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The Schwartz Space of a General Semisimple 
Lie Group. I. Wave Packets of Eisenstein Integrals 

REBECCA A. HERB* 

JOSEPH A. WOLF' 

1. INTRODUCTION 

Suppose G is a semisimple Lie group with infinite center. As in the finite 
center case, the tempered spectrum of G consists of families of representa- 
tions induced from cuspidal parabolic subgroups P = MAN. However, in 
the infinite center case, the representations of M to be induced are not 
discrete series, but are relative discrete series which occur in continuous 
families. In two previous papers [S, 91 we studied matrix coefficients of 
relative discrete series representations for a connected simple group with 
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infinite center and showed how to combine them into wave packets along 
the continuous parameter to construct Schwartz functions on the group. 

In this paper we construct Schwartz class wave packets of matrix coef- 
ficients corresponding to the various induced series of tempered representa- 
tions for any connected reductive Lie group G. In the special case that 
G = P = M, these are exactly the wave packets of relative discrete series 
matrix coefficients constructed in [S. 91. To study induced representations 
on G we must be able to define continuous families of relative discrete 
series representations on the Levi components IV of arbitrary cuspidal 
parabolic subgroups. These groups A4 need not be connected, but lit in the 
class of reductive groups studied in [I I]. (See (10.1 ) for the precise delini- 
tion.) Since we do not prove our wave packets are Schwartz by induction 
on G, but rather by induction on parabolic subgroups of G. we do not need 
to assume G is a general group in the class (10.1). This simplifies the con- 
structions of the machinery needed to define wave packets. In Section 10, 
we indicate how the results for connected groups can be extended to 
arbitrary groups in the class ( 10.1). 

To construct wave packets we proceed as follows. We start with con- 
tinuous families of relative discrete series matrix coefficients on M of the 
type constructed in 191. We use these to form Eisenstein integrals similar 
to those defined by Harish-Chandra in [3]. Thus our Eisenstein integrals 
have two types of continuous parameters, those corresponding to unitary 
characters of A which occur in Harish-Chandra’s Eisenstein integrals, plus 
additional continuous parameters coming from families of relative discrete 
series representations on hf. Wave packets must be taken along both types 
of continuous parameters to obtain Schwartz class functions on the group 
G. Roughly speaking, the wave packets considered will be integrals of the 
form 

where E( P:h: v:.Y) is an Eisenstein integral corresponding to 11 E 2 and to 
a continuous family of matrix coefficients for relative discrete series 
representations 7r,, of M; nz(/z: V) rl/l r/l? is the Plancherel measure corre- 
sponding to the associated family of induced representations x,,.,, = 
Indz( n,, @ ~@a I ) of G; and x(h: \I) is a suitable Schwartz function in the 
parameter variables. 

The space 2 is a Euclidean space, and Harish-Chandra proved in the 
finite center case that a necessary and sufficient condition for the wave 
packet F, to be a Schwartz function on G is that r be an ordinary Schwartz 
function on 2 [S]. The infinite center situation is more complicated. First, 
a must be a jointly smooth function of /I and v which decays rapidly at 
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infinity as for an ordinary Schwartz function. However, as a function of h, 
a must also decay rapidly, in the sense of having a zero of infinite order, 
as h approaches values on walls where rch is a limit of discrete series 
representation. Finally, there are conditions on CI at points (h,, v,,) for 
which the induced representation rchO, y. is reducible. One way to phrase this 
condition is to require that the product cr(h:v) m(h:v) be jointly smooth in 
h and 1’. This is a restriction only at points (h,,, vO) as above where the 
Plancherel function m(h:v), which is separately smooth in each variable, 
fails to be jointly continuous. 

In this paper we make a sightly stronger assumption on CX, namely, that 
cx(h :v) rn.(h: v) is jointly smooth in h and v, where rn.(h: v) is part of the 
Plancherel function. (See (9.12) for the definition.) Points (II,, II(,) at which 
w~(/z: v) is not smooth, but m(h :v) is, correspond to induced representa- 
tions 7t,,U. “o which only fail to be reducible because certain limits of discrete 
series are zero. For such Z, we are able to prove that F, is a Schwartz func- 
tion using Harish-Chandra’s theory of the c-function, in particular the 
result which says that for a fixed discrete series representation of M, the 
Plancherel measure cancels the poles of the c-function considered as a 
meromorphic function of v. In order to remove this extra assumption on CI, 
we will need to know more about the c-function as a meromorphic func- 
tion of h and v jointly. These results will also be needed to study the “mixed 
wave packets” described in the next paragraph, and so are deferred to the 
paper in which we will study the mixed wave packets. 

In the finite center case, Harish-Chandra proved that every K-finite 
Schwartz function on G is a finite sum of Schwartz wave packets of 
Eisenstein integrals coming from the various series of tempered representa- 
tions [S]. (Of course, discrete series representations have no continuous 
parameters so the degenerate wave packets in this case are just single 
matrix coefficients.) In the infinite center case, the analogue of K, the maxi- 
mal compact subgroup, is non-compact, and there are no K-finite functions 
in the Schwartz space of G. However, there is a dense subspace of the 
Schwartz space consisting of “K-compact” functions, that is, ones for which 
the K-types are restricted to lie in a compact subset of K. (See [9].) 
However, it is not true in the infinite center case that a K-compact 
Schwartz function will be a finite sum of Schwartz wave packets of the type 
described above. The problem comes from the fact that the different series 
of tempered representations interfere where a reducible principal series 
representation breaks up as a sum of limits of relative discrete series 
representations. As a result of this interference between series, not all 
Schwartz functions on the group decompose as sums of Schwartz wave 
packets. The typical K-compact Schwartz function on G breaks up as a 
sum of pieces from different series of representations which individually are 
not Schwartz functions, but which “patch together” at reducible principle 
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series and limits of discrete series to form a Schwartz function. The wave 
packets studied in this paper are the ones which patch together with the 
zero wave packet from all other series. In another paper we will study the 
mixed wave packets which have non-trivial patches. 

The organization of this paper is as follows. In Section 2 we develop 
some structural information about G and reductive components of its 
cuspidal parabolic subgroups. We also recall the basic definitions of the 
Schwartz space. 

In Section 3 we discuss the parametcrization of relative discrete series 
representations on M and the corresponding continuous families of 
induced representations on G. 

In Section 4 we extend results on holomorphic families of relative 
discrete series matrix coefficients which were proved in [9] for the case 
that M is a simple, simply connected group of hermitian type, to all Levi 
components M of cuspidal parabolic subgroups. 

In Section 5 we reformulate the results of Section 4 as results on 
holomorphic families of spherical functions, and extend the growth 
estimates proved in [S, 91 to our general class of groups M. 

In Section 6 we define holomorphic families of Eisenstein integrals and 
check that they are eigenfunctions of the center of the enveloping algebra. 

In Sections 7 and 8 we extend the machinery developed by Harish- 
Chandra to study growth properties of abstract families of functions 
generalizing Eisenstein integrals to include dependence on the continuous 
parameters coming from the relative discrete series. Specifically, in 
Section 7 we use differential equations to sharpen a priori estimates, and in 
Section 8 we use these estimates to show that wave packets formed from a 
certain class of functions are Schwartz. 

In Section 9 we show that the Eisenstein integrals defined in Section 6 
are members of the abstract family studied in Section 7 and use the results 
of Section 8 to show that wave packets of Eisenstein integrals of the type 
described in this section are Schwartz functions. Further. we show that 
when these Schwartz functions are written in terms of tempered characters 
using the Plancherel formula, only the series of representations used to 
form the Eisenstein integrals occurs in the expansion. 

In Section 10 we show how to extend the results of Section 9 from the 
case of connected groups to arbitrary groups in the class ( 10.1 ). 

2. GROUP STRUCTURE 

Throughout the first nine sections of this paper, G is a connected reduc- 
tive Lie group. Fix a Cartan involution 0 of G as in [I I ] and let A’ denote 
the fixed point set of 8. It is the full inverse image of a maximal compact 
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subgroup of the linear group G/Z,, but is compact only when the center 
Z, of G is compact. 

PROPOSITION 2.1. K bus a unique nza.uinzul compact mbgroup K, md hu.s 
u closed norrml L:ector subgroup V such tlzat 

(a) K=K, x V, 

(b) Z = Z, n V is w-compurt in both V and Z,. 

Proof Let p: ‘G + G be the universal covering and ‘K= pm ‘(K). Then ‘K 
is direct product of the compact semisimple group [‘K, ‘K] and a vector 
group ‘W. Let ‘Z = Z, n ‘W; it has finite index in Z,<; and is co-compact in 
’ W. Let ‘U be the subspace of ‘W spanned by Ker(p) n ‘W and define K, = 
p( [‘K, ‘K] x ‘U). Then K, is the unique maximal compact subgroup of K. 

Decompose ‘W = ‘U@ ‘V such that Z,(; n ‘V is co-compact in ‘I’. Then 
PI,,. is one to one, so I’= p(‘V) is a closed vector subgroup of K, and 
K=K,x V. 

For (b), (Ker(p)n’W)x(Z,n’V) is co-compact in ‘U@‘V=‘W, so 
p( Z,(,. n ‘V) = Z, n V is co-compact in V. Also, Z,(; n ‘W has finite index in 
Z,;, and (Ker(p) n ‘W) x (Z, n ‘V) has finite index in Z, n ‘W, so 
Z, n V= p(Z,<,. n ‘V) has finite index in p(Z,) = Z,. Q.E.D. 

Let P be a cuspidal parabolic subgroup of G. In other words, up to 
G-conjugacy, P is given as follows. Start with a d-stable Cartan subgroup 
HcG. Then H= TX A, where T= HnK and A=expa,a=bnp, where 
9 = t + p under H. Then Z,;(A ) = M x A, where HM = M, we can choose a 
positive system @ + = @ ’ (9, ~1) of restricted roots, and N = exp(n), where 
n=xIEa’. !I,. Now P= MAN. Note that Zc M and that although M need 
not be connected, it is in the class of reductive groups studied in [ 11, 6. 71. 
(See ( IO. 1 ) for the precise definition. ) 

2.2 Remark. Write Kz, = M” n K. Our structural results (2.1 ) for K can 
be applied to Kif to write Kz*= K::,, x V, where Ki:, = K, o M” is 
maximal compact in KY,. Note that V,, $ V in general. Write M’= 
Z,,( M”) Mn and K’, = K n Mt. 

In order to define spherical functions we will need to consider the larger 
group Ki; = K’, . V. Note this is a group since C’ centralizes K. We can 
write K” = Kt, , x V, where K;, , = 
compact !ubgroup of K [, 

Ki; n K, is the unique maximal 

Let 9 = f + p, k 1 eigenspace decomposition under 8. Choose a maximal 
abelian subspace a,, c p and a positive restricted root system @ + = 
@+(g, au). As usual, p= 4Czt0’ m(cc)r*, where m(cc)=dim n,. The 
Iwasawa decomposition 

G= N,,A,K, r=~z(.~).exp H(.x).K(.x) (2.3 1 
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specifies the zonal spherical function on G for 0 E (I:, 
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It is the lift of the corresponding function on the linear semisimple group 
G/Z,, and thus if 0 is defined as in (2.7) there are constants C, q >,O so 
that 

f’ “(U)<~(U)dC’(I +a(u))“c “(U) (2.5) 

for all II E ,4,: = j LIEA~,:x(Io~u)>O for all YE@’ I. 
Growth in G is determined by a function (2: G + R + which is defined as 

follows. Choose an Ad,(K)-invariant positive definite inner product on P’. 
If .Y E G we decompose. 

.\‘ = I’( .Y )-k,(s).exp f(.Y)E VK, .exp(p) (1.6) 

and then we set 

The main properties of 0 are 

cr(k,rli,)=6(.\.) forall XEG. h-,.li,EK: 

and 

a(q~)<a(sI+a(~~) for all .Y, ~9 E G. 

The corresponding properties of c? are 

6(x-.\-k ‘) = C(.\-) for all .Y E G, k E K; 

6(k,.uk,)=cJ(.Y) forall XEG.~,,~~EK,; 

G(xy) < 3(5(s) + rF(J,)) for all s, J‘ E G. 

(2.Xa) 

(2.8b) 

(2.9a) 

(2.9b) 

(2.9c) 

Let W be a Banach space and .f‘e C ’ (G: W). If D, . D, E ‘U(g) and r E iw 
we define 

0, !I.f’l! r. n2 = sup (1 +6(s))‘Z(r) ’ ~~,f‘(D,:s;D,)~i,~.. (2.10a) 

The Schwartz space is 

%(G:W)= ; feC’(G: W):n,jl,I‘I\r,,lz< x 

forallD,,D,E4/(~~)andallr~R). (2.10b) 
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It is a complete locally convex topological vector space with the topology 
defined by the seminorms (2.10a). And of course the most important case 
is 

%(G)=%(G:@). (2.1Oc) 

PROPOSITION 2.11. Dqfbzr x,.=G+ V by SEX~(.‘C) K,A,‘N,, where 
G = KA,,N, = VK, AoN,, is the I~usan~~ decomposition. Then ISI ,. (exp p ) is 
hounded 

It suffices to prove Proposition 2.11 in the case where G is simply 
connected, non-compact, and of hermitian type. 

LEMMA 2.12. There e.uists C>O suclz that cr,.(~~~~)~C+(~,,(s)+~,.(,v) 
for all s, J’ E G. 

LEMMA 2.13. There e.uists C’ > 0 such that 0 I, ( II ) 6 C’ jbr all n E N,, . 

Proqf qf Proposition ,from Lemmus. Let t E p, exp < = x(exp [) u . n 
with K(exp<)EK, UEA,, and HEN”. Using Lemma 2.12 j(k-,.(expt)ll = 
orr(xc (exp 5)) = a,.(ti(exp 5)) = a,.((exp 5) Fz ‘u ‘)< C + aV(exp 5) + 
01 (nr’u ‘) = C + a,(n-‘up’ )62C + a,,(n ‘) + a,,(~ ‘) = 2C + 
c,,(n-‘). Now //ti,.(exp 011 <2C+ C’ by Lemma 2.13. Q.E.D. 

2.14 Proof qf (2.12). Write .Y = ok exp 5 and j’ = v’k’ exp <‘, where 
L’, L” E V, k, k’ E K, , and t, r’ E p. Then 

.X-J’ = (cd)(kk’)( (exp t”)(exp {‘)) where <” = Ad( u’k’) ‘( 5). 

Write (exp <“)(exp r’)= cvh exp q, where I~‘E V, hE K,, and v~p. Then 
.YJ = (w’w)(kk’h)(exp q), so 

Use GcP+z,P from [S, Theorem 2.171, h=p+(h).r2(h).p (h), and 
let R,,(h) denote the V, projection of KB. = V, x (K,), . Then 

Il~t’ll =oI ((exp S”Nexp <‘)I= Illm t-,d(exp S”Nexp <‘))I1 

by [9. Lemma 10.61, and that is bounded by some constant C according 
to [9, Lemma 10.71. Q.E.D. 

2.15 Pro@’ qf’ (2.13). Let I.E@,:,. <,.EcJ;, and ylj,= Hg,~g j, Assume 
tj.#O so that sj.. vi.. and /z; = [t;, q,] E a, span a three-dimensional 
simple algebra g[n]. Then [,. = 4, + vi spans f[E”] =f n g[A], hj spans 
a[E.] =a,ng[i]. <,. spans n[,I] =n,ns[i], and {h,, tl-q,) spans 
p[A] = p n g[i.]. The analytic subgroup G[i,] for n[I.] has form Cl;.] = 
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K[I.].exp p[i.], so exp c; =exp(<)exp(<), where <EF[E,] and <~p[;]. If 
(I,E [f, f] =f, then <cf, and a,.(exp j’,)=O. Now write <=i,,+[,, ~,,Eu, 
and [, E f,, so a,-(exp <;) = ll[Oli < Il<li. An sL(2; R) calculation shows that 
cos(v il[ii) #O, where I’ is a constant that depends only on $1 and CJ[~~], so 
II<11 < rc/2r. 

SZM~UU~J~: given i. E Qc:, we have C, > 0 such that 0, (exp ;, ) < C, for all 
f, E $1,. 

Let II E N,,. Then we can write II = n, E e,7;, exp( I;‘, ), where 5, E $1,. Using 

Lemma2.12, a,.(n) 6 P,;,JC+~7;io II,, a,(exp<,) G ~@c,~,JC+~C,.. 
Q.E.D. 

3. DISCRETE SERIES PARAMETERS 

Fix a H-stable Cartan subgroup Hc G and an associated cuspidal 
parabolic subgroup P = MAN. Here H = T x A, where T= H n K and 
A = exp(a), a = b n p, and Z,(A) = M x A with OM = M. In this section we 
discuss holomorphic families of coefficients of relative discrete series 
representations of M. 

Fix a positive root system @,:! = CD ’ (m, t) such that 

if m, is a non-compact simple ideal of hermitian type in m 
then @ + (nt , , t n 111, ) contains a unique non-compact 
simple root. (3.1) 

We denote @,:,,, = @ + (f,,,. t) and write lj,,, and /I ,, c for the half sums over 
@,lI and @ l,,*. Define 

* ,4 ,,, : all 1. E 1 t such that 

i - p \, is integral, i.e., e’ P’? is defined on T” 

i is @,,,-non-singular. i.e., (i., 2) # 0 for r E @,,1 
(3.2a) 

i. is @ G, h dominant, i.e., (E., #z) 30 for XE @:,,K. 

Write t=tlOu,,, where t,=tnf,, and set ioz<= iirit*:i(t,)=O). Then 
An, is the disjoint union of subsets 

~j~,,=j.,,+/~,,,:1~,,rEiDtandB(i.,,)#OforpE~,~,\~~,,h), (3.2b) 

where R0 belongs to the discrete set 

n 11,0 : all j,,, E it * such that i., - /I,,~ is integral, 

i, is @ :,, K- dominant. and @ ,t,, k non-singular. 

and E.,( D ,, ) = 0. (3.3 1 
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If SEA,+, then K: denotes the corresponding relative discrete series 
representation of MO. Thus the relative discrete series of M” is the disjoint 
union of continuous ,fhnilie.s 

(i,, + h,,:h,, E 9,, = qq(i.,,) ), ( 3.4a ) 

where i. E A ,,, o and Y,, is a topological component of 

(~~,+,~~G:B(~~nr)# -B(j”o)forB~~.~r’\~,:,.h.j. (3.4b ) 

To define continuous families of relative discrete series representations 
on Mt and M we proceed as follows. Recall the decomposition K = K, x V 
of (2.1). Since V is central in K, each he iD* gives a unitary character e” 
of K which is trivial on K,. Consider iu* s if* by iu* = i/z E if*:h(f, ) = 0). 
Then for each k E iu*, we can define k,(h) = hi,. Since t, s f,, h,b,(h) E ioL. 
Further, any h,, E in*, can be extended to D,, @ f, by making it zero on f,, 
and then extended arbitrarily from vM@f, to f to give a linear functional 
h E in* with 1~,(11) = A,,. Thus 

it?;,= (h,,(h)=hl,:hEiD* ). (3.5 1 

We can now reparametrize our continuous families on M” as follows. Fix 

J-0 E n hr.0 and let P= jhEir,*:h,~,(h)Ea,,). Then jAO+/~n,:h,,~P~,i = 
{jbo + h,,(h):h E P}. Further, the representation nyU+ ,,,,,,,) has Z,,,l-charac- 
ter ri.o~“‘~+“M’h’l%\l,, = ~~“~~~~l~,,,Oe~l~,,~~. Let x(O) be any element of 
Z,,(M”)̂  with Z,b,II-character e”” ““. Since Z,t,( M”) s K and (J” is a 
character of all of K, ehl 7,,,,,V,~, is a character, which we will also denote by 
eh, of Z,&,(MO). Set 

y(h)=~(o)@e”, k E iD*. (3.6) 

Then I= {~(h):h~i~*l is a continuous family of irreducible unitary 
representations of Z,&,(M’), and x(h) has the same Z,,,O-character 
ekz ~ I’V + hfl/1) as #, + h,,,(,~, . Thus we can define continuous jirrnilies of‘relutice 
discrete series representations of M’ = Z,,(M”)Mo by 

?r= (71(h)=X(/z)071(:0+hM(h,:hE-CL/) (3.7a 

and continuous families of relative discrete representatiom of A4 by 

IK”“= ~71,~‘(h)=lnd~:+7c(h):h~y). (3.7b 

The parametrization (3.7) of the relative discrete series of M extends 
in the obvious way to a parametrization of the tempered series of 
representations of G associated to H: 

nh.\’ = Ind:,,, (7r”(h)@e’“@ l,V). (3.8a) 
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Here we use normalized induction. so rr,,.,. is unitary just when r E a*. The 
corresponding c~~nlimro~c.~ ,f&~iik.s t~f’ H-.rrric~ rr~pre.rmfotions of G are the 
sets 

Kc;= [7l I,.,, :ilE’/. 1’Ea”;. (3.8b) 

Since a4’(h) is obtained via induction from Mt to M. we can obtain TI,,.,, 
directly as 

X/L i’ - - Ind~,+., ,, (7c(iz)@c”L @ 1 b). (3.9) 

We will use this fact to avoid extending results from Mt to M. 
We will also use iu* to parametrize families of K$types of rr(l,,+,l,,C,,) and 

K$-types of n(h). Let 

0):: irreducible unitary representation of Ko, 

with Z ,,,i,-character c’” ““: 

0 
oli,, zz (-/I @ p/J\f: representation of K:‘, 

with Z ,,ii-character ~“1 “v+ “!I; 

(3.lOa) 

(3.10b) 

.lOc) 0 0,) = (T,, ,,,,,, 0 i((iz ): representation of K:I. (3 

Note that 

0,) = cJ() @ 8 for all h. (3. 

The representations rr,, are well defined for iz E UT, We will denote 

10d) 

CT= jcr,,.i?EU$) (3.1 1 ) 

and will refer to (r as a holomorphic family of irreducible representations 
of K;,. 

Let so be an irreducible unitary representation of K. Set 

r,, = r,, 0 2 (3.12~) 

T= [T,?:ilEUf I. (3.12b) 

Then z is called a holomorphic family of irreducible representations of K. 

4. DISCRETE SERIES COEFFICIEKTS 

Because our continuous families of H-series representations can be 
induced directly from Mt4N, we will be able to define Eisenstein integrals 
of matrix coefficients for the family n, of induced representations directly 
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from continuous families of matrix coefficients for the family n of relative 
discrete series representations on Mt. 

Fix a continuous family IC of relative discrete series representations of Mt 
as in (3.7), and two holomorphic families 6, and cz of irreducible represen- 
tations of K:, as in (3.10). If h E bd Y we understand n(h) to be the limit, 
by coherent continuation. of representations n(K), h’ E 9. Denote 

.K(II:(T, :/I) = .H’(n(/~):c,,~,): the o,,,,-isotypic subspace of 
the representation space M(II:/z) = .A’(z(h)). (4.1 1 

~‘(n:a,:(~~:Iz): The linear span in C’(M+) of the 
.Y-+ (7r(h)(s) \1’1, w,), w,E.~((n::o,:h). (4.2) 

It is an easy consequence of [IS, Theorem 4.11 that dim .H’( ‘II :(r, :A) is 
constant for h E cl( 9); see Lemma 4.9 below. 

First we will construct a family .P(z:o, :c2) of functions .f’~ 
C ’ (uQ x Mt ) such that 

/I+ ,f’( 11 :x) is holomorphic on IJ~ for all .X E M’ 

and 

,f(h)E Y ‘(n:cT, :oz:h) when h E cl 2. 

(4.3a 

(4.3b 

Functions in the family .F(n::o, :a,) will be called hofonwrphic fizmilies of‘ 
discretr series c.o~#Ycients. In the course of the construction we will prove 

THEOREM 4.4. Fis h’ E cl ‘I und H’, E -2’ (n: : (T, :h). Then thrrr esists 
f’~.F(x:c,:(r~) such thaf,/‘(h’:.u)= (7c(h’)(.~) tt’?, w,),fbr nil x-EM+. 

THEOREM 4.5. Ler f E 3(x :G, :c2) and D,, D2 E &(nr). Then 
f(h:D,;x; Dl)=C:‘=, p,(h),f;(h:.u), 1 IL’ let-e the the p, are polynomials and 
f ,  E .F(n : CT,, : (T,,) ,for uppropriute holomorphic ,families (T,, of irreducible 
representutions” qf K:,. 

Second, we will work out a number of consequences of the construction 
and of Theorems 4.4 and 4.5. 

We construct .JF( ~:(r, :t~?) by reducing to the case 19, Sects. 5 and 61 of 
a non-compact simply connected simple group of hermitian type. 

4.6. Cusr. M” is conrzectrd arid simply connected. Then M” = M,, x 
M, x ‘.. x M,, where M,, is a vector group and the other M, are simple, 
connected, and simply connected. Then 
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where lz, is the projection of h,&, to (u ,, n m,):, and where cr,,/,, is the i(,&,,- 
factor of a,,,,,,. Note that .#~(~“:a:‘:h,,) is finite dimensional, hence is the 
algebraic tensor product of c,,,, with the 2 (rc,, ,, + ,>, : 0 ,,,,, ). 

Let ,/;,: ( L-J;<, A nt,)f x M,, + @ be defined by ,f;,(lt,,:.\-,,) = e’“‘(.~-,,). Then ,/;, 
satisfies (4.3) for M,. Let .&(~:a, :(r2) consist of the multiples of ,/;,. 
Theorems 4.4 and 4.5 then are trivial for M,,. 

Fix i>O. Suppose that M, either is compact or is not of hermitian type. 
Then rl,,lntttf= [O) and ‘r;= (0). So hi=0 and we define .e(rr:~~,:o~) to 
be the linear span in C ’ (M,) of the coefficients z, H (rr,,, ,(.Y, ) \\‘7,,, ~t’,,~ ). 
tt’,,, E .w~( x~,,,,:Q,.,,). Theorems 4.4 and 4.5 are then trivial for M,. 

Suppose that M, is non-compact and of hermitian type. Then u ,, n nt, 
is the center of f ,,,, one-dimensional. and ‘r, is an open finite interval 
or an open half-line in i( u ,, n m,)*. If 9, is an open finite interval we 
define .<(n:cr, :a,) to be the restrictions to i(u ,, n III,)* x M, of the hoio- 
morphic functions defined in [9, Proposition 5.31. They satisfy (4.3), [9, 
Theorem 5.143 says that Theorem 4.4 holds for M,, and [9. Theorem 5.41 
and its proof show that Theorem 4.5 holds for M,. 

If 9, is a half-line, we define .fl(rc:o, :(T~) to be the linear span of 
the functions defined in [9, Theorem 6.91. They satisfy (4.3). Here 
Theorem 4.4 is obvious for M,. and Theorem 4.5 is an easy calculation in 
4/( III, ). 

Define 9”(rc”:o’~:o~) to be the set of all finite linear combinations of the 

,/Ill ,f:.u) = /;,(/?,,:.\-,,)./;(/I, XV,)’ .” ../;(h,:s,), 

where .X = (so, .Y , , . . . . s,) E M,, x M, x ... x M, = M”. Those functions 
satisfy (4.3), and Theorems 4.4 and 4.5 hold for M” because they hold for 
the M,. 

4.7. CNSC’. Gvwerul AI’“. Let p: M’ + M” be the universal covering 
group and f=Kernel(p). Then I.,,=[f,,,,f,,]o~~,,ou,, and K,,,,= 
[K,$,,, Kn,,] x Ul, x Vi,, where f c [K,,,,, K,,,,] x U;,, /‘n r/i, is a lattice 
in ui,, and p maps V.i, isomorphically onto I,‘,,,. Note that pnr c iu& is 
just ik’~~,~~,:h’(u,~,)=O), where ‘/;ll, c i(u,, 0 u,,, )* is the topological 
component of Ih’~i(~~,~Ou,,,)*:lj(h’)# -p(&) for /IE@:‘\,,@: ,-I that 
contains pnl. 

Let TC’ = { rr:,, + ,?, :/I’ E ‘i,,,,). where n>-,)+ ,I,, = rry,, + ,,\, p for h,,, E Y,,,. 
Similarly. let 0;. = in;.,). :/I’ E (u,, @ v ,,)t ), where +,, = cr:lil,r (pi X,r ) for 
/z,, E (v,,,):. Let .9’(rc’:o’, :a;) be the set of holomorphic families of relative 
discrete series coefficients for M’ constructed in (4.6). If .f’ E .p’( IK’ : c’, :&), 
so ,f‘:(u,, @ v ,,)E x M’ + C, define ,f(/~,~, :x) =,/“(/I,,, :.Y’) whenever .V E M 
and X’ E p I(X). Define .?‘(z”:a’,‘:o~) to consist of all such ,f: Then ,f 
inherits (4.3’) from ,f’. and .F” inherits the conclusions of Theorems 4.4 
and 4.5 from ,.F’. 
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4.8. Cuse. Generul Mt. Define n”= in(i,,+, ,,,,,,, I:rcy,,+,T ,,,, ,,@x(lz)~n). 
Write n,.(, = O:lo @x(O) as in (3.10) and set 

Let B”(~“:a~:o~) be the set of holomorphic families of discrete series coef- 
ficients for M” constructed in (4.7). Let $(O) be’any matrix coefficient of 
x(O)EZ~,(M’)̂ . Now x(h)= x(O)@e”. so we can define a holomorphic 
family of matrix coefficients of x(/z) by $(/I::) = $(O:z) e”(z), : E Z,,( M”). 
Since Z,+,U = Z,+,(M”) n MO, and both x(/z) and n:“+,!& ,,,,, have Z,,O- 
character e.k + /~vlf~ I 1’1, 

f:M+xvr, ’ 
for any ,fo E .S”( no :a:) :G:) we have a well-defined 

+@ given by ,f(h:=.u,,)=11/(/z:--)f,(h:s,,) for :EZ,,(M’). S(,E 
MO. Define S(n:a,:o,) to be the space spanned by all such ,f as $(O) 
ranges over matrix coeffkients of x(O) and f. ranges over .F”(lr”:or:o(l)). 
Clearly each ,f’~ 9(n, :G, :a,) satisfies 4.3, and Theorem 4.4 holds. Finally 
Theorem 4.5 is satisfied since f. satisfies (4.5) and j’(h:D,; zr,,; D,) = 
rC/(h:=).f,(k:D,;s,; 0:) for any D,, D2~‘)/(m). 

We now have constructed a family .P(n, :(r, :a,) of functions .f‘ that 
satisfy (4.3), and for which Theorems 4.4 and 4.5 hold. Next, we consider 
some consequences of the construction. 

LEMMA 4.9. Dim .X(~:o,:h) is constunt jor h E cl 2. 

ProoJ This is obvious if M is a vector group. Let M be simple, con- 
nected and simply connected. If M is compact or not of hermitian type, it 
again is trivial. If M is non-compact and of hermitian type, the assertion 
is [9, Theorem 4.11. Now, as in (4.6), the lemma follows for MO simply 
connected. The result for general M” follows as in (4.7), and the result for 
Mt is immediate as in (4.8) since deg x(/l) is independent of h. Q.E.D. 

PROPOSITION 4.10. Fis h’ E cl( 9). Then there is a neighborhood J qf h’ in 
cl(P)), and u ,finite subset i,f, , . . . . .f, 1 c .S(rr:o, :(r?), such that (j;(h)) is u 
basis qf Y ‘( rt : (r , : (r? : h ) ,/iv euery h E J. 

Proof. Let (1~~) and .(u,,) be bases of X(rr:a,:/z’) and X(rc:a,:h’). 
Theorem 4.4 gives us (,I,,) c 9(lr:o, :a:) such that ,f,(h’:x)= 
(Nh’)(x) wp, cy) for XE Mt. Now (,f,,(h’)) is a basis of $s(~:a,:a,:h’). 
As in [9, Theorem 5.14 (3)], let P be the complex projective space based 
on dim X(lr:o,:h’) by dim H(n::02:h’) matrices. Then 

w= ([~,],~1)~Pxv~:Ca,,j;~(ll)=O 
{ I 

is a holomorphic subvariety of P x vg, and projection to vz is a proper 
map whose image omits h’, thus omits a neighborhood 7 of /I’. Let 
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J=Sn cl(V). In view of Lemma 4.9, the linearly independent subset 
i./,,,(h)), /zEJ, is a basis of Y ‘(n::o,:a,:/~‘). Q.E.D. 

Proqf: Let $ I (0), . . . . $,( 0) be a basis for the space of matrix coefficients 
of x(0). Then $,(/I). . . . . $,(/I) is a basis for the space of matrix coefficients 
of x(h) for all ~EU:. Suppose [j‘,. . . . ..f..i c.?(#:a~:~~) give a basis for 
1 ‘(T[“:G:):@) for every h~f, and [,f;,i c.F(lt:o, :(r2) are defined by 

,f;,(h:z.\-,,) = II/,(Il:_).f;(/l:s,,). 1 <i< r, 1 <,j<.s. Then clearly (.f;,(/z)) gives 
a basis for Y ‘(n:o,:o,:/l) for all hi J. Thus it is enough to prove the 
proposition for Al”, and as in (4.7) we can assume that MO is simply con- 
nected. Then we can decompose m = D.+,.~, 0 m, @ 111~. v L, = v 21.0 0 IJ &I. I 0 
v ,,,, :, and V.,, = ivTt,,, x t(,,,] x ‘/,(.? with 9 ,,,,, c iuzf,,, in such a way that 
cl( 2 ,,,, , ) is compact and I/ ,,,, 2 is the product of open half-lines of the form 
P,,, n i( v ,\t c-1 111’ ) *. where m’ runs over the simple ideals of m2. Along those 
local factors of M”, .Y”( rr”: ~::a!) was defined [9, Theorem 6.91 to be the 
span of a set of holomorphic families f‘” that, for every /z,~,. give a basis of 
I ‘(R’~:(T:):(T~:II~,,). Thus the result follows from (4.10) using compactness of 

cl( %. I 1. Q.E.D. 

5. SPHERICAL FUXCTIONS 

We reformulate the results of Section 4 as results on holomorphic 
families of spherical functions and prove some inequalities. We need these 
results for construction of Eisenstein integrals and for certain growth 
estimates. As in Section 4, we work with Mt rather than M. 

Proof: Recall (3.11 ) that (T,, = (r. @ r” for all h. Let TV be any irreducible 
summand of Indg;,(a,,) such that ‘Jh.+,, contains G,~. Then the representa- 
tion T,, = r(, @I C” of K = K, x b” satisfies T,,/ K+,, 1 g @ &‘I K+,, = (T,,. Q.E.D. 

Fix a continuous family a of relative discrite series representations of Mt. 
two holomorphic families (r, and (r2 of irreducible representations of Ki,. 
and holomorphic families r, and ~~ of irreducible representations of K as 
in (5.1 ). 
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Denote 

i(t,:O): V-character of z,,~,. 

Then it is clear that 

i(r,:h) = ((q:O)d 

(5.2) 

is the V-character oft,,,, for all /I (5.2b) 

and 

i(o,:h)= i(+)I.; I' 

is the Vn KL-character of o,,~ for all h. 

For every ,fe ,9( n: : C, : a,), 

(5.2c) 

f(h:z,sz,)=[(o, :h:z,) ((o,:h:z,),f(h:x) 

forallhEu~,.~EM+,and,-,,,-,EKt,,n V. (5.3) 

Define K:, = Ki,. V and K,Ll,, = K:; n K, as in (2.2). Given,f’EY(n:(T, :az) 
we define 

F=F(,f’):t~c x M+ -+ L’(K:;,, x K,;,,,) ( 5.4a ) 

by the formula 

F(Iz:.\-)(k,:k,)=i(r,:h:c, ‘)~(r,:h:v, ‘),f‘(I~:k,~,~,.uk~,~,), (5.4b) 

where we decompose k, E KF:,, G Kf, V by k, = k,,,,, I:,, k,,,, E Kh, v, E V. 
This is well defined because of (5.3). 

Extend CJ,,/, to an irreducible representation C,.,, of KL; by 

ri’ ,.I, = cJ,,/,Oi(~,:~~). (5.5) 

This is well defined because of (5.2~). Define an irreducible representation 

0, of K:;., by 

0, = ~,.hl rc:,,, . (5.6) 

LEMMA 5.7. Let E,, denote the a,-isotypic subspace qf‘ L’(K:;,, ). Note 
that E,, also is the right CT-isotypic subspace. Then, ,fijr every h E 0:~ and 
ever,’ /‘E J(rr:a, :cr,), F takes values in the finite dimensionul space 

Em, i3 Em,. 

Proof For hg 9 this is obvious since f(h)E Y ‘(n:o,:o,:h) and 

0, = %,JKf\,. , for all h. But both sides of the equation are holomorphic in 
h. so the equation is valid for all h E v: Q.E.D. 
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Interpret the action of k’,:,, , on I+‘( CT, :a,) = E,, @ E,, as a double 
representation ‘a = ( ‘0,. h, ), 

[‘G(17?, :tn,)$h](k, :k,) = [‘G,(r?l,). (r, “GJ1)12)](li, :k2) 

=q)(n1, ‘k, :k,m, ‘). (5.8) 

We obtain a lwlott~orphic~ ,/irtnil~~ ‘a = ( ‘0, , ‘02 ) ~~f’rloddt~ represctltutioris of 
K,:, on W(a,:o,) by 

[‘G,,(l,tn, ::~tn~)$h](h-, :k, )= [‘G I.,, (z,tn, ).~“~,,,,(-,ttl,)](X-,:h-,) 

=(;(T,:/l:-,,;(Tl:Il:-,,(b(ttl, ‘k,:k2tu, ‘). 

z,. 12 E c ‘, I71 , , 1?l? E k’ :,. , (5.9) 

Now (5.4) defines a holottwrphic ,fimil,. of b-sphicul firtx~tims. 

THEOREM 5.10. Let ,f’E .P(n:o, :o:). Tlzrrz F: ur x M’+ W(a, :a,) is 

.stnooth in (A, x) cud holotnorpl~ic in 11. Girw II E uf , F( h ) is lo,,-splwricul, 

F( /I : tt1, SItI? ) = ‘0 ,.,, (tn, )‘F(h:.\-)“G,,,(t~l,) (5.1 I ) 

,for 9 6 M+, vi, E Ki, 

Prmf: Smoothness and holomorphicity are clear from (4.3) and (5.4). 
Write tn, = :, J’,, where :, E V, ~3, E k’,:;, , , and k, = r,k,, #,, as in (5.4). Then 
using (5.4) and (5.9) 

‘rJ I,,, (t)l,)‘F(h:s)“rr,,,,(tt2,)(X-,:k,) 

=i(r,:h:~,)i(T,:lz:-~)F(Il:s)(?~, ‘k,Ag*, ‘) 

= [(T, :I?::,) <(T,:/l:-,, <(T, :/I::, I(., ‘) 

X;(T,:h:32 ‘I’, ‘),f’(h:h-,,:,t)?,\-ttl,li,-:,) 

since J’, ‘k,=(z,~,)(tn, ‘A-,.,,) and k, i-2 ‘=(r,r2)(k2,t,tt~2 ‘) in V.k’i,. 
But this last expression equals F( h : tn, .t’th2 )( k , :k, ). Q.E.D. 

For the rest of this section we examine the growth estimates for a 
holomorphic family F( A: s ). 

Fix a complex neighborhood 2, = I;r + icl, of ~2 in uz, where (II is an 
open neighborhood of 0 in iu* with compact closure. 

Let 0 ,\, q = au n m and choose a positive restricted root system 
@,:,=@+(nr,a,~,). Let P~,,=$~~~~~,u and A,;,= [aEA,l:z(loga)>Ofor 
all a E @G 1\. Because of the Cartan decomposition hdt = Ki, cl(A ,&) K:,, 
any ‘G-spherical function on Mt is determined by its restriction to cl(A l,). 
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THEOREM 5.12. Lrt J’E~(~:(T,:c~) und F=F(,f‘). Let D,, D,e/(nt). 

Thrn there ure constanrs c’, HI 3 0 szdz thut IlF(h : D, ; u; D2)Il < c( 1 + 
~112~1 )‘,’ ( 1 + a(a))“’ 1E.P”““’ (a)1 ,fbr 12 E cl(L?^,: 1. und CI E cl( .4 :,,, ‘z~hrrc w(h) E 
(a,,):, Ir”J’~‘l(a)l <e ““.*f(u) ,for all uEcl(A,l,)\jl). u~d hk+w(h) i.v 
pita3rY.w lineur on pa.. 

Prooj: Case I. We will first prove the theorem in the case that D, = 
D,=l. As in (4.8) we write .f(ll:=~~,)=~(h:~),f’“(l?:s~) for some 
holomorphic family $(/I) of matrix coefficients for x(/z) and some ,f” E 
.9”(n:“:a’$;). Now IIF(h:a)ll = sup. A,A2tK;,,, (f‘(h:k;‘ukj ‘)I. Since Kk,,, is 
compact, [K:,, ,/Ki,,,] is finite. Let ;‘, , . . . . 7, E Z,,(M”) n K:,,, be coset 
representatives. Then we can write llF(h:a)ll =sup,,, 1$(/z:?, ‘y, ‘)I x 
supklkztKu lf”(h:k, ‘ak, ‘)I. Now since ;‘, ‘11, ‘EKE,,,, $(h:y, I;‘, ‘)= 
$(O:y, 1:‘:” j for all h. Thus there is a constant C with 
supi,, i’//(lz:~i~ Ii’,- ’ )I d C for all h. Let F0 be the spherical function with 
values in L’( Ki,. I x Kff,. , ) g iven by F”(/z:.~)(~,:li7)=,f”(17:liI ‘ski ‘). Then 
we have shown that 1JF(h:u)l) <C lIF(‘(h:u)IJ. Thus it is enough to prove 
the result for F” on MO. But for general M”, our estimate can be obtained 
as in (4.7) by restricting the parameters in the corresponding estimate on 
the universal covering group of M”. Thus we can assume that M” is simply 
connected. 

As in (4.6) we decompose M” = M,, x ... x M,. We can assume .#“’ is a 
product ,f”=,fo...,f; as in (4.6) with ~;E$(K:(T~:(T~). Now KY,,,= 
K ,wo. I x . x K,,,, 1 so IIF”(h:a)ll = l~F,(h,:u,)ll ... IlF,(h,:u,)ll, where 

F, (11, :a, 1 E L’W,,. 1 x K,s,,. 1 ) is the spherical function corresponding to ,f,. 
Thus it is enough to prove the theorem when M” = M, for some 0 d i < f. 

For i= 0, MO is a real vector group so K,,,,, I = ( 1 ) and F,,:u,T, x 
MO + @ is given by F,(h,,:.u,) = ekU(x,,). Since A &,,, = ( 1 ), F,(h,:u,) = 1. 

For 1 d i6 t. M, is simple, connected, and simply connected. If M, is 
compact, then A,,,, = i 1 1 and D, = i0) so the result is trivial. 

,If M, is non-compact and not of hermitian type, then D, = 0, and the 
assertion reduces to a standard estimate for discrete series coefficients [I]. 

If M, is non-compact and of hermitian type, then u, is a line, and “r, is 
an open interval in iu,*. If cl(P,) is compact, then for /z,E~, the assertion 
is just [9, Theorem 8.11. 

If /I, = h, + 11, with h.~cl(P,) and lz,~cl(i~), then the proof of [9, 
Theorem 8.11 extends the assertions from F(hR:u) to F(h,:u), for the 
absolute values of the exponential terms involved depend only on h,, while 
the coefficient functions are bounded on compact sets, so that 
IIF(h,+ h,:u)ll satisfies the same type of estimate as llF(h,:u)ll over the 
compact set cl(iw). 

If cl(g,) is non-compact, then 2, has the form (ho, IX), and the above 
argument holds for h, in an initial segment [h,, h,, + .z] of cl( 2,). For h, E 
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[h,+i:, xJ)), we combine [9, Proposition 6.161 with the explicit formula 
[S, Theorem 5.11. In the latter. both sides are holomorphic when BIKE 
(ho, ‘X ), the absolute values of the exponential terms depend only on /I,. 
and the remaining dependence on h, E [/I,, + i:, x ) + cl(ic!,) is polynomial, 
so the estimates of [S, Corollary 5.71 extend to h, E cl( (r,,J ), and our asser- 
tions follow. 

C‘U~ II. Now let D,, D2 be arbitrary elements of /I/(m). Then for all 
.u~~~+,F(11:D,;s;D~)(k,:k~)= f‘(ll:Adh-, ‘D,;h-, ‘.Yk, ‘;Adli,D,,. Now 
there are D;, 0:' E l//(m) and ~1:. LI;’ E C‘ ‘ (K:,,, ) so that Ad h-, 'D, = 
C,rr:(k,)D: and Adk,D,=x:Ir:‘(k,)D;’ for all X,.~?EK: ,,,. Let C= 
max,,,,,,,, i~:(h-,)a,Y(X.~)l < 1. Then F(h:D,;.\-;D,)(li,:~,)=C,,,rr:(k,) 
u;'(k2).f'(h:D;; k, '.ux-. ‘: D:). Now by Theorem 4.5 there are holomorphic 
families ,f;,, and polynomials p,,, so that ./‘(/I: D;; .\-: D;')= x, p,,,(h) f,,,(h:.\-) 
for all .YEM+. Let F,,,=F(,f;,,). Then F(h:D,:.\-; Dl)(li,:k,)=C,,,,~~:(k,) 
u;'(kJ) /'),,(/I) F,,,(lz:S)(li,:X.~). Thus llF(h:D,;~Dz)ll <C~,,,.,Ilp,,,(h) 
F,,,(h:ti)Il, and so we have a bound of the desired form by Case I applied 
to the functions F,,,. Q.E.D. 

6. EISENSTEIN INTFGRAIS 

We define holomorphic families of Eisenstein integrals, show that they 
are spherical functions in the appropriate setting, and check that they 
satisfy systems of differential equations corresponding to the appropriate 
infinitesimal characters. 

Fix a continuous family rt of relative discrete series representations of hlf 
and holomorphic families (T, for K:, and t, for K such that r,,,, contains c,./,. 
Denote subspaces Ez:. EJi c L’(Kf,, , ) as in Lemma 5.7 and let El:, Ej: c 
L’(K,) be defined similarly. Denote 

‘ET’: : kernel of restriction Ej: + Ei,' of functions 

from K, to k’:,. , followed by projection onto EJr (6.la) 

'EI: : orthocomplement of "EE in El; (&lb) 

so that we have K:,,, -equivariant isomorphisms 

Now let .f:,f E .F(n. :c, :G? 1 and view the associated family of spherical 
functions 

F,, = F(,f;,,):u: x IV'+ E,\: @ E;! (6.2a ) 
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as having values in 

Denote this by 

IF,%,:@ x M+ 4 L’(K, x K,). (6.2~) 

As in (5.9), interpret the action of K, on IV(t, :t?) = EE 0 El’: as a 
double representation ‘T = ( ‘z, , ‘x2): 

[‘~(K,:g,)~](X-,:k2)=C’~,(g,).ll/.’~z(gz)l(li,:k,) 

=‘)cs, ‘k,:kzgz ‘I. (6.3a) 

We define a holomorphic family ‘r = (‘r, : ‘t?) of double representations of K 
on U’(r,:r,) by 

Then 

[‘~,,(g,-,:<~2~2)tilv-, :&I 

= c’~,.,,cg,=,)“b .‘~2,h(g,=,)l(~, :k,) 

=~(t,:/?:~,)~(T2:/z:=2)~(g~‘k,:k~g2~’) 

for z, E V, g, E K, (6.3b) 

‘F,,(h:m,.w,) = ?r,,,,(m,). ‘F,&,(h:s) ‘~~,~(nz~) (6.3~) 

for all HI,, 17~~ E Kl, since the embedding i, 0 i2: E,“: @ E,“: + Ez 0 EE = 

W( r, : TV) defined in (6.1 ) is equivariant for the action of Ki,. 
The embedding i, @i, is not in general the only possible one. In order 

to generate a larger class of spherical functions we denote 

End.;!,, ( Wr, :T~)) 

= {SEEnd( W(r,:rz)): S(‘r,(k,).$.‘r2(k2)) 

=‘r,(k,).SICl-‘t,(k,)forallk,,k,EK~,,,,~E W(s,:r,)). (6.4a) 

Note for all SEEnd,:,,, (W(T,:T,)), hEa:, nz,,rn,~K~,, I,!IE W(t,:t,), 

S(‘T,,,(rn,)‘cC/“T2,,,(n72))=‘T ,,,, (rn,).SIC/.‘r,,,(nZ,) (6.4b ) 

since for m, = z,k,, I, E V, k, E K:, ,bf, ‘T ,,,, (m,)=[(z,:h:z,)‘~,(k,). Now for 
any SE End,:, , (W(t, :T~)) we define 

‘F ,,,,. Jh:.r)= S.‘F,(h:.r) forall heu:,.TeM+. (6.4~ ) 
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Using (6.3~) and (6.4b) we have 

‘F ,,., ,(h:r~l,.~r7?,)='t,,,~(tl2,).'~It,.s(h:.Y)"T2,li(~II~) (6.4d) 

for all ~1, 1 17r2 E Kt,,. 
‘FF,,, ,s is called the Mot~rphic ,li~ti/~~ 01’ I&-. p s 1wric~11 jimc.tifms corre- 

sponding to,f’,,rfS(x.:o,:o,)and S~End,t,, (W’(r,:z,)). Now. if.yiGuuse 
G = li’MtAN to express 

.Y = k(\-) m(s) exp H,,(.Y) t n(s), N,(s) E a. 

Then the function ‘F,,,. of (6.4) extends to 

F,,:u; XC+ W(T,:S~)C L’(K, x if-,) 

by the formula 

(6.5a 

(6.5b) 

F,;(h:r) = ‘r,,,,(k(.u)). ‘F ,,,,. ,(h:m(s)). (6.5~ 

F,; is well defined: if 1~ Kl, then, dropping 11, ‘~,(lil).‘F,~,(n~)=‘~,(k) 
‘r,(cl.‘F,,,(nz)=‘~,(X-).‘F,,,(lnl). 

We can now define the Eisenstrit~ irltrgrul 

E(P:‘F,,,,.): 0; x at x G -+ W(T, x2) (6.6a) 

by 

E( P : ‘F,,,. ,s : h : \I : s ) 

= .I F,(h:.\-k). ‘r2,,Jk ‘) d” “p’ H~‘rA’ d(/YZ), (6.6b) 
h/ 

where Fci and H,, are defined in (6.5 ), and pr is 4 the trace of ad(a ) on n. 
It is well defined because, dropping h, if : E Z then 

F,(xk) “T2(Z ‘k ‘) 

= ‘T,(k(.uk=)).‘F,,,,~(m(,~k,-)).‘z,(I ‘k ‘) 

=‘r,(k(.uli)).‘F,~,,,(m(.~-k)=).’r,(r ‘k ‘) 

(becausesli=Er,,il,a,n, givessk=Er, -UZ,Z.U, .n,) 

=‘z,(k(sk)).‘F,~,,,(m(.uli)).‘aZ(=).’r,(r ‘).‘t,(li ‘) 

= F&k). ‘r,(h ‘) 

and H,,(xk) = H,,(.vk). 
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THEOREM 6.7. Let %n,,s be the holotnorphic jhtnil~~ qf‘ Ki,-sphericul jirnc- 
tions corresponding to ~,E.~(x:c, :aJ and SE End,:;,, ( W(T, :s2)). Then 
the Eisenstein integral E( P: ‘FM,S)) is,jointlJ! smooth, holotnorphic in h. v, utul 
if‘ (11, v, x) E v$ x a: x G then E( P : IF,,, .s: h : v :x) is a ‘r-spherical ,fimctiotz. 

ProoJ: To see that it is a spherical function, drop most of the variables 
and compute 

E(k,.ukz) 

= F,(k,Myk,k). ITz(k ‘) .p’r” h)ffdklrk2X) d(Q) 
c 

= FG(k,sk). ?t,(k ‘k2) .e’“‘-“r’ Hr(klrk) d(kZ) 
i‘ 

= 
I 

‘T,(k,).F,(.~k).‘T,(k -‘) .‘T2(k2) .e’“’ f’~a”‘~crk)d(~z) 

We check that E(P:‘F,,,.s) is smooth in (h, v, X) and holomorphic in (h, v). 
Theorem 5.8 implies that F, is holomorphic in h and smooth in (h, tn) as 
a map to W(O, :a2). The same follows for %n,,s as a map to W(z, :TJ. Now 
F(; is holomorphic in h and smooth in (II, s). Since H, is real analytic, now 
the integrand in (6.6b) is holomorphic in (h, v) and smooth in (h, v, X, k). 
As K/Z is compact, now E(P:‘F,,,s) is holomorphic in (h, v), and smooth 
in (12, v, x). 

Let Y(a) denote the center of the enveloping algebra &(cJ). If /I E 6: then 
xp : Y(g) + @ denotes the infinitesimal character with Harish-Chandra 
parameter /I. Every .f,, E 9( T[ : 6, : b2 ) satisfies 

.fiVl:~ u) = x~~~+,~,,(,,,(~)fnr(l~:tn) for zrET(rn) 

because z(h) has infinitesimal character xz+ ,,,,(,,). Now, from its delini- 
tion (5.4), F,$, = F(fM) satisfies 

F,(h:tn; ~)=~~+~~,,Jtl) F,,(h:nz) for z4 E 22‘(m). 

This carries through trivially to ‘FF,,,,y and now 

FAA:-u; =I = ~;.,~+,r~,(&) F,(h:.x) for z E Y”(n). 

Differentiating under the integral we have, exactly as in 13, Lemma 19.11. 

E(P:‘F,,,.s:h:v:s;,-) 

=%i.“+,? ,,,,,,, +A=) E(~:~,,,,s:~~:v:\-) for I E r’(s). (6.8) 
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Here note that L, + /,,,(l1 l + ,,, is the infinitesimal character of the H-series 
representation rr,,, 1( of (3.9). 

7. GROWTH ESTIMATES 

In this section we will show how to use the differential equations (6.8) 
satisfied by the Eisenstein integrals to sharpen the a priori estimates on 
their growth which will be proved in Section 9. The main results arc 
Theorems 6.31 and 6.33 which will be used in Sections 8 and 9 to show 
that wave packets of Eisentein integrals are Schwartz functions on G. In 
order to carry out the induction required for the proof of Theorem 8.5. it 
is necessary to study more genera1 classes of functions. The functions of 
type ,,(PO . LP) defined in (7.5) generalize holomorphic families of 
Eisenstein integrals, and the functions of type I(Cr, L,,) defined in (7.7) 
generalize the product of an Eisenstein integral with a Schwartz function in 
the parameter variables. 

The results of this section extend the construction and estimates of 
Harish-Chandra [4] to include dependence on the extra continuous 
parameters in the Eisenstein integrals which come from continuous families 
of relative discrete series representations. The organization of this section 
closely follows Trombi’s account of Harish-Chandra’s work in [IO]. 

We first review some standard results in invariant theory (see [lo] ). Fix 
P,,= M,,.4,,N,, a minimal parabolic subgroup of G and let h,, = t,,+ a,, be a 
Cartan subalgebra of $3 with t, E nt,,. For any parabolic subgroup P= 
M,A,N, of G, write L,= hIpAp and K,= Kn M,. Now if A,,sA,,, then 
h,, is a Cartan subalgebra of I,, and we write W, for the Weyl group of 
the pair (I,,,, , floe ), S( hoa )‘*;I for the l+‘,-invariants in the symmetric 
algebra of I),,, 2’,, for the center of #(I,>) and ,u,,:Z,+ S(l),,,,)“; for the 
canonical isomorphism. 

Now suppose Q c P are two parabolic subgroups of G with A, E A, z 
A,,, so that *Q = Q n L, = L, *N, is a parabolic subgroup of L,. Then we 
can consider W, c W, so that S(I),,,- )I’, c S(f)o,r )‘“(‘. Let p,,o: 2, 4 Z& be 
the algebra injection such that /L,,(Z) = /lo( ,rlPti(:)) for all : E YP. Let 
A( *Q, A,) denote the roots of the pair (*q, eU), p = 4 z Y, r E A( *Q. Ao). 
Then tl, is defined on L, by dy(ttu) = r”““““‘, trz E M,, (I E ‘4 8. For h E 
‘&(I, ), we write h’ = d, ’ h do. The mapping pPu also has the property 
that r-pPU(z)‘E8(*nt,) ‘)((I,)*?ts for all ZE 2,,. Further, .Ys is a finite 
free module over ~Pv(Y,y/,) of rank r = [ W,,: WQ]. Let 1 = U, , ~1~. . . . . I’, be a 
free basis, and for r E 2,. denote by I,,,, 1 < i, ,j < r, the unique element of 
.PP satisfying 
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Fix a complex Hilbert space T of dimension r with orthonormal basis 
{e,, . . . . e,).. For .4 E f& , v E pQ, let f(/l :v) be the endomorphism of T with 
matrix /lP(zr.i,: A) = ~~p(:~,,)(n) with respect to this basis. Let @p’ , @i be 
positive systems of roots for (I,, , Ijoe 1, (Iat, b,, 1, respectively, chosen so 
that @G = (~E@::cL~~~=O) and if c(E@,C with xl,v#O, then rl,,, is a 
root of (*q, a. ). Define 

np= n H,, nQ= n H,, ~icpy=~hy. (7.2) 
It@:, rea; 

Fix coset representatives s, = 1, s:, . . . . s, for W,/ W,. The following lemma 
appears in [lo]. 

LEMMA 7.3. For AE~&. let e,(A)=x ,,cisrpQ(v,:.~kA)e,. Then if 
AE(h&)‘= j‘4Eb& :rcp( A ) # 0 ), the ek( A ), 1 f k d r, ,forrn a basis for T 
und f(il:r)e,(A)=~,(~:s,A)e,(A) for all L:EY?~, 1 dk6r. Moreover, 
there is an r x r matrix B +i*ith entries ill the quotient -field of S(b,,)‘.Q so 
that 

(i) xp,B has entries in S(t)Oc)H”; 

(ii) ,for an?’ A E (b&)‘, the B(s, A) are projections T--f @e,(A) corre- 
spomiirlg to the direct sum T = XI c li s I @e,( A ). 

Fix b = t, + aH a H-stable Cartan subalgebra of 9. We may as well 
assume that aH E a,,. Let P, = M,,A,N, be a cuspidal parabolic subgroup 
with split component A,. As in (3.3). (3.7), and (3.18), we introduce 
parameters for a continuous series of representations induced from P,. 
Thus for I., E A,,,,, and h E Y = (/z E iv* :h&,(h) E G,w, ‘, /l(h)=&+h,,(h)E 
itT/ and x(/l) E Z,,,,,( Mi) A are parameters for a continuous family of 
relative discrete series representations on M,. Let tr) be a relatively com- 
pact neighborhood of 0 in iv*. Define pc = qic(o) = ill E vz :h = h, + ih,, 
11~~9. 11,~~;. For h E 2, define d(h) to be the distance from h, to the 
boundary of 9’. For /IE$~‘~-, VE J = ug, extend A(/I) trivially to nHC and ~1 
trivially to t,, so that 2(/l) + ivy 6:. Let (s,,~, tz,,,) be a family of double 
representations of K on a finite dimensional vector space W with norm I/. /I 
as in (6.4). 

Fix P a parabolic subgroup of G with A,5 A,, c A,. Then b and h, are 
both Cartan subalgebras of 1,. Pick ~1 E Int(l,,) such that I = b,, . For 
h~$2~), VEX. write A,,,, = y(i(h) + iv) E b;E,. Let 9’ denote the set of all 
differential operators on vz. x 9 with coeflicients which are polynomials 
in htvr and VE.~. Write ~‘p=2@~~(l,)“‘. For D,OI,OI,E~‘,,~~E 
C”(g’,xJxL,, W), define (D,~i,~/,cp)(l~:v:.~)=cp(/z:~~;D,:l,;.~;I~). 
For DE p’p, r E R, set 

S,,,(q) = sup (JDq(h:v:.u)l/ Z’p ‘(x) l(h, v, x)1 ’ epih” O”“. (7.4) 
‘Y/? x .F x LJ’ 
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where 1(/r. r, s)l = (1 + l/r1 )( 1 + /r )( 1 + c(s))( 1 + LZ(IZ) ‘), 3, is the func- 
tion E defined as in (2.4) for the group L,, and c(s) and a,.(.~) are defined 
as in (2.7). For F any finite subset of pp. set S,;,r(~)=~,nc,;Sn.~(~). 

DEFINITIOK 7.5. We will write ZZ( 9. . L,,) for the set of all q~ E 
C ’ (Ye x ,3 x L,, M’) satisfying 

on p(i) for all (v. .v)E.F x L,, 11 H cp(h : 11: X) is a holomorphic function 

fc: 

(ii) for all (II. V)EY, x.P, ~(/z:v) is a (t,,,jlK,,, r,.,,JKP)-spherical 
function on I!.,; 

(iii) forall (A, V)fz’/, xS,=cp(h:~)=~l,,(r:,l,,,,)cp(h:~)forall_E7;,; 

(iv) for all DEAL, there is r>O so that S,,,.(q)< X. 

Retmrk. The holomorphic families of Eisenstein integrals constructed 
in (6.6) will be shown in Section 9 to be elements of ZZ(P’, . G). 

For cp E C ’ (2’ x .P x L,,, W). D E J&, r. t, E Iw, set 

“S n.r.,((P) = sup ))DqI(h:a:s)J] 5; ‘(.Y)( 1 $5(S)) I (1 +tZ(h) I)‘. 
‘, I F _L I ,’ 

(7.6) 

For F any finite subset of gP, set “S,,,,,(q) = Cnt,.‘)S,,,~,,(q). 

DEFINITION 7.7. LVe will write Z(Y, L,) for the set of all cp E 
C ’ (9 x 3 x L,, W) satisfying 

(i) there are a complex neighborhood Ya of ‘2 and a finite set of 
functions cp, , . . . . qDk E ZZ(P;(‘, , L,) so that for each (IL r ) E Y x .9 there exist 
~,(ZZ:V)E~, 1 <,j<X-, such that q(h:r:.u)=~:=, a,(/~:~~)cp,(Iz:~~:.\-) for all 
.YE L,; 

(ii) for all DEB?,,, there is r30 so that “SD,,.,,(~)< x for all r30. 

Remurk. If cp~ZZ(2,, Lp) and ME%(Px~?)= lx~C~(~x~~):/l~(l/,~,, 
=supL/. r* IDcr(/z:o)l (1 +rI(Ir) ‘)‘+x for all DE-~, t>O), then (P.C(E 
Z(LP, Lp). In fact, given DE PP. r 3 0, there is a finite subset F of 2, x .4 so 

that OS,,,.,(cp~~)bC,n~,l,~~,t~~,~.,(cp) II~lln~~.r+, for all t>O. 
We are now ready to study the asymptotic behavior of functions of types 

Z(P, Lp) and ZZ(P,,. Lp). Both types will be treated simultaneously with 
the understanding that if .f’~Z(g. L,), h ranges over 9 while if 
f‘~ ZZ(Y,, L,), /I ranges over Pa-. We return to the notation in the first part 
of this section. Thus *Q is a parabolic subgroup of L,,. 

For f~Z(g/, L,)u ZZ(ir, , L,), define @(,f) and YI (,f‘) taking values in 
W=W@, Tby 

@( ,I‘: h : b’ : HI) = i d,( HI ) ,f’( h : 1’ : rtz; 1’; ) 0 t’, , 171 E L, (7.8a) 
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and 

Y,.(~f:h:\‘:m)= 1 d,(m),f(h:v:m; 11;(v:h:v)‘)Oe,, t?l E L,, (7.8b) 
1-l 

where for z?E~~, u,(u:Iz:v)=~~=, ~Lpy(=,.,,-~P(-rr,:il,~,,))~!,. 

LEMMA 7.9. Let h,,h,~@(I~), veTQ. Then @(f:h:v:b,;m;h,v) = 
/-(A ,,,,, :v) @(,f:h:v:h,; m; hl) + YV,.(f:h:~‘:h,; m; h2) jtir all mE L,. Here 
r( 4,,,. :v) has been e.utended to an endomorphism of W by making it act 
trivially on W. 

Proof: This follows easily from (7.1 ) since zr.,, - ~JI,,,: Al,., ) kills every 
f~Z(9, L,)uZZ(t;l,, Lp) (see [IO, pp. 28&281]). 

COROLLARY 7.10. Let b,, b, E &(I,), HE ay. Then,fkr ~11 TE R, m E L,, 
bt’e have @(J‘:h:v:b,; mexp TH; hl)=exp(TT(A,,,,,:H)) @(f:h:bl:b,; m; b,) 
+jlexp{(T-t)r(A,,,,.:H)) ‘V,(,f:h:a:b,;mexprH;b,)dt. 

LEMMA 7.11. Fis DE 2, I,, l2 E ?/(I,), and XE *tty = ns n 1,. Then NY 
can choose a finite subset F s p, and r(, > 0 such that 

dp(ma){I~f(h:v; D:l,X; ma; l,)il + Il,f(h:~; D:l,; ma; B(X)l,)l~) 

i 

oS,..,,(.f) EQ(m) e “Q”Ogo’( 1 + c?(ma))‘+“’ (1 + d(h) ‘) ’ 

6 
,forall r, t3O,J’EI(g, L,) 

S,,(f‘) EQ(m) e m/‘Y(‘Og”) 1(/l, 17, m)Ir+rlJ (1 +~(a))‘+r~lell’l~ nl(“l’ 

forall r>O,,f’EZZ(~~-, Lp) 

dQ(ma) Il,f(h:v; D:l,; ma; 12)/1 

i 

‘S,,,,(f‘)EQ(m)(l +~?(ma))‘+~” (1 +d(hp’) ’ 

’ 

.for all r, t > 0, , f  E Z(9, Lp) 

S,,(,f)EQ(m) I(h, v, ~l)Ir+‘“(l +~(~))~+“‘e”~“~“‘~ 

,/bra11 r>O,,fEZZ(~,. Lp) 

Proof Write ~~=:~‘(,a~~p+,p~=i~~,~;1~~;, and pPn=4Cz. 
x~d(*Q, Ao). Then pP=pc)+pPy. Using (2.16) for the group L, we have 
constants co and rg so that .?,(a)<~,(1 +cr(a))‘“e ““(a) for all UEA~(P). 
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But e~I’P(u)=~IV’(~~)tr “~(N)<~~‘(LI)~~~~(u) by (2.16) for the group L,. 
Thus for all 1~ E L3 , ~/~(nl) 6 c’~~E,, ‘(HZ) Z,(nl)( 1 + o(Hz))~“. Then the 
second set of inequalities follows trivially from the definitions of “S,.,,,,(./‘) 
and S,:,,(,/‘) if we take F= (co D @ I, @I, I. 

We will prove the first set of inequalities for D@ 1, A’@ I, only. The 
argument for D @ I, @ O( X)I, is similar. Write j’( /I : 1’; D : I, A’; ma; 1: ) = 
,f’(h:v: D:l,; IPIN: ” “” ‘.I.12). Now ~1 =t,u,,li2 for soye h,. h-, E K, and N~)E 
cl(.4,T(P)). Thus ” “” ‘X=hc”i “‘~1~“1 JIM. Write ‘1 .Y==CC,(~~,),V,. where 
the summation is taken over (X E @i : xI,~,E il( *p, Ao) I, each cI is a 
smooth function on the compact group Ad( K,), and each X, E *nQ satisfies 
‘I ‘ii /I ‘x1 = (’ x(hgtw) e ‘(lilg “’ X,. Finally, write each ‘2 ‘,IVz = x tl,,,( h-, ) -I’,;, 
where each d,,, is a smooth function on Ad( KC>). Now CJ ‘(“‘g “(I’ < 1 for all 
u,, E ,4,:(P) and c’ X”“gi” < c “cJ”‘~ “I for all (I E .4 4 so that 

lI,f’(/z:v; D:I, .k’; nm; /,)!I 

where each c/i = SUP~~,~? I:, Ic,(k, ) d,,j(X-z)I < X. Now the result follows as 
above where F= (c,,~~,~D@I,@X,,12). Q.E.D. 

11 vl,.(f:Iz:v; D:h,; m exp H; h,)li 

“&.,.,(.f’) qj(~~~) e -/@“‘(l +C(n~exp H))‘+‘” (1 +d(lz) ‘) ’ 

for all 
< 

r, t 3 0, ,/‘E I(P, L,,) 

s,,,(f) zv(m) e ‘V”’ 1(/l. 11, IH)~~+~“( 1 + IHl )r+rcl,“l~“‘r”‘z’ 

forall r>O,fEZZ(C/, . L,) 

II@(,f:k:v; D:h,;nzexp H;h,)ll 

i 

“sF,.,,(.f‘) Za(nz)( 1 + C(nz exp H)Y+“’ (1 + Li(lz) ’ ) ’ 

for all 

’ 

r, t 3 0, ,f’E Z(.c/, L,) 

sF,,(,f’)~Q(n~) l(h, V, n~)l’~“‘( 1 + lHI)‘frl’e’h~‘ni’O’il 

for all r 3 0, ,f‘E I/(‘/, , L,,). 
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Prooj: This follows from (7.11 ) because, by definition (7.8 ), Y,.( h : v : h, ; 
uz exp H; h2) is a sum of terms of the form Lio(nz exp H) j’(h : v : h’, ; 1~1 exp H; 
(cl~a(;)‘~~,,(=:n,r,).)) v;h;) = nv(“exp H),1’(1z:~,:h;;mexp H; (ppp(z)’ 
- Z) t$h>) for some z E Y,,. But ~~~(2)’ - ZE 0( *no) #‘//(I,,) *nV. Q.E.D. 

For any A E h&, let B,(A) be the endomorphism of W = W@c T given 
by 10 x,(/l ) B( A ), where B is defined as in Lemma 7.3. For 1 d i 6 r and 
v E YQ set 

@,(f’:h:v:m)= B,(s,,4,,,.) @(f-h:v:m); (7.13a) 

Y,,, , ( f :  k : v  : m ) = B l (s, A ,,, ,, ) !P,,( f: h : v : m ). (7.13b) 

Since B, (.s,A,,,,.) depends polynomially on h and V, there are constants c 3 0 
and h > 0 so that 

IIB,(.~,~,,,,,,ll~~,~~(.(l + lhl)h (1 + 14)h. (7.13c) 

LEMMA 7.14. Let h,,h,~‘/1(1~),nz~L,,H~a,. Then jor all TER, 
1 <i<r, 

~i(,f:h:~~:h,;rnexp TH;&) 

= er’,.“~~,‘H)~I(,f:Il:l’:h,; nz; h,) 

+J’ el’ “‘f.“i~l’H’YH,,(,f’:h:v:h,; m exp tH; hl) dt. 
0 

Proc$ This is an immediate consequence of (7.10) together with (7.3). 
Q.E.D. 

For 1 < i < r, let k,(h) be restriction of the real part of s,i;l to ao. Note 
E.,(h)=L,(hR) if h=h,+ih, with /z~E~?,Iz,Ew. Set I= (1, 2, . . . . ri and 
define 

I”=(i~Z:~,(h:H)=Oforall/z~~, HEAD]; 

I+= {iEZ:A,(h:H)>OforsomehEC@andsome HER; ); (7.15) 

I- = ji~Z:~~,(lz:H)<Oforallh~~andall HE~,$ ). 

NotethatI=I’ul uI+,sinceifi~Z+,~,(h:H)<Oforall/z~~,H~a~. 
But a; and 9 are open, and A, (A : H) is a linear function of H and an afline 
function of h, so that either i,(/z: H) is identically zero, or else l.,(h: H) < 0 
for all 11~3 and HEa:. 
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Ptmf: See 12, Lemma 541. 
For HE~[,, ~EI”uZ+, define ‘r’,(H)= [h~‘/~ :i,,(h:H)+P,(H)>O). 

V’(H) = 9; (H) n 9. Note if icz Z”. then 9: (H) = ‘/‘. for all HE (13. 

Y(H) if’ f‘E I( 9, Lp); 

‘/& (HI if’ f’e II( I/, . L,,) 

Proof: This follows from (7.12), (7.13c), and (7.16). Q.E.D. 

LEMMA 7.18. Let i E I” u I’. H E (12). Then ~,,,(,f‘:h:~,:nl:H) = 
lirnr~, , @,(,f’:ll:v:nl exp TH) cl “1 ‘Ii ,(“’ rsists unci is C ’ on 

‘J’(H) x .9 x L, if’ ,f’E f( ‘1, L,,): 

9:~ (H) x .B x L, unci hulonlnrpllic,fi)r /I E 9; (H) if’ f’E ZI( 90 , L,,). 

Further, &or all D E Y. h, , h, E ‘//(I,,). 

Î 
+ ! YF,,,(,f‘:h:\~; D t’ “s.‘h t’H’:h, ; nl exp tH; b,) lit. 

0 

Proof: Combine Lemmas (7.14) and (7.17). 

Let H,, H,E~;. For iEI”ul+ and 

Q.E.D. 

11 E 
i 

Ir’(H,)nl;r’(H1) if .f’fzI(‘/, L,), 

V;(H,)nY;(H,) if ~‘EII(‘S, . Lp), 

the argument in [lo, p. 2851 shows that @,, , ( /‘:A: v :nz: H,) = 
@,,,(,f:b:v:nz: H,). Thus whenever there is an HEIS; such that ,!,(/l:H) + 
fl,(H)>O, we can define o?,,,.(,f’:l1:)‘:111)=~,,,(,f:ll:~l:nl:H), and the 
definition does not depend on the choice of II. 
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LEMMA 7.19. Suppose ,fbr i E I’ and h E { g )., there is an HE n: such 
that A,(h: H) > 0. Then @,. , (,f‘:h:v:m) = 0 jor all (v. m) E ,3 x L, and 

f-e i,::$f:;,,1. 

Proof: Since 3.,(/z: H) > 0, h E { ,;;‘(,l;I,),j so that @,,,(f:lz: ~:nt) = 
@,,,,.(J:h:v:m: H) = lim, _ ,~ @,(f:h:v:m exp TH) e 7’i,‘ii.%(H’. But using 
(7.12) and (7.13c), this limit is zero since @,(8/z: v’:m exp TH) grows poly- 
nomia]ly in Twhile le I~\<~lir.,I11)I = ep Tf,III.H) decays exponentially. Q.E.D. 

LFMMA 7.20. Let i E I”. Then 

(i) @,,r(,f:h:v:m; u) = p(,(v:s,A,,,,) @,, .(,j’:h:v:m),fbr all L:E.Y~; 

(ii) gitlen h, , h, E #&(I,) und D E l/p there esists u jkite subset F 5 p,, 

such thut for ~111 r, t > 0 there is a C > 0 so that 

)~@,,,(j‘:h:v; D:h,;m;hz)ll 

I 

c”s,,.,,.,,(J’)3y(nl)(1 +c?(m))‘+‘“+“(l +cl(h--l) ’ 

’ 

1y ,fE I(9, Lp) 

CS,,,,(,f) EQ(m) l(h, v, ni)l’+“‘+he’“‘i”r(“” 

(f .f‘E II(Y, ) L,). 

Here r0 and h are the constants gioen in (7.12) and (7.13~). 

Prooj: (i) From (7.3) and (7.9), we have 

@,(f‘:h:v:m exp TH; L’) 

=,u~(LI:.Y,/~ ,,,,) @,(.f:h:v:mexp TH) 

+ Y,,,,(f’:h:v:m exp TH). 

But by using the estimate in (7.12) we see that 

lim e~7‘1”“~~~‘H’Y~,i(.f:h:~:~~~ exp TH) = 0 for ie I’. 
T-i 

(ii) Combine the formula for @,, I in the second part of (7.18) with 
the estimates of (7.12) and (7.13~) and use (7.16). Q.E.D. 

LEMMA 7.21. There e.uists u continuous, piecewise affi:ne ,function 6 on ‘/, 
satisf~kg 0 < 8(h) < i .fbr all h E 9 so that given D E :Y there e.uists a jinite 
subset FE .Y and C, r, > 0 .so that, jbr allf’~ Z(P, L,,) u IZ(p, , L,), ie I, 

i 
@, (j‘: h : v; D : h, ; m exp TH; h, ) 

0 if iEI+ul- 

@,,,(,f:h:v; D:h,:mexp TH; hz) if iEf’ 
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+ / llY,,,(.f‘:h:~: D’:h,:t~exp tH;h,)ll 
- 0 

We will need some preparation before we can prove this lemma. This is 
the first result in this section where the continuous relative discrete series 
parameter plays a significant role. The point is that is I+ if there is HE a; 
with L,(/z:H) > 0 for some k E 9, rather than for all k E 9. In order to 
obtain the estimate required in the case that iE I+, we need to use the 
holomorphicity in 11 of functions in IQ’, , L,,). After we have the result in 
the case that .f‘~ II(Y,:, LP), we use the fact that each ,f~ Z(L?, L,,) is a 
linear combination of functions in II(Q’-, . L,) to obtain the result in case 
ft I(P, Lp). 

Suppose i is any real-valued linear function on au. Write I = xi=, c,x,, 
where c(, , . . . . c(, are the simple roots of “v giving (1; as positive chamber. 
Recall /I,(H) = min ,s,4,ja,(H)] for HER;. The following lemma is 
elementary. 

bMMA 7.22. Let i E n$ utd drfi’rw c, , . . . . cl NS rhwe. Therl 

(i) ;.(H)=Ojh ~11 HEAD) (f’atuionl~~ if c,= =c,=O; 

(ii) &H)cO,fi~ u/l HER G tf’ utltf nn(t~ if c, < 0 ,fiw al/ I < j < I, ~3rd 

I,:=, c.,<o: 

(iii) i.(H) > 0 ,fbr .sott7e H E n G (f’ uid oll!,~ [I’ c>, > 0 ,fbr some 1 <,j 6 I. 

(iv) A(H)+[j,(H)>O,fbr some Hca 

1 <,j<i or C:_, c,> -1. 
i if’ utid onI>, lf c, > 0 ,fiw sotnc 

Now for each in I, we write ,,(/I)=C:=, (.,/(/1)x, and let l/,(/l)= 
-C:= , c,,(h). Define 

p,+ = ~lz~~::(~,,(I~)~Oforsome I <j<li: (7.23a ) 

9, = (hE/:(.,,(II)<Oforall 1 <,j</andd,(h)>O]; (7.23b) 

Ir:‘= (hE9:c,,(l7)=Oforall 1 <j<l); (7.23~) 

T ;  = ;hEC/:d,(/l)< 1 I. (7.23d ) 
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LEMMA 7.24. Suppose 9: # @ and 9 f # @. Then either 

(i) 2,’ nP’f #@ or 

(ii) p=p+ up/‘, 1 uhere 9’, # @ and inf,, F ,,, d, (h ) > 0. 

Proof: Fix iE I and drop i from the notation for simplicity. Suppose (ii) 
does not hold. Thus either 9” # @, Y = a, or inf,,.,,- d(h) = 0. Suppose 
2 =@.ThenCS=@u% . ( + Since 9 ’ # @ and $3’ # 0 by assumption, 
C?+ is a dense open subset of C? and 9’ is a non-empty open subset of $3. 
Thus Y + n 2 # 0. Thus we may assume 2 # 0. Suppose $3’ # 0. Pick 
h, E 2” and h, E Y Since Y is convex h, = th, + (I - t)h, E g for all 0 6 
t61.Butforallj,c~,(h,)=tc,(h,)<OforOdt<l andd(h,)=td(h,)>Ofor 
O<t<l. Thus /I,E%~~ for O<t<l and d(h,)+O as t-+0. Thus 
inf, t ir d(h) = 0. Thus it is enough to show that 2 # iz, and 
inf,3 t V d(h)=0 imply that Q’n$$/‘+ ~0. 

Pick {Iz,~) E Q so that d(h,,) + 0 as II + 8%. Fix A+ E g+. Then for some 
1 6 j< 1, c,(h + ) > 0. If /I+ E 9’ we are done, so we can assume that 
d(/z+)>l. For each n, h,,,= th++(l-t)h,E$$ for O<t<l. Let 
T= 1/2d(h+ ). Then 0 < T< i. Pick N large enough that d(h,) < l/2( 1 - T) 
and c,(h,v) > - Tc,(h’)/( I - T). Then it is easy to check that /z~,,.E 
.9 + n 9’. Q.E.D. 

We are now ready to define the function 6 which is required by (7.21 ). 

Let I+={~EZ+:.~~=QI,Q, #@, and d,=infh.,, d,(h)>O)-. Then for 
each h E 9 we define 

6(h)=min[{di(h):iEIp ); [d,, iET+ ); $1. ( 7.25a ) 

Then it is easy to check that 6 is continuous piecewise affne function on 
.Q satisfying 

0 <6(h) < 4 for all hF 9 (7.25b) 

and 

A,(h:H) d -S(h) Da(H) for all HE a; 

ifiEl orifiEF+ and!zEp;-. (7.25~) 

LEMMA 7.26. Let ic I+. Szlppose h,, satisfies A,(h,: H) +/IQ(H) > 0 ,for 

some HE ap’ . Then either 

(i) i E I+ and Re h, E 9, or 

(ii) there is a neighborhood U(h,) of’h,, so that @,, I (f:h:v:m) = 0,fbr 

all (h, v, tn) E U(h,,) x J x L,. 
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Proof: Using (7.22) Re 11, E c/ + ~2,‘. By (7.19), ~,,,(,f’:h:~‘:m)=O for 
all (v,h)t.9xLv if RelItp!+.‘Thus when Reh,Ep,+. (ii) is satisfied 
with U(h,) = (II: Re h E 2,’ ). Thus we can assume that Re /z 6 .g!+, Now if 
iE 7+, Uy = @ so Re 114 Y,+ implies that Re 12 E /, so that (i) is satisfied. 
Thus we can assume that i$ T’, so that by (7.24) I/,+ n 9,’ # @. 

Suppose first that ,ft II( qc , L,). Then by (7.18) @,,,(./‘:h:r:m) is 
holomorphic on ( h E ‘VI : R e /I E V ,+ up,!). As above. @,, , (,f’:h:r:m)=O 
for hi’/,+= (l1~5’~:Reh~‘/‘,’ ). Now ‘/f(c)= [hEYq:Re/rEq,r) is 
an open convex set, hence connected. and by hypothesis g,+(c) n I/l,!(C) is 
a non-empty open subset of qf (@ ) on which @,, , (./‘: 11: 1’ :m) = 0. Thus 
@,.,, (/‘:h:r!:nz) =0 on all of /r,!(c), so that (ii) is satisfied. 

Now suppose ,I‘E [(!I//, Lp). Then j’is a finite linear combination of func- 
tions j; E /I( Vo, L,). Thus @,, , (I’) is a finite linear combination of the 
corresponding @,,,(,f,). Now ~,,,(,f;:h:~,:nz)=O for /z~‘/~+(@)uG’f(@) 
implies that @,. , (,f’:/ I:V:I?I) = 0 for 11 E ‘/,+ u ‘Y,‘, Thus (ii) is satisfied. 

Q.E.D. 

Proqf‘ of‘ Lenma 7.21. For D E ;/p, i E I, there is a finite subset F, of .Jp 
and for each D’ E F, a polynomial P,(D’) on au so that D e‘1.r” J”’ = 
p’J.‘il.V’H’C,j,t,., P,(D’:H) D’ for all H~clc~. Pick r, 20 and c>O so that 
\P,(D’:H)I 6 C( I + IIHIl )‘I for all iE I, D’ E F,. Let F= ujc, F,. 

CUW I. Suppose i E I”. Then /t j’! ‘1,~~““1 = 1 for all NE 11~). and using 
(7.18). 

I~@,(,f’:h:v; D:h,; nzexp TH; h’) 

CD’,. ., (1‘: h : 1’; D : h , ; ta exp TH; h2 I/ 

61 s ’ I/YF/,,.,(f’:h:\y D e ‘Ti r’8L’t”:h,; nz exp(t + 7’) H: h,)ll dt 
0 

sic c i ’ (1 +(t-j-1 IIHII)” 
n’t~, T 

x 11 Y,,,(f’:k:v; D’:h,; nz exp tH; h,)ll dt 

x e’fj’J”‘l’r( 1 + f I( HII )‘I dt 

since 0 <6(h) < 4. 



196 HERB AND WOLF 

Case II. Suppose in I . Using (7.14), 

Il@i(,f:h:v; D:h,; rn exp TH; h2)11 

6 ~l@,(,f’:h:r; D r’-“~‘“~~‘Hb:h,; nz; h,J 

’ ~/Y~,j(,f:/z:\1;D;~e’7 ~“3’11h,~‘H):h,;~lzexp rH;h,J dt 

T IlHll)” ,=iJ’z:ffh Il@,(f:h:v; D’:h,; m; h,)lj 
; 

+C 1 !“‘(I +(T-t) IIHIJ)‘le’~~‘l’l’h-H) 
0’s F, ” 

x 11 YH,i(f‘:h:~; D’:h,; m exp rH; h,)lI dt 

< C( 1 + T  IIHII)” e Es(h’b’H’ 

zi 
lI@;(,f:h:v; D’:h,; nz; h,)ll 

n’ t k, 

I 

I 
+ e”‘Q(H’ ’ /I YH,,(f:lz:v; D’:b,; nz exp tH; h,))l dt 

0 > 

since 0 < 6(h) < 4 and I.;(h: H) 6 -S(h) /3,(H). 

Case III. Suppose id I+ and h satisfies Ai(h: H) + 4 fip( H) < 0. Then 
using (7.14) as above and j-, (h : H) < -B,( H)/2 we have 

Il@j(f‘:k:v D:h,; m exp TH; h2)U 

+C c j7-(l +(T-t) ilHIl)“r (T-rl/ly(HI#Z 

fl’tl;, 0 

x 11 YH,,(f:h:v; D’:b,; nz exp tH; &))I dt 

< C( 1 + T 11 HII )” r rci”z’h(“’ “4, { ll@,(.f’:k:v; D’:h,; m; h)ll 

+ j JC ,~~Q~~‘:~ )I~~,,(f’:h:\,;D’:h,;mexptH;h,)ll dt 
0 

since 6(h) < 4 

Case IV. Suppose iE I+ and 11 satisfies i, (/I : H) + f p,(H) > 0. Then 
3.,(h: H) + Be(H) > 0 also so that (7.26) can be used. In case (ii) of (7.26) 
we have@i,,(f:h:v;D:m)=Oforall (v,m)~~FxX~.Then using(7.18)as 
in Case I, 
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~I@,(.f‘:h:~; D:h,: nz exp TH; h,)li 

x // Y,,,,(j’:h:v: D’:h,; m exp tH; hZ)ll dr 

since E.,(h:H)> - iB,(H) and 6(k)<+. In case (i) of (7.26), we have 
i.,(h:H) d -8(/l) /lo(H), and the same -estimate as that used in Case 11 
works. Q.E.D. 

Fromnowon, wedefine(orredeline)@,,,(,f’)=Oifj~~+uI 

LEMMA 7.27. Lrt I’ll. Thrn @,, , (,j‘:h:~:nzexp H)=r“.““‘“‘@,, ,~(,f’:h:v:w) 
fi)r ull HEQ, mELy. 

Proc$ This follows from Lemma 7.20. part (i). Q.E.D. 

LEMMA 1.28. Fis ig I md .suppo.w~ rhut @,, I (,f‘) is not i&nticull~~ xv-0 on 
,9 x .F x L,. Then s, ‘“Q I a,,. 

ProoJ We know that @,, , (,f’) is c‘ ’ on 9 x .B x L,. Thus if it is not 
identically zero, it must be not identically zero on the dense set of points 
for which J’ factors through a quotient of Harish-Chandra class. Thus by 
[4, Lemma 6.31, s, ‘ay&(lr,. Q.E.D. 

Let Ma,,, ao) denote the set of linear maps s of aa into aH such that 
there exists k E K, with s(H) = Ad k(H) for all HE aa. Note s determines 
the coset kK,. If B is any subgroup of L, normalized by K, we write B’ = 
kBk ’ for s and k as above. In particular, Q‘ = Mb A ;,W; is a parabolic 
subgroup of G with A; & A,,. For cp a (r,, r,)-spherical function on L,, 
we define cp’ on Lb by cp’(limii ‘)=r,(li)cp(~z) t2(X. ‘) for UIE L,. 

LEMMA 7.29. Given s E W( a,,, ac,), tkre is a unique i = i(s) E I such t/wit 
~(H)=s,~‘(H)ftir all HER,,. 

Proof: See [4, Lemma 6.31. Q.E.D. 
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Recall that @(,f‘) takes values in W = W@aI T, where T has a dis- 
tinguished basis IZ,, . . . . e,. Thus we can write, for each iE I. @ ,,,. (f:h:v:m) 
=c ,~,~r~i,(.f‘:ll:\‘:nl)Or,, where the cp,,(f’) take values in W. Define 

~,(/z:\‘:nz)=~,(/l,~,,,)f(h:v:rn); (7.30a) 

$l,,,(h:v:m)=q ,(,( ,,,(f:h:v:m), SE wa,,, “Q) (7.30b) 

IC/:,,,(lz:v:m)=~a(.s ,,., )A/,,,) ’ $ ,.., (h:v:nz). (7.3Oc) 

Let D be a compact subset of a;. Choose 8,) > 0 so that flu(H) 3 2c, for 
all HE.Q. Put c(h) = S(/Z)E”, where 6(h) is defined as in (7.25). For 

s E wa,,, a,), define dets= ?l by 7rp(.~A)=dets7c,(A) for all /l~az. 

THEOREM 7.3 1. Given h, , h, E &(lo) and D E :?, there exist a ji’nite subset 
FE pp and an r, > 0 so that ,for all r, t 2 0 there is a c > 0 so that for all 
MEL;, HEQ, T>O, 

lid,(mexp TH)$,(h:v;D:b’,;mexp TH;bi) 

- c det.$,,,,(h:v; D:b,;mexp TH;bz)ll 
t t #IOf,. cl()) 

C "SF,,,(,f) e mc'h'7' ZQ(m)( 1 + 5(m exp TH))r+r’ 

' 

x(1 +d(h) ‘) ’ for fEI(G2, Lp) 

Cs,,(,f)e~~',""7~-p(m) 1(/z, v, nz, TH)I’f”e’h”““““’ 

,for j‘E ZZ(9,, Lp). 

Proof: This follows from combining (7.21) with (7.12) and (7.13~). 
Q.E.D. 

LEMMA 7.32. For SE W(a,, a,), II/:,, extends to a smooth jkwtion on 

9xXxLL, ij ,fEZ(S:, L,); 

$&x*FxL v if fE ZZ(&. Lp). 

Further, given b, , h, E @(IQ), D E g, there is a jkite subset F of’ gp and an 
r, > 0 such that ,for all r, t > 0 there is a C > 0 with 

~I~+$~(h:v; D:b,; m; b,)/I 

i 

C”S,,,(,f)Z,(m)(l +5(m))‘+” (1 +d(h)- ‘) ’ 

ij fEZ(3, Lp) 

’ CSfi-.,(.f) Zu(m) I(h, \‘, ,)/r+v elh/l OLl?ff) 

if’ ,fE ZZ(S~ ) Lp). 

Finall~~.jor all UEY& $:,(h:v:m; u)=~~(o;s ;,,, A ,,,“) II/;,,(h:v:m). 
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Proof: For iE I, 7ry(s,.4 ,,,, ) ’ B,bsA,,,,.)= 1 O~,&,~,~., 1 B(J,A,,.,). But 
using (7.3 ), ~,,JJ,A,,, ~) B(.y,A,,.,,) will have entries polynomial in h and I’. 
Thus it is clear that $:,, extends to be smooth, and that the inequality can 
be proved the same way as in (ii) of (7.20). The final claim follows from 
(i) of (7.70). Q.E.D. 

8. SCHWARTZ WAVE PACKETS 

In this section we will prove that certain wave packets are Schwartz 
functions on G. The main result is Theorem 8.4. In Section 9 we will see 
that this class of wave packets includes wave packets of Eisentein integrals. 
We use the notation of Section 7. Thus H is a fixed d-stable Cartan sub- 
group of G, and P is a parabolic subgroup of G with .4,,~ A,,. Let GK be 
the set of real roots of (n. h), @i a choice of positive roots. For .4 E 1,:. 
write 7c,(A)=n (r, A), rs@A. Define .F’= (r#~.P==a:,: ~c~(II)#O~. 

DEFINITION 8.1. We say ~‘EZ’(‘S, L,) if ,f’~l(Q, L,) and if for every 
parabolic subgroup 
vwrcR ‘(v) ~),~,,(h:v:tn) 

*Q = Q n L, of L, and s E M’(a,, ao), 
h as a smooth extension from .F’ to .F for all 

(A, Wl)E9 x L,. 

LEMMA 8.2. Suppow ,f’E Z’(9, Lp). Thm fhr cdl Q. s as ahor~e. (it,) E 

Z’( 9, L,;, ). 

Proof: By (7.33), ($:,,)‘EI(~, Lb). Let *Q’= Qn L, be a parabolic 
subgroup of L, and let t E W(a,, a;.). Write g= ($I,)‘. Then by [4, 
Lemma 7.41, there is tE W(a,, au.) so that ($,Y,,)‘= ($f;,)” for the dense 
set of points for which ,f factors through a group of Harish-Chandra class. 
But both sides are smooth, so that the equality persists for all values of 
(II, r). But ,f~ I’(2, Lp) implies that VH nR ‘(I!) +,~,;.(/I:v:~I) has a smooth 
extension from .F’ to .F. Thus r++ z,< ‘(v) $,,,(h:~~:trl) does also. Q.E.D. 
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For cp E Z’(p, G), define 

=s cp(h:v:s) 7T,(A,,,) 7$(i’) dh dv. i/ * .P (8.3) 

THEOREM 8.4. Let cp E I’(‘, G). Then I, E %7( G, W). Giuen an>’ r 3 0 and 
g, , g, E B(g), there is a ,finite subset F qf Yci so that given any r’ 2 0 thrrr 
are C > 0 and t 3 0 so that ,$, IIZ,flIl r, $? < C “Sp,,.,l( q ). 

Proqf Note that the first claim follows from the second. This is 
because, by Definition 7.7, given F, we can choose r’ so that ‘S,.,.,,( cp) < 1x1 
for all t 30. We will reduce the second claim to a theorem which can be 
proved by induction using the machinery of Section 7. 

Write ~(/1:~,:.~)=cp(h:v:.u)~(;(11,,,,)71~’(’1). Then for r30 and g,,g,E 

“~(!--I), 

<C sup (1 +g(a))‘Z-‘(a)(1 +G(k,kz))’ 
k,.X~tK 
0 t cl(A,; , 

Write ‘l’g, =C,f;‘(k,)g:, kzgZ=C,f;“(k2) g,Y. where both sums are 
finite, the d, s:’ E -WL and the f,‘, ,f,” E C ’ (K/Z). Let C, = 
SUP;,,,~,.~~ If;‘(k, ).f,“(kJ < a. Write k, = k:k,“. i= 1, 2, where k:E K,, 
k:’ E V. Then r,Jki) = T,(k,)(eh)(ky), and 6(/i, kJ = g(k’,‘kT). Thus 

P,lll~lI,.nz~CCI c sup (1 +o(a))‘Z ‘(a)(1 +6(k))’ 
1. I ht C’ 

atcl(A,;) 

X e”(k) cj(h:v:gj; a; g,“)dhdv 
‘5, * .F 

Thus the result follows from the special case L, = G of Theorem 8.5 below. 
Q.E.D. 

THEOREM 8.5. Let P he a paruholic subgroup of G with A, c A,. Given 
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SUP (I + 17(u))r zp ‘(u)( 1 + if(k))’ 
kF1 

‘,ECIf 4,) I,'), 

4 (r”)(k) $,,)(h:\‘:l,; 11; /J) 7rR I(\‘) d/11 Lh’ 
“I, , II 

6 c”s,:,~,,(cp) ,fhr rrll q E I’( 9, L,). 

Here A,‘(P) is u pmitirc cAamher qf’ A, with respect to d ’ ( L,, A,,), a .wt 
qf’positiw roots ,fbr ( L,>, A,,), md 3, is the spherid ,fimc.tion E,ftir L,,. 

Before we start the proof of Theorem 8.5, we will need some lemmas. 
Let E = R”. For a multi-index r = (x, , . . . . r,,) put D” = (?j?s, )“I . 

(i?/G.~,,)~rf. Write I#x( =x, + ... +x,, and denote by M the set of all 
multi-indices, For I+’ a finite dimensional vector space with norm j/ 11, 
put CiY(E:W)= (,~‘EC ‘(E:U’):.r,,.(,/)=sup, (1 + 1.~1) IID:f(s)lJ <-XI for 
all r 3 0, a E M). Let p # 0 be the product of N real linear forms on E. 

LEMMA 8.6. Fix xcM and let F=(fl~M:l~l<lrl+N). Them ,fbr 
eoerJ9 r 3 0, tt’e can choose C, > 1 u,ith the ,fdlow~ing property. Suppose 

J‘E K( E: CV) and p !f’ i.y localize howd~~ 011 E. Then ,f = pg, Lthere 

~~~(E:~)unrl.~,.,(g)dC,C,i~,~/i.r ( f’). Q.E.D. 

Proqf: See 14, Lemma 23.2]. 

LEMMA 8.7. Let E(/I) hr N continuous, piece\t,ise qffifjcirte ,firnc.tion on i/ .YO 
that c(h) > 0 ,ftir all h E 9’. Then for all r 3 0 there are a C > 0 ma’ an r, > 0 
so that 

sup ( 1 + a( u))I 3$“‘(U) 
t, E CII .4,; , PI, I’S ,A,,, 

< C,( I + d(h) I)” ,fOr all 12 E 9 

Proof: There are constants q 3 0 and C> 0 so that Ep(a) < 
C( 1 + a(a))” e I’P(~W~~~ for all a~cl(.4,:(P))nM,.p.=~Cm(cc)x, ZE 

A ‘(L,,, A,,). Let r,, . . . . x,, be the set of simple roots of (L,,, A,,) deter- 
mining A:(P). Pick H ,,__., H,~(a,~nrtr,) so that ri(H,)=6,,, 1 <i,j<rl. 
Then a,T(P)nm.= [x; , t,H,:t,>O for I <i<(f) and pp=Cy=, n,x, 
for some II, > 0, 1 <i < rl. Thus SUP~,~~,,,~,; ,,, ,,,, ,,,), (1 + o(a))r Fib’(a) < 

c n:‘= 1 [sup,,.&,, (1 + t,)’ ’ [’ L’ ‘l,r,i’~iq < C[sup,,, (1 + t)‘+q e~‘l”.““]d, 
where n = min ,sIs,,~~,>O. Write (/=lJ=, I-r,. where ~,(h)=nc(h)l,~~ is 
affine for 1 <idk. c,(h)> 0 on 9,. Then these are constants C, so that 
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SUP,>” (I + t)‘+qr ‘rs’h’< C,(l + l/&;(h))‘+q for all h E 9,. But since 
(hED*:E,(h)= , 0’ is outside of 9, there is a constant C: so that for all 
12 E P;, d(h) < cyE;(h). Q.E.D. 

Proqf‘ of Tkorm 8.5. Let { CI, , . . . . a ,I be the simple roots for the set of 
positive roots of (L,, A,) determining A:(P). The proof will be by induc- 
tion on d, the number of simple roots. 

Case I. Suppose ti= 0. Then A, is central in L, so that P= M,A,N,, 
is a minimal parabolic. Since we assume that A p s AH E A,, this occurs 
only when A, = A,. Note then -P- r = I, cl(Ac(P))= A,,, and $, = cp. 

Every element of J~L(I,,) is a finite sum of terms of the form 1, =li,u,, 
where kie ‘l((m,, n I) and u, E S(a,). Since cp is (Kn M,)-spherical, 
cp(h:v:k,z~,;u;u,li,)=dr,,,,(k,)cp(h:v:z~ .a;u2)d~,,,(k2), where &,,,(h- ) _ _ 
i= 1, 2, depends polynomially on A.” Thus there are finitely ‘ma& 
polynomials P,(h) such that 111 (r”)(k) q(h:v:l,; LI; I,) xR ‘(17) G!/Z dvll < 
C, 11s (e”)(k) cp(tz:v:u, u,u2) P,(h) nR ‘(v) dh d\vll. 

Further, since S(a,,) E 3p and cp is an eigenfunction for P,, cp(h:v:a) = 
e.l/,,,(log <I) cp(h:v:l) for all UEA,. But a,,=a, so that A,,,,(logu)=i\l(loga). 
Thus (~(h:\~:u;zi,u~)=~~,z~~(i\~)r”“‘”””’ cp(h:v:l) for all tieA,,. Note that 
z(,u,(iv)= p(v) is a polynomial in 11. Now since ~JEI’(Gz+‘, L,), J;(h:v)= 
Pi(h)Q(v)cp(h:~~:l)~~(i~*x,~, W) and xR is a product of real linear 
forms on 9 for which nR tfi is locally bounded. Thus by (8.6), g, = 7rR ‘6 E 
%(i~* x9, W). Now 9 is the dual of A, and 3 is a subset of the dual of 
V so that g,(h:v) is supported in cl(9) x 3. Pick a polynomial R(h, V) such 
that C=j5 x.p IR(h, \‘)I ’ c#z dv < x. Then by abelian Fourier analysis, 
there is D,E;/P so that 

d I I/x,p Ilg,(tz:v; D,)I/ IR(tz:v)l ’ d/z d\,. 

But, by (8.6) there is a finite subset F, of 3 so that II g,(lz : \t; D,)lj < 

c n,tl;, Il,r;(lz:v; D’)ll. Thus 

~,~~.(l+~(a))r(l+d(k))’ ~~J9., (e”)(k)cp(h:v:I,;~;/~)~~‘(\‘)dhdv 
Ii 

<it .40 

<Cc c sup lIf,(lz:v; D’lll 
I “‘tF, 9x.9 

<C 1 sup licp(h:v; D:l)ll 
II t b 
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for some finite subset F of 9. But for any 1.’ 3 0, sup,, * + licp(h:v; D: 1 )I! < 
“S, r.,O( cp ). This finishes the case tl= 0. 

Case II. Pick d> 1 and assume inductively that the theorem is true 
when tl’ < d. For 1 < i < ti, let n, = [ HE a,,:~,( H) = 0 f0r.j # i) and let L, be 
the centralizer in L, of (I,. Let A,& =-1(LP,./i,,)\,,‘j(L,,ri,,)n~l+(L,..3,,). 
Let Q, = L,N, be the maximal parabolic subgroup of L, for which A:, 
corresponds to A,’ For HE a,,, let p'(H)=ix:nz(x)rx(H), rod,+, 
p,,(H)= ~~m(a)cr(H), aed '(L,, A,,), p,(H)=p,,(H)-p'(H). For h>O, 
1 <i<d, let A,+(h)= Irr~A(:(P):r,(log(~)>hp,,(log(~))-. Fix h small 
enough that A,+(P) G U, c rsc,.4,i (h). 

Let I,, I,E?/(~.), ~20. Since cl(.4,; (P))E Uy=, cl(A, (h)), we must show 
for each I < i< ri that there is F, G Uy so that given any ~‘20 there are 
C>O and t30 so that 

sup (1 + (T((7))‘Zp ‘(u)( 1 + 6(k)) 
hrl 

<iC‘II -I>‘(/>)1 

6 c “SI;. r’. ,( (I, ). 

Fix an i, and drop it from the notation so that Q = LN= Q,. 

Write #(I,) = +Y(m,)S(a,). where S( u,) G Yp. Then if I, = 
nz,11,.rlz,~~/(llr,), u,~S((l~). i-1.2, and if a=n,u?, where a,~M~n 
A,,, u2 E A p, then, as in the case rf= 0, recalling that A, G 
,4., IC/~(II:~~:~II,~~,;U,U~;~~~~Z~~)=Q(~~)~~~)”’~’~~‘~‘~~,(~:~~:I~~,; rr,;m2). where 
U, u,(iv)= Q(\j) is a polynomial in 1’. 

Write “I/(nr,,) = Jl/(fp) +?(I n m.) &(n) = ‘)/(8(n)) &(ln m,) #(f,). 
There exist h,&!(f),) +!!(lnnt,,), h,~4/(lntn~) !‘/(fr) and m’,~#(nt,,)n, 

r?li~n(n)‘@(m.) such that nl,=h,+n~:, i= l,?. Thus $,(/l:~:nz,z~,; 
a,a,;nt,II,f = ~,,~(h:v:m;u,;a,a,;nz,l4,) + ~,(li:1’:hl14,;a,cr,;~,7~u,) + 

$,(/7:v:h,u,;a,a,: h,~~). We will estimate each of these terms separately. 
First 

sup (1 +~(U)))‘~~‘(a)(l if?(x-))’ 
kG I 

‘rtcl(.4,b(hI) 
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<sup sup sup (1 + da,)Y 
kt I’ qt.4p ,r,ECI(.4,i(hl)n.(f,~ 

x(1 +c?(k))‘(l +cr(a,))‘~33,‘(u,) 

As in the case d= 0, we can use (8.6) and abelian Fourier analysis to find 
a finite subset F, of 9 and cl > 0 so that this last expression is bounded by 

Cl sup (1 +o(a,))‘2~‘(u,) 
I, t cl( :I; (h, , r> 11,~ 

But now using (7.11). there are a finite subset FG Yp and Y” 2 0 so that for 
all r’ 3 0 this is bounded by 

OS ,.r,.df) sup (1 +du,))’ 
~rtcll.~;(h))r-~.~I,. 

xz,‘(U,)z&,)e “Q”ogu”(l +a(u,))‘+‘~n,‘(u,). 

But there are constants D 20 and q>O so that .Zu(u,) < 
De-P~““gcll’( 1 + o(u, ))“, Further, d, ‘(u, ) = e ~-6”I’WZ 0’) and e /‘y(‘V 01) = 

e &(‘ogw) < ~-hPPllo&!u,l since a, E A,+(h). Thus Zo(a,) di’(u,) ep”Q”“girl’ 
< De~““‘“g”‘)“+h’(l +a(~,))“ < D~,(u,)‘+~ (1 +a(~,))~. Thus 

sup (1 +.(u,))~+“““~p’(U,) 
uECI(.4<+lh)lnMp 

x ZQ(U’) e -pQ(‘Og4) d, ‘(u,) 

<D sup ZP(Q’ lh (1 + ata, 1) r+~‘tnJt4=c,,<,X, 
rr~cI(.4~+Ih))n.Mp 

since b > 0. 
Thus the term involving $,(Iz:~:m; u,; a; nz7’dz) can be bounded by 

C,, ‘S,,.,,(S) for any r’ > 0. The same argument also works for 
l+b+Jlz:V:hlu, ; a; miuz). It remains to estimate the terms with +,(h:v:h, u,; 
u;6,u,), where 6, ~~2(f~)&(m~nI), h,~&(m,nl)@(f.). Write h, = 
x,/Y,, h,=Pirc2, where K,EJ&(~~), j3iE%(mpnl), i=1,2,fl:=do’fl,~~d,, 
as in Section 7. As in the d=O case, since cp is K,-spherical, there are 
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polynomials P,(h) so that llJ‘,,> i (@)(k) ~~‘(1,) $,,Q(/~:r:ti,/Y,u,; a; zizfi>tiJ) 
&Lll’II < 1, I/{px 7 (e”)(k) rc/y(\‘) P,(h) l,jJ/I:\3:[r;lr,; u; u,~~, dl fhil. 
Thus it suffices to estimate terms of the form 

(1 +a(a))“.z~‘(d(l +iq!0) 

where P(h)’ is a polynomial. We will split this up further. Write 
n,(Iz:\~:p,u,; u:~~z~,)=~~~(/~:~~:~~z~,;~:~~zr~) - CIF ,,.,,,,,.,, C,,detsd;‘(u)x 
$v..,(12:v:/?,51,; cr; j,uz). Then, as before, 

sup (1 +a(Nz”,‘(a)(l +5(k))’ 
kt I 

irtcl(.-tr‘th,, 

where Q(v) = (u, Us). Again, since cp E I’(;Cr, L,,), we can use (8.6) and 
abelian Fourier analysis to find a subset F2 of .Y and C, > 0 so that this 
expression is bounded by 

C-2 sup (I +o(u,H’.q’(u,) 
<i,ECIl -!,-(hllil.ll,, 

Write a, = a; exp( TH), where HE aI) n 111~ satisfies a;(H) = 0, j # i, and 
x,(H) = 1, T= r;(log ~1, ), and u’, E A,n M, satisfies ~“~(a’,) = I. Then u’, E 
LG. Take Q = [H), let 6(h) be the function given by (7.21), and write 
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s(h) = $ S(h). Then using Theorem 7.31 there exists a finite subset F of 1vp 
and an r, > 0 so that for all r’ 3 0, t > 0, there is a C’> 0 so that this is 
bounded by 

c-2 C’ sup (1 +da,))’ 
,~,~cl(A,+lhJ)n~l~.ht~ 

x Ep ‘(a,) d, ‘(u, ) os,&f) e ‘.(b” 

xEo(a,)(l +o(a,))r’+” (1 +d(h) ‘) ‘. 

But as before, for a, ~cl(A+(h))nM,, Z;‘(u,)d~‘(u,)Zo(u,)e -f’h’sr~“ogu” 
d DZp(u, )““” (1 + a(~,))~ for some constants D 3 0, q 30. But by (8.7) 
there exists C,, and t such that ~up~,~~,,,,+~,,“~,~,~ (1 + G(u,))~+“+~‘+~ 
Z”,(u, 1 hi’h’ d CJ 1 + d(h) ’ )‘. Thus for any r’ 3 0 we can find C and t so 
that we can bound our expression involving d, by C “S,.,,,(,f). 

Finally, for each SE W(a,,, ao), we look at 

sup (1 +Oia)yEP ‘(a)(1 $&k))‘d,‘(u) 
kt I. 

utclt.-!,+(h)l 

x ;~I,.,, (e”)(k) $v,,(Iz:v:/3, u,; u; BZZZ~) P(h) rc$(\q dh dv . 
I 

Now Z;‘(u)d;‘(u) 6 OS,’ (a)(1 +a(~))“, cl(A:(h))ccl(A,t(Q)), and 

$,..,(II:~~:B,u ,; u; /17u2) = $b,,ih:v:lj, u,; a; p,u,) 7rQ(x,,,)A ,,,,, ), so we can 
bound this by 

D sup (1 + a(u)y+Y E&‘(u)( 1 + cqk))’ 
kt t 

<,tcl(.d,;(Q’)) 

x (h:v:d,; a; d,) ~(/1,,,,.) dh dv , 
/I 

where Q’ is a parabolic subgroup of G with A o, s AH, d, , d2 E %(I,,), and 
P. ($L.,)“E Z’(B, Lo,). Thus by the induction hypothesis, there is F’ c .L$$ 
such that for any r’, r, > 0 there are C’ and t so that the above is bounded 
by C’ OS,-. ,,,, ,(P($~fp.,~).‘)= C’ “Sp,,,,,+r,, ,(($b,,,)‘), where F” = {DP:DE F’}. 
But now using Theorem 7.33, there is a finite subset F of d;pp and an r, > 0 
and C>O so that oSI;..,~,+r,.,((~~,,)‘)~CoS~,r,,,(,f). Q.E.D. 
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9. WAVE PACKETS OF EISENSTEIN INTEGRAM 

In this section we relate the abstract families defined in Section 7 and 
used to form Schwartz wave packets in Section 8 to the holomorphic 
families of Eisenstein integrals defined in Section 6. The first main result is 
Theorem 9.10 which gives the a priori estimates which arc needed to show 
that Eisenstein integrals are functions of type II( ‘/, G). The second main 
result is Theorem 9.14 which characterires those wave packets of Eisenstein 
integrals which are Schwartz functions on G. 

Finally, we show in Theorem 9.18 that the Schwartz wave packets of 
Eisenstein integrals corresponding to the H-series of representations are in 
‘f,,,(G), the closed subspace of X(G) consisting of functions whose 
Plancherel formula expansions involve only the H-series of tempered 
representations. 

Let F:uF x G + CZ’= cZ,( 5, :T,) be a holomorphic family of K:,-spherical 
functions on G coming from a holomorphic family of matrix coefficients on 
Mt and a K :,,, -endomorphism of U( T, : T?). Then, as in (6.6), for (II, V, X) E 
rj: x a: x G, we define the Eisenstein integral 

E(P:F:k:v:s)= [ F(h:sk)~~.,!(li I)&” i’p”‘p”A’d(kZ). (9.1) 
“h / 

ProoJ For fixed 11 E UC, a similar estimate is proved in [7, Lemma 171. 
The constants involved are independent of h except for terms of the form 
lIclr,.,,( ti)lI for some K I’+!‘, depending on D, . D,. These grow polyno- 
mially in h. Q.E.D. 

COROLLARY 9.3. For my D,, D, E J$( g), rhtw urt’ LI finite .suhset S 
II/‘ ‘I/( g ) utd an r 3 0 so tht 

~/E(P:F:lz:\~:D,;.\.; Dz)li <(I + i/ti)’ 1 llE(P:F:h:\‘:D; ~11. 
II t s 

Write F,(h:s) = F(h:.u) (,(I” J’p’F”“‘i. Then, since li\l‘r,,,,(h-)il = l~“‘(X-)l IINII 
for all X- E K, 11’ E W. we have 

ilE( P:F:lt:v:D; x)11 < i‘ ilF,.(h:D; sk)ll l&h- ‘)I d(kZ) (9.4) 
“A / 
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for all (II, V,.Y)E D: x a: x G. For XYE G, write .Y= k(.u)m(s) expH,(s)n(.u) 
as in (6Sa). For 1’ E a:, write v = \lR + ii’,, where \lK, V, E a*. 

LEMMA 9.5. For arz~l D E d&(g), there ure a .finite subset S c *‘&(nr ), und 
constants C>O, r>O so thut IIF,,(h:D; x)11 < C( 1 + llzl)’ le”(k(s))l 
(1 + /,,I )relvHP(rll C,-‘vHr(\-) C,,t.s IIF,,,(h:v; m(s))11 for ull (h, v, .u)Eu,* x 
a: x G. 

Proof. Let k E K, m E Mt, a E A, n E N. Then using (6.5c), 
/IF,.(h:D;knm)~/ = I~t,,,,(k)F,,(h:l‘ ‘D;rnu)ll < CI(eh)(k)I C, I/F,,(h:D,;rnu)il, 
where we express “-ID = C, u,(k) Di and let C= supatK., lg,(h-)I. Now fix i 
and write Di= ti/lh, where K E @(f), PE #(nt + a), and h E #2/(n). Then 
~IF,.(h:tipLh; rrzu)II = Ild~,,,(k-) F,,(h:p; mu;“’ -‘“-‘h)ll < C( 1 + l/11)’ jlF,(h:p; 

mu;” -‘“-‘n)Il, since &,,,,( ti) is a polynomial in h. But F, is right N-invariant 
and ,,I ‘0 ‘h E ‘d/(n), so F,,(h :p; nzu;“‘~ “’ ‘h) = c(h) F,(h:p; mu), where c(h) is 
the constant term of h. Finally, we write ~1 ~*#(m + a) as p = w’, where 
L’ E U(m) and 11’ E S(a). Then differentiating with respect to c’ gives a 
polynomial in V. Thus llF,.(h:w’; rm)ll < C( 1 + 1131)~ lIF,.(h:o; nzu)ll = 
C( 1 + IV )’ /e (I’ -J’rl”ogu)l IlF,,(lz:v; nz)li. Q.E.D. 

LEMMA 9.6. There is a constant C,, so that 

I(E(P:F:h:v:D;r)ll 

dC(l+~h~)‘(1+~~~~)‘e”~‘~~‘“‘~‘~(s)sup Ie”(k(k.uk ‘))I 
hth 

x sup 
1 

ZJm(.vk)) ’ c IlF(h:v; m(.uk))ll 
k Its 

for all (h, v, s) E uz x a: x G. 

Proof. Combine (9.4) and (9.5) to obtain 

lIE(P:F:h:v:D; s)ll 

d C( 1 + IhI)’ ( 1 + Iv1 )’ 

x ilF(h:a; m(.uk)ll d(kZ). 

But by [ 10, p. 2751, there is C, > 0 so that lv,H,(xk)l < Co Iv,1 a(s) for all 
k E K. Also, by [ 10, p. 2751, jwz eP’lPHp’rk’ 3,,( m(xk)) d(kZ) = E(x). 

Q.E.D. 

LEMMA 9.7. There are constants C and c so thut SUP~,~ le”(k(k.uk ‘))I 
d Ce I/~,IIn,irl+‘~ 
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Pro?/: Write s = k,ak,, where k,, li2 E K, u E A,,. Then 
supkSx. le”(k(li.uk ‘))I = /e”(li,X-,)l supASk Ie”(k(kuk-‘))I. Now Id’(/tlli2)j 

d eliii’ or{ \-), so it suffices to show supA t h,,,t 40 je”( k(lidi ’ ))I < ,x!. But 
le”(k(kuk 1 )), < eib ~rfk(~~J~-‘I) and by (2.1 I ), there is a constant (’ so that 
sup,,, o,.(k(kali ’ 1) d c’. Q.E.D. 

Let I/ be the chamber in iu* for which F,,,(lz) is a spherical function of 
matrix coefficients and ‘ye = ‘r + ito. where ~1 is a relatively compact 
neighborhood of 0 in iv*. Let rf(1r) denote the distance from Ii,< to the 
boundary of 9. where jr= 11, + ih,. II,, h, E in*. 

LEMMA 9.8. For UIZI‘ 1’ E ‘I/( m ), there ure m~stants C > 0, r, t 3 0 so 

thut supn Z,,(m(sh-)) .I l!F(h:r; m(sh-))I1 <C(l + lhl)‘(l +t/(h) ‘)‘,fbr ull 

(h.X)EJiB xc. 

Proof: Write Mt = K’& cl( A ,:, ,,, ) k’+,, . When we decompose .Yli = 
k(sli) m(sk) exp H,(.uk) n(sk), we can assume m(d) Ecl(A&,) K:, as 
Kt, c K. Also, since Z is central in M, elements of Z can be commuted past 
cl(A ,;,,,) Ki, into K, so WC can assume that o,.( m(A)) is bounded. 

Thus we can assume that m(.uh-) = nk,, where N E cl(A&,) and o(k, ) is 
bounded. Now z ,,,(m(sh-))=.Z,,(ct) and /IF(h:r; m(.&))l! = IIF(h:r; tr)l\ 

Ir”(h-,)l d C llF(h:r; a)ll. Now by Theorem 5.12, there are constants C>O, 
r>O, 111 >O so that lIF(h:r; a)ll < C(l + illl )‘( 1 +a(n))“’ pRE”““‘(~~) for all 

0~ cl(A,:,,, ), 11~ qr. Thus E,$(u) llF(h:r; N)I/ 6 C( 1 + 1111)’ (1 +o(N))“’ 
t~(R~~,~~~~)~,‘~~l(~l). But as i L n emma 8.7 there are constants C > 0 and t 3 0 so 
that 

sup (1 + a(U))“’ &Rcl,J”i’ ““l(U) < C( 1 + cl(h) I)‘. Q.E.D. 
‘1 E CI( .A,;, ,,, 1 

LEMMA 9.9. Let D E d’(g). Then there ure c.omtunts C, co, r, t 3 0 so thut 
IIE(P:F:h:\:D;x)/l 6 C(1 + llll)‘(l + lvI)‘(l + d(h-‘)‘Z(x) P’~“‘~““\-’ 
e”‘li”I(“,f& all (h, Y, S)E ‘/( xaf XC. 

Pro@: This follows from combining (9.6). (9.7) and (9.8) since Ih,l is 
bounded in PC . Q.E.D. 

THEOREM 9.10. Let g,, g2 E ‘b(g) utxf DE .Ip. Then there are constunts 
C,r,(~,,so that IIE(P:F:h:~;D:g,;s~gz)/l < C(I + Ilr/)r(l + l~:I)‘(l + 
(f(/7)-‘)r(l .t~(.U))r~(5)(,lilI).Il(il’JC) liri’ “““,fbr ull (17, v, s) E ‘SC x a: x G. 

Proof: We know from Theorem 6.7 that E( P: F: k : v :s) is holomorphic 
as a function of (12,~) E ‘r,., x a:. We use the same method to estimate 
derivatives in (11,~) that Harish-Chandra used to estimate derivatives 
in 1’ of the ordinary Eisenstein integral. Namely, if f‘ is a holomorphic 
function in a neighborhood of 1;--11.1 <C, then I(CI”/&3)1),f’(z)j d 
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(n!/C”) sup,=- ,,., = (. I,~(Iv)~. For derivatives in v, we use radius (I +5(s)) ’ 
and for derivatives in /I we use radius C<minj( 1 +5,.(s)) ‘, $d(l~)j. 
Combined, this gives us the polynomial growth in C(.Y)=~(.Y)+~,.(.Y) in 
addition to the terms needed to estimate E(P: F:h:v: g,; X; gJ coming 
from (9.3) and (9.9). Q.E.D. 

COROLLARY 9.11. E( P, F) E ZZ( 9, G). 

Prooj: Combine (6.7), (6.8), and (9.10). Q.E.D. 

We are now ready to discuss wave packets of Eisenstein integrals. Since 
E(P:F)EII(~, G), E(P:F).~EI(~, G) for any aEGk’(2x.F). (See the 
remark following Definition 7.7.) However, there is no reason to expect 
that E(P:F) G( E I’( 9, G). This, as in the finite center case, is because of 
“poles of the c-function.” In order to eliminate these poles, we bring in the 
Plancherel measure. Recall that the Eisenstein integral is a spherical func- 
tion of matrix coefficients for a series of induced representations. Thus for 
each (h, 11) E (.Q x S), E(P: F:h : v) is associated to a representation 7rh., 
defined as in (3.8). By the results of [6], the Plancherel measure for this 
representation is, up to a constant factor independent of (A, v), given by 

m(h:v)= 71<;(A,l,e) TrR ‘(v) fl m,(h : v), (9.12) 
uF@;(n.l)) 

where m,(h : V) = vX sinh 7cv,/(cosh XV, -cos A,), \jX = 2(v, a)/(~, a), and 
h --, II, is an afline linear functional on 54 for which we do not need the 
exact formula (see 161). Write rn,Jh:~) = n,,,; nz,(h:v). 

Multiplying E(P: F) r by l?lR will eliminate the problem of poles of the 
c-function. However, in our situation, it introduces new difficulties because 
r?z,(lr : v) is not jointly continuous at points (h, v), where 11, E Z and V, = 0 
for some L-I E @i with h, not constant. (These are points corresponding to 
principal series which are reducible, or which fail to be reducible because 
certain limits of discrete series are zero.) Thus we will need to assume that 
a is chosen so that E( P: F) a. mR is jointly smooth. This will certainly be 
true if a. mR is jointly smooth. We will need the following lemma. 

Let E= KY+‘, n 3 0, and denote the coordinates by (.u, .v, z), where 
s, J’ER, ZER”. Define %(I!?, W) as in (8.6). 

LEMMA 9.13. Suppose ,f~ %( E, W) satisfies g(s, J, :) = .Y sinh XX/ 
(cash ILY - cos 7ry) ,f‘(s, y, z) is jointl?, smooth on E. Then g E %Y( E, W), und 
given a E M, r > 0, there exist constants C > 0, t 2 0 and a finite subset F of 

M 30 that Ly,.,(g)C CZ,,.,-.~,~,(.f). 

Proof. Fix ~30 and r~A4. Then .~,,,(g)=supmEV”sup~,~~~,.,.~(l + 
1(x, ~~+2m. .x-)I)’ lD”g(x, y+2m, :)I. For m E z. write g,(.c J’> =I = 
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h( s, J’ ) f( .Y, J’ + 2n2, z ), where Il(s. J,) = .Y sinh n.~(s’ + ~‘)/(cosh nr ~ 
cos ZJ,) is jointly smooth on R x [ - 1, I ] and satisfies the condition that 
for all /IE A4 there exist constants C’,{>O, tii 20 so that lD”k(.~, !,)I < 

c,,( 1 + I-V/ )” for all x E R, - 1 < ,I’ < 1. Then g(.~, J’ + 3~. Z) = (l/(.\-’ + 
.I.‘)) g,>,(.u, J’, z). Write X- = ICY, 1 + 1~~1 for the total degree of D” in .y and J’. 
Then there are finite subsets F,, F, of M, for each /in F, a polynomial 
P,,(.\. J‘), and for each [j E 1;? a constant C;, so that 

1 C;, D “K,,,( 0, 0. - ) 
/ic /'J 

if (.Y. J*) = (0, 0). 

Further, by Taylor’s theorem there is a finite subset F, of M and for each 
/j)~ F, a polynomial P;,(s, )I) so that for all MZ E L, lD”g(s, J’+ 2n1, z)- 

D”g(O, h::)/ 6 vwsup ,\,., I,&tl.l lP;,(s,, ~3,) D”g,,,(.u,, ~1,. :)I, 
where the sup is taken over (.Y,. J’, )E R’ such that Lr,l d 1.~1. 1.~~1 6 1~11. 

Now for each ~1 E Z. 

But 

where for each PE F,. F,(p) is a finite subset of M x M. Pick c,, f, 2 0 SO 
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that Ip,d-y, ),)I d C,( 1 + 1.~1 )‘I for all fi E F,, XE R, Iy/ < 1. Then this last 
expression is bounded by 

Cl c c c; BE/;, l:‘,y’)tfid/!) 
X sup (1 +I(.v, ?‘+2rn,=)l)‘+“+‘;‘ID”:f’(.~, y+h,:)l 

lllGl,Y.2 

Now 

vr+s;lJ, = I(1 + It-c I’+2w=)lY lD”g(.u, y+2m,z)) 
. 

6 sup I(1 + I(.u, .v+ 2m,=)l)' ID"g(0, 2~2, ;)I 
tz+ v?c 1.: 

X IO(.T y + 2m, z) - D”g(0, 2m, :)I. 

But there is a constant C, so that the first of these is bounded by 

c, sup I ( 1 + I(0, 2m, = )I 1’ 1 c;, IDDg,,,(O, 0, :)I 
/i t F: 

6 c, sup 1 c;, c I( 1 + I(O, 2n2, :)I )’ 
: /rt b.2 c~.?‘rtlil/II 

X ID;'h(O, O)l lDy:f'(O, 2m, :)I, 

where for each 8~ Fz, F4( b) is a finite subset of Mx M. Let c’, = 
rnaxgEp2. ,7,Y,lt,~4,,j, C,C;, ID“h(O, O)l. Then this expression is bounded by 

Cd CaeF2 c; C,~.f,EF~~/I) .~j~.,m 

Finally 

sup (l+~(s,~+2m,~)()’ , r-+ 12s I.: 

X ID”g(s, .v t-2?% z) - D”g(0, 2m, :)I 

6 sup (1 +1(x, .v+2m,z)~)’ 
s+ LZS I.; 
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where for each /Jo F3, C’;: = sup,;+ ,.;$ , lP;,(s,, ~9, )I < x and FJ( p) is a 
finite subset of M x M. Write 

Then the above is bounded by 

But there is a constant C, so that for all HI E Z, sup,?+ ,-< ,,= (1 + 

/(-~,?~+2~~~,.:)1)‘(1+((2lr~~l-l)’ + I:]‘)“‘) ‘<Cc,. Thus we have a 
bound of the desired form. Q.E.D. 

Prmf!f: By Theorem 9.14, y = E( P: F) xtttR E 7(/s, G). Then by 
Theorem 8.2, I,, is a Schwartz function on G and there is FE I”(,, so that 
given any r’ > 0, there are C, t 3 0 so that ,JIJr, ~~ < C ()S,..,,,,(cp). But 
Z,(S)=~,~ ,F E(P:F:I~:~‘:.~)sI(II:~‘) ttltJh:\l) ~l~;(/l,,,,)~,J\~) ’ c//t~h. But by 
(9.12), tn,(/r:v) n,(A,,,,) T[,JI*) ’ = tn(h:v) SO that I,,, = F,. Further, there is 
r’ > 0 so that given any [ 2 0 there is ~1 so that (‘S,,..,,(cp) < /J(o!). Q.E.D. 

Rather than prove Theorem 9.14 as stated, we will prove a slightly 
generalized version. 

THEOREM 9.16. Suppow E( P: F, ), . . . . E( P: F, ) m’ 1donwrphic ,fhmilie.r 
of’ Eisenstrit~ in~c~gruls, x , ~ .,,, Y,E%(VX.B), utrtlq=tttR~: , E(P:F,)x, is 
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joirltly smooth otz 9 x .9 x G. Then q E I’(9, G), und given DE ,!$., there i.7 
r >O So thut given unv t 30, there ure continuous seminorrns p,, . . . . pk on 
%‘(9 x 9) so that l’s nlr,,WdCf=, P;(E,). 

Proof: We know that 9, =C:=, E(P:F,) CI,E I(Q’, G). But using 
Lemma 9.13, we see that cp E Z(P, G) also, and that for any 
DE Y”,, r, t 3 0, there are a finite subset F of Y(;’ and r, > 0 so that 
“s n,I,f(~) < oSl.,,,,,(~l) 6 x:=, “S,,,,,,(E(P:Fi)X,). But since each 
E( P: F,) E ZZ(g/‘, G), by making r, sufficiently large, given t 3 0 there are 
continuous seminorms p, on %(P x ,P) so that OS,:,,, ,(E(P:F,)c(,) < ~,(a,). 

Now let Q be any parabolic subgroup of G, SE W(a, ao). We must show 
that VW z~‘(v) $,.,(h:s) has a smooth extension from 9’ to $ for all 
(h, X) E P x L,. By [4, Lemma 22.11, it is enough to show that 
$V,,(lz:~~o:.~)=O for all (II, S)E~ x L, if n,J\f,,)=O. But cp~/(g?, G) so that 
$,,,(/z:v:.Y) is jointly smooth on “r x 9 x L,. Thus it is enough to show 
that for all h, E ‘I’ such that 40 factors through a group of Harish-Chandra 
class, and all vg such that x,Jv~) = 0, lim,,,,,,, $V,,(h,,:v:s) =0 for all SE 
L,) \’ + I’[] through regular elements of ,F-. Now assume Q = P’ E Y(A). 
Then $q.,(h,,:~q:.u) = cf=, LX,(~,,:V) ~z,(h,:v) ~~.,IP,~,),,(ho:l):s). But 
m,(h,:a) ~E(P.f;,,.,(hO:v) = rc,Jv) m(h,:v) E(P:F,:h,,:v),,,, where 
E( P : F, : h,, : v ) p,, , is Harish-Chandra’s constant term. Now by [S, Lemma 
14.41, there is a constant c so that 1171R(\l)~)z(h0:\~)E(P:F,:hg:\‘)p,,,~llS,~jj= 
c’m(h,:v) IIF,(h,)l/~,iz~R(\))Z. But lim,,,,, wz(h,:v) exists and is finite 
even if nz(h :v) is not jointly continuous at (ho, vo), so that 
lim ,,-,,i, lInz,(k,:v) ~E,P:~-,,,,,(hO:\))lI~~:i3=0. Thus ~,,,,(h,:~,:x)=O for all 
.Y E L .,=MA. Now by [4, Cor. of 11.11, $V(ho:vo)=n(A,,, ,,,“) (p(ho:vo)=O 
on G. 

Now suppose Q is any parabolic subgroup of G with W(a, ap) # 0. 
Then for SE W(a, aQ), let g=($i,,)“. Let P’E~(A), *P’=P’nLQ. As in 
(8.2). for t E W(a. a,‘) there is t’E W(a, a) so that ($i,T’)‘= ($,‘:,)“. But 
$,P:,,(h,,:v,,) = 0 as above. Thus ($$)(h,:v,,)=O for all P’EY(A), 
te W(a, a). Thus, again using 14, Lemma 11.11, 71R(~~,(,,/1h,l.v,,)~~~,,(hO:vg) 
= $,p,,(ho:v,)=O on L,. Q.E.D. 

For SE W(a, a), h, IZ’E 2, write h’= sh if 2(h’) = sA(h). Let W,,(h) = 
.j.ss W(a, a):SIz=lzf and W,(h)= {SE W(a,a):sh=h’ for some h’E2). 
Note that W, = W,(h) is independent of h E 2. Let O( H:h:v) denote the 
distribution character of the representation zh, ~. 

LEMMA 9.17. There is u constant c so that ,for F, us ubooe, and an>’ 

h, ~E~x.~,O(H:/I:~:R(.\-)F,) = cC,,.~,., a(.sh:.sv) E(P:F,,:sh:sv:.u). 

Prooj: For fixed hE5’%“, define F,(h:.u)=j,, E(P:F,,:h:v:x) cr(h:v) 
m(h:v)dv, and define [(h)E?? by [(ll)=ehl,. Let g,,= {h’~P::e~l/= 
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~“‘1, j. Then it follows from a Poisson summation argument similar to 
[S, 7.121 that for all IzEY, ~Js:<(/r)) = lz F,(K) <(lz)(z)cir = 
(.C,I.E,~,,F,(I1’:.~). Now O(H:h:~:R(s)F,)=S..O(H:h:~:?,)E=,(~.u:i(h)) 

4 ?‘Z 1 = (’ c 1,’ E ,y,, ~,,,O(H:h:J)F, h ‘\‘I fL ( ’ ._ ,) r’( J~Z). Fix h rational, that is, 
for which ( r,.,z, T?,,! ) factors through a group of Harish-Chandra class. 
Then h’ is rational for all 11’ E V,,, and using [S, Theorems 20.1 and 27. I] 

O(H:h:v: y) F,(h’:r,~) d(~*z) 
(i / 

I 

0 unless 11’ = s/r for some s E W( a, a ) 

= c’ 1 x(It’:.s ‘v)E(P:F:/r’:.c ‘v:.i-) 
, r It ,,I/,) 

if h’ = sh for some .s 6 LV( a, (7 ). 

Thus in this case O( H:h : 1’ : R(s) F,) = cc’ C,, t L,., r(sh:sv) E(P:F,,:sh:sv:.~). 
But both sides are smooth functions of /I. so equality persists for all 11 E 9. 

Q.E.D. 

THEOREM 9.18. F, E M,(G, W). In f&t tkre is N constant c .~o thut 
F,(x)=&.,,- O(H:h:v)(R(s)F,)m(h:v)~~~(I~‘. 

Pro@ Using (9.17) jy,x,p e(H:h:~,)(R(.~)F,)m(h:~,)~~~l~~ = cCltlt., 
j”,,,~~(.sh:.sv) E(P:F,~,:sh:.rv:r)n~(/z:~)c~~zd~~ = ‘.[W,]j,,, a(/~:\‘) 
E(P:F,b,:l~:v:s) m(lz:~) (i/z L/V by changing variables (A. V) w (s ‘11, .s ‘11) in 

the integration. Q.E.D. 

We have constructed wave packets 

F,(s) = j E(P:F:h:~‘:.u)cc(h:c)m(lz:~)~~?h (9.19a) 
‘, i P 

and shown they are elements of %JG: W). If we want scalar-valued wave 
packets, we need only take 

f,(x) = F,(.u)( 1 : 1 ) 

=J’ E(P:F:I~:~~:~)(I:l)tl(h:v)nz(lz:v)rl~z~~. (9.19b) 
!/ x F 

Since cp -+ q( 1 : 1) is a linear functional on the finite dimensional vector 
space W, we will have Y,ll.f;ll’.YL~CY,l/~ullr,P~ for all g,, g26SY(c~),r>0. 
Thus f, E%(G) whenever F, E%‘(G: W). We can also evaluate both sides of 
(9.18) at (l:l)~K, xK, to obtain: 
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THEOREM 9.20. Suppose E(P:F) is n holomorphic jhmi/y of Eisenstein 
integrals defined as in (6.6) and LY E%‘(L? x <F”) such that r .mR is jointly 
smooth on 9 x 9. Define the Muve packet ,f; as in (9.19b). Then ,f, E %‘J G). 
More precisely: 

(i) Given arzy g, , gz E ‘k(g), Y > 0, there is a continuous seminorm p on 
%(W x 9) so that ,~,lIf,II,.,~,~~(~()fi)r ull a as above. 

(ii ) There is a constant c so that jbr all .x E G, 

O(H:h:v)(R(x)f,)m(h:v) dh dv. 

10. EXTENSION TO DISCONNECTED GROUPS 

Finally we extend our results for connected reductive Lie groups to the 
class [ 1 I, 6, 7, 8, 91 of real reductive Lie groups G such that 

G has a closed normal abelian subgroup Z 

such that Z c Z,( Go) and 1 G/ZG”l < $x,, (lO.la 

if .Y E G then Ad(.u) E Int( gal ), (lO.lb 

and 

G/G0 is finitely generated. (lO.lc) 

The Harish-Chandra class consists of the groups ( 10.1) such that [G”, G”] 
has, finite center and G/G0 is finite. 

The first step is to show that there is a particularly good choice of Z. 
Fix a Cartan involution tI of G as in [ 1 I]. The fixed point set K = G” is 

the inverse image of a maximal compact subgroup of the linear semisimple 
group G/Z,(G’). K meets, and has connected intersection with, every com- 
ponent of G. As in the connected case every Cartan subgroup of G is GO- 
conjugate to a Q-stable one. So every cuspidal parabolic subgroup of G is 
GO-conjugate to one of the form MAN, where M and A are &stable, 
MA = M x A = Z,(A), and M and MA satisfy (10.1 ). 

Proposition 2.1 says, here, that K” has a unique maximal compact sub- 
group KY and a closed normal vector subgroup V such that K” = K: x V 
and Z,+n V is co-compact in both V and ZGo. Since Ad,(K) is compact 
we may assume that it stabilizes the Lie algebra of V, and thus that V is 
normal in K. 
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PROPOSITION 10.2. The grozrp Z of’ ( 10.1 a) cm he chosen so that Z = 

(Z n Gn ) x E, ,zhew 

(a) E is u ,fj:nitel?, genrruted,fiee uheliurr grozrp, 

(b ) E is u closrd normul .suhgrolrp of G. mu’ 

(c) ZnG”=Z,pn 1.. 

TIwn ZG” = G” x E ud ZK” = K” x E = KY x I’ x E. 

Proqf: Start with Z, that satisfies (lO.la). Then Zz = Z, Z,;O does also, 
and Z,/Zy is finitely generated by (10.1~). Now 17, Lemma 6.31 Z, = 
{Z,.” . F) x E’. F finite abelian, E’ finitely generated free abelian. 

Z, = [Z,,I n VI x E’ has finite index in Z,, Z,O n I’ is normal in G = KG” 
because it is normal in K and centralized by G”, and the finite index 
subgroup Z:,G” c G centralizes Z,. So Z, has a finite index subgroup 
Z,= (Zcpn 1’; x E” that is normal in G and thus satisfies (lO.la). 

Split V= I” x k.“, where 6” = b’n [G”, G”] and 1”’ c Z,,I is normal in K. 
Then Z,,, n I’= L’ x V”, where L’ is a lattice in V’, normal in G = KG” 

because it is normal in K and central in G”. By ( 10.1 b), I”’ is central in G. 
So is any lattice L” c V”. Now L = L’ x L” is a lattice in C’, normal in G. 
So Z” = L x E” is a finitely generated free abelian group that satisfies 
(lO.la). 

The action of G on Z” by conjugation defines a linear representation cp 
of G on the rational vector space z!& = Z”@, CI. As q(G) is finite the 
invariant subspace L, has an invariant complement B. Let E = Z” n B and 
Z’ = L x E. Then L and E are normal in G so Z’ satisfies ( 10. la). Proposi- 
tion 10.2 follows with Z = ( Z,;O n k’) x E. Q.E.D. 

From now on, we choose Z as in Proposition 10.2. For convenience 
we write G” for ZG” and use ” and ” to indicate items pertaining to G” 
and G”. 

Recall that the Schwartz spaces for G” and G were defined in [7, Sect. 61 
as follows. F;or s E G”, define .? and 8 as in (2.4) and (2.7). Since V is 
normal in K we can assume that gl. is K-invariant. Let oE be a norm on 
E coming from an Ad,;(K)-invariant positive definite inner product on 
E, = E@,,- iw. Now we extend ii to G” = G” x E by 

6y.w) = es(s) + rJL(cJ), .Y E G”, e E E. ( 10.3a ) 

This is equivalent to the definition of 5 in 17, Sect. 61. Using (2.9c), we see 
that 

ri(S”?~“)63(~(.~“)$ii(~“)) for all I”. J“’ E G” (10.3b) 
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and since Up and (To are chosen to be K-invariant we have 

6( k.u”k ’ ) = 6(x”) for all k E K. (10.3c) 

Extend Z to G” by 

Z(.w) = E(x), s E Go, r E E. (10.3d) 

Then clearly 

Z(k”.y”) = qyk”) = E(-y”) for all X” E G”, k” E K”. ( 10.3e) 

Finally, because of (iO.lb), every element of N,(A,)/Z,(A,) can be 
represented by an element of K’. Now since coset representatives of K/K0 
can be chosen to normalize A,,, we have E(kak-‘) = E(a) for all kE K, 
LIE A,. Thus 

Z(k.u”k-‘) = Z(s”) for all k E K, X” E G”. 

For.fEC”(G”), g,, gZEJ8(g),r>0, we define 

K,Ilfllr,y~ = sup lJ’(g,;-u; gz)l Z’(x)-‘(f +5(X))r. 
ttG” 

Then 

%( G”) = 

and 

if E C “(G”):x,lI.fll,.,~~ <x forallg,, g,E@(g), r30 

(10.3f) 

(1O.k) 

(10.3h) 

g(G)= I~,~‘EC%(G):(L(X)S)I~..E~(G”) forall sgG]. (10.3i) 

Let (h, , . . . . h,, 1 be coset representatives for G/G”. For ,fg C I (G) and 
1 dt<tz, define f,=(L(hrp')f)(..,. Then g(G)= {f~c’(G):f,~%i’(G”), 
1 d t d PZ}, and it can be topologized by the seminorms 

,~,,rlIfllr.y~=~~llJ;Ilr.y~~ g,, g?EJqg),r>o, 1 <t<n. (10.3j) 

The next step is to extend Theorem 9.20 from Go to G” = Go x E. 
Fix a e-stable Cartan subgroup H” c G” and let P” = M”AN be an 

associated cuspidal parabolic. Let 

0 
‘C = in,,,. ’ ” .hE9andvEa*j (10.4a) 

be a continuous family of H” n GO-series representations of Go as in (3.8). 
The corresponding continuous family of H”-series representations of G” is 
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Let ,I?‘( P” n G”: F:h : \I :.Y) be a family of Eisenstein integrals on G” as in 
(6.6) corresponding to the family x:, and a family F of r-spherical functions 
on G” coming from a holomorphic family of matrix coefficients on 
M” n G” as in (6.5 ). Now 

~:‘~(P”nG”:F:/~:~~:.~)=E”(P”nG”:F:/~:~~:.\-)(l:l) ( 10.5a ) 

is a smooth family of matrix coefficients of ~‘1, Since every matrix coef- 
ficient of n;:,,.,, is of the form,f’(r:e) =,f‘“(s) q(r), where,f“’ is a matrix coef- 
ficient of T[:.,, we obtain a smooth family of coefficients of x:; by defining 

i:“(P”:F:l~:~~:~:.r:~~)=r~(~~)c”(P”n G”:F:h:v:.x-). (10.5b) 

Let .P” and 2” denote the respective algebras of differential operators on 
I/ x 9 and 9 x .F x l? whose coefficients are polynomials on 9 x .9 and 
constant on l? If h E 9 then, as before. d(h) is the distance from 11 to M(9). 
The seminorms on C ’ (2 x 3) 

JIXIlI:,,,= sup IDr(/i:I~)) (1 +tl(h) ‘1’ 
7, r 

(10.6a) 

and on C’(//X.FX~) 

II BII h., = SUP /Dp(b:\‘:t/)I (1 +rl(h) ‘)’ (10.6b) 
I I c * /; 

define Schwartz spaces 

YT(Px.F)= ja~C’(~x.~):l/21/~,,< x forDE.P, t30) (10.7a) 

and 

‘t’(9Xx.BXE)= iBEC”(~X.~xX):IlBll~~,,<‘z 

for DE.~“, t>O). (10.7b) 

The space (10.7a) was used to form the wave packets for G” in 
Theorem 9.20. We will use (10.7b) to form the analogous wave packets 
for G”. 

Two remarks: 
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LEMMA 10.9. Let /3 E %(W x 9 x i?) and let ah,, be as in Lemma 10.8. 
If m.(h:v)p(h:v:q) extend&y to he C’ on 9xFxk then each 
m.(h:v)cc,,(h:v) extends to he C’ on .9x.9. 

Now we extend Theorem 9.20 to G”. Let p E %(‘/ x S x 8) such that 
m,(h:r) /?(/z:s:q) extends C i on 9 x 3 x l?. Form the wave packets 

cpE(s:e) = 
i 

E”(P”:F:h:v:q:x:e) p(h:v:yI) dh dv dq. (10.10) 
Y r.P x t? 

THEOREM 10.1 1. Let E”( P”: F) be a smooth j&lily clf’matri.x coejjkients 
on G”= Go x E dcfked us in (10Sb). Let pgU(.9 x 9 xl?) such thut 
m,(h:v) /?(h:v:q) extends to he C”’ on 9 x 9 x I?. Then ~~E%JG”). More 
precisely: 

(i ) Let g, . g, E d)/(g), r > 0. Then there is a continuous seminorm p on 
%(9 x 9 x E), irzdependent qf p E %(P x 9 x I?‘,, suclz tht ,~, 11cpJ r, 8~ 6 p( fl). 

(ii) There is a constant c so that ,for cl11 .Y E G", 

Proof For (i) split 6(.ue)=6(.u)+a,(e), where IEGO and eE E. Then 
the integral defining ,s, IIq;llr,a2 is bounded by 

SUP (1 + 8(.X))’ E(.u) ’ sup (1 + 0,(e))’ 
1 E co <‘CL‘ 

E”(P”:F:h:v:q:g,;s; g,:e)~(h:v:q)m(h:v)dhdvdq 

where 

&“(P”nG0:F:h:v:g,;.u;g2)I)(h:r:q)m(h:v)dhdv. 
x .P 

Now +!ta(x) E C,‘(E). For given r 30 we have a constant coefficient 
operator d on E such that 
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independent of s. So the integral defining ,,lI~~ll~. YJ is bounded by 

Since x,,,,(h : v ) = fi( h : v : ‘1: tf ) E % (I;r x .9 ), Theorem 9.20( i ) gives us a con- 
tinuous seminorm ~1” on % (‘/’ x .S), depending only on g,, K?, and Y, such 
that this is bounded by SUP,~, 1; ~‘O(X~,,,,). Thus we have a continuous semi- 
norm p( jkl) = SUP,,~~ /I”(a,,,,,) on %(‘I x .9 x I?) such that the integral 
defining k, j/ q~;jI ,, ~~ is bounded by p( [I). 

For (ii) note O(H”:Ir:v:~/:s:r) = q(e) O(H”n G”:h:\~:\-) and note that 
the Plancherel density functions for G” and G” are related by nz”(h : v : q ) = 
m(l7 : v ). Now, using Theorem 9.20( ii), 

SO 

q!;,(x) = c I T ..B 
O(H”nG”:h:~~)(A(.u)cpl)q)~~z(h:\~)rllzclv 

and thus 

using the Fourier inversion formula on E. Q.E.D. 

Our final step is to extend Theorem 10.1 I from G” = ZG” to G. First 
note that G” is normal in G and of finite index. 
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Our continuous family of H-series representations, as in ( 10.4) will be 

R,= ix ,,,,,, ,,=lnd$(n~ ,,,,, ,):/IE~‘, VE~*,~EE). (10.12) 

Note that in general G”s ZJGO)G”. Thus the representations rrJz,V-l. are in 
general finite sums of irreducible H-series representations. 

Choose coset representatives jb,, . . . . b,,) for G/G”. Since K meets every 
component of G, we can assume that h, E K, 1 < i < n. 

Now n,z.e.,,Ic=C:l=, n;:...,/ Ad(h,))‘. In fact, given 11 E ,X’(zi,,..q) we 
construct { 0, , . . . . /I,, 1 c X(71 ,,,,,, ?) as follows: 

21~ : G + ,Y? (rr;:. V,V) is supported in h, G”, (10.13a) 

Vl,(b,.K) = 17;:,,.,,l(.K) ’ v for ,Y E G”. (10.13b) 

Similarly, if rc~X(n;: .,,, q) we have (K,,, . . . . u’,,). in .K(rr,,,,.,V). 

LEMMA 10.14. The coefficients .r E+ (7~ ,,,,,, ,(.u) N’,, vk ) of’ n ,,,,,,, is sup- 
ported in the coset b, G” for which bl, = h, b, mod G”. On b,G” it is gioen his 
b,.Yw (7~;: ,,,, ,(a,,) .rc;: .,,,, ,(h, ‘.?‘b,). hi‘, ~1) I ,ni;,,,,,, +zhere a,, = h, ‘h,h, E K”. 

Proyf: Drop the subscripts on TC,,,,,,~ and 7-r;:.,.,,, and compute 

(a) \1‘,, Vk ).K (A, = , <T<,> (ttl,(.x ~‘b,L ~j~(br)).,,,-,. 
\ , 

Let .Y = /I,.?, YE G”, so w,(.Y ‘h,) = 0 unless b, ‘b, E b,G”. Note v,(b,) = 0 
unless k = t. So .Y H (X(X) M’,, cl/,) is supported in the coset h,G” with 
b, = h,b,. Given that, b,sh, = h,a,,; and we compute 

(4.r) \I’,, I’p > * (X) = (n~,(S ‘h, 1. vr(h, ,> r In”) 

= (n~;(b;(b~‘.~“b,)~’ ‘II,, ‘). I’),,,,,) 

= (d’(a,,).7~“(b, ‘.x”b,).w, L!)#,~,., 

as asserted. Q.E.D. 

Lemma 10.14 tells us how the family (10.5b) of matrix coefficients of G” 
defines families for G. Let ~“(P”:F:h:q:v:x”) be as in (10.5b) with x” in 
place of (.u : e ). For 1 d i, k < n define 

E,,(P:F:~:~:v):G+ @ supported in the coset h,G” for 
which b, c b,b, mod G” (10.15a) 

by the formula 

c,,(P:F:h:q:v:b,Vs”) = ~“(P”:F:h:rl:v:a,,b, ‘.u”b,) for 
2 E G”, h, as specified in (10.15a) and u,~, = h, ‘h,b,. (10.15b) 
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The E,~( P:F:h:q:v) are matrix coefficients of n,,,,/,,.. Now, as in (lO.lO), let 
/IE%‘(~x.Bx~) such that nz.(h:~)p(h:v:~~) extends to c“ on 
9 x .S xi?. and form the wave packets 

c,~ ( P : F: I1 : 13 : i/ : .Y ) [I( /I : \’ : i/ ) ttz( 11 : \’ ) till riv t/q. (10.16) 

Proof: Using (10.15) we see that CJJ,~,] is supported in the coset h, G” and 

(P!k,l(h,.Y”) = v;;(u,,hl ‘s”h,). Now using (10.3b, c. e,,f‘) it is easy to see that 
there are a constant C’ and $, , &E !‘/()-1), depending on r, g,, g,, u,,, and 

b,, but not on /r, so that i’,. ,lI~l,,,~/l,-. i’2, CC,; ~IcJ~FI/,.,,,,. Part (i) now follows 
from Theorem 10. I I. 

For (ii), we first fix Ir, t/. 1’ and write 0 and 0” for the characters 
O( H: h : v : 9 ) and O( H” : 11: 1’ : tI ), respectively. Since 0 is supported on G”, 
we have O( R(s) (P,~,{) = 0 unless .Y E h, G”. Thus it suffices to prove (ii) for 
s E h, G”. On G” we have 0 = x, ~. ,c,,i ( O”)“f, where (@“)“I( ~3”) = 
@“(/I, !,“/I, ’ 1. .I.” E G”. Thus we have O( R(h,.\-“) v,~,{) = C, -; ,,., I (0”)“~ 
(R(rr,,h, ‘.~“h,) vi;). We can assume as in [6, 6.51 that h, = 1. h,, . . . . h,, 
normalize H. Let it‘, E CV( G, H) be the Weyl group element represented by 
h,. Then (O( H”:h:v:tl))” is the character of the H”-series representation 
with parameters ~t.,(>.,, + II ,,( II)) E it*, ,t’,x( /I) E Z ,I( A!“) “, II’,\’ E ia*, and 
)t’,t\ E 2. By part (ii) of Theorem IO. 1 I and the uniqueness of the Plancherel 
formula representation of (pi;. O( H”:h: ~:t/)“,( R( J”‘) cpi) E 0 unless 

there are .s E I+‘( G”, H”) and h’ E ‘r so that 
\~~,(x(h))=.sx(h’) and ~t’,(i.,,+h,,,(/z))=.s(E.,,+h~,(1~’)). (10.18) 

Let S= iI z:t<n:tr,, satisfies 10.18). Note [S]>l since le.9 Fix tES 
and write bi’= II‘,. Since M and s ‘11’ represent the same coset of GjG”. we 
may as well assume that IC,~,, = i.,,, II‘~,~ = x,,. and it9 = ‘Y, so that 
O(H”:/~:~:~)“~=O(H”:I~~/~:I~~~:~~~~~). As in 16. 6.81, tn( l1h : )l‘\' ) = tt1(/1 : 1’ ) so 
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we can change variables in the integration and apply part (ii) of Theorem 
10.11 to write 

c 
I 

O(H”:h:l’:,~)~~(R(a,,,h,-‘s”h,) cp;, m(h:v) dh dv dq 
9 * .i x L? 

=ld O(H”:h:v:q)(R(a,,h, ‘x”hi) ip;) nz(h:o) dh dv drj 
‘1 x .F x L 

= lp;r,(ff,,b, V’h,) = (P,QJh.,x”). 

Thus 

q,k,,(h,-~“) = c’ J i/ * .-/ Y i 
O(H:h:v:ul)(R(h,,x”) cpir,{) m(h:v) dh dv dq, 

where C’ = c/[S]. Q.E.D. 
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