, /\a’t/\Q,:‘ WA Adp A8,
So vy

¥

:| wAw ACPAQ,

Sy

=(— | )deen . (w+ g AY)YA(C A AR,
g

Dy

=(—1)* Lo+ 0,0 AP, Cd Aoy AQD.

Sop*: C*(U,;: AN%)— C’(Uy; A'N¥ ) isformally dualto +e(6,4® ¢/01):
C(Upil 5, 0, ®ANE) > C (Ui L 5,,,®AN%). But &,¢® /0t and
w*eC”(S,;L ,®N%) are of the same type and w* is G-invariant. Thus,
to complete the proof of (12.11) we need only show that

-

(771¢5®%extends G-invariantly to all of S, (12.12a)
R

(7’a¢®:—; and »* agree up to a constant multiple at the base point b, e S,.
C
(12.12b)

Notice that ¢, ¢ vanishes on T '(S,)* which at each point has codimen-
sion 1 in T™'(S,)*. A change of fibre coordinate in X — X, must be of
the form s=F(w. ). U, given by s=y(w), Y(w)=F(w, ¢(w)). As F is
holomorphic,

oy OF o

o' ot ow'
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So W ®ds= 3,4 ® ¢/t Thus ¢,¢® ¢/0r has invariant meaning. That
proves (12.12a).

¢, ¢ annihilates TS, 1*. In view of {12,12a) and invariance of w* now
(12.12b} is just a matter of whether v* annihilates 77(5,}*. But o is dual
to g .. and n, is a sum of root spaces g, with fi# —a That proves
{12.12b},

With {12.12} we have completed the proof of Proposition 12.7.

13. CHANGE OF PoLARiZATION: PROOF OF DUAL STATEMENT

In this section we prove (12.6), completing the proof of Theorem 5.1.

Retain the notation used in the proof of (12.11). Consider a CR form on
U, and express it as w+,¢ A ¢, where @ and  are CR forms on U,
viewed as forms on U/,

131, LEMMA. O (@ + 0,0 A ) =00+ 0, A (dyor —Co), where 1 is
the vector field on U, such thar (1) 9{é)=1 and (it} [n, £]1=10 whenever ¢
is the p.~-image of a {0, 1) vector field on S, and where d, is Lie derivative
along n.

Proof. This is just &gy =0,y +dl A d (7). In effect, ({o+ 0,0 A )=
Qe —Cup A Q=00+ 3,4 Ad,—0, A dg. Q.ED.

Let W, be either of cl(U,) or bd(U,). We must understand the restric-
tion maps CQ (Wi F®@ AN - COW,; FRANYE) of (12.4). Since we
may always shrink W, we assume all bundles trivial and only consider the
case of scalar valued forms, C“(WO,A N¥)— C*(W,; A'NE). Now let
Q¢ (";)(WD,A N#). In other words Qisa CR form on a germ of an
S-neighborhood {{(w, 1)e W, x PY{CY): |t — ()| <&} of W, which does not
involve o7 and whose coefficients are holomorphic in ¢. So there is a power
series expansion Q=3 . ,(t—¢)", with y,e C(W,; A'Ng). Expand

=, + 0,0 A i, where w,, ¥, are CR on W,:

Q=Y (1—¢)(w,+ 8 Aiy). (13.2)

nz0

Since t—@{w)=0 on S,, (13.2) gives us

Q; wy = We. (i33)
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In order to use (13.3) to prove (12.6), we apply Lemma 13.1 to (13.2)
and obtain

0sQ=3 (1—=¢)"{Cow,+ 0,0 A [dyw,—(n+ 1) w,.  —Co, 1} (13.4)
nz0
Now, if w,e C”(W,: A'N¥ ) is dy-closed, we set o, , = (1/(n
obtain a convergent ¢ -closed Y (1 —¢)'w, € o W ;AN
words, using the fact that ¢, and d, commute,

+ 1)) d,w, to
&). In other

13.5. LeMMA.  If w,e C(Wy; AN ) is Oy-closed, then
Q=exp((1 —d)d,) woe Cy (W, ANE)

is defined, 0 g-closed, and satisfies Q |y, = .

If QeCY (W, AN¥) has $,Q=0 and Q| =w, with ©,=3,f,. we
define B, =(/(n+D)d,p,—y,) and @=3%, _,(t—¢)'B,. Then
Wy 1=00By 1 =00B,4 by induction: ¢off, . =(1/(n+1) d,w,—4,),
which is @, ,, by (13.4) since (;Q2=0. And d,8,— (n+1) [i,,H W, by
construction, so Q = ¢ (@:

13.6. LemMma. If Qe C SO(WU; ANE¥) is Og-closed and Q| is Oy-exact,
then Q is 0 ¢-exact.

The restriction maps of (12.4) are surjective on cohomology by
Lemma [3.5 and injective on cohomology by Lemma 13.6. That proves
(12.6). In view of Proposition 12.7, the proof of Theorem 5.1 is complete.

14. SECOND MAIN THEOREM

Theorem 5.1 can be used to reformulate the duality theorem of [7] in
more directly geometric terms. To simplify the discussion, we treat the case
of a group G in Harish-Chandra’s class. As in the rest of the paper, all
arguments go through for the larger class of groups described in Section 2;
see [28, 7] for the necessary techniques.

We fix a maximal compact subgroup K = G, and let # denote the corre-
sponding Cartan involution. The complexification K, of K acts on the flag
variety X. A G-orbit Sc X and a K -orbit Q = X are dual in the sense of
Matsuki [17] if S~ Q contains a Borel subalgebra b =1} +n, with nilpo-
tent radical n and Levi component b, such that (i) b is the complexified Lie
algebra of a Cartan subgroup H< G, and (ii) 8h=h. In this situation, K
acts transitively on S Q.
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Let x: H— G(E) be an irreducible, finite dimensional representation. We
extend dy from b to b =1} + n, by letting n act trivially. Since y can be con-
tinued from K~ H to an algebraic representation of the complexification
(Kn H),, and since (K~ H). is a Levi component of the isotropy sub-
group of K. at b, E is the fibre at b of a homogeneous, algebraic vector
bundle F over the algebraic variety Q = K -b. The fact that dy is defined
not only on { nb, but on all of b, implies that E extends to a g-equivariant
holomorphic vector bundle over the germ § of a Hausdorff neighborhood
of Q0 in X. Relative to appropriate local trivializations, the transition func-
tions have logarithmic derivatives which are algebraic. Consequently E — Q
extends also as_a g-equivariant algebraic vector bundle over a formal
neighborhood Q of Q in X. For simplicity, we will denote both the
holomorphic extension to @ and the algebraic extension to Q by the
original symbol L.

The (H, b)-module E also determines a G-invariant CR vector bundle
over the G-orbit S= G -b. As was discussed in Section 4, this latter bundle
extends to a g-equivariant holomorphic vector bundle T over the germ of
a Hausdorff neighborhood S of S. We write T* for the dual vector bundle.

To define the local cohomology group along Q of an algebraic vector
bundle, it suffices to know this bundle over the formal neighborhood Q. In
particular, it makes sense to talk of the local cohomology sheaves, in the
algebraic context, of E— Q. \ye denote these by # 5(((E)),,. Similarly,
the holomorphic bundle F — Q gives rise to local cohomology sheaves in
the analytic context, which we denote by # 5(¢(E)). Both # §(¢ (L)) and
H E(C(E)),, are concentrated in degree d = codim, (Q = X).

In a natural manner, .}’/"é)(C‘»([E))ulg is a K -equivariant sheafl of &, , -
modules; here we are using the noltation of [7], except that we let n
correspond to the set of negative roots, rather than to the set of positive
roots as in [7]. Up to a shift by the top exterior power of the canonical
bundle, J‘/"(((([E))u,g is the “-module direct image of (¢,(E|,) via the

O
inclusion j: Q G X. Thus

HOX, A e = H U0, (1)) (14.1)

alg =

are the Beilinson-Bernstein modules attached to (Q, y).

According to the duality theorem of [7], the Harish-Chandra
modules (14.1) are naturally dual to the derived functor modules
A* (G, H, b, y*®e ), where y* is the dual representation of y, and

s=dimg(Q N S)—dim, Q. (14.2)
In other words, there exists a natural pairing

HEHHQ, C(B)x A° "G H. b g*@e )= C. (143)
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which exhibits each of the factors as the dual (in the category of
Harish-Chandra modules) of the other. By Theorem 5.1, the right factor is
the K-finite part of the local cohomology group H: " (S, ¢(E*)® Q%).
where @’ is the canonical sheaf of X. Thus (14.3) can be re-interpreted as
a pairing

xHy 7S, ((E* )@ Q1) 4 — C.

alg

H (D, ¢(E))

We shall see, as a consequence of Lemma 15.11 below, that
s+d+u=n=dim_X. Thus, re-labelling the indices, (14.3) becomes a
pairing,

HI(Q. C(E)) o x HY "(3, C(E*)® Q%) 4, - C. (14.4)

Cup product maps the local cohomology groups along Q and S, both
taken in the analytic category, into local cohomology along 0 n S

HO. C(E))x HY "(S.C(E*)@ Q%) > H), (X, Q%) (145)
Local cohomology maps naturally to cohomology on all of X,
HE . (X, Q1) — HX(X, Q). (14.6)
Also, by Borel--Weil Bott,
H'(X, Q)=C. (14.7)
Combining (14.5)-(14.7), we obtain a pairing
H(Q. C(E)x HY (S, ((E*)® Q%) - C. (14.8)
It is (g, K)-invariant because of the canonical nature of the definition.

14.9. THEOREM. Via the natural map
H(0, C(E))y, — HE(D. C(E)).

the cup product pairing (14.8) induces the pairing (14.4). In particular, the
cup product pairing realises the duality between the Beilinson- Bernstein
modules and the derived functor modules.

In the special case of the discrete series, this is due to Zabéic. A sketch
of the proof of the theorem will occupy the next section.

15. PROOF OF THEOREM 14.9

We begin with a general discussion of local cohomology and cup
products. For the moment, let X be an arbitrary topological space, S< X
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a closed subspace, ¢ a sheal of commutative C-algebras, and & a sheaf of
¢-modules. To these data, one can associate a “local cohomology sheaf”
H{ &Y in the derived category of sheaves of ¢“~-modules, as follows. Let &
be a flabby resolution of &, and & the subcomplex of sections which
vanish outside S. Then &5 is determined up to quasi-isomorphism, and
thus represents a well-defined object #(#£) in the derived category. The
cohomology groups of #{& )—equivalently, the hypercohomology groups
of any complex representing #({&)} are precisely the local cohomology
groups of & along S, H¥(X, &) [13].

If T< X is a second closed subspace and % a second sheaf of ("-modules
on X. the local version of cup product defines 2 morphism

HAEV @ HH(F )= Ky (E® F ) (15.1)

here ®*© denotes the tensor product, over ¢, in the derived category. This
focal product pairing can be described most easily in terms of the canonical
flabby resolutions of & and % [6]. Via the identifications RIT#{...)=
H¥(X, ..}, the induced map

(RIALEN R (RTCHL(F)) = REH . (6@ F )
realizes the global cup product pairing
H¥X, EYQHHX, 7)Y HE. (X, 6§®" 7). (15.2)

Here, as in the following, we suppress the subscript C to the tensor product
when this causes no ambiguity.

We now suppose that X is a complex manifold, ¢ = the sheafl of
holomorphic functions, § and T are €™ submanifolds of X, & = ¢(E) and
#-= ((F) the sheaves of sections of holomorphic vector bundles E, F. Since
these sheaves are locally free over ¢,

C(EY®Y C(Fy=((E®F). {15.3)

In particular, the cup product pairing (15.2) takes values in the local
cohomology of ({(F®F):

HXX. CE) R HEX, ((F))—> HE (X, ((FRF)) (154)
The Dolbeault resolution with hyperfunction coefficients is flabby, so
CMAER AT = A#(C(E)) (15.5)

in the derived category, where 4 “(X, ...} is the sheal of hyperfunction
sections of..., with support in S. In particular, the complex of global
sections computes the local cohomology along S,

H¥X CE)=HYC X EQ AT {15.6)

SKOBG 17
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To calculate #(C(E))®" # (C(F)), one must pass to a resolution of
% “(X;...) which is flat over ¢. No geometric ("-flat resolution of the sheaf
of hyperfunctions exists. This explains why the cup product (15.4) cannot
be expressed directly in terms of the description {15.6) of the local
cohomology groups.

For lack of better notation, we let % & (X:...) denote the space of distribu-
tion sections of..., with support in S, and smooth along S: locally, these are
derivatives of various orders in directions normal to S, applied to smooth
measures on S. The inclusion

CLXERATY o6 (X E®A TS (15.7)
determines a morphism in the derived category
CHXE@A TS ) o #{C(F)). (15.8)

We shall say that a local or global section ¢ of ¢ (X, E®@AT') 1s
smooth along § if it lies in the image of the inclusion (15.7). In that case,
the singular support of ¢ is contained in the conormal bundle of S.
Analogously, the singular support of a section ¥ of €, “(X;F@®ATL'™)
lies in the conormal bundle of T if ¥ is smooth along 7. Any two hyper-
functions whose singular supports are linearly disjoint can be multipiied
[12]. Consequently, if

S and T have linearly disjoint conormal bundles, {15.9)

it makes sense to take the wedge product ¢ A ¥ of any two forms ¢, ¥ as
above, over their common domain of definition. The description of
products of hyperfunctions in terms of boundary values of holomorphic
functions [12] can be translated back into cocycles with respect to a
relative covering [137], which shows that the wedge product ¢ Ay
represents the local cup product of the classes of ¢ and . In other words,
under the hypothesis (15.9), the morphism (15.8), and the corresponding
morphisms for 7 and S~ T relate the local cup product

ASC(B) @ A (C(F)) - Ay (C(ERQTF)) (15.10)

to the wedge product of forms which are smooth along $ and 7, respec-
tively. This observation will be crucial to our proof of Theorem 14.9.

We specialize the preceding discussion to the situation of Theorem 14.9.
Thus S is a G-orbit in the flag variety X. The role of T will be played by
Q. the K-orbit dual to S. Then S and Q satisfy the hypothesis (15.9):

15.11. LemMa.  The conormal bundles of S and Q in X are linearly
disjoint at every point of O S.
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Proof. Since K acts transitively on Q n S, it suffices to check the state-
ment at the base point b. We identify the complexified tangent space of X’
at b with /b @ g/b. Via this identification, the complexified tangent spaces
of O and S correspond to the images of, respectively, 1@t and the diagonal
Adgcqg®g. The Killing form identifies n with the dual of g/b, and the
(— 1)-eigenspace p of 6 with the annihilator of f. Thus we can identify the
complexified cotangent space of X with n@® i1, the complexified conormal
space of Q with (nnp)@® (i np), and the complexified conormal space of
S with {(& —¢&)[Eennit). Thus {(& —<¢)|Eenniinp] corresponds to
the intersection of the conormal spaces. For any root x of {g. b), Ox= —3.
Hence n nit »p =0, which proves the lemma.

As one consequence of the lemm, the real codimensions of Q and S add
up to the real codimension of QN S,

2n—dimy(Q N S)=4n—dim,S—2 dim Q.

Hence, by (14.2),

s+d+u=n, (15.12)

as had been asserted in Section 14.

The local cohomology sheaves of (*(E) along Q arec concentrated in
degree d=codim (Q < X)—this is true both for the analytic and the
algebraic local cohomology. Thus we may think of J#,(¢(E)) and
HH(C(E)),, as single sheaves, in degree d. We let #,(((E)), denote the
subsheaf of #,(("(F)) generated by #,(C(E)),, over the sheal of
holomorphic functions. Near any point of Q, we can introduce algebraic
coordinate functions {z,,..,z, . w,,.,w,} such that Q is the variety
defined by w, = --- =w,=0. Let {5, ...s,} be a local holomorphic frame
for F— Q, such that the s, restrict to algebraic sections of E— Q. Local
sections of #,(((L)),, can be represented uniquely as principal parts of
algebraic sections of E which are regular outside the union of d divisors
{w, =0}, < ;< 4-—equivalently, as finite sums

S Ay s (15.13)
N

here /= (i, i5, .., i,) ranges over d-tuples of strictly positive integers, w '

denotes the monomial w, "w, “---w ;" and the f,, are regular algebraic
functions in the variables z,. Local sections of .#,(('(E)), can be represen-
ted in the same way, except that the f,, need only be holomorphic, not
algebraic. Sections of .#,,(¢/(L)), finally, may involve infinite but convergent
series.
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The inclusion #,(¢(F)), s #,(((E)) factors through
CH(X: FQATL™) -, (X: EQA T )~ H(C(E))  (15.14)

(cf. (15.5), (15.7)), as follows. Let ¢ be a sum of the type (15.13), with
holomorphic coefficient functions f,,, and ¥ an E*-valued (n, n — d)-form
with smooth coefficients and compact support inside the (z, w)-coordinate
neighborhood. For r> 0,

Co={zw) ] =r1</j<d] (15.15)

is a (2n — d)-cycle, and it makes sense to integrate the contracted product
@y over C,. A small calculation in C” shows that the pairing

(g =lim | gy (15.16)

r—(

is continuous in the variable y and vanishes on exact forms. Thus we may
view ¢ as d-closed, E-valued, distribution coefficient (0, d)-form, with sup-
port along Q. If ¢ only involves a complete intersection of first-order
poles—i.e., if only the single multi-index /=(1..., 1) occurs in the local
representation (15.13) -one checks readily that this form is independent of
the choice of local coordinate system, that it is smooth along S, and that
it represents the local cohomology class ¢ via the morphism (15.8). Both
HH(C(E)), and % (X:E@ATS') are modules over the sheaf of
holomorphic differential operators acting on ¢ (t), the former is generated
over this sheaf of differential operators by sections having only first-order
poles, and the pairing (15.16) respects the &-module structures. This shows
that the differential form which we have associated to ¢ has all the required
properties.

To avoid complicated notation, we tacitly identify any local section ¢
of #o(€(E)), with the section of ¢ J(X:E® A/TS'") which it defines.
Now let  be a local section of 6 7(S:T*® A" TS @ A7TY'"). Since ¢
and ¥ are smooth along Q and S, respectively, the contracted wedge
product ¢ A ¥ makes sense as (1, d + p) form with distribution coefficients
supported on Q n S, and smooth along Q ~ S. According to (15.10),

PRy > A Y (contracted wedge product) (15.17})

represents the local cup product pairing followed by contraction
[E@E*—»C,

HH(O(E)®F HUQ(E*)) > Hs J(QUERE*)) > #4 o(Q").  (15.18)

via the morphism (15.8) and the analogous morphisms for Q and S Q.
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The arguments which establish the quasi-isomorphism (6.16) apply
also in the context of forms with distribution coefficients which are
smooth along S. Thus, replacing T by F*® A4"T%!", we obtain a quasi-
isomorphism

CHUS QAT ®ATH)
=Sy p AT @A TN —u]. (15.19)
Let O, = Y denote the K--orbit through the base point in Y >G./H: in
[8], O, is denoted by 0. Recall (6.7), and note that p: @, — Q has typical

fibre exp(t nn). The intersection nn it reduces to zero since o= —a
for any root «, and K acts transitively on O n S, hence

p:QynSy0nS. (15.20)

We now let @~ S and @, NS, play the roles of § and S, in the proof of
(6.16) and replace T by the canonical bundle of X. Since the real form S,
of Y contains Q,nN S,

G (Vi AT [20] > 652, (S))

is the appropriate analogue of (6.15). Also, the shift by u—2n in (6.12), ie.,
the shift by minus the real codimension of the fibre of p: S, — S in the fibre
of p: Y — X, becomes a shift by —2» because of {15.20). The two shifts by
+2n cancel, hence

Ol X AT @ ATH )= p, 6000 (S, A TE" @ AT
{15.21)
and, similarly,
G AT QAT ) 2 p, 65, (S ATTH" @ AT
(15.22)
The proof of the duality theorem [87] hinges on the quasi-isomorphism

‘}g?)(({‘l([E})alg = p*%Q)((()(p*[g ® A_W i{'?‘;’))alg[zn - 28]3 (1523)

which can be deduced from the description (15.13) of the local cohomology
sheaves. Here #,(C(F)),, is viewed as a complex of sheaves concentrated
in degree d = codim(Q < X), whereas the other side is a double complex
concentrated in degree n+d —s=codim(Q, < Y) with respect to one of
the two gradings. Analogously, for the same reasons, we have

A (D))= py Hoy (C{p*E@ A TLO)), [2n—25].  (15.24)



100 SCHMID AND WOLF

Via the quasi-isomorphism (15.19), (15.22), (15.24), the contracted
wedge product (15.17) corresponds to a morphism

P Ao (P EQA TN, [n+d—s]
® p,e 5 (S )"P*E*@)A”Tlt“*®/I'TT')'."JA:)
= P6 Q)r s,(9 A”Tl @A "I]")“":,) (15.25)

(note the shifts in (15.19), (15.24), and observe that 2n —2s+u=n+d—s
by (15.12)). We shall now describe an intrinsically defined pairing

Hy (P E@ AT, [n+d—s]
RE (S, p*E*QA"T " @A Ty

S (S AT @ AT (15.26)
Proposition 15.28 below will assert that this intrinsic pairing induces the
pairing (15.25).
Since F and E* pair into the trivial bundle, we may as well suppose
[ =E*=trivial line bundle. Also, A" T"@ A" T )07 = A T restricts to
the bundle of forms of top degree on the real form S, of Y. This sets up
a duality between distribution sections of A"T*" @ A”T {7y on S, and
compactly supported C* sections of A" *T:/¢. Thus (15.26) amounts to
a pairing into C, between sections of #, (¢, (A T}P})),[n+d—s] and
compactly supported C* sections of A" T " ® A" T}, on S,. Because
of the algebra structure of AT}"7, the definition of (15.26) now comes
down to a map
Ho Q) [n+d—s]-E (Sy; A TLO) (15.27)

Qyn Sy

Recall that n+d-s is the codimension of Q, in Y, so
Hp,(23),[n+d—s] is concentrated in degree zero. This sheaf can be
identified with the Z-module direct image, in the holomorphic category, of
the canonical sheaf of Q,. Analogously, the right-hand side of (15.27) is
the Z-module direct image, in the C™ category, of the sheaf of C* forms
of top degree on O, " S;. By restriction from Q, to the real form @, S,
(Qyc Y is defined over R), the canonical sheaf of Q, maps to the sheaf of
C* forms of top degree on @, N Sy. On the level of the ¥-module direct
images, this induces the map (15.27), by restriction from Y to the real form
Sy. As was explained before, (15.27) induces the pairing (15.26).

15.28. PROPOSITION. The canonically defined pairing (15.26) induces the
morphism (15.25), which corresponds to the local cup product via the quasi-
isomorphisms (15.19), (15.22), (15.24).



GEOMETRIC QUANTIZATION AND DERIVED FUNCTOR MODULES 101

Before turning to the proof of the proposition, we shall explain how it
implies Theorem 14.9).

Recall (6.17). By exactly the same reasoning, using (15.19) instead of
(6.16), we find

H¥CHS, P*@A"T " @4 T4')
=H¥S 4 (ST @A T )
=H*S, p, 6" (S p*E*QA" T @ ATV —ul)
=H* “(C"(S: p*E*@A" T @A T, (15.29)
Analogously, because of (15.24),
H*(X, #,(C(E)), )= XX, py Ay (CL(p*EQ ATV, [2n—5])
=H* (Y Ay (C(p*E@ ATV, [n+d—s])
=H* "I AL (CAP*EQ A TN, [n+d—5]). (15.30)

Here we have used the equality (15.12), the fact that p is an affine
morphism—which makes the higher direct images vanish--and the fact
that Y is affine, hence cohomologically trivial; cf. [§]. Now let

(6] e Im{HY(Q,((E)) gy~ HYH(D, C(E)}, (1531)
[W]e HY 45 €0 Q4 |

be given. The contracted cup product [¢] A [ ] takes values in
H’Q’MS(X, Q7). Via (15.29), (15.30), [¢] can be represented by a cycle

¢ A (Co(P*EQ@ AT P, [n+d—s]. (15.32)
and [¢] by a K-finite cycle
YeC (Sy p*E*@A" T ®@ a7« «TL0), (15.33)

Let {¢.y}eC} (Sy; A7 TL%%) denote the image of ¢ ® ¥ under the

Qrm Sy

pairing (15.26). We now use Proposition 15.28: the identifications (15.29)
and (15.30) are canonical, hence compatible with cup products, so

{¢, Y} represents the contracted cup product [¢] A [Y¥]. (15.34)
Recall (14.6)-(14.7). Evaluating [¢] A [y ] over the fundamental cycle [ X]

amounts to pairing” any representative formin C,, ((X: A" T @ A" T')

*Forms of top degree with hyperfunction coefficients on the compact manifold X are
naturally dual to real analytic functions.
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against the constant function 1. Since {¢, y } represents [¢] A [ ] via the
quasi-isomorphism (15.22), we can perform this operation already on §,.
Specifically, we can pair the compactly supported form {¢, | -—of top
degree, with distribution coefficients--against the function1 on S,, to
obtain the value of [¢] A [{¥] on [ X]. Symbolically, “pairing against 1" is
integration. We have shown:

(6] A W DLXT=] 1600}, (15.35)

From the definition of the pairing (15.26) it follows that {4, ¥ } depends
only on the (kK — 1)st jet of  along @, S,, where k is the largest order
of poles appearing in any local expression (15.13) for the coefficients of ¢.
In particular, via the natural map

CT (S, P E@A T @ ATV = COGIH E@ AT ®@ AN*) 4,
(15.36)

(recall (3.3)~(3.5) and (6.5)), the pairing ¢® vy~ {$, ¢y} extends to
C*(G/H;E®@ A" T " ® A'N*)4,. This extended pairing, followed by
“evaluation against 1,” is precisely the pairing which effects the duality
theorem of [8]. Thus (15.35) embodies the assertion of Theorem 14.9.

It remains to prove Proposition 15.28. The assertion is local with respect
to the fibrations ¥ - X, S, — S, so we may as well assume that E is the
trivial line bundle,

E=t*=C. (15.37)

As in the Appendix, we let T"(S), T*'(S) denote the “holomorphic” and
“antiholomorphic” parts of the tangent bundle of the CR manifold S. Since
S has constant CR dimension,

(THUS)+ T-N(SH* . the annihilator of (T"(S)+ T*'(S)), (15.38)

is a C™ subbundle of the cotangent bundle T ¥.

15.39. LEMMA. The complex structure operator J=Jy, followed by the
natural surjection T%|¢— T¥, defines an isomorphism of the conormal
bundle T¢ onto the bundle (TH°(S)+ T*'(S))~.

Proof. The image of the map in question is the annihilator of the
largest J-invariant subspace of T, i.e., the annihilator of T"%(S)+ T*'(S).
This annihilator has rank dimgS—2c=2n—u—2c¢, with u=
codimg(S < X), c=dimx(S), as before. The conormal bundle, on the
other hand, has rank u. Hence the lemma comes down to the equality
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n=c+u But T*'(S) and T are modeled, respectively. on b/b~b and
/b~ b. Thus,

c+u=dim;{(b/bnb)+2n—dime(a/bnb)

=2n—dim, q+dim b=n,

as had to be shown.

Because of the lemma, the image of the conormal bundle T under the
bundle map v+ v + iJv constitutes a C™ subbundle M < T4, of rank u,
such that

(T )M > TO(S)x, (15.40)
We now define a subsheaf
6 (S ,In'g'i(}*®/1 'U-()l )() {S AHTEG*®A~D‘UI*} (154])

as follows. The sheaf %"3‘(5; ..) has a natural increasing filtration,
according to the number derivatives; it is dual to the filtration of € (S ...)
according to the order of vanishing along S. The subsheaf (15.41) consists
of all forms which (i) lie in the lowest level of the filtration and (ii) are
divisible by A“M. In the local formula for ¢, non-tangential derivatives
occur paired with sections of M, so (15.41) is actually a subcomplex of
sheaves.

15.42. LEMMA. The inclusion (15.41) induces a quasi-isomorphism.

Proof. Let ¢ be a d-closed local section of %7 ( ..). Shrinking the
domain, if necessary, we may assume that the coeiT cxents involve only a
finite number, say /, normal derivatives. The polynomial Poincaré lemma,
applied fibre-by-fibre in the normal directions, implies that we can reduce
! by one by adding a boundary to ¢—unless /=0, of course. If /=0, the
condition J¢=0 forces ¢ to be divisible by A“M. More generally,
¢ increases the order of normal derivatives of any form which is not
divisible by £4“M. It follows that (15.41) induces a bijection on the level of
cohomology.

The lemma allows us to replace % #(S;...) by its subcomplex 67 (5:..)"
in the course of proving Proposmon 15 28.

Let ¢ be a local section of Hy((y),[d] and ¥ a local section of
FS; AT ® 4TS, both defined on some open set Uc X. As
explamed earlier, ¢ A ¥ is a scalar form of type {n, ¢ + ) with distribution
coefficients, supported on S~ Q and smooth along S~ Q. To know this
form is to know its effect on any compactly supported C” (0, n—¢ —d}-
form # on U, in other words, the expression [ ¢ Ay A #, for any such test
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form . On the level of the subcomplex (15.41), the quasi-isomorphism
(15.19) 1s induced by a map

Y gel(p "Us€ (S AT @49 “TH). (15.43)
which we shall describe below. Similarly, we shall describe an explicit map
pdell(p 'Us A, (CAA" TN, [n+d—s], (15.44)

which induces the quasi-isomorphism (15.24). Let
{&'. lZ} € [‘([) lU; (66) r"wS)(SY; ANt d+ </'|]‘1):()*)) { 1545)

denote the image of #® ¥ under the pairing (15.26). Here recall (6.13) and
(15.12). The restriction of T}% to the real form S,<Y is naturally
isomorphic to the cotangent bundle of S,, so we may view (@ ¢} as
scalar-valued (n+ d+ g)-form on p 'Un S, with distribution coefficients,
supported and smooth along Q,NS,. In particular, {§ ) can be
integrated against the smooth, compactly supported (n—g—d)-form
p*nls,. Unraveling the statement of Proposition 15.28, we find the assertion
comes down to the equality

IRZIZS R (BT A (%l ) (15.46)

vp e s,y

for every ¢, ¥,  as above.

By assumption, the coefficients of ¢ are distributions on U, supported on
S, smooth along S, and not involving any normal derivatives. Formally,
any distribution with these properties can be written as s ', where 4 is a
smooth function on Un S and ¢ is a generating section of A*T, the top
exterior power of the conomral bundle of S in X. Now let 7 be a generating
section of the top exterior power of the conormal bundles of the fibres of
Sy — S in the fibres of Y — X; these top exterior powers constitute a rank
one subbundle in 4™ “T¥ ,|s,. If h and o are as before, (p*h)o 't '
defines a distribution on Y, supported and smooth along S,.. Thus we may
divide the distribution coefficients of p*i) by 1, to obtain a form on Y with
distribution coefficients, supported and smooth along S,; we may then
take the wedge product® of this form with 1. The map

Py

Yyro— A1
T

* Strictly speaking, we should take the wedge product with some extension of T toa section
of A~ “T#¥,, over a full neighborhood of S, in Y. The particular choice of the extension does
not matter since the coefficients of ., and hence thosc of t 'p*y. involve no normal
derivatives.
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represents the quasi-isomorphism (6.12) on the level of the subcomplex
(15.41). By definition of the subcomplex, the values of y are divisible by
A“M. But M is congruent to T3 modulo T}, so the values of y are
divisible by ¢. Dividing the values of ¥ by o while multiplying the distribu-
tion coefficients by ¢ turns ¢ into a smooth, scalar-valued {# + ¢ — u)-form
on S, n U, which we denote by r¢i. Note that o A 7 is a generating section
of the top exterior power of the conormal bundle of S, < ¥ via (6.13);
moreover,

Py prrsy
———AT=—— A G AT
T

g AT
A statement similar to Lemma 1542 is the reason for the quasi-

isomorphism (6.15) and the analogous quasi-isomorphism in the context of
distribution forms. We conclude: the assignment  — 1, with

§=p*ry. (15.47)

represents the quasi-isomorphism (15.19) when we make the natural iden-
tifications (6.13) and

Ty, ~ Ty, (15.48)
For future reference, we observe:

the values of rqif along @ S are divisible by dw|, for
any local section « of the ideal sheaf 7, < €. (15.49)

This follows from Lemmas 15.11 and 15.39 and from the fact that ¥ has
bidegree {#, - ).
Shrinking U, if necessary, we can introduce holomorphic coordinates

(LW, 2) = s L U o Uy ca W s W Dya e 2y, ) (15.50)

on p 'U, such that {w, o) are coordinates on U, (1, t) are coordinates along
the fibres of p 'U' - U, and

UnQ={{z,w)elUlw=0},
| ' - | (15.51)
p 'UnQy={{t.e,w,2Vep 'Ulr=w=0"

Symbolically, we write dw for dw, A --- A dw,, w ' for (w,--w,) ', etc
Note that v =0 defines the fibre of @, — Q as a subvariety of any given
fibre F of p~'U - U. Thus,

dv
TE I(F; A, o (2% ), [n=s]) (15.52)
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represents what might be called the “fundamental cycle of local cohomol-
ogy” of the pair (F, Fn@,). In particular, this section is canonically
attached to the pair {(F. Fn Q). We now use the flat connection (6.13) to
turn these sections, corresponding to the various fibres of p '/ — U, into
a section

vel(p ‘U, Ho Q% D n+d—sT) (15.53)
The very definition of v shows that ¢ — @, with

¢ = ¢v. (15.54)

induces the quasi-isomorphism (15.24). Since the connection was used to
describe v, we cannot conclude that v=dv/v as meromorphic differential
forms on p 'U; however,

v = do/v modulo the linear span of the dw,, {15.55)

since the v, and w, generate the ideal sheaf of Q,.

We now have all the ingredients of the identity (15.46) which 1s yet to
be verified. Before doing so, we make one minor and one major reduction
of the problem. From the explicit description of the morphism (15.43), we
conclude

W An)~ =¥ A (p*nls,)

and, from the description of the pairing (15.26),

{‘};ﬂ;/\ 7”5, {—“H.Dr ‘;} P’?ts)

Thus we may replace by ¥ A#n and y by the constant function I.
Concretely, we suppose

g=hn-—d, and ¢ has compact support in U. (15.56)

In this situation, (15.46) becomes

| onwni=] AL (15.57)

“p WSy

By infinitesimal left translation, g acts on X and Y as a Lie algebra of
homomorphic vector fields. The realm form g, < q also acts a a Lie algebra
of real, C* vector fields. Complexifying this latter action, we obtain a
second action of g, by complex " vector fields. These two actions agree
on holomorphic or meromorphic objects, by the Cauchy-Riemann equa-
tions. Since § and S, are G-orbits, the action of g, and its complexification
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induce actions on any G-invariant complex of sheaves, in particular on the
subcomplex (15.41). Though not globally invariant, the local cohomology
sheaves along Q < X and Q, < Y are infinitesimally invariant. The various
pairings and morphisms which enter the formula (15.57) are canonically
defined, hence preserved by the infinitesimal action. This allows us to shift
differentiation along any e g from ¢ (where we may use either action) to
¥ (where we must use the second action}). As #{g}module (via the
holomorphic action), #,(C),[d] is generated by sections which involve
only complete intersections of first-order poles, since g maps onto the fibres
of the holomorphic conormal bundie of @< X. Thus it suffices to verify
(15.57) when

¢ is a complete intersection of first-order poles, (15.58)

as we shall assume from now on.

In terms of the local coordinate system (15.50), we have ¢ = f(z)w
for some holomorphic function f(z} on Un Q. Since dw A bt generates the
top exterior power of the conormal bundle of < X, we may view
(dw A dw) 'f(z) as a distribution on U, supported and smooth along Q.
not involving any normal derivatives. The discussion around (15.16)
shows that ¢ corresponds to the distribution-coefficient (0, &)-form
(dw A dv) 'f(z) dv. Recall the relationship between the differential forms
Y and rgp: Y =(c 're) Ao Here rg Ao is a smooth section of
A* 4T%|, and division by ¢ turns the coefficients, which are smooth
functions on U n S, into distributions on U, supported and smooth
along S, not involving any normal derivatives. Thus f(z)di A rop A @
becomes a smooth section of 4% T¥p. s When we divide the coefficient
functions by the generating section dw A di A o of the top exterior power
of the conormal bundle of (Q ~ 8)< X, they become distributions on U,
supported and smooth along O n S, not involving any normal derivatives.
In that sense,

1

P Ay =(dwAndivnrc) fl2)dd Argf Ao (15.59)

Since this form has top degree, we can divide its values by dw A & A o, to
obtain a smooth, compactly supported form & on Un Q n S, of top degree.
The left-hand side of the relation (15.57) is precisely the integral of the
form ¢ over 9 S.

Because of (15.47), (15.49), (15.54), (15.55), we have the formal equality

Al =fzyw v Vdo A prroy. (15.60)

Moreover, the values of this form are divisible by di. This expression only
involves first-order poles. The definition of the pairing (15.26} therefore
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amounts to interpreting w 't 'dw A dv as evaluation along w =0 =0, ic.,
along Q. The result is a smooth, compactly supported (n— 2d — u)-form
on QN Sy, which coincides with the form ¢ of the previous paragraph via
the diffeomorphism p:Q, S, 30~ S. Like any smooth form of top
degree, p*¢ maps forward to a form of top degree on S, with distribution
coefficients supported along Q, n S,. That distribution coefficient form on
S, is the image {4, /) of #®J under the pairing (15.26). Hence

|

p 'Sy

BOa =] pre= E=| ot

p A Qyn S, S Qe S

as was to shown.

APPENDIX: CaucHY-RIEMANN COMPLEX

We collect some material on induced ¢ complexes for which there
appears to be no convenient reference.

Let X be a complex manifold, n=dim X, and let Sc X be a C* sub-
manifold, m =dim,S. Write T(...) for complexified tangent bundle, T (...)
for its fibre at x. If x€ S then dim, { T (S)~ T"°(X)} is the holomorphic or
Cauchy—Riemann dimension of S at x. From now on we assume that S has
constant Cauchy-Riemann dimension, say ¢. In other words,

T"S)=T(S) nT"X) and TUS)=T(S)n T"'(X)

are smooth sub-bundles in T(S), of fibre dimension c.
Note that T%'(S) consists of all é€T (S) that annihilate germs of
functions on X holomorphic at x. So

T *1S): sheaf of germs of C” sections of T*'(S)
is a sheaf of Lie algebras under Poisson bracket. Dually,
o/°(S): sheaf of germs of C* sections of A (T%!($))* (A.1)

is a differential graded sheaf. The differential ¢:.o/7(S)— /77 '(S) is
given as follows. The germs ¢ e .o/ 7(S) are just the germs of restrictions
| y00.5), Where w is a C*(0, p)-form on X in a neighborhood of x. Then

d?(‘ﬁ):(g(u)iT“-'(‘S‘n where ¢:(L){ 79105+ (A2)

We say that a vector bundle E— S is Cauchy—Riemann (CR) if its
transition functions are annihilated by sections of T%!(S). Then the
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transition functions are annihilated by (. ‘As in the Dolbeault case, now
(¢ acts on the sheaf

o/ (S:E): C* section germs of E® A (T"'(S))*, (A.3)

which is the twist of ./*(S) by E. With the ¢ :.o/7(S;F)— /7" (S F).
(A.3) 1s a differential graded sheaf.

The CR analog of the canonical bundle is IK¢= A" (T(S)/T"'(S))*
Note that m — ¢ is the fibre dimension of T(S)/T"'(S).

We are going to prove that

K¢— Sis a CR line bundle, (A4)
in order to discuss a pairing
ASE)R ANS;EFQK ) > E7 7" (S), (A.5)

where the latter is the sheaf of germs of €’ differential forms of degree
p+qg+m—c. When p+g=c, (A.5) plus integration over .S gives a duality
which is the starting point for certain isomorphisms of cohomology.

A6, LEMMA. Let xeS§. Then there exist functions w', . w"”
holomorphic on an X-neighborhood of x such that the dw'| ¢ span the fibres
of {T(S)/T*'(S)}* in an S-neighborhood of x.

Proof. Let = be a complex local coordinate on X near x such that the
(/") . 1<i<e¢, span T1O(S). Then the d='|g, dZ/] ¢, 1<i, j<¢, have
common annihilator N — S (near x) which is a smooth sub-bundle of T(S}
such that T(S)=T"(S)®T*"(S)PN. The almost complex structure
operator J of X preserves T"(S) @ T*'(S), and T(S) n JN = 0. Now
{E—iJE:EeNY is a rank m —2c¢ sub-bundle of T"°(X)| disjoint from
T(S). So we can modify {z°*', .., 2"} and assume that the Re(&/¢Z') ..
c<i<m—c¢, span N . Now the d-'|¢, 1 <i<m—¢, are linearly inde-
pendent near x with common annihilator T*'(S), so the lemma follows

with wi=z" Q.ED.

Now we can prove (A4) Given {w'} as in LemmaA.®,
(dw' A --- A dw™ “) ¢ spans the fibre of K¢ near x. Given also {u’}
as in Lemma A6, now (du' A --- Adu™ ‘)¢ is a multiple of
(dw' A o A dw” D, so du|g=3 al dw'| for some ' functions a),
and

(du' A - A du™ ‘)(Szdet(a,’)-(dn" A A dwT ). (A.7)

Evaluate 0 = ddu')¢ =3 da! n dw'|¢ on (& n,) with e T™!(S) and
n,€ T(S) such that dw'(n,)=J;. Note dw'() =0 because ' is holomorphic.
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holomorphic. So da/(£)=0. Thus the determinant in (A.7) is annihilated by
every £ e T™'(S). That proves (A.4).

Since m—c=dim, T (S)/T*'(S) and K= A" ((T(S)T*"(S))*), we
have a well-defined map

ATITESF @ (Kg) > A7 " THS)
specified by exterior product. Composing it with
(E®ATTI(S* I @{EFR ATV (S)*] > A7 74T EH(S)*,
we have (A.5). For p+ q% ¢, we follow it by integration over S. That gives
an identification
C (STEQA’TNS))=CH(S; EP*RK ® A 7T*'(S)*) (A8)

of the space of distribution sections of F® A7 T"'(S)* with the strong
topological dual of the space of compactly supported C* sections of
FRKs® A 7T (S)*

Similarly, if S is a (" submanifold of X and the CR bundle F - Sis ¢,
then (A.5) induces a formal duality between real analytic and hyper-
function sections. Let U be open in S with closure cl({/) compact. Then

CHe(U): E* @K, @4 7T (S)*)

(, o UE A/rﬂ'().l * ~ .
( ) (S5)*) C")(bd(U)Z[E*®KS®A{ pﬂ'().l(s)*)/

(A.9)

The dualities (A.5), (A.8). (A.9) are compatible with :

A10. LEMMA. If w,, w, are sections of T@A?TN(S)*, F*QK®
ATTONSY: over an open UcS, then d(w, A wsy)=(0gw,) A wsy+
(—1)Yw, A (Fgws).

Proof. As in the argument of (A.6), we have a complex local coordinate
- on X near x €S such that the d-'| ¢, 1 <i<c, span the fibres of T'(S)*
and the d='|;, 1 <i<s—c, span the fibres of {T(S)/T*'(S)}*. Locally
o =Y, [10,d ¢ and  w,=3%,  hdst A AdZ” 0 A dE g,
where f, and h, are scalar valued, o, and A, are local CR sections of £ and
E*, and d=’ and d7z’ are monomials in the ¢=*. Now, on S,

(‘SS‘(*')I = Z ((ﬂj‘s‘./‘/) 0y dfl| s
and

Cewy=Y (Cch)t,ds" A oo Ad=" A dT |
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because ¢,, v, are CR. Thus,

&

(Csw ) A+ (—1)w, A (Fgws)

={dw, N W) +{—1D)w, A dors=dlw, A w,)

as asserted. Q.ED.

Note that Lemma A.10 carries the dualities (A.8) and (A.9) to the level

of cohomology.

(3]
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