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1. INTRODUCTION

Suppose G is a semisimple Lie group with infinite center. As in the finite
center case, the tempered spectrum of G consists of families of representa-
tions induced from cuspidal parabolic subgroups P=MAN. However, in
the infinite center case, the representations of M to be induced are not
discrete series, but are relative discrete series which occur in continuous
families. In two previous papers [8, 9] we studied matrix coefficients of
relative discrete series representations for a connected simple group with
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infinite center and showed how to combine them into wave packets along
the continuous parameter to construct Schwartz functions on the group.

In this paper we construct Schwartz class wave packets of matrix coef-
ficients corresponding to the various induced series of tempered representa-
tions for any connected reductive Lic group G. In the special casc that
G =P= M, these are exactly the wave packets of relative discrete series
matrix coefficients constructed in [8,9]. To study induced representations
on G we must be able to definc continuous families of relative discrete
series representations on the Levi components M of arbitrary cuspidal
parabolic subgroups. These groups M need not be connected, but lic in the
class of reductive groups studied in [11]. (See (10.1) for the precise defini-
tion.) Since we do not prove our wave packets are Schwartz by induction
on G, but rather by induction on parabolic subgroups of G, we do not need
to assume G is a general group in the class (10.1). This simplifies the con-
structions of the machinery needed to define wave packets. In Section 10,
we indicate how the results for connected groups can be extended to
arbitrary groups in the class (10.1).

To construct wave packets we proceed as follows. We start with con-
tinuous families of relative discrete series matrix coefficients on M of the
type constructed in [9]. We use these to form Eisenstein integrals similar
to those defined by Harish-Chandra in [3]. Thus our Eisenstein integrals
have two types of continuous parameters, those corresponding to unitary
characters of 4 which occur in Harish-Chandra’s Eisenstein integrals, plus
additional continuous parameters coming from families of relative discrete
series representations on M. Wave packets must be taken along both types
of continuous parameters to obtain Schwartz class functions on the group
G. Roughly speaking, the wave packets considered will be integrals of the
form

Fl(x):JJ E(P:hovix)yalh:vym(h:vydh dv, yYed@, (1.1)

where E(P:h:v:x) is an Eisenstein integral corresponding to ve A and to
a continuous family of matrix coefficients for relative discrete series
representations 7, of M; m(h:v)dhdv is the Plancherel measure corre-
sponding to the associated family of induced representations =, , =
Indﬁ(n,,@v & 1) of G; and «(h:v) is a suitable Schwartz function in the
parameter variables.

The space 4 is a Euclidean space, and Harish-Chandra proved in the
finite center case that a necessary and sufficient condition for the wave
packet F, to be a Schwartz function on G is that x be an ordinary Schwartz
function on A4 [5]. The infinite center situation is more complicated. First,
o must be a jointly smooth function of /# and v which decays rapidly at



166 HERB AND WOLF

infinity as for an ordinary Schwartz function. However, as a function of A,
o must also decay rapidly, in the sense of having a zero of infinite order,
as h approaches values on walls where n, is a limit of discrete series
representation. Finally, there are conditions on o at points (A, vy) for
which the induced representation 7, , is reducible. One way to phrase this
condition is to require that the product a(k:v) m(h:v) be jointly smooth in
h and v. This is a restriction only at points (%, vy) as above where the
Plancherel function m(h:v), which is separately smooth in each variable,
fails to be jointly continuous.

In this paper we make a sightly stronger assumption on «, namely, that
alh:v) mg(h:v) is jointly smooth in A and v, where mg(h:v) is part of the
Plancherel function. (See (9.12) for the definition.) Points (A, v,) at which
mg(h:v) is not smooth, but m(h:v) is, correspond to induced representa-
tions m,, ., which only fail to be reducible because certain limits of discrete
series are zero. For such «, we are able to prove that F, is a Schwartz func-
tion using Harish-Chandra’s theory of the c-function, in particular the
result which says that for a fixed discrete series representation of M, the
Plancherel measure cancels the poles of the ¢-function considered as a
meromorphic function of v. In order to remove this extra assumption on «,
we will need to know more about the c-function as a meromorphic func-
tion of 4 and v jointly, These results will also be needed to study the “mixed
wave packets” described in the next paragraph, and so are deferred to the
paper in which we will study the mixed wave packets.

In the finite center case, Harish-Chandra proved that every K-finite
Schwartz function on G is a finite sum of Schwartz wave packets of
Eisenstein integrals coming from the various series of tempered representa-
tions [5]. (Of course, discrete series representations have no continuous
parameters so the degenerate wave packets in this case are just single
matrix coefficients.) In the infinite center case, the analogue of K, the maxi-
mal compact subgroup, is non-compact, and there are no K-finite functions
in the Schwartz space of G. However, there is a dense subspace of the
Schwartz space consisting of “K-compact” functions, that is, ones for which
the K-types are restricted to lie in a compact subset of K. (See [9].)
However, it is not true in the infinite center case that a K-compact
Schwartz function will be a finite sum of Schwartz wave packets of the type
described above. The problem comes from the fact that the different series
of tempered representations interfere where a reducible principal series
representation breaks up as a sum of limits of relative discrete series
representations. As a result of this interference between series, not all
Schwartz functions on the group decompose as sums of Schwartz wave
packets. The typical K-compact Schwartz function on G breaks up as a
sum of pieces from different series of representations which individually are
not Schwartz functions, but which “patch together™ at reducible principle
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series and limits of discrete series to form a Schwartz function. The wave
packets studied in this paper are the ones which patch together with the
zero wave packet from all other series. In another paper we will study the
mixed wave packets which have non-trivial patches.

The organization of this paper is as follows. In Section 2 we develop
some structural information about G and reductive components of its
cuspidal parabolic subgroups. We also recall the basic definitions of the
Schwartz space.

In Section 3 we discuss the parameterization of relative discrete series
representations on M and the corresponding continuous families of
induced representations on G.

In Section 4 we extend results on holomorphic families of relative
discrete series matrix coefficients which were proved in [9] for the case
that A is a simple, simply connected group of hermitian type. to all Levi
components M of cuspidal parabolic subgroups.

In Section 5 we reformulate the results of Section 4 as results on
holomorphic families of spherical functions, and extend the growth
estimates proved in [8, 9] to our general class of groups M.

In Section 6 we define holomorphic families of Eisenstein integrals and
check that they are eigenfunctions of the center of the enveloping algebra.

In Sections 7 and 8 we extend the machinery developed by Harish-
Chandra to study growth properties of abstract families of functions
generalizing Eisenstein integrals to include dependence on the continuous
parameters coming from the relative discrete series. Specifically, in
Section 7 we use differential equations to sharpen a priori estimates, and in
Section 8 we use these estimates to show that wave packets formed from a
certain class of functions are Schwartz.

In Section 9 we show that the Eisenstein integrals defined in Section 6
are members of the abstract family studied in Section 7 and use the results
of Section 8 to show that wave packets of Eisenstein integrals of the type
described in this section are Schwartz functions. Further, we show that
when these Schwartz functions are written in terms of tempered characters
using the Plancherel formula, only the series of representations used to
form the Eisenstein integrals occurs in the expansion.

In Section 10 we show how to extend the results of Section 9 from the
case of connected groups to arbitrary groups in the class (10.1).

2. GROUP STRUCTURE
Throughout the first nine sections of this paper, G is a connected reduc-

tive Lie group. Fix a Cartan involution # of G as in [11] and let K denote
the fixed point set of f. It is the full inverse image of a maximal compact
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subgroup of the linear group G/Z, but is compact only when the center
Z of G is compact.

ProrosiTiON 2.1, K has a unique maximal compact subgroup K, and hus
a closed normal vector subgroup V such that

(a) K=K,xV,
(b) Z=Z,nV is co-compact in both V and Z,;.

Proof. Let p: ‘G — G be the universal covering and K= p~'(K). Then K
is direct product of the compact semisimple group ['K, K] and a vector
group 'W. Let 'Z=Z,n'W; it has finite index in Z,; and is co-compact in
'W. Let 'U be the subspace of ‘W spanned by Ker(p) n ‘W and define K, =
p(['K, K] x'U). Then K, is the unique maximal compact subgroup of K.

Decompose 'W="U® 'V such that Z,n'V is co-compact in 'V. Then
Pl is one to one, so F=p('V) is a closed vector subgroup of K, and
K=K, xV.

For (b), (Ker(p)n'W)x(Zs;n'V) is co-compact in 'U@'V="W, so
pZ;nVy=Z,;nV is co-compact in V. Also, Z,.n'W has finite index in
Z;, and (Ker(p)n'W)x(Z;n'V) has finite index in Z,0'W, so
ZenV=p(Zi;n'V) has finite index in p(Z.}=Z,,. Q.ED.

Let P be a cuspidal parabolic subgroup of G. In other words, up to
G-conjugacy, P is given as follows. Start with a f-stable Cartan subgroup
HcG. Then H=Tx A, where T= Hn K and A=expa,a=bnp, where
g=1+p under 0. Then Z;(A)=M x 4, where 6M = M, we can choose a
positive system @' =@ ' (g, a) of restricted roots, and N =exp(n), where
=3 .4 9,. Now P=MAN. Note that Z < M and that although M need
not be connected, it is in the class of reductive groups studied in [ 11,6, 7].
(See (10.1) for the precise definition.)

2.2 Remark. Write Ky, = M°n K. Our structural results (2.1) for K can
be applied to K}, to write Ky =K}, xV, where K|, =K M’ is
maximal compact in KY,. Note that V,, ¢ V in general. Write M" =
Zy(MYM® and K, =Kn M".

In order to define spherical functions we will need to consider the larger
group K, =K, - V. Note this is a group since V' centralizes K. We can
write. K, =K}, x V., where K, =K} K, is the unique maximal
compact subgroup of K.

Let g=1+ p. =1 eigenspace decomposition under . Choose a maximal
abelian subspace a,=p and a positive restricted root system &' =
®*(g,0q,). As usual, p=3iY¥. _,.m(a)x, where m(a)=dimgq, The
Iwasawa decomposition

G=N,A,K, x=n({x) -exp H(x)- xk(x) (2.3}
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specifies the zonal spherical function on G for O € af,
Sx)= J o HHEN Gk 7). (24)
K 7

It is the lift of the corresponding function on the linear semisimple group
G/Z. and thus if ¢ is defined as in (2.7) there are constants C, ¢=0 so
that

¢ "a)<E(a)<C(+a(a))? e *(a) (2.

(3]
N

forall ae 4] =lae A :x(loga)>0forall ve @ " |.

Growth in G is determined by a function 6: ¢ - R* which is defined as
follows. Choose an Ad(K)-invariant positive definite inner product on V.
If xe G we decompose

x=0v(x)-k(x)-expl(x)e VK, -exp(p) (2.6)
and then we set
o,(x)=lle(x)]. alx)=}<(x)]. and o(x)=0,{(x)+o(x) (2.7)
The main properties of ¢ are
o{k, xk,)=0(x) forall xeG, k. k-eK; (2.8a)

and

glxy)<ao(x)+o(y) forall x, vedG. (2.8b)

The corresponding properties of G are

Flkxk "Y=6(x) forall xeG.keKk: (2.9a)
Gk, xky)=d(x) forall xeG.k, k€Ki (29b)
Gxy) < 3(6(x)+d(v)) forall x, yeG. (2.9¢)

Let W be a Banach space and fe C “(G:W). H D,. D.-e¥(g) and re R
we define

ol L py=sup (L +6(x)) Z(x) I fID:xi D)y (2.10a)

NEU
The Schwartz space is
CGWy=1feC (G Wy p b, <>~
forall D,, D-e#(g)and all re R}. (2.10b)
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It is a complete locally convex topological vector space with the topology
defined by the seminorms (2.10a). And of course the most important case
is

C(G)=%(G:C). (2.10c)

PROPOSITION 2.11. Define k., =G—V by xen,(x)K AyN,, where
G=KA,Ny=VK,AyN, is the Inasawa decomposition. Then k. (exp p) is
bounded.

It suffices to prove Proposition 2.11 in the case where G is simply
connected, non-compact, and of hermitian type.

LEMMA 2.12. There exists C >0 such that ,(xy)<C+o,(x)+0,{y)
for all x, yeG.

LEMMA 2.13.  There exists C' >0 such that 6, (n) < C' for all ne N,,.

Proof of Proposition from Lemmas. Let Cep,expl=x(expl)-a-n
with x(exp ¢)e K, ae 4,, and ne Ny. Using Lemma 2.12 |« (exp ¢)| =
gy (k,(exp &) = o, (k(exp &) = o ((exp&)nla )< C + aplexpl) +
o,n'a)y = C+ o,(n'a")<2C + ap(n W+ oa,(a"y=2C+
g, (n""). Now |x, (exp &) <2C+ C’" by Lemma 2.13. Q.E.D.

2.14 Proof of (2.12). Write x=vkexp¢ and yp=v'k’exp’, where
v,v'eV, k,k'eK,, and ¢, & ep. Then
xy= (00" )kk')((exp E")exp &'))  where &' =Ad(v'k’) (&),

Write (exp &")(exp &')=whexpn, where weV, heK,, and nep. Then
xy=(vo'w)(kk'h)(exp 1), so

o (xy) = [loowl < ol + 1o/l + Dl = Iwl + o,-(x) + a3 (3).

Use Ge P, K P from [8, Theorem 2.17], b=p  (h)-&(b)- p (b), and
let &,-(h) denote the ¥, projection of K, = ¥ x (K,). Then

Il = o ((exp £"Nexp &) = |[Im & ((exp £")(exp £'))]

by [9. Lemma 10.6], and that is bounded by some constant C according
to [9, Lemma 10.7]. Q.ED.

2.15 Proof of (2.13). Let Ae®_ & €egq,, and n,=6L,€q ;. Assume
E,#0 so that &,.n,, and h,=[¢,,n;]ea, span a three-dimensional
simple algebra g[4]. Then {,=¢,+n, spans f[A]=Tng[4i], A, spans
a[i]=a,ng[4]. ¢, spans n[A]l=mn,nglA], and {h;. &, —n,} spans
p[A]1=png[4]. The analytic subgroup G[1] for g[4] has form G[i]=
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K[A]-expp[4], so exp &, =exp({)exp(&), where (ef[A] and Eep[4]. If
e[, I]=t, then (et and g, (exp &;)=0. Now write { ={,+{,.{4€D,
and {,ef,,s0 g,(exp &)=Ll < ICH. An SL(2: R) calculation shows that
cos(r 1{1|) #0, where r is a constant that depends only on g and g[ 4], so
1 <m/2r.

Summary: given 2e @ we have C, >0 such that ¢,-(exp &,) < C, for all
£, €4,

Let ne N,. Then we can write n=I1.q exp(<;), where &, eg,;. Using
Lemma 2.12. 7,-(n) < [@,]C + 3, 4 oplexpd,) < [@)|C+ X C,.

' Q.E.D.

3. DISCRETE SERIES PARAMETERS

Fix a 0-stable Cartan subgroup Hc< (G and an associated cuspidal
parabolic subgroup P=MAN. Here H=Tx A, where T=Hn K and
A=expla),a=hnp, and Z;(4)=M x 4 with 6M = M. In this section we
discuss holomorphic families of coefficients of relative discrete series
representations of M.

Fix a positive root system @), = @' (m, t) such that

if m, is a non-compact simple ideal of hermitian type in m
then @ *“(m,,t~m;) contains a unique non-compact
simple root. (3.1)

We denote @, , =@ * (1,,. 1) and write p,, and p,, , for the half sums over
@/, and @/, .. Define

A, all Agit* such that
/. — pa is integral, e, e* ¥ is defined on T
.. ) i . (3.2a)
/. is @ ,,-non-singular, i.e., (4 ay#0forxe @,,

18 @), o dominant, ic., (A a)=0forxe @y, .

Write t=t,®v,, where t, =t n1,, and set iv¥ = {icit*: i(t,)=0}. Then
A, 1s the disjoint union of subsets

{in=ro+hyhyeivt and B(4,) #0for fe @ \D ] ). (3.2b)
where 4, belongs to the discrete set
Ay v all 4g€it* such that 4, — p,, is integral,
4ois @, -dominant, and @ J, , non-singular.

and A4(v,,)=0. (3.3)
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If ied,, then n% denotes the corresponding relative discrete series
representation of M°. Thus the relative discrete series of M is the disjoint
union of continuous families

UVho g tha € Dy = i) ], (3.4a)

where 1,€ 4,,, and %, is a topological component of
thayeivd  flhy) # —Plig) for fe D N\, ). (3.4b)

To define continuous families of relative discrete series representations
on M and M we proceed as follows. Recall the decomposition K= K, x V
of (2.1). Since V is central in K, each heiv* gives a unitary character ¢”
of K which is trivial on K. Consider iv* = /f* by iv* = {heit*:h(t;)=0].
Then for each heiv*, we can define h,,(h)=h|,. Since t, =¥, h,,(h)eivk,.
Further, any 4,, € iv%, can be extended to v,, @ f, by making it zero on f,,
and then extended arbitrarily from o,, ®f, to f to give a linear functional
heiv* with h,(h)=h,,. Thus

iv¥ = {hy(h)="h|  heiv*}. (3.5)

We can now reparametrize our continuous families on M " as follows. Fix
Ao€Ay, and let @ ={heiv*: hy(h)e Py} Then {Ag+hyhyeZy )=
{Ao+hpy(h):heZ}. Further the representation 77, , ., has Ze-charac-
ter et rMtimi =l M| ®e€"| 0. Let x(0) be any element of
Z,(M°)" with Z,.u-character ¢* “*. Since Z,(M")= K and ¢" is a
character of all of K, ¢”|, 0, is a character, which we will also denote by
e", of Z,,(M°). Set

X(/z)z;(('O)@e", heio* (3.6)

Then y={y(h):heiv*} is a continuous family of irreducible unitary
representations of Z,(M°), and y(h) has the same Z,,o-character
e hth as 18 o Thus we can define continuous families of relative
discrete series representations of M'=Z,,(M°)M° by

n={n(h)=x (MO, umheZ} (3.72)
and continuous families of relative discrete representations of M by
M= {aM(h)=Ind}\n(h):heZ}. (3.7b)

The parametrization (3.7) of the relative discrete series of M extends
in the obvious way to a parametrization of the tempered series of
representations of G associated to H:

Ty, =Ind§, n (T () ®e” @ 1 ). (3.8a)
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Here we use normalized induction, so =, , is unitary just when vea*. The
corresponding continuous families of H-series representations of G are the
sets

n,={m, her vea*!, (3.8b)

s

Since n*(4) is obtained via induction from M' to M, we can obtain x,, ,
directly as

T, =IndS , (MM @™ ®1,). (3.9)

We will use this fact to avoid extending results from M' to M.
.We will also use iv* to parametrize families of K{,-types of n) ,, ,, and
K} ,-types of n(h). Let

oy irreducible unitary representation of K,
with Z ,,u-character e** #*: {3.10a)

oy, =0y ®e"": representation of K,

with Z,-character ¢ v+ (3.10b)
0,= 0. ® x{h): representation of K. (3.10¢)

Note that
g,=0,&¢"  forall i (3.10d)

The representations g, are well defined for hev*. We will denote
o=10, heco}] (3.11)

and will refer to ¢ as a holomorphic family of irreducible representations
of K3,.
Let t, be an irreducible unitary representation of K. Set

T,=1,®¢" (3.12a)

t={71,hevk!. (3.12b)

Then 1 is called a holomorphic family of irreducible representations of K.

4. DiSCRETE SERIES COEFFICIENTS

Because our continuous families of H-series representations can be
induced directly from M'AN, we will be able to define Eisenstein integrals
of matrix coefficients for the family n. of induced representations directly
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from continuous families of matrix coefficients for the family n of relative
discrete series representations on M.

Fix a continuous family n of relative discrete series representations of M’
as in (3.7), and two holomorphic families 6, and ¢, of irreducible represen-
tations of K}, as in (3.10). If hebd % we understand n(/) to be the limit,
by coherent continuation, of representations n{h"), A € Z. Denote

H(m:o,:h)=#(nlh):.0,,): the a,,-1sotypic subspace of

7
the representation space # (n:h) = # (n(h)). (4.1)
1°(n:6,:6,:h); The linear span in C”(M') of the
X {alh)(x)w,, w o, weH(nie;h) (4.2)

It is an easy consequence of [9, Theorem 4.1] that dim #'(n:6,:h) is
constant for hecl(&); see Lemma 4.9 below.

First we will construct a family #(n:6,:6,) of functions fe
C (0% x M) such that

h— f(h:x)is holomorphic on ¥ for all xe M* (4.3a)

and

fthyet (n:0,:6,:h) when hecl 2. (4.3b)

Functions in the family % (n:6,:6,) will be called holomorphic families of
discrete series coefficients. In the course of the construction we will prove

THEOREM 4.4. Fix hecl% and wye #(n:o,;:h). Then there exists
feF(n:6,:6,) such that f(h':x)={aWNx)wy, w, ) for all xe M

THEOREM 4.5. Let f e F(n:6,:6,) and D, D, e #(m). Then
flh:Dy: x; D) =37_, p;(h) fi{h:x), where the the p; are polynomials and
fie F(n:6,:0,) for appropriate holomorphic families @, of irreducible
representations of K.

Second, we will work out a number of consequences of the construction
and of Theorems 4.4 and 4.5.

We construct % (m:6,:6,) by reducing to the case [9, Sects. 5 and 6] of
a non-compact simply connected simple group of hermitian type.

4.6. Case. M" is connected and simply connected. Then M"= M,x
M, x -~ x M, where M, is a vector group and the other M, are simple,
connected, and simply connected. Then

Day=Dax Ay x - XD, G, S (04 ¥

0 _ h
n =¢ 0®ni|.u+3vl® e ®K)—/.o+"fr

A0+ har

0 y
Oihy =€ "R R Q4
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where 4, is the projection of /i, to (v, ~m,}f, and where g, is the K-
factor of 0,n, Note that #(n°:6?:h,,) is finite dimensional, hence is the
algebraic tensor product of C, with the # (7,  ,,:0,, )

Let £,,:(v,, nmg)¥ x M, — C be defined by f,(h,:x,)=e¢"(x,). Then f,
satisfies (4.3) for M,. Let Aln:6,:06,) consist of the multiples of f,.
Theorems 4.4 and 4.5 then are trivial for M.

Fix i> 0. Suppose that M, either is compact or is not of hermitian type.
Then v,, nn,= {0} and % = [0}. So #,=0 and we define % (n:0,:0,) to
be the linear span in C * (M) of the coefﬁments X (T, A0 W Wy,

w. € H(m,, :0,,). Theorems 4.4 and 4.5 are then trivial for M,.

Suppose that M, is non-compact and of hermitian type. Then v,, nm,
is the center of f,,, one-dimensional. and 7, is an open finite interval
or an open half-line in i(v;,~nm,)* If 7 is an open finite interval we
define .#(n:6,:6,) to be the restrictions to i(v,, nnt,)¥ x M, of the holo-
morphic functions defined in [9, Proposition 5.3]. They satisfy (4.3), [9,
Theorem 5.14] says that Theorem 4.4 holds for M, and [9. Theorem 5.4]
and its proof show that Theorem 4.5 holds for M.
If & is a halfline, we define %(n:6,:6.) to be the linear span of
the functions defined in [9, Theorem 697. They satisfy (4.3). Herc
Theorem 4.4 is obvious for M,. and Theorem 4.5 is an easy calculation in
U(m,).

Define .#"(n":6!:69) to be the set of all finite linear combinations of the

S(hyx)=folhgixy) fillyixy)y- -0 - fi(h,:

where x = (Xg, X, ... X,) € Myx M, x --- xM, = M". Those functions
satisfy (4.3), and Theorems 4.4 and 4.5 hold for M" because they hold for
the M.

4.7. Case. General M°. Let p: M’ — M" be the universal covering
group and 7I'=Kernel(p). Then I, =[{,. .1, ]®u,,®v,, and K,, =
[Kuy, Kpp I x Uy x Vy,, where I'c [Ky,, Ky 1x Ul ' Uy, is a lattice
in Uj,, and p maps V7, isomorphically onto F,,. Note that &, < iv¥ is
just {H ey h'(ny)=0], where %, <i(u, ®v,)* is the topological
component of {A'e€i(u,, @v,)*:f(h')# —p(4,) for fed @), | that
contains &,,.

Let n'= 1”'/““, h'e 7y}, where =) 7[‘)”+,er for h,e%,,.
Similarly, let o;= {0}, :h"€(uy @v,)E}, where g, =0, - (ply,) for
By €(0y,)E. Let F'(n' .6 :6%) be the set of holomorphic families of relative
discrete series coefficients for M’ constructed in (4.6). If /" e #'(n' 6] :065),
SO [y @0, )Ex M - C, define f(h,,:x)=f"(h,:x") whenever xe M
and x'ep '(x). Define #°(n":067:69) to consist of all such f. Then f
inherits (4.3) from f'. and .#° inherits the conclusions of Theorems 4.4
and 4.5 from #

Ay + g
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48. Case. General M.T. Define 11" ={x} . o0 Ty @ 2(M) T
Write 6, ,=0,® x(0) as in (3.10) and set

0' — la;0® huih]]
Let #°(n":6Y:69) be the set of holomorphic families of discrete series coef-
ficients for M0 constructed in (4.7). Let (0) be any matrix coefficient of

$(0Ye Z,,(M®)~. Now ,((h)—x(O)®e” so we can define a holomorphic
family of matrix coefficients of x(h) by y(h:z)=y(0 ")e”(:), zeZy(M°)
Since Zyo=Z,(M°YAM° and both y(h) and 7, ., have Z,.-
character e™* " »v for any fye F%n":6!:69) we have a well-defined
f:M"xv* - C given by f(h:zx,)=v(h: _)fo (h:x,) for ze Z,(M°), x,€
M°. Define #(n:.0,:6,) to be the space spanned by all such f as l// 0)
ranges over matrix coefficients of #(0) and f, ranges over #°(n’:6{:69).
Clearly each fe #(n,:6,:6,) satisfies 4.3, and Theorem 4.4 holds. Finally
Theorem 4.5 is satisfied since f, satisfies (4.5) and f(h:D,:zx,; D.)=
Y(h:z) folh:D,: xq: D,) for any D, D,e¥(m).

We now have constructed a family #(n,:6,:06,) of functions f that
satisfy (4.3), and for which Theorems 4.4 and 4.5 hold. Next, we consider
some consequences of the construction.

LEMMA 49. Dim #'(n:6;:h) is constant for hecl &.

Proof. This is obvious if M is a vector group. Let M be simple, con-
nected and simply connected. If M is compact or not of hermitian type, it
again is trivial. If M is non-compact and of hermitian type, the assertion
is [9, Theorem 4.1]. Now, as in (4.6), the lemma follows for M simply
connected. The result for general M " follows as in (4.7), and the result for
M" is immediate as in (4.8) since deg (/) is independent of /4. Q.E.D.

ProposiTioN 4.10.  Fix h' e cl{&). Then there is a neighborhood J of h' in
c(Z), and a finite subset | f,, ... [,} © F(n:6,:6,), such that {f,(h)} is a
basis of ¥ (n:.0,:064:h) for every hed.

Proof. Let {w,} and {v,} be bases of #(n:06,:4") and #'(n:0,:h’).
Theorem 4.4 gives us {f,,}cF(n:6,:6,) such that [, (h":x)=

{n(h’Wx)w,, v, for xeM'. Now { (M)} is a basis of ¥'(n:6:6,:h").

As in [9, Theorem 5.14 (3)], let P be the complex projective space based
on dim J#(n:6,:h') by dim # (n:6,:h') matrices. Then

W= {([aqp], hyePxv¥:y aqpfqp(h)=0}

is a holomorphic subvariety of Pxp¥, and projection to o¥ is a proper
map whose image omits A', thus omits a neighborhood J of /. Let
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J=Jncl(). In view of Lemma 4.9, the linearly independent subset
VM) hed is abasis of ¥ (n:6, 105 0). Q.ED.

PROPOSITION 4.11. There is a finite open cover \J,....J,} of cl(%) such
that if W' e J, then we may take J=J,; in Proposition 4.10.

Proof.  Let ,(0), ..., ¥ (0) be a basis for the space of matrix coefficients
of y{(0). Then y,(A). ... ¥ (h) is a basis for the space of matrix coefficients
of y(h) for all hev¥. Suppose | fi....f,} < 70(11:0‘ 0:69) give a basis for
f (n":6Y:69) for cvery heJ, and [f,)<=.F(n:.6,:06,) arc defined by
folhizxg)y=w(h:o) flhxg) 1<i<r, | g/gs. Then clearly {f,(h)] gives
a basis for 7 (n:06,:6,:h) for all heJ. Thus it is enough to prove the
proposition for M°, and as in (4.7) we can assume that M is simply con-
nected. Then we can decompose m=v,, ®m, O, vy, =0, D0, D
0ya, and ¥y =1i0%, (X 7y X Yy, With &y, Si0%, L in such a way that
cl(Zy, ) 1s compact and 7, . is the product of open half-lines of the form
Py Vi(D ' )* where m’ runs over the simple ideals of nt,. Along those
local factors of M, #°(n":6!:69) was defined [9, Theorem 6.9] to be the
span of a set of holomorphic families £ that, for every h,,. give a basis of
 (=°:6V:06%:h,,). Thus the result follows from (4.10) using compactness of
cl(&y }. Q.E.D.

5. SPHERICAL FUNCTIONS

We reformulate the results of Section 4 as results on holomorphic
families of spherical functions and prove some inequalities. We need these
results for construction of Eisenstein integrals and for certain growth
estimates. As in Section 4, we work with M" rather than M.

LEMMA 5.1, Let o={0,} he a holomorphic family of irreducible
representations of K, as in (3.11). Then there is a holomorphic family
1= {1, of irreducible representations of K such that each o, is a sub-

representation of T,] g .

Proof. Recall (3.11) that 0, = a,®e" for all h. Let 7, be any irreducible
summand of Ind%+ (00) such that 7,[4 contains 00 Then the representa-
tion 7, =1, ® " ofK K, x Vsatisfies 7| ¢, So®e” l&', =04 QE.D.

Fix a continuous family = of relative discrite series representations of M",
two holomorphic families ¢, and o, of irreducible representations of K7,,
and holomorphic families t, and t. of irreducible representations of K as
n (5.1).
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Denote
¢(t;:0): V-character of 7, ;. (5.2)
Then it is clear that

{(t:h)={(1,:0)e"

is the V-character of 7, ;, for all & (5.2b)
and
Slothy=Clrh)| gt A r
is the ¥ n K',~character of g, , for all . (5.2¢)

For every fe #(n:6,:6,),

flhizxc) =00, :h:zy) {(65:h:z,) flhix)
forallhev*, xeM' andz,,z,e K|, V. (5.3)

Define K}, =K},,-V and K}, , =K, n K, as in (2.2). Given f'e #(n:0,:0,)
we define

F=F(f)vf x M" > LYK%,  x K%, ) (5.4a)
by the formula
Flh:ix)k k)=t thae, DY (tathio, V) flhk |y xks ). (5.4b)

where we decompose ke K|\, S K}, -V by k;=k; v}, k; p€K)yyo v,€V.
This is well defined because of (5.3).
Extend o, to an irreducible representation &, , of K}, by

Gn=0,,Q(t;:h) (5.5)

This is well defined because of (5.2¢). Define an irreducible representation
o, of K}, , by

0/:5/./1|1(‘§',.|~ (5.6)

LEMMA 5.7. Let E, denote the o -isotypic subspace of L*(K}, ). Note
that E, also is the rlghl o ¥-isotypic subspace. Then, for every hevf and
every ,/‘ev/(n.o].oz), F takes values in the finite dimensional space
E,®F,,.

Proof. For he& this is obvious since f(h)e ¥ '(m:6,:6,:h) and
0,=6,,K},, for all h. But both sides of the equation are holomorphic in
h, so the equation is valid for all ~e v¥. Q.E.D.
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Interpret the action of K}, , on W(g,:0,)=FE, ®E, as a double
representation ‘o= ('o,, ),
Cotmpms)g [k k)= [o(m)-¢-o.(m;) ]k, :k,)
=g(m, 'k kams ') (5.8)

We obtain a holomorphic family ‘s = ('6,, '6.) of double representations of
K}, on W(c,:0,) by

Loszymyizomy) @1k k) = Loy (zimy) -0y, (2ams) Yk k)
={(t;:hiz VY tachzs)y dlm, Tk kamy b,

S eVom meKy, . (5.9)

Now (5.4) defines a holomorphic fumily of ‘e-spherical functions.

THEOREM 5.10. Let fe #(n:0,:6,). Then F:o¥xM'— W(o,:0,) is
smooth in (h, x) and holomorphic in h. Given hev¥, F(h) is ‘o,~-spherical,

Flhimxmy)="o, ,(m,)-Flh:x) -0, ,(m,) (5.11)
for xe M',m,e K,

Proof. Smoothness and holomorphicity are clear from (4.3) and (5.4).
Write m, =z, y,, where z,e V. y,e K}, |, and k,=v,k,,, as in (5.4). Then
using (5.4) and (5.9),

‘T amy) - Flhix) o, (ms)k k)
=t chz) iz Flhex)(y) Yk yks v,
=t hio) {rgthiz) (s ey 1)
x{(tathizy oy ') flheky gy xmsks )

since v, 'ky=(z,0)m, 'k ) and kyy; '= (s ko ym, ) in VKY,
But this last expression equals F(h:m, xm, )k, k,). Q.E.D.

For the rest of this section we examine the growth estimates for a
holomorphic family F(/:x).

Fix a complex neighborhood %, =% +iw of & in v¥, where o is an
open neighborhood of 0 in /p* with compact closure.

Let a, =a,nm and choose a positive restricted root system
Doy=®"(m ay) Let p,, =13, ;2 and A}, ={ac A, alloga)>0 for
all ae @}, }. Because of the Cartan decomposition M" =K}, cl(4},) K},,
any ‘s-spherical function on M" is determined by its restriction to cl(4 ;).
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THEOREM 5.12. Let fe #(n:6,:6,) and F=F(f). Let D,, D,e¥(m)
Then there are constants ¢,m=0 such that |F(h:D,.a; D,)| <c(1 +
1A (1 +a(a))" |2e”"(a)| for hecl(Z)., and aecl(4},), where w(h)e
(ay)E, le”Ma) <e 7s(a) for all aecl(A} N1}, and h—w(h) is
plecewise linear on 7 .

Proof. Case 1. We will first prove the theorem in the case that D, =
D,=1. As in (4.8) we write f(h:zxy)=w(h:z) f°(h:x,) for some
holomorphic family ¢/(#) of matrix coefficients for y(lz) and some f°e
F%n":6:69). Now |F(h:a)| = SUPj ke i, SR A,"alx ") Since K, | is
compact, [K” /K311 is finite. Let y,, ... 7,€ Zy(M°)n K}, be coset
representatives. Then we can write |F(h:a)|=sup,; [y(h:y; 'y, ') x
SUPy iy kt, | |0k, Tak, ). Now since o, Yy, Te K, L wlhiy, )=
Y(0:7, 'Y for all h Thus there is a constant C with
sup,, [(h:y;ty ) <C for all h Let F° be the spherical function with
values in L*(KY, , x KY, ;) given by F*(h:x)(k,:k,) = f°(h:k, 'xk, ). Then
we have shown that |F(h:a)| < C||F°(h:a)|l. Thus it is enough to prove
the result for F® on M°. But for general M", our estimate can be obtained
as in (4.7) by restricting the parameters in the corresponding estimate on
the universal covering group of M. Thus we can assume that M is simply
connected.

As in (4.6) we decompose M"= M, x --- x M,. We can assume f° is a
product f'=f,---f, as in (4.6) with f,e #(n:6,:6,). Now K}, =
KM().l X oo X Ky oS0 [FO(h:a)ll = | Folho:ao)ll - | Fi(h,:a,)l, where

Fi(h;:a;)e L*(K,, ; x K, ) is the spherical function corresponding to f,.
Thus it is enough to prove the theorem when M°= M, for some 0 <i< 1.

For i=0, M, is a real vector group so K,, ,= .1} and F,:n§, x
M, — C is given by Fy(hy:x) = e™(x,). Since A,,,= {1}, Fo(hg:ay) = 1.

For 1 <i<r, M, 1s simple, connected, and simply connected. If M, is
compact, then 4,, = {1} and v,= {0} so the result is trivial.

If M, is non-compact and not of hermitian type, then v,=0, and the
assertion reduces to a standard estimate for discrete series coefficients [1].

If M, is non-compact and of hermitian type, then o; is a line and &, is
an open interval in iv* If cl(%;) is compact, then for A, € &, the assertion
is just [9, Theorem 8.1].

If hy=hg+h, with hzecl(%,) and h,ecl(iw), then the proof of [9,
Theorem 8.1] extends the assertions from F(hg:a) to F(h;:a), for the
absolute values of the exponential terms involved depend only on 4, while
the coefficient functions are bounded on compact sets, so that
|F(hg+ h,:a)| satisfies the same type of estimate as [|F(fg:a)| over the
compact set cl(iw).

If cl(%;) is non-compact, then &, has the form (k,, o), and the above
argument holds for /i in an initial segment [A,, 2, +¢] of cl(%,). For hze
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[hg+ & o0), we combine {9, Proposition 6.16] with the explicit formula
[8, Theorem 5.17]. In the latter, both sides are holomorphic when /g€
(hy. %), the absolute values of the exponential terms depend only on /4,
and the remaining dependence on h;e [h,+ ¢, x )} +cl{iw) is polynomial,
so the estimates of [ 8, Corollary 5.27 extend to 4, ecl(%, ), and our asser-
tions follow.

Cuse 11. Now let D, D, be arbitrary clements of #(nt). Then for all
xeM' Fth:D,:x: D)k k)= fUr:Ad k, 'D,: k| 'xk, ':Ad k,D,). Now
there are Dj, D/ e#(m) and a,.a/eC (K, ,) so that Adk, 'D =
Siailk)D; and Adk,D,=Y a/(ky) D] for all k. k,eK},,. Let C=
max, ;.  laitkya] (k) <. Then F(h:D,:xi D))k k) =2, ai(ky)
a’(ks) fUh:D; k| 'xk, ' D]). Now by Theorem 4.5 there are holomorphic
families f; and polynomials p, so that f(A:D. x: D}y =3, py(h) [, (h:x)
for all xe M". Let F,=F(f,). Then F(h:D;:x: DNk k) =3, ailk,)
al (k) py(h) Fythox)k ky). Thus  [FA:D @ D)< CY 0 puth)
F,(h:a)|. and so we have a bound of the desired form by Case [ applied
to the functions F,,. Q.E.D.

6. EISENSTEIN INTEGRALS

We define holomorphic families of Eisenstein integrals, show that they
are spherical functions in the appropriate setting, and check that they
satisfy systems of differential equations corresponding to the appropriate
infinitesimal characters.

Fix a continuous family = of relative discrete series representations of M”

and holomorphic families o, for K}, and 1, for K such that t, , contains g,

Jh Johe

Denote subspaces EX, EX < L*(K,, ) as in Lemma 5.7 and let E¢, E¢ <
L*(K,) be defined similarly. Denote
"EY: kernel of restriction £ — E' of functions
from K, to K}, , followed by projection onto £’ (6.14)
E?: orthocomplement of "E7 in EY (6.1b)
so that we have K, -equivariant isomorphisms
iEY=EY and i EU=EV@EY. (6.1¢)

Now let fy,€ #(n:6,:6,) and view the associated family of spherical
functions

FM:F(.f.M):U?SXA{.‘-—'E,}‘[I®E;Y (6.2a)
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as having values in
ENQEN=E!QEScEIQEZc LYK, xK)). (6.2b)
Denote this by
FyuoExM > LYK, xK,). (6.2¢)

As in (59), interpret the action of K; on W(r,:1,)=E®EY as a
double representation 7= (7, 't,):

[T(g: g Mk ky)=[T(g) ¥ - Ta(g5) 1K, ky)
=y(g, kl:kzgz ). (6.3a)

We define a holomorphic family t = ('t :"1,) of double representations of K
on W(t,:1,) by

[Tilg121: 8220 1k, tky)
=[Tlg120) ¥ T24(8272) 1k k)
={(tchiz) U hez) g ks gy )
for z;eV, g,ck,. (6.3b)
Then

Folh:myoxmy)="t, ,(m) - Fplh:x) T4 4(m,) (6.3¢)

for all m,, m,e K}, since the embedding i, ®i,: EXQEMN > E;QE; =

W(t,:1,) defined in (6.1) is equivariant for the action of K7,.
The embedding i, ® i, is not in general the only possible one. In order
to generate a larger class of spherical functions we denote

End v (W(r1 5))
={SeEnd(W(t,:75)): S(t,(k,} - - T4(k,)
="T,(k,}-SY - 1,(k,) forallk,,kzeKM.,,l//e Wi(t,:1,)}. (64a)
Note for all Se Endyy (W(t,:t,)). hevnf, m,, mye K, e W(r, :1,),
STy plmy) -y -5, (my)) =T, () - SY -1, ,(m5) (6.4b)

since for M=z ki, ;e V., k,eK| ,,.

~i™is =y

any SeEndy: (W(t,:7;)) we define

(my="0,{t,:h:z;) 1,(k;). Now for

Tin

Foslh:ix)=8-"Fy(h:x) forall hevo* xeM' (6.4c)
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Using (6.3c) and (6.4b) we have

Frsthomyxmy) ="t (m) - Fyy olh:x) -ty (m5) (6.4d)

for all m,, m,e K},.

F, o is called the holomorphic family of K',-spherical functions corre-
sponding to fy, € #(n:0,:0,) and Se Ends:  (W(r,:7;)). Now, if xe G use
G=KM'AN to express

x=Kk(x)-m(x)-exp Hp(x) -n(x), Hp(x)ea. (6.5a)

Then the function F,,  of (6.4) extends to

FooExG—- Wi(t,:t,)c LYK, xK,) (6.5b)
by the formula

Folh:x)="1, k(x))-'F,, Jh:m(x)). (6.5¢)
F, is well defined: if /e K, then, dropping A, t,(kl)- Fuy(m)="1,(k)-
T ) Famy="t(k)-F,,(Im).

We can now define the Eisenstein integral

E(PFys)oExatxG- W(t,:1,) (6.6a)

by

E(P:Fy gihivix)

= [ Folhixk) ok Ty R dkZ)(6.6b)
Ki/

where F; and H, are defined in (6.5), and p, is 3 the trace of ad(a) on n.
It is well defined because, dropping 4, if -€ Z then

Folxkz)-ty(z k1)
='1,(k(xkz))- Fyy s(m(xkz)) to(z 'k 1)
="T,(k(xk)) - Fy o(m(xk)z) - T2(z 'k 1)
(because xk =k, m,a,n, givesxkz=k,-m,z-a, -n,)
="t,(k(xk))- Fpy s(m{xk))-oo(z) Tz ') -0k 1)
= Fg(xk)-'t.lk 1)

and H (xkz)=H (xk).

64780 2-4
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THEOREM 6.7. Let 'F,, s be the holomorphic family of K -spherical func-
tions corresponding to fy € F(n:6,:6,) and SeEndgy (W(t,:1,)). Then
the Eisenstein integral E(P:'F,, ¢}) is jointly smooth, holomorphzr inh, v, und
if (h,v, x)ev¥ xa¥ xG then E(P:'F,, ¢:h:v:X) is a 't-spherical function.

Proof. To see that it is a spherical function, drop most of the variables
and compute

E(k, xk,)

JFQ k Y;& /\) Ta(k 1).()(iv ;),,)H,,(kl,\'kgk)d(kz)

:f X/\) r’ 1/\ ) e(n—p]Hp(Ale)d(/\Z)

= [ k) Foloek) otk ) ko) e 0 R d(kZ)

="T(k,)- E(x) - T5(k,).

We check that E(P:'F), ¢) is smooth in (4, v, x) and holomorphic in (A, v).
Theorem 5.8 implies that F,, is holomorphic in 4 and smooth in (A, m) as
a map to W(eo,:0,). The same follows for F,, ¢ as a map to W(t,:7,). Now
F. is holomorphic in /# and smooth in (4, x). Since H , is real analytic, now
the integrand in (6.6b) is holomorphic in (4, v) and smooth in (4, v, x, k).
As K/Z is compact, now E(P:'F,, ) is holomorphic in (A, v), and smooth
in (A, v, x).

Let Z(g) denote the center of the enveloping algebra #(g). If feb¥ then
xp: Z(g)— C denotes the infinitesimal character with Harlsh Chandra
parameter . Every f,, € #(n:6,:6,) satisfies

Fathimiu) =30 @) falhm) - for ue Z(m)

because n(h) has infinitesimal character 3, , . Now, from its defini-
tion (5.4), F,, = F( f,,) satisfies

Fylhimiu) =yt () Fy(h:m) for ue#F(m).
This carries through trivially to F,, ¢ and now
Folh:x;2)= si0 4 nym () F(hix) for -eZ(q)
Differentiating under the integral we have, exactly as in [3, Lemma 19.1],
E(P:Fy gthivix; )
=Ygt hagiiy + ek Z) EQCPUF oy g hivix) for ze#(g). (6.8)
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Here note that y; ..~ i the infinitesimal character of the H-series
representation n, . of (3.9).

7. GROWTH ESTIMATES

In this section we will show how to use the differential equations (6.8)
satisfied by the Eisenstein integrals to sharpen the a priori estimates on
their growth which will be proved in Section 9. The main results arc
Theorems 6.31 and 6.33 which will be used in Sections 8 and 9 to show
that wave packets of Eisentein integrals are Schwartz functions on G. In
order to carry out the induction required for the proof of Theorem 8.5, it
is necessary to study morc general classes of functions. The functions of
type 1[I, .Lp) defined in (7.5) generalize holomorphic families of
Eisenstein integrals, and the functions of type (¢, L,) defined in (7.7)
generalize the product of an Eisenstein integral with a Schwartz function in
the parameter variables.

The results of this section extend the construction and estimates of
Harish-Chandra [4] to include dependence on the extra continuous
parameters in the Eisenstein integrals which come from continuous families
of relative discrete series representations. The organization of this section
closely follows Trombi’s account of Harish-Chandra’s work in [10].

We first review some standard results in invariant theory (see [10]). Fix
Py=M,A,N, a minimal parabolic subgroup of G and let h,=t,+a, be a
Cartan subalgebra of g with t,<w,. For any parabolic subgroup P=
MpApN,of G, write Ly=MpA,and Kp=Kn Mp. Now if A,< 4, then
be is a Cartan subalgebra of 1., and we write W, for the Weyl group of
the pair (L., by ), S(hy ) for the Wp-invariants in the symmetric
algebra of by, 7, for the center of #(1,) and w,: %, > S(bh, )" for the
canonical isomorphism.

Now suppose Q < P are two parabolic subgroups of G with 4,4, <
Ay, sothat *Q =0 L,=L,*N,, is a parabolic subgroup of L. Then we
can consider W, < W so that S(h, "7 < S(h, )"0 Let ppy:2p— 2, be
the algebra injection such that w,(z)=py(fpy(z)) for all e . Let
A(*Q, A,,) denote the roots of the pair (*q,a,). p=32 2, 2 4(*Q, 4,).
Then d, is defined on L, by a’Q(nza):e"”“g“’, meMy,aed,. For he
U#(ly), we write &' =d, '-h-d,. The mapping yp, also has the property
that = — upy(z) €0(*ny) #(1,)*n, for all e #,. Further, 2, is a finite
free module over ppy(£,) of rank r=[W,.:W,]. Let l =v(, vy, ...v, be a
free basis, and for ve 2. denote by -, 1 <i. j<r. the unique element of
Z#p satisfying

o=y Upo(za) ), I<i<gr {7.1)

l<j<r
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Fix a complex Hilbert space T of dimension r with orthonormal basis
{ey,..,e.}. For Aeh¥ ve Z,, let I'(A:v) be the endomorphism of 7 with
matrix pp(z,;:4)=up(z,;)(A) with respect to this basis. Let @, , @/ be
positive systems of roots for (1, e ), (1pes by ), respectively, chosen so
that @5 = {ae®;a|,, =0} and if xed; with x|, #0, then «[,, is a
root of (*q, a,). Define

Tp= H H,, Ty = l_[ H,, Tpp=Tp/Ry. (7.2)

re@y 16D}

ag

Fix coset representatives s, =1, s, ..., 5, for W,/W . The following lemma
appears in [ 10].

Lemma 7.3, For Aebd., let e A)=% <, tolv;:s,A)e,. Then if
Ae(bf) ={Aebh¥ np(A)£0}, the e, (A), | <k<r, form a basis for T
and [(A:v) e (A)=py(vis,A)edA) for all veZy, 1<k<r. Moreover,
there is an rxr matrix B with entries in the quotient field of S(hyc)"? so
that

(i) mpoB has entries in S(hye )"

(i1) for any Ae(bi.), the B(s,A) are projections T — Ce, (A) corre-
sponding to the direct sum T=73, o, Ce ().

Fix h=t,+a, a O-stable Cartan subalgebra of g We may as well
assume that a, < a,. Let P, =M, A, N, be a cuspidal parabolic subgroup
with sphit component A4,. As in (3.3), (3.7), and (3.18), we introduce
parameters for a continuous series of representations induced from P,,.
Thus for A,e Ay, and he 2 ={heiv* hy(h)e Dy}, Ah)=Ag+hylh)e
ity and y(h)eZ,, (M},)" are parameters for a continuous family of
relative discrete series representations on M ,. Let @ be a relatively com-
pact neighborhood of 0 in iv*. Define ¥. =% ()= {hevt:h=hy+ih,,
hre %, hyew}. For he Z¢ define d(h) to be the distance from /. to the
boundary of &. For he %, ve F =a¥, extend A(h) trivially to a,. and v
trivially to t, . so that A(h)+ ivebh¥. Let (t,,.1,,) be a family of double
representations of K on a finite dimensional vector space W with norm | -||
as in (6.4).

Fix P a parabolic subgroup of G with 4,< A4,,< 4,. Then h and b, are
both Cartan subalgebras of 1. Pick v e Int(I,.) such that y(h¢)=h, . For
heZc,veF, write A, = y(i(h)+iv)eh¥.. Let # denote the set of all
differential operators on v¥ x.# with coefficients which are polynomials
in heo* and ve#. Write Z,=2@%(1,)*. For D, ®!|,®,e Z,, pc
CGex F xLp, W), define (D, @1, @Lo)h:v:x)=@lh:v.D 1 x: 1)
For De Z,,reR, set

Sp @)= sup  [De(h:vix)[| Z5"(x) [(h v, x)| " "e” Mo (74)

ox F x Lp
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where (A v, x)| = (1 + A1+ )1+ &)1 +d(h) '), =, is the func-
tion = defined as in (2.4) for the group}P, and 6(x) and o, (x) are defined
as in (2.7). For F any finite subset of ¥ ,. set S, (@)= p.r Sp. (@)

DEFINITION 7.5. We will write II(%. . L.} for the set of all ¢e
C (% x F x L,, W) satisfying
(iy for all (v.x)e#F x L, h— lh:v:x) is a holomorphic function
on &.
(i) for all (hv)e%e xF, @th:v) is a (T, Toulx,)-spherical
function on L,;
(iii} forall (h,vie ¥, x F.zolth:vy=pupz:4,,) elh:v)forall ze Z7,;
(iv) for all De %, there is r =0 so that S, (@) < .

Remark. The holomorphic families of Eisenstein integrals constructed
in (6.6) will be shown in Section 9 to be elements of /I{Z, ., G).
For pe C7 (Y xF xL,, W).De%p. r. 1.eR, set

"Sp.dey=sup [[Dethix) Z5 x4+ 6(x) (L +dih) )
Yo F o Lp
(7.6)
For F any finite subset of %5, set °S,., (@)= pcr"Sh, (@)

DerINITION 7.7. We will write I(%, L,) for the set of all ¢e
C (¥ xF x Lp, W) satisfying

(i) there are a complex neighborhood % of & and a finite set of
functions ¢, ... ¢, € I[{%;, L) so that for each (h v)e &% x . F there exist
a;(h:v)eC, 1 <j<k, such that rp(/z:v:x):Zf.':, a;(h:v)@;(h:v:x) for all
xelp;

(ii) for all De Z,, there is r>0 so that S, ,(¢)< x for all 1>0.

Remark. 1f oell(%;,L,) and ae€ (Y xF)={aecC (2 xF):la|,,
=sup,,, » |Dath:v)| (1+d(h) "Y' <o for all De 2, 120}, then ¢-ac
(2. L,). In fact, given De Z,, r =0, there is a finite subset F of %, x .2 so
that °Sp,, (@ ) <Xy e SpA@) 2l p, ., forall 120,

We are now ready to study the asymptotic behavior of functions of types
(2, Lp) and II(Z. Lp). Both types will be treated simultaneously with
the understanding that if fel(¥.L,), h ranges over & while if
fell(%., Lp), hranges over ¥-. We return to the notation in the first part
of this section. Thus *Q is a parabolic subgroup of L.

For fell&, LYo &, L), define @(f) and ¥, (f) taking values in
W=W®, T by

’

D(fhvim)y= Z dp(m) flhovimv))®e,, melL, (7.8a)
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and

Y(fhaom)= Z dp(m) flhov:m;u,(v:hv))®e,, meL,, (7.8b)

i—1

where for ve Zg, u,(v:hiy) =37 fpo(Zy — ez An)) e,

LemMMa 79. Let by, byelU(ly).veZy. Then @(f:h:v:b .mi.byv) =
(A, 0)D(frhivibimiby) + YA(fihovib.mib,) for all meL,. Here
I'(A,..:v) has been extended to an endomorphism of W by making it act
trivially on W.

Proof. This follows easily from (7.1) since z,;, — pp(z,;:4,,) kills every
fe %, Lp)ull(Pe, Lp) (see [10, pp. 280-2817).

CoroLLARY 7.10. Let by, b,e¥U(l,), Heay. Then for all Te R, me L,
we have @(f:h:v:b,.mexp TH; by)=exp(T(A,,:H)) ®(f:h:v:b:m:by)
+[aexp{(T—1) [(Ay HY} Wyl fihivibmexp tH: by) dt.

LemMA 7.11. Fix De?, 1, lLeU(1p), and Xe*ny=n,n1,. Then we
can choose a finite subset F< ¥, and ry 20 such that

do(ma){ | flh:v: D: Xomay L) + | f(hev: Dy mas 0(X) L)
08, f) Eglm)e P14 Gima)) 7 (1 +d(h) ')
forall r.t>0,fel, L)
SrAfYEp(m)e otlora) |(h oy )| (1 4 a(a)) el ertm
forall r=0, fel{%:, L)

and

do(ma) || f(h:v, Dl cma; )|

S f) Eplm)(1 4 G(ma)) 7 (1+d(h)~")
forall r,t20, fel(&, Lp)

S Af) Eolm) [(hy v, m)|"* 7 (14 g(a)) e elthotm
forall r=0, fell(%e. Ly

~

forallmeLj =K, cl(Ay(P))Kg and ae Aj = {ae Ay a(log a)>0 for all
ae A(*Q, Ay)}. Here A (P)= {ae Ay.a(loga)>0 for all ae ®; } and for
Hea,, Bo(H)=inf{o(H):ae 4(*Q. A,)}.

Proof. Write pp=31Y a,0e®}, po=5Y ., 2P}, and ppo=33 %,
ae A(*Q, Ay). Then pp=p,+ ppy. Using (2.16) for the group L, we have
constants ¢, and r, so that Zp(a) < co(1 +a(a))*e ?(a)for all ae A; (P).
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But ¢ “/(a)=d,'(a)e "(a)<d,'(a) Zy(a) by (2.16) for the group L.
Thus for all meLQ Ldolm) < ey Z, l(m)EQ(m)(l +o(m))™ Then the
second set of inequalities follows trivially from the definitions of "S,, (/)
and S, (/) if we take F= ¢, DR, ®1,}.

We will prove the first set of inequalities for D®/, X ®/, only. The
argument for D®/ ®(?( Xyl is similar. Write f{(/i:v; D X ma; 1) =
flhove Dl maz <™ U ). Nolw m—/\la(,/\ for %omel\ k,e K, and a,€
(A (P)). Thus « ' 'x=*"a"w% Yy Write &' X—Z Ak )X, where
the summation is taken over {xe @ alo, €A4(*Q, Ay, each ¢, is a
%mooth function on the compact group Ad(K,,), and eaulh X, e*n, 5at1sfles
o la 'y = Mera o xloxa) ¥ Binally. write each %X —de/;(/n) X,
where each d,; 1s a smooth function on Ad(K,). Now ¢ o an <1 for all
age A (P) and e e Lo Petlora for i ae A} so that

| fthy, DX mas 1))

<Z '( dn( /\ )(, xtlogun) -a(log a)
’

x | f(hvy Dy ma XylL)|

e Petora N o | flhive Dy mas X )],
il

where each ¢y =sup,, «, >, [¢,(k;) d,4(k;)| <oc. Now the result follows as
above where F= {c,c, DR, ® X1, . Q.ED.

COROLLARY 7.12. Fix De P, ve4,, and by, b,e U(l,). Then we can

choose a finite subset F of J’ and ry = 0 so that for all me LQ JHe cl(az))

|V (fhv: Db :mexp H; by)|
OSir Af) Epm) e P (L 4 Gimexp HYY * 0 (1 +d(h) ') *
forall r, 120, fel(Z, L))
SpAf)Emye D (v, )T (L 4 | H )l e
forall r=0, fell{%,. L)

and

N@(fh:v,D:b,; mexp H; b,)|

S, A f) Epm)(1 +G(mexp H)) " (1 +d(h) '} !
forall r, 120, fellZ, L,)

Se ALY EQ(m) [(hy v m)|"7 70 (14 [H|Y o et ot
forall r=0, felll&:. L,).

=~
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Proof. This follows from (7.11) because, by definition (7.8), ¥, (h:v:b,:
mexp H; b,) is a sum of terms of the form d(mexp H) f(h:v:b\: mexp H.
(Upp(2) —pp(z:A, N v;bs) = dolmexp H) f(hiv:bimexp H: (ppp(z)
— z)v;by) for some € Zp. But ppy(z) —ze0(*ny) #(1,) *ng,. Q.E.D.

For any AebX.. let B,(A) be the endomorphism of W= W& T given
by | ®np(A) B(A), where B is defined as in Lemma 7.3. For 1 <i<r and
veZ, set

S.(fh:vim)= B (s;4,,) D(fhvim); (7.13a)

Y. fhivim)=B,(s;4,,) VA hivim). (7.13b)

Since B,(s;4,_,) depends polynomially on / and v, there are constants ¢ >0
and =0 so that

IBi(s; 45 Mop<e(1+ A1) (1+|v])". (7.13c)
LEmMMA 7.14. Let by, b,e#(ly),meL,, Heay. Then for all TeR,
| <igr,

Q.(fh:v:b:mexp TH: b,)
=Tt (fhiv:b,:m; b,)

nl

+J et Dttty (fihivib, i mexp tH; by)dr.
0

Proof. This is an immediate consequence of (7.10) together with (7.3).

Q.E.D.

For 1 <i<r, let 4,(h) be restriction of the real part of 5,4; to a,. Note

Ahy=2Ahg) if h=hg+ih, with hpe % hew. Set I={1,2,...r} and
define

I"={iel:Ai(h:H)=0forallhe 7, He a,};
I*={iel:);(h:H)>0forsome he 7 and some Heaj }; (7.15)

I" ={iel:A(h:H)<Oforall ke Z and all Hea .

Note that /=7°ul U[l*, sinceif i¢ I*, A, (h:H)<Oforall he ¥, Hea.
But a/ and & are open, and 4,(k:H) is a linear function of # and an affine
function of h, so that either A,(h:H) is identically zero, or else 4,(h: H) <0
for all he % and Heaj.
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LEMMA 7.16.  Let C be a compact subset of L, 2 a compact subset of

ay. Then we can choose Ty=0 so that mexp THe L), for me C and

T>T, Hef

Proof. See [2. Lemma 54].
For Hea 0 iel’UlI*, define i (H)y=1he ¥, :ilh: H)+/3)(H >0)
Y HY=%L(H)n 7. Note if ie ", then i (H)=, for all Heaj

LemMma 7.17. Let D e A b, by e U(ly) iel" V", He as. Then
So Wi frhovy Doe ™0 mexp tH: bs)l| di converges um/mmll for
voand m in compact subsets of F and L, respectively. and for h in compact
subsets of

YUH) i fellZ. Ly):
YyH) i felll . L)

Proof. This follows from (7.12), (7.13¢), and (7.16). Q.ED.

Lemma 7.18. Let ie 1" v 1", Heal. Then &, ,(f:hivim:H) =
lim, ., , @ (fhv:mexp THYe "' exists and is C* on

DPAH)x F x L, if felly, L),
D (HYx F x L, and holomorphic for he 7. (H) if fellls,, L)
Further, for all De #. b, b-c¥(1,),

D, (fhv, Db im by H)
=@, (f:hv;D:b:mb,)

+J Yy (fihovi D e Dt o prexp tH: by d.

0

Proof. Combine Lemmas (7.14) and (7.17). Q.E.D.
Let H\, Hyeaj. ForieI"U /" and

{f (H)n%(Hy)  if fell7. Ly,
HO)YNY (H>) if felll%, . L),

the argument in [10, p. 285] shows that &, (f:h:v:m:H,) =

@, (f:h:vim:H,). Thus whenever there is an HeaQ such that 2.(h:H)+
Bo(H)>0, we can define @, (f:h:v:m)=@,  (fth:vim:H), and the
definition does not depend on the choice of H.
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LeMMma 7.19. Suppose for iel* and he{[ |}, there is an He a, such
that ), (h:H)>0. Then @, (f:h:v:m)=0 for all (v,m)eF xL, and
fed Illr(yj{ L[;) j-

Proof. Since A,(h:H) >0, he {77} so that &, (f:hivim) =
S, (fthovim:H) = lim,_, ®,(fh:vimexp TH)e ™" But using
(7.12) and (7.13c), this limit is zero since @,(f:h:v:mexp TH) grows poly-
nomially in T while |e 751md#)) = o= T#:H) decays exponentially.  Q.E.D.

LeMMa 7.20. Let i€l Then
(1) @, (fihivimiv) = polvis, A, ) D, (fhivim) for all ve Zy:
(it) given by, byeU(ly) and De P there exists ua finite subset F< P,
such that for all r, t 20 there is a C >0 so that
D@, (fthiv;D:by:m; b))l
C°S,, (f) Eom)(1+6(m)) (L +dh) ')
if fellZ, Lp)
CS e (f) Zglm) [(h, v, m)|7 o+ bl oven
it felll%e, Lp)

Here rq and b are the constants given in (7.12) and (7.13c¢).
Proof. (i) From (7.3) and (7.9), we have
D,(f:hivimexp TH; v)
=pplv:s;4,,) @,(fh:v:mexp TH)
+ W (fh:vimexp TH).
But by using the estimate in (7.12) we see that
lim e Tty (fhvmexp TH)=0 for iel”.

T—
(ii) Combine the formula for @, , in the second part of (7.18) with
the estimates of (7.12) and (7.13¢) and use (7.16). Q.E.D.

LeMMA 7.21.  There exists a continuous, piecewise affine function 6 on &
satisfying 0 < S(h) < % for all he & so that given D e P there exists a finite
subset F< 2 and C,r,>0 so that, for all fe (&, L,)oIl(%., L), i€l

qu,(f:h:v; D:b:mexp TH: by)

0 if ieltul }
@, (fh:viD:h:mexp TH; by)  if iel®
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S C()— 'Iki(h)/lQ(H)(l + T HH” )rl

x ¥ {1<D,(f:11:v;D’:hl;m:bz){t
D'elt

~

+ ) W, (f:hov,D':h:mexptH: b,

0

x T3] 4 g | H ) dt}

for all by, byeU(1p). meLy. Heaj, and T=0.

We will need some preparation before we can prove this lemma. This is
the first result in this section where the continuous relative discrete series
parameter plays a significant role. The point is that ie I'* if there is Hea,
with A,(i:H)>0 for some he &, rather than for all e %. In order to
obtain the estimate required in the case that ie7*, we need to use the
holomorphicity in h of functions in I1(%, L,). After we have the result in
the case that /e Il(%., L,), we use the fact that each fel{%,L,) is a
linear combination of functions in /(<. , L,) to obtain the result in case
fellZ, Lp).

Suppose 2 is any real-valued linear function on a,. Write A=3%!_, ¢,2,,
where «,, .., o, are the simple roots of a,, giving a/ as positive chamber.
Recall B,(H)=min, ., {a;(H)} for Hea/. The following lemma is
elementary.

LEMMA 7.22. Let e a and define ¢y, ..., ¢, as above. Then
(1) A(H)=0 for all Hea, if and only if ¢, = --- =¢,=0;

(i) AH)<O for all Heay if and only if ¢;<0 for all 1 < j</, and
i<

(iit)  A(H)>0 for some Hea} if and only if ¢,>0 for some | <j<I.

(iv) A(H)+ By(H)>0 for some Heay, if and only if ¢;>0 for some

I<j<lor Y ¢;>—L

Now for each iel, we write 4, (h)=3_|c;(h)x, and let d,(h)=
— X!, ¢;(h). Define

7 =1he&:c(h)y>0forsome 1 <j</}: (7.23a)
7. =theZ:c (hy<Oforall 1 <j<land d,(h)>0}:  (7.23b)
V= the:c(hy=0forall 1 < <!/} (7.23¢c)

7= the:d(h<1". (7.23d)
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LemMMa 7.24. Suppose % # O and 9| # . Then either
(i) 270z #d or
(i) 9=9"0%,  where 2  # and inf, ., d,(h)>0.

Proof. Fix ie [l and drop i from the notation for simplicity. Suppose (ii)
does not hold. Thus either °# @f, # = ¥, or inf,. ., d(h) = 0. Suppose
9 =@ Then 2=2"0%". Since " # ¢ and %' # § by assumption,
&% is a dense open subset of % and %' is a non-empty open subset of %.
Thus 2% ~ %' # . Thus we may assume & # (. Suppose 2° # . Pick
hoe 2° and h e & . Since & is convex h,=th, + (1 —t)hge @ for all 0 <
t< 1. But for all j, ¢;(h,) =tc,(hy) <0 for 0<r<1 and d(h,)=td(h,)>0 for
O0<t<1. Thus h,e%” for O<t<! and d(h,)—0 as t—0. Thus
mf,. . dh)=0. Thus it is enough to show that % #¢f and
inf,,_.,- d(h)=0 imply that ' "2 " # (.

Pick {h,} e % sothatd(h,)—>0asn— . Fix i* € Z". Then for some
1<j<le;(h™)y>0. If AT e ?' we are done, so we can assume that
dh*)=1. For each nh,,=th" +(1—t)h,e? for 0<t<1. Let
T=1/2d(h"). Then 0 < T< 5. Pick N large enough that d(k,) < 1/2(1 — T)
and ¢;(hy)> —Tc;(h")/(1 =T). Then it is easy to check that A, ,€
Gt N, Q.E.D.

We are now ready to define the function § which is required by (7.21).
Let It ={iel":2°=. 2, +#+{, and d;=inf,.,, d,(h)>0}. Then for
each he & we define

S(hy=min[{d;(h):iel” };{d,iel*}; 1] (7.25a)

[

Then it is easy to check that J is continuous piecewise affine function on
& satisfying

0<dh)<i forall hew (7.25b)
and

Ai(h:H)Y< —d(h) Bo(H) forall Hea}
ifiel orifiel*and he ¥, . (7.25¢)

LEMMA 7.26. Let iel*. Suppose h, satisfies A, (hy:H)+ B,(H)>0 for
some Heay . Then either
(i) iel* and Rehye ., or

(i1) there is a neighborhood U{hgy) of hy so that @, (f h:v:m)=0 for
all (h,v,m)e Ulhy)x F x L.
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Proof. Using (7.22), Re hye & v %! . By (7.19), @, . (f:h:v:m)=0 for
all (v,m)eF xL, if Rehe . Thus when Re hye &, (ii) is satisfied
with U(hy)= {h:Re he & }. Thus we can assume that Re i¢ #*. Now if
ieT*, %= so Reh¢ 7, implies that Re he &, so that (i) is satisfied.
Thus we can assume that i¢ ", so that by (7.24), ¥ n & # &

Suppose first that felIl(%,,Lp). Then by (7.18) @, , (fth:v:m) is
holomorphic on {he ¥ :Rehe & L)} As above. @, ,(fhivim)=0
for he ¥ (C)={heZ:ReheZ} }. Now ¥(C)= (he ¥ :Rehe¥]} is
an open convex set, hence connected. and by hypothesis 77 (C)n #}(C) is
a non-empty open subset of #(C) on which &, ,(f:h:v:m)=0. Thus
&, (fhiv:im)y=0on all of 2](C), so that (ii) is satisfied.

Now suppose € I(«, L,). Then f is a finite linear combination of func-
tions f,e (%, Lp). Thus @, ,(f) is a finite linear combination of the
corresponding @, , (f;). Now @, , (f,:h:v:m)=0 for he ZH(C)uPHC)
implies that @, , (f:h:v:m)=0for he ¥ w @!. Thus (ii} is satisfied.

Q.E.D.

Proof of Lemma 7.21. For De, iel, there is a finite subset £, of #
and for each D'e F, a polynomial P,(D’) on a, so that D-e* =
ettty s, PAAD  H) D for all Hea,. Pick r; >0 and ¢>0 so that
IP(D:H)<C(l+|H|y foralliel D'eF, Let F=J,., F

Case 1. Suppose iel". Then || =1 for all Hea,. and using
(7.18).

| D fh:v; Db mexp TH; bs)
— @, (fihviD:b;mexp TH; h,|

s;f N, (fihiviD e D p cpexp(i+ T) H by)| di
0

= JT' N, (fhoveDoe 0 Dttt o exp tH: by dr

CZ[ (I+(—T)|HIY

ND'eF,
X Wy (fthv; Db mexp tH; by)| dt
K Ce~ Tonbigtrn J Tl W, (fihov:D b :mexptH: b))
per 0

x e V(1 g | H ) dr

since 0 < d(h)< L.
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Case 1. Suppose ie I . Using (7.14),
(D:(f:h:v; D:by;mexp TH; b5)|

<ND(fih:v; D=e™ A b e byl

T
+j [Wy (frhivyDae'm =05t b pexp tH; b)) dt
0

S C+ T ||H|) eTah:0 S B (fihivi D'ty by)|
D' el
.
+C X [Ty )y T
0

D' ek,

XNy ASfth:v; Db mexp tH; b,)| dt

SC1+TH|)" e ToMbt 5 {Hfb,-(f:h:v; D":b;m: b,)|

Dek;

+Jx PV (Fihiv Dby mexp tH; b)) dt}
[¢]

since 0 <d(h) <3 and 2,(h:H)< —6(h) B,(H).

Case 111.  Suppose ie /" and h satisfies A,(h:H)+ % f,(H)<O0. Then
using (7.14) as above and 4,(h: H)< —Bo(H)/2 we have

|@(f:h:vD:b,:mexp TH: b5)U

SCU+T|H|Y e T2 N @ (frhv; Dby by)|

D ek,
-
+C Y [ U Ty [H]yre T e
per "0
XN Wy (fih:v;D':by:mexp tH; b,)|| dt
SC(I+T[H|pyre Wbt % {||‘I),~(f:h:v; D’ :h:m; b,)|

D erF,

+f ptBolH2 Vs (fthiv: D' b, . mexp tH: by)| dt}
0

since d(h) < 3.

Case 1V. Suppose ie !’ and h satisfies 4,(h:H)+ 3 f,(H)>0. Then
Ai(h:H) + Bo(H)>0 also so that (7.26) can be used. In case (ii) of (7.26)
we have @, (f:h:v; D:m)=0 for all (v, m)e.# x L. Then using (7.18) as
in Case I,
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@ fhov,D:h:mexp TH; h,)|

<C Z J (1+(=TY|H| e " ISERL I
per T
XNy (frhove Dby cmexp tHL b)) di

<C Z ' (141 ||H|)v et Dotz

per

X, (fhve Db mexp tH; by)| dt

<C€ foim fiotify Z ‘Ax (1 It ”H” )n (,1{&_;{11)2

ner, Y

X Wy A fhove Db mexp tH: bs)|| dr

since A (h:H)> —%[}Q(H) and o(h)<i. In case (i) of (7.26), we have
4ith: HY< —6(h) Bo(H), and the same estimate as that used in Case II
works. Q.E.D.

From now on, we define (or redefine) &, , (/)=0iliel* Ul .

LEMMA 7.27. Letiel Then @, , (fh:vimexp H)y=e"" @, (f:ih:v:m)
forall Hea,, meL,,.

Proof. This follows from Lemma 7.20, part {i). Q.E.D.

LemMa 7.28.  Fix i€ and suppose that @, ., (f) is not identically zero on
GZxF xLy. Then s; 'a, S ay,.

Proof. We know that @, (f)is C* on ¥ x.# x L. Thus if it is not
identically zero, it must be not identically zero on the dense set of points
for which f factors through a quotient of Harish-Chandra class. Thus by
[4, Lemma 6.3], s, 'a, < a,,. Q.E.D.

Let W(a,;, ay) denote the set of linear maps s of a, into aj such that
there exists k € K, with s(H)=Ad k(H) for all Hea,. Note s determines
the coset kK,,. If B is any subgroup of L, normalized by K, we write B* =
kBk ' for s and k as above. In particular, Q'=M,A, Ny, is a parabolic
subgroup of G with A}, 4,,. For ¢ a (t,.t,)-spherical function on L,
we define ¢* on Ly, by ¢*(kmk 'Y=t (k) p(m)t,(k ') for me L.

LEMMA 7.29.  Given se Wlay,, a,), there is a unique i=i(s) e I such that
s(tHy=s,"(H) forall He a,,.

Proof.  See [4, Lemma 6.3]. Q.ED.
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Recall that @(f) takes values in W=W® T, where T has a dis-
tinguished basis ¢, .., ¢,. Thus we can write, for each ie I, @, , (f:h:v:m)
=2 <<, 9 ([thivim)®e;, where the @, (f) take values in W. Define

Ylhovimy=mp(A, ) flhv:m), (7.30a)
Yo hvim)y =@, (frhivim), se Wiay, ay) (7.30b)
Yo hvim)=my(sgAy,) W, (hivim). (7.30c)

Let © be a compact subset of a; . Choose ¢,> 0 so that f,(H) > 2¢, for
all HeQ. Put e(h)=0(h)e,, where o(h) is defined as in (7.25). For
se Wlay, ay), define det s= +1 by n,p(s4)=det sm,(A) for all Aea}.

THEOREM 7.31. Given by, b,eU(l,) and D € P, there exist a finite subset
Fe %, and an r,>0 so that for all r,t>0 there is a ¢>0 so that for all
mel}, HeQ, T>0,

ldo(mexp TH) Y, (h:v, D:b\: mexp TH, b)

— Y detsy, (hiv;D:bimexp TH: by)|
se Wiay. ag)
COSp, (f)e ™M E,(m)(1+6(mexp TH)) *"
x(L+dh) 'y ©  for fellZ, L)
CSp A f)e "M E (m) [(h, v, m, TH)|" "7 elt ot
for fell(D, Lp).

~

Proof. This follows from combining (7.21) with (7.12) and {7.13c).
Q.E.D.

Lemma 7.32. For se W(ay, a,), W,/l;s extends 10 a smooth function on
G xF xLg if fel(%.L,);
Y x F x Ly if fell(Z¢. Lp).
Further, given by, by U(l,), De P, there is a finite subset F of P, and an
r, >0 such that for all r, 120 there is a C>0 with
Hl//»,'ly(h:v; D:b,:m; b,)|
C S, () Eom) (1 +G(m)y " (1+dh)"")
if fellZ,Ly)
CSI'r(f) EQ(m) |(h’ v, m)i’+’1 6,|hl| apim)
if felllZ, Lp).

~

Finally, for all ve Zy W} (h:vim; v) = (v s An ) W (hivim).
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Proof. Foriel my(s.A,,) ' Bi(s, A4, )=1@mp(s,4,,) B(s;4,.,). But
using (7.3), mppls,4,.,) Bls;A4, ) will have entries polynomial in 4 and v.
Thus it is clear that y,  extends to be smooth, and that the inequality can
be proved the same way as in (ii) of (7.20). The final claim follows from
(i) of (7.20). QED.

THEOREM 7.33. For all se W(a,,, ay),

y! .\6{1(9 Ly) it felle. Ly
FEENIG LYy i fe Il Ly).

Given De IZQ there are a finite subset F— % and an r,>0 such that for
all r, 1 =0 there is a C>0 so that

()‘;I)r+r| 4 l/j/\ <C()‘S’I rl(/) If fe]({/, LI’)
e I)‘r+r]‘(¢/;\)\)< CSp (1) if felll%¢, Lp).

8. SCHWARTZ WAVE PACKETS

In this section we will prove that certain wave packets are Schwartz
functions on G. The main result 1s Theorem 8.4. In Section 9 we will see
that this class of wave packets includes wave packets of Eisentein integrals.
We use the notation of Section 7. Thus H is a fixed #-stable Cartan sub-
group of G, and P 1s a parabolic subgroup of G with 4, 4,,. Let &, be
the set of real roots of (g. b), @5 a choice of positive roots. For 4eh¥,
write we(A) =[] <2, 4>, 2@, . Define 7' = [veF =afing(v)#0].

DermniTioN 8.1, We say fel (¥, L) if fell&, L,) and if for every
parabolic subgroup *Q =Q n L, of L, and s5e Wy, ap).
v e (V)W (hivim) has a smooth extension from .#' to .# for all
(hym)e 2 x L.

LEMMA 8.2. Suppose [el'(%, Lp). Then for all Q.s as above, ('///1.‘\)"6
I'(9, Ly).

Proof. By (7.33), (¥;.) e (%, L},). Let *Q'= QmLQ be a parabolic
subgroup of L, and let re W(ay. aj ). Write g l[// . Then by [4,
Lemma 7.4], there is 1€ W(ay, ay) so that (Y, ) = (1// “ for the dense
set of points for which f factors through a group of Harlsh Chandra class.
But both sides are smooth, so that the equality persists for all values of
(h,v). But f€I'(%, L) implies that v, '(v) ¢ (h:v:m) has a smooth
extension from #' to #. Thus vi— 7, '(v) ¢, (h:v: m) does also.  Q.E.D.

607 80 2.5
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For ¢ € I'(2, G), define
Iw(x):f Alﬁ(,,(h:v:.‘c‘)nkl(v)dh dv

:j Cplhiy: X) (A, ) g (v) dh dv. (8.3)

THEOREM 84. Let o el'(%,G). Then 1,e6(G, W). Given any r =20 and
g1,8-€U(g), there is a finite subset F of Z, so that given any r' =0 there

are C>0 and t 20 so that , |1ll, ., <C°Sp, ().

Proof. Note that the first claim follows from the second. This is
because, by Definition 7.7, given F, we can choose r’ so that °S,. . (¢) < oo
for all 1>=0. We will reduce the second claim to a theorem which can be
proved by induction using the machinery of Section 7.

Write @(h:v:ix)=@h:v:x)ng(A,,)nz"(v). Then for r>0 and g,, g€
U4(9)

allloll, = sup (14+(x)) E7'(x)

xe@G

J Plhiv:ig,:x: ga)dhdvi
x F ‘

<C sup (1+0(a)) Z (a1 +6(k k)
ki .k ek
aeclidy)

k) eyt g ) o) dh
X LF

b

Write “1'g, =3, f/(k,) g * =Y,//(k,) g/. where both sums are
finite, the g, g;’e’”(g) and the f f'eC"(K/Z). Let C,=
SUP; x, ko Lf(ky) £ (ko) < oo Write ki=kik!, i=1,2, where k;eK,,
k/'e V. Then t, ,(k;)=1,.k)(e")(k]), and a(k k,)=6(k(k}). Thus

X

ol . <CCY  sup (1+a(a)) Z Ha)l+6(k))
i kel
aecl{Ay)

[ e pthv: gl as ) dhas|.

oxF

x
|

Thus the result follows from the special case L, =G of Theorem 8.5 below.
Q.ED.

THEOREM 8.5. Let P be a parabolic subgroup of G with A, < A,,. Given
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L, Leu(1,), r=0, we can choose a finite subset F< &y so that given any
r' =0 there are C>0 and 1 =0 so that

sup  (L+a(a))y Z, (a)1+6(k))
uecﬁin{il’)p

X ‘ ) (MR hvil a1 m (v) dh dy

VSN

<C'S, (@) forall @el(7. L,

Here AF(P) is a positive chamber of A, with respect to A* (Lp, 4,), a set
of positive roots for (Lp, Ay). and Zp is the spherical function = for L.

Before we start the proof of Theorem 8.5, we will need some lemmas.

Let E=R" For a multi-index «={(x,,..,%,) put D*=(i/éx )" ---
(/éx,). Write |a|=2,+ --- +x, and denote by M the set of all
multi-indices. For W a finite dimensional vector space with norm | |,
put C(EW)={feC(E:Wys, (f)=sup. (I +|x) 1D (x)| < oo for
all r 20, xe M}. Let p+#0 be the product of N real linear forms on E.

LEmMMA 8.6, Fix xeM and let F={feM:|BI<la|+N|. Then for
every r=0, we can choose C, =1 with the following property. Suppose
feB(E:W) and p 'f is locally bounded on E. Then f= pg, where
gebG(E-W)ands, (8)<C, 3 55 AS) Q.E.D.

Proof.  See [4, Lemma 22.2].

LeEMMa 8.7. Let eh) be « continuous, piecewise affine function on & so
that e(h)> 0 for all he &. Then for all r 20 there are a C>0 and an r >0
so that

sup (1+ala)y =)
acclid) (P Mp

<C Al +dh) ") forall he .

Proof. There are constants ¢>=20 and C>=0 so that Z,(a}<
C(l+a(a))?e "2 for all aec{AJ(P)N"Mp, pp=3Y ma)a, ac
AY(L,, Ay). Let x,, ... %, be the set of simple roots of (L,, A,) deter-
mining 4, (P). Pick H,, .., H,e (agnm,) so that x,(H,)=9,, 1 <i j<d
Then af (P)nm,={3¢ [ t,H;:t,>0 for 1<i<d} and p,=3%, n;,
for some n,>0,1<i<d Thus sup,ca.q rnoar, (1+0(a)) Z3a) <
CTIZ | [sup, oo (1 + 1,0 e "] < Csup,q (14 1) 4o 4
where n=min, _,.,n,>0. Write & ={)f_, &, where ¢,(h)=ne(h),, is
affine for 1 <i<k.&(h)>0 on 7. Then these are constants C; so that
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Sup, oo (1+8) " 4e "< Ci(1+1/g,(h) "¢ for all he&Z,. But since
{hevo*:e,(h)=0} is outside of &, there is a constant C; so that for all
he @, dh) < Ce(h). Q.ED.

Proof of Theorem 8.5. Let {a,, .., a,} be the simple roots for the set of
positive roots of (L, 4,) determining 4, (P). The proof will be by induc-
tion on d, the number of simple roots.

Case 1. Suppose d=0. Then A4, is central in L, so that P=M A, N,
is a minimal parabolic. Since we assume that 4,< 4, < A4,, this occurs
only when A,=A,. Note then Z,= 1, cl(4; (P))=A4,, and ¥, = ¢.

Every element of #(l,) is a finite sum of terms of the form /,=k,u,,
where k;e#(mynt) and wu,eS(a,). Since ¢ is (Kn M,)-spherical,
olh:vikuy:a usky)=dry k) elhviu: a;u,) dry ,(ky), where dr, (k)
i=1,2, depends polynomially on /A Thus there are finitely many
polynomials P;(h) such that || (") k) @(h:v:lia;l)ng'(v)dhdvll <
Y (€M) (k) o(hevias uyus) Pi(h) mg ' (v)dhdvll.

Further, since S(a,) = %, and ¢ is an eigenfunction for #,, @(h:v:ia)=
et opoy:1) for all e A,. But a,=ay so that A4, (log a)=iv(log a).
Thus @(h:via;u,us)=u,us(iv) e "8 @(h:v:1) for all ae 4,. Note that
u uy(ivi=Q(v) is a polynomial in v. Now since ¢ el'(Z, L), f;(h:v)=
P(h)Q(v)@(h:v:1)eb(iv* x#, W) and mn, is a product of real linear
forms on .# for which n'f; is locally bounded. Thus by (8.6), g; =7, 'f;€
E(iv*x F, W). Now Z is the dual of A, and & is a subset of the dual of
V so that g;(h:v) is supported in cl(Z) x #. Pick a polynomial R(4, v) such
that C={, . |R(h,v)|"'dhdv<oc. Then by abelian Fourier analysis,
there is D, e # so that

sup (1+a(a)y (1 +6(k))
kel

|
f (e")(k)e™ "84 g (h:v) dh dv‘
X F

<[ g D)IIRGE)] ! dha.
X F

But, by (8.6) there is a finite subset F, of # so that | g;(h:v;D;)| <
Yoer ILfi(h:v: D). Thus

sup (1 +a(a)) (1 +d(k))
Kel’
ae Ag

j . (" k)olh:vil;al)ng ' (v)dhdv

<CY Y sup || f;(hv; D

j D'eF, 7 F

<C Z sup lo(h:v; D:1)]

Defl
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for some finite subset F of #. But for any r' 20, sup., _; [lo(h:v: D:1)]I <
S, ol@). This finishes the case ¢ =0.

Case 1. Pick d=1 and assume inductively that the theorem is true
when d’' <d For 1 <i<d, leta,={Hea,:o,(H)=0forj#i} and let L, be
the centralizer in L, of a,. Let 47 =A(Lp, AWML, A) A (Lp. Ag).
Let Q,=L,N, be the maximal parabolic subgroup of L, for which N,
corresponds to A'. For Heay, let p'(H)=1Y m(x)a(H), aed],
pl HY =1 m(a) a(H), 0 A* (Lp, Ao, pAH)=pp(H)—p'(H). For h>0,
1<i<d, let A7 (h)={ue AS(P):2,(loga)>bpplloga)}. Fix b small
enough that A (PYS U .. 4, ().

Let [, lse %(1p), r = 0. Since cl(4, (P))= U<, cl(4," (b)), we must show
for each 1 <i<d that there is F,< %, so that given any r' >0 there are
C>0 and 120 so that

sup (1 +0a(a)) Z, (a)l +6(k))
ucvll‘(ifll' {hy

X } . ) ("YW vl as Ly mg '(v) dh dy

VRS

<C'Sy . do).

Fix an i, and drop it from the notation so that Q= LN =Q,.

Write #(l,) = #(mp) Slap), where S(ap) & #,. Then if /, =
mum e U (), u,eSlap), i=1.2, and if a=a,a., where a,e Mo
Ay, a,€Ap, then, as in the case d=0, recalling that Ad,c<
Ay Y hvimyuajayimausy)=Q(v) e™ 8y (hivim,:a,m,),  where
uyu,(ivy=Q(v) is a polynomial in v.

Write #(m,) = #{F)U0nmp)U(n) = w6m))U(Inmp)U«(Tp).
There exist b, e %(f,) #(Lnmp), b,e#(lnm,) #(tp,) and m|e#(mp)n,
myeb(n)#(mp) such that m,=b,+m;, i=12 Thus y (h:vimu;
ayas;msuy) = Y lhovimiuyayasimaus) + W (hevib g ayas; mhus) +
Wolhivibiuy:a ay: byu,). We will estimate each of these terms separately.
First

sup (1 +o(a) Z, (a1 +6(k)Y
uec,;(i}(hl)

J‘ . (e")(k) Yo hovimiuy s asmyuy) ng ' (v) dh dvi

X
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<sup sup sup (1+o0(asy))
kel uare Adp {1|ecl(A"1h))r\,'|.I,z

x(1+6(k)) (1+a(a)y =, (a,)

X

J‘( ~ (e")(k) eiv(logug) Q(V)
|

I

As in the case d =0, we can use (8.6) and abelian Fourier analysis to find
a finite subset F, of # and ¢, > 0 so that this last expression is bounded by

Xy (hovim'asmy) ng ' (v) dh dy

C, sup (L+o(a)) 5 a,)

aecl(4 (P Mp

x Y sup |, (h:v;Dimya,;ms)l.

DeF, U xF

But now using (7.11), there are a finite subset F < %, and r,> 0 so that for
all ' >0 this is bounded by

S v ol f) sup (1+a(a,))

wecl(d, (hh)m Mp

x T3\ (a)) Egla,) e PR 4 a(a)) 0 dy (ay).

But there are constants D>0 and ¢>0 so that Z,(a¢,)<
De~»tean(] 4 g(a,))%. Further, d,'(a;)=e &« and e Folosa) =
e ullosan) o pborlozan) gince g e A" (b). Thus Zg(a,)dy'(ay) e Felloset)
< De rroeedt 01 4 g(a)))? < DEp(a,)' " (1 +a(ay))?. Thus

sup (1+a(a))y " "2, a))
aecl( 4 (PN Mp

= —Botlog wy) g—1
X Zglay) e Pelora) d a,)

<D sup Epla;)) (1+0(a)) "' 4=C, <,
aecl(4, (b)) Mp

since b > 0.

Thus the term involving v (h:v:mju,;a, myu,) can be bounded by
C,°Sp,of) for any r'>0. The same argument also works for
Y (hivibiu,; a;mhu,). It remains to estimate the terms with ¢ (A:v:b u,:
a. byu,), where b, eU(fp)U(mpnl), boeU(mpnl)#(fp). Write b, =
k1B, by=PBor,, where k, e U (¥p), BieU(mpnl), i=1,2, Bi=d," = B,ody,
as in Section 7. As in the d=0 case, since ¢ is Kp-spherical, there are
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polynomials P;(h) so that |||, - (e")(k)m g (v (hovin, Bluy: asus Bok,)
dhdvll < 3,00, 5 ()k) g (v) Pl wolhoviBiug: a: usBy) dh dvl.
Thus it suffices to estimate terms of the form

sup (1 +a(a)) =, (a)1+G(k))
kel
uec](»l,‘ (h)}

J‘ (M Ky () POy ey Bru: acus fh) dh v,

X .

X

where P(h) is a polynomial. We will split this up further. Write
dy(hov:Biug:a: Brus) =y (hov: Bl a: frus) — 3L 4, o det sa’é'(a) x
Yo, (hovifiuga; Byus). Then, as before, )

sup (1 +a(a)) =, (a1 +6(k))
kel
uEuI(A"(/vi)

X

i ("WYY d (hovifiuy:a: faus)m, ' (v) POh) dk dv

VIS F

<sup sup sup (1+0a(a))
kel aedp ulecll.»l/'(h))r”v/\l,»

X (1 +a(a) (14+6(k) =2, (a,)

I
% ‘L’h)(/\') ()i\'(log w2}

"’Z/x,’?

xd (hv:fya; ) myr(v) Pth) Q(v) dh dv;! R

where Q(v)= (u,u,)(iv). Again, since ¢ e I'(¥, L,), we can use (8.6) and
abelian Fourier analysis to find a subset F, of # and C,>0 so that this
expression is bounded by

C, sup (I+a(a;)) =, (a))

U]ECI(.“‘,“}?)](\AI/’

x Y osup lid (h:viD:Bisag: ).

Deby /< F

Write a, =da) exp(TH), where Hea,nm, satisfies o,(H)=0, j#i, and
a,(Hy=1,T=uo,(loga,), and a\€ A,n M, satisfies e*(a})=1. Then d €
L;. Take Q={H}, let 6(/) be the function given by (7.21), and write
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e(h)=106(h). Then using Theorem 7.31 there exists a finite subset £ of £,
and an r,; >0 so that for all »'>0, >0, there is a (" >0 so that this is
bounded by

c.C sup (1+ala))

ulecl(A,'lhj)ﬁ/\Ip.hefj

xZp ') do (@) °Sp () e

xEgla 1 +a(a)) " (1+dh) ') "

But as before, for a, e cl(A; (b)) " M, Z; ' (a,)dg ' (a)) Ep(a)e “etnadloga)
< DE.(a,)"™” (1 + o(a,))? for some constants D>O g>0. But by (8.7),
there exists C, and 7 such that sup, cais-nynu, (1+0(a ) IR
Epla )" < C.(1+d(h) ") Thus for any r'>0 we can find C and ¢ so
that we can bound our expression involving d, by C°S,... (f).

Finally, for each se W(ay, a,), we look at

sup  (1+0(a)) 5, (@)(1+6(k)) dg ' (a)
uecll(f-l,h(h))

|
X i

Now Z,'(a)d;'(a) < DE;'(a)(1+0(a))l, cl(4] (b)) Scl(44(Q)), and

Yo hoviBiuia; Baus) lpw\h vipoug:a; Baug )nQ( anAn), SO we can
bound this by

J (" Wk, (heviBiu:a; Bouy) P(h) g ' (v) dh dv].

Y X F

D sup (l+0(a)) ! EG (@)1 +6(k))
ae cljf .i,*l(Q-‘ 1}

X

[ et Punwl,y

oxF

xthvidy: a; dy) mpl( A, ) dh dvl|,

where Q° is a parabolic subgroup of G with A, = A4,,,d,,d>eU(l, ), and
P. (W'Q"\)“el’(\@, L ). Thus by the induction hypothesis, there is F' < %,
such that for any r’, r, > 0 there are C’ and ¢ so that the above is bounded
by €Sy, APW ))=C Sy yr A(WL)), where F" = {DP:DeF').
But now using Theorem 7.33, there is a finite subset F of ¥, and anr 20
and C>0so that °S,. ., (YL ))<CS,. (f). Q.E.D.
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9. WAVE PACKETS OF EISENSTEIN INTEGRALS

In this section we relate the abstract families defined in Section 7 and
used to form Schwartz wave packets in Section 8 to the holomorphic
families of Eisenstein integrals defined in Section 6. The first main result is
Theorem 9.10 which gives the a priori estimates which are needed to show
that Eisenstein integrals are functions of type //(7, G). The second main
result is Theorem 9.14 which characterizes those wave packets of Eisenstein
integrals which are Schwartz functions on G.

Finally, we show in Theorem 9.18 that the Schwartz wave packets of
Eisenstein integrals corresponding to the H-series of representations are in
¢.{G), the closed subspace of %(G) consisting of functions whose
Plancherel formula expansions involve only the H-series of tempered
representations.

Let F:v* x G — W= W(t,:1,) be a holomorphic family of K},-spherical
functions on G coming from a holomorphic family of matrix coefficients on
M" and a K, ;-endomorphism of W(z,:1,). Then, as in (6.6), for (h, v, x)€
v¥ x a¥ x G, we define the Eisenstein integral

E(P:Fihivix)=|  Flhixk) o,k )™ o8 6kz), (9.1)

YK/

LEMMA 9.2, Let @:0f xG—> W be any smooth family of t-spherical
functions. Then given D, Dye#(g). there are a finite subset S of #(g) and
an r20 so that |®(h:D,: x; D) <+ 1A D posl@h:D ) for all
(h, x)evkxG.

Proof. For fixed hev}, a similar estimate is proved in [2, Lemma 17].
The constants involved are independent of /i except for terms of the form
ldr, (k)| for some xe#(f), depending on D,. D,. These grow polyno-
mially in A. Q.E.D.

CoRrOLLARY 9.3. For any D,.D,e¥(g). there are a finite subser S
of #(g) and an r=0 so that

[E(P:F:hov:Dy:xy D) <1+ 1R Y |E(P:F:hiv:D: x)|.
Des
Write F,(h:x)= F(h:x)e'™ #2703 Then, since [wt, (k)] = " (k)] [w]
for all ke K, we W, we have

N

|E(P:F:h:v:D: x)| <

[F.(h:D: xk)| |e"(k ") d(kZ) (9.4)
7

JK
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for all (h,v,x)en¥ xa¥xG. For xe G, write x=Kk(x)m(x)exp H,(x)n(x)
as in (6.5a). For vea¥, write v=yv,+ iv,, where v,, v,ea*.

LEMMA 9.5. For any De¥(q), there are a finite subset S < (m), and
constants C>0, r=0 so that |F h:D:x)| < C(14 k) |e"(k(x))|
(14 |v|) elrdetl p=pelety s\ Fy (h:vs m(x))| for all (h,v,x)ev¥x
a*xG. ‘

Proof. Let ke K, me M', ae A, ne N. Then using (6.5c),
|F,(h:D; kman)| = |2, (k) F.(h:* ' D: ma)| < Cl(e")k) S, | F.(h:D,: ma),
where we express 'D=3.a.(k) D, and let C=sup, .4, |a;(k)|. Now fix i
and write D,=n~ub, where xe#(f), pe#(m+a), and be#(n). Then
(F(h:kpb; ma)| = |dt, J(x) F (s ma;” b)) < C(1+ |h|) | F(h:p
ma;” ' 'n)|, since dr, ,(x) is a polynomial in A. But F, is right N-invariant
and " 'bew(n), so F(h:u; ma;” ' 'by=e(b) F (h:p; ma), where &(b) is
the constant term of b. Finally, we write ue#{m+a) as p=uvr’, where
vell(m) and v’ e S(a). Then differentiating with respect to v gives a
polynomial in v. Thus [[F,(h:ve';ma)| < C(1+ ) [|[F(hv:ma)| =
C(1+ [v]) {e! —rrleead| | E (h:p: m)|. Q.E.D.

LEMMA 9.6.  There is a constant C, so that
|E(P:F:h:v:D:x)|
SCL+ A (14 |v]) el Z(x) sup [e”(k(kxk "))
ke K
X sup {Eﬂ,(m(xk)) Y | F(he m(xk))t}
k res
Jor all (h, v, x)evExafxG.
Proof. Combine (9.4) and (9.5) to obtain
|E(P:F:h:v:D: x)|
SC+ A (1 + )Y
x Z J 1()11(/( 1)| IF”(k(xk))| e | vy H p(xk)| eﬂppHp(,\‘k)
K7

re S

x |F(h:v; m(xk)| d(kZ).

But by [ 10, p. 2757, there is Cq = 0 so that |v,H p(xk)| < Cq |v,] o(x) for all
ke K. Also, by [10, p. 2751, [, e 777" 2 (m(xk)) d(kZ) = Z(x).
Q.ED.

LEMMA 9.7. There are constants C and ¢ so that sup, . . le"(k(kxk 1))
pA e K

< Cejhlllﬂﬂx)+r)

~ .
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Proof. Write x = k,ak,, where k,, k. ¢ K, ¢« € A,. Then
supy .  l€"(k(kxk ")) = le"(k k)| sup, e |e"(k(kak ~")i. Now |e"(k k)|
<o 5o it suffices to show supx. x.e . l€"(k(kak ")) <oo. But
le"(K(kak 1)) e otk and by (2.11), there is a constant ¢ so that
sup, , o, (k(kak '))<ec. Q.ED.

Let & be the chamber in iv* for which F (/) is a spherical function of
matrix coefficients and . =% +iw. where w is a relatively compact
neighborhood of 0 in iv*. Let d{h) denote the distance from #, to the
boundary of &, where h=hg+ih, hy, heiv®

LEMMA 9.8. For any ve#(m), there are constants C>0, r.t=20 so
that sup, Z,(m(xk)) " [ F(h:e: m(xk)| < C(L+ A1) (L+dh)y Y for all
(h.x)eZ xG.

Proof. Write M'=K,,cl(4,,,) K,,. When we decompose xk=
k(xk) m(xk)exp H p(xk) n(xk), we can assume m(xk)ecl(A4;,,) K}, as
K}, = K. Also, since Z is central in M, elements of Z can be commuted past
(4, ,,) K}, into K, so we can assume that ¢, (m(xk)) is bounded.

Thus we can assume that m(xk)=ak,, where aecl(4;,,) and (k) is
bounded. Now =, (mixk))=Z=,,(¢) and |F(h:v:m{xkD| =|Fth:e:a)l
le"(k )] <C ||[F(h:v:a)|. Now by Theorem 5.12, there are constants € >0,
=0, m=0 so that |[Flh:e:a)l S C(1L+ Y (1 +a(a))" e® " a) for all
aecl(dyy,), he%e. Thus Z,'(a) [Flh:v:a)| <CO+ 18D (1 +a(a))”
e'Reen =) But as in Lemma 8.7 there are constants C >0 and 120 so
that

sup (1 +a(a))” e Re=v »ia) < C(1 +dlh) ). Q.E.D.

aecl A )

LeMMA 9.9. Let De#(q). Then there are constants C, ¢, r, t 20 so that
IE(P:F:hov:D: )| < CUU+ A (1 + ) (L + dih) 1Y Zx) el ot
M) for all (hv, x)e Y xaX x G,

Proof.  This follows from combining (9.6}, (9.7), and (9.8) since |A,| is
bounded in &, . Q.E.D.

THEOREM 9.10. Let g,, g-€%(g) and De:#. Then there are constants
C.oroeg 5o that |\E(P:F:hov:Digiixigo)|l < U+ )1+ (ol +
d(h) ="y (1 46(x)) Z(x) erolo oot for qll (h, v, x)e Ze x a¥ x G.

Proof. We know from Theorem 6.7 that E(P:F:h:v:x) is holomorphic
as a function of (hv)e . xak. We use the same method to estimate
derivatives in (h,v) that Harish-Chandra used to estimate derivatives
in v of the ordinary Eisenstein integral. Namely, if f/ is a holomorphic
function in a neighborhood of |[-—w|<C, then (d"/d=") f(2) <
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(nY/C"ysup,. _ . — ¢ | f(w)l. For derivatives in v, we use radius (1 +a(x)) '
and for derivatives in 4 we use radius C<min{(1+a,(x)) ', 3d(h)}.
Combined, this gives us the polynomial growth in ¢(x)=0(x)+0,(x) in
addition to the terms needed to estimate E(P:F:h:v:g,:x;g,) coming
from (9.3) and (9.9). Q.E.D.

COROLLARY 9.11. E(P, F)ell(%, G).
Proof. Combine (6.7), (6.8), and (9.10). Q.ED.

We are now ready to discuss wave packets of Eisenstein integrals. Since
E(P:Fyelll%,G), E(P:F)-aecl(2,G) for any ac% (2 x.F). (See the
remark following Definition 7.7.) However, there is no reason to expect
that E(P:F)-ael'(%, G). This, as in the finite center case, is because of
“poles of the ¢-function.” In order to eliminate these poles, we bring in the
Plancherel measure. Recall that the Eisenstein integral is a spherical func-
tion of matrix coefficients for a series of induced representations. Thus for
each (b v)e (& xF), E(P:F:h:v) is associated to a representation m,,
defined as in (3.8). By the results of [6], the Plancherel measure for this
representation is, up to a constant factor independent of (4, v), given by

mih:v)=ng(A,,) 1, "(v) n my(h:v), (9.12)

ue ®pla.h)

where m (h:v)=v, sinh zv,/(cosh nv, —cos nh,), v, =2{v, a)/{a, a), and
h— h, is an affine linear functional on Z for which we do not need the
exact formula (see [6]). Write mp(h:v)=]1.co; m.(h:v).

Multiplying E(P:F)-a by my will eliminate the problem of poles of the
c-function. However, in our situation, it introduces new difficulties because
m,(h:v) is not jointly continuous at points (h, v), where h,eZ and v,=0
for some e @, with A, not constant. (These are points corresponding to
principal series which are reducible, or which fail to be reducible because
certain limits of discrete series are zero.) Thus we will need to assume that
a is chosen so that E(P:F)-a-my is jointly smooth. This will certainly be
true if o - m, is jointly smooth. We will need the following lemma.

Let E=R"*% n>0, and denote the coordinates by (x, y.z), where
X, veR, e R". Define €(E, W) as in (8.6).

Lemma 9.13. Suppose fe%(E, W) satisfies g(x, y, £)=xsinh nx/
(cosh mx —cos my) f(x, v, Z) is jointly smooth on E. Then ge €(E, W), and
given e M, r 20, there exist constants C>0,t >0 and a finite subset F of
M so that s, (g)<C Xy psplf)

Proof. Fix r20 and xe M. Then s, ,(g)=5up,,.,Sup 1<, <1 .-l +
I(x, v+ 2m, x)|) |D*g(x, v+2m,z)l. For meZ, write g,(x, ),2)=
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h(x, v) f(x. y+2m,z), where h(x, v)=xsinh zx(x” + y?)/(cosh mx —
cos my) is jointly smooth on Rx { —1, 1] and satisfies the condition that
for all fe M there exist constants =0, 1,20 so that |D%h(x, y)| <
Cull+1x])" for all xeR, —1<y<l. Then g(x, y+2m z2)=(1/(x"+
v2)) g, (x. v 2). Write & = |o,| + || for the total degree of D* in x and ».
Then there are finite subsets F,, F, of M, for each feF, a polynomial
Py(x. v), and for each e F, a constant Cj; so that
D?*¢(x, v+ 2m, o)

Z P/;(.\", .1') [)/{gm(‘\"~ s :)('\-2 + .1'2) * it (-\-’ ‘)?é (0. 0).

fet

Z (‘;fD/fgm(O* 0‘ :) lf (_\', ’1') = (O, 0)

e fn
Further, by Taylor’s theorem there is a finite subset F; of M and for each
peF;, a polynomial Pj(x, ) so that for all meZ, |D*g(x, y+2m, z)—
ng(oﬂ 2"1? "'.H < \/'\-zﬁ_)'2 Sup(,\'lﬁl'nZIf&h ‘P;;(.\‘], yl)Dﬂgm(xlv .VI*:”’
where the sup is taken over (x;. v,)e R? such that [x,| < |x|. |y, <]y
Now for each meZ,
sup (L4 (x, v+2m, 2)) | D*¢(x, v+ 2m, 2}

l<r< v

< sup {L4{(x, v+ 2m, 2)) [1D*g{x. y 4 2m, 2}

P

+ sup (L4 ](x, v+2m, )Y |D*glx, v+ 2m, 2)].

M+ )'3 =100 1z
But
sup (L+(x, v+2m, 2)) | D*g(x, v+ 2m, o)
R PR = I
< sup (14 {(x, v+ 2m, 20)])
N+ },.E = N RN I
X Z |P/f(xﬂ 4"'” ID/jgm('\.* .v‘ :)l
Be iy
< sup (L4 |(x, v+ 2m,2)])
|yl = l.x.z
X Z |P/;(X. ¥ Z [D7h(x, v
ey (e Fl )

X |D7f(x, v+ 2m, o).

where for cach fe F,. F,( /) is a finite subset of M x M. Pick C,.,t,>0 so
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that |Py(x, )| <C (14 |x])" for all feF,, xeR,|y| <1. Then this last
expression is bounded by

Y Y C.
BeF| (r.y)e Falfh)

x sup (14 |(x, v+2m,2))) T IDIf(x, v+ 2m, )]

[y[<x 2

S Cl C?_ z Z S',"‘r+ 1+ 1([)

Bel (.7)e Fa(f)
Now

sup (14 |(x, y+2m, z)|) | D*¢(x, v+ 2m, =)

x4 yzs 1.z

< sup (14 [(x, v+ 2m, 2)|) | D*g(0, 2m, o)

2 2
xc+ <1,z

+ sup {1+ [{x, v+2m, 2)|)

X+ »\'zé I.z

x | D*g(x, y+2m, =) — D*g(0, 2m, z)|.

But there is a constant C; so that the first of these is bounded by

Casup |(1+10,2m,2)]) Y, C;1D"g, (0,0, 2)]

Be ks
<Cysup Y, Cy Y, [(1+](0,2m, 2))
T feils (o7 e Fat )

x |D7h(0, 0)| | D710, 2m, =),

where for each feF,, Fy(f) is a finite subset of M x M. Let C,=
maxge r, e ram C3Cy 1D"A(0,0)]. Then this expression is bounded by

C4 Zlfe F2 C}i Zw,y')g Fil ) S’,",r(f‘)-
Finally

sup (14 |(x, y+2m, 2)|)

\‘3+_\':§ Iz
x |D*g(x, y+2m, z)— D*g(0, 2m, -}

< sup (14 [(x. y+2m, 2)|)

1 5
x4 o< o

X Z sup |P;f(-\'h i)l lD/fgm(xl' Vi 2l

Bets \'f +arsl
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< osup (T4 {(x, v+ 2m )Y

PN
x 3 Cpo X sup IDh(xy. vy
fely (o Ve Falffy TS

X |DVf(xy, v+ 2m. )|

where for each feFiy Ci=sup.:, ey [Pylx, yi)l <o and Fy(f) is a
finite subset of M x M. Write

Ci= max Cy osup [Dihtx, yi)l.
fe v oy e Fafh ‘er "f(;l

Then the above 1s bounded by

Cs sup  (1+|(x, v+2m, 2)|) Y s 00

AR e fe Fu e Fal )

x (14 ((2]m] — 1)+ 2] "

But there is a constant C, so that for all m e Z, sup., ooy (14
Hx, y+2m ) (14 (2 m]—1)* + |21))"?) "< C,. Thus we have a
bound of the desired form. Q.ED.

THEOREM 9.14.  Suppose E(P:F) is a holomorphic family of Eisenstein
integrals defined as in (6.6) and xeC(Z x .7 ) such that x-mg is jointly
smooth as a function on & x F. Then E(P:F)-x-m,el'(¥.G). Given any
De %, there is r =20 so that given any t =0 there is a continuous seminorm
won (9 x.#) so that l’S,)‘,.,,(E(P:F) am ) < pla) for all « as above.

COROLLARY 9.15. Suppose E(P:F) and o are as above. Then
Fm(.\‘):jy.x‘; E(P:F:hvix)alh:vymlh:v)ydhdv is in €(G, W). Given any
g1, 82€(q), r =0, there is a continuous seminorm w on (% x .F) so that
clFll o S pla) for all 2 us above.

Proof. By Theorem 9.14, ¢ = E(P:F)amgz € I'(,G). Then by
Theorem 8.2, I, is a Schwartz function on G and there is F< %, so that
given any r'>0, there are C.r>0 so that ||I7,], ,.<C°S,, (¢). But
1(x)={,, - E(P:Fihovixyathvymplh:v) mg( A, ) me(v) ' dh dv. But by
(9.12), mglh:vy (A, ) rply) '=mlh:v)so that [, =F,. Further, there is
r' 20 so that given any ¢ > 0 there is u so that *S,. . ()< u(a). Q.ED.

Rather than prove Theorem 9.14 as stated, we will prove a slightly
generalized version.

THEOREM 9.16.  Suppose E(P:F|), ... E(CP:F,) are holomorphic families
of Eisenstein integrals, %, .. %, €6(4 x F), and o =mp Y* | E(P:F)a,is
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Jointly smooth on & x F x G. Then ¢ e I'(2, G), and given De &, there is
r=0 so that given any t >0, there are continuous seminorms u,, .., ji, on
C(Lx F)so that °S,,, (@Y 5| u(a,).

Proof. We know that ¢,=Y*_ | E(P:F,)a,el(%,G). But using
Lemma 9.13, we see that ¢el{2, G) also, and that for any
De#;.r.t=20, there are a finite subset F of &%, and r, >0 so that
°Sp, @) < °Sp, o) < X5, %Sk, AE(P:F;)a;). But since each
E(P:F,)ell(%., G), by making r, sufficiently large, given >0 there are
continuous seminorms x; on 4(Z x # ) so that °S,., (E(P:F;)a,) < (o).

Now let Q be any parabolic subgroup of G, se W(a, a,). We must show
that vis . '(v) ¥ ,(h:x) has a smooth extension from %’ to % for all
(h,x)e?xL,. By [4, Lemma 221], it is enough to show that
W, (hivg:x)=0 for all (A, \')eJxLQ if tRp(vy)=0. But 9 € (%, G) so that
Yo, (Aivix)is jointly smooth on % x F x L,. Thus it is enough to show
that for all hye @ such that ¢ factors through a group of Harish-Chandra
class, and all v, such that m.(vo)=0,1lim, ,, y , (h,:v:ix)=0 for all xe

Ly, v— v, through regular elements of .7 Now assume Q= P e 2(A).
Then ¥, (hevix) = X5 o (hyv) melhgv) Ypp.p, (hgivix). But
mplho V) Ypp. o) = meply) mlhyv) E(P:F;ihyv)p ,  where

E(P:F;:hy:v)p , is Harish-Chandra’s constant term. Now by [5, Lemma
14.47, there is a constant ¢ so that ||z g(v) m(hgy:v) E(P:Fi:hozv),,,JHf},/,z=
miho:v) [Fi(ho)l 37 ma(v). But lim, ,, m(hy:v) exists and is finite
even if m{h:v) is not jointly continuous at (k,,v,), so that
lim, 7 glho ) gy (o) 2z =0. Thus ¥, (hg:ve:x)=0 for all
x€L,=MA. Now by [4, Cor. of 11.1], ¥ (ho:ve) =7(A,, ,,) @hy:v) =0
on G.

Now suppose Q is any parabolic subgroup of G with W(a, a,)# .
Then for s€ W(a, ap), let g=(}, ). Let P'e #(A), *P'=P' nL,. As in
(8.2). for re W(a, a’) there is '€ W(a, a) so that (y*¥))'=(y. )" But
Y, (hyvg)=0 as above. Thus (Y}7)(ho:ve)=0 for all P'eP(A),
te W(a, a). Thus, again using [4, Lemma 11.1], mg(s,, 44, ,) l//‘l,,,.\-(ho:vo)
=, (hy:vog)=0o0n L. Q.E.D.

For se W(a,a), h, i e &, write h'=sh if A(K')=sA(h). Let W (lh)=
{se W(a.a):sh—h, and W (h)={se W(aq, a) sh=~h" for some h'eZ}.
Note that W, = W, (k) is independent of he &. Let ®(H:h:v) denote the
distribution character of the representation 7, .

LEMMA 9 17. There is a constant ¢ so that for F, as above, and any

X

hove@xF,O(H:h:v:R(X)F,) = ¢ X, oy, oalshisv) E(P:F, shisvix).

Proof. For fixed he %, define F,(h:x)={, E(P:F, h:v: ') alh:v)
m(h:v)dv, and define {(h)eZ by ((h)=e"],. Let ¥, = {h'eZ:e"| =
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¢”|,}. Then it follows from a Poisson summation argument similar to
[8, 7.12] that for all he&, Fx:(h)) §7 (x2) {(h)z)d= =
¢Y e, A ix). Now @(H:h:v:R(X)F, )—f(, L O(H: b vivy E (vx:l(h))
d(yZ) = (z,, e Vs OWH hiviy) Fy(h':xy) d(yZ). Fix h rational, that is,
for which (r,,,1,,) factors through a group of Harish-Chandra class.
Then A’ is rational for all #' € %,, and using [5, Theorems 20.1 and 27.1]

OH:h:yv: v)F b x»)ydiyZ)
Y G
0 unless /' = sh for some s € W(a, a)

={ Y awhis WVE(PFN s Tvix)
se Hulh

if W' =shforsomese W(a, a).

Thus in this case O(H:h:v:R(x)F,)=cc" 3 oy, alshisv) E(P:Fish:sv:ix).
But both sides are smooth functlons of h. so equality persists for all he &.
Q.E.D.

THEOREM 9.18. F,e%,(G, W). In fact there is a constant ¢ so that
F.(x)= ('j,/ s OCH ) (R(x)F) m(h:y) dh dv.

Proof. Using (9.17) (., ; OH v (R(X)VF )y mihevydhdv = ¢ X,y

[, ralsh:sy)  E(P:Fyshosvix)ym(hovydhdy = ¢[W, 1, . zath:v)
E(P:F, :h:v:x)m{h:v)dhdv by changing variables (h, v)— (s 'h, s v} in
the integration. Q.E.D.

We have constructed wave packets

Fz(x}zj i E(P:F:h:ov:xya(h:v)ym(h:v) dhdy (9.19a)

Uox F

and shown they are elements of 4,(G: W). If we want scalar-valued wave
packets, we need only take

JAX)=F (x)(1:1)

=f E(P:F:hov.x)(1:1)yalh:vym(h:vydhdv. (9.19b)
S F

Since @ — @(1:1) is a linear functional on the finite dimensional vector
space W, we will have | f.ll, .. <C  IF,, ., for all g,, g€ %(g), r=0.
Thus f, € €(G) whenever F, e 6(G:W). We can also evaluate both sides of
(9.18) at (1:1)e K, x K, to obtain:

M7 RO 2.6



216 HERB AND WOLF

THEOREM 9.20. Suppose E(P:F) is a holomorphic family of Fisenstein
integrals defined as in (6.6) and €6 (% X F) such that x-mg Is jointly
smooth on % x F. Define the wave packet f, as in (9.19b). Then [, € € ,(G).
More precisely:

(1) Given any g,, g-€#{g), r =0, there is a continuous seminorm yu on
C(LxF) so that | 1, .. < ula) for all o as above.

(1) There is a constant ¢ so that for all xe G,

fz(x):cf O(H:h:v)(R(x) f,) m(h:v) dh dv.

G F

10. EXTENSION TO DISCONNECTED GROUPS

Finally we extend our results for connected reductive Lie groups to the
class [11, 6, 7, 8, 9] of real reductive Lie groups G such that

G has a closed normal abelian subgroup Z

such that Z< Z,(G") and |G/ZG° < x, (10.1a)
if xe G then Ad{x)eInt(g, ). (10.1b)

and
G/G° is finitely generated. (10.1¢)

The Harish-Chandra class consists of the groups (10.1) such that [G®, G°]
has finite center and G/G° is finite.

The first step is to show that there is a particularly good choice of Z.

Fix a Cartan involution # of G as in [11]. The fixed point set K= G" is
the inverse image of a maximal compact subgroup of the linear semisimple
group G/Z;(G°). K meets, and has connected intersection with, every com-
ponent of G. As in the connected case every Cartan subgroup of G is G°-
conjugate to a f-stable one. So every cuspidal parabolic subgroup of G is
G°-conjugate to one of the form MAN, where M and A are 6-stable,
MA=MxA=2Z4A), and M and MA satisfy (10.1).

Proposition 2.1 says, here, that K° has a unique maximal compact sub-
group K? and a closed normal vector subgroup V such that K°=K?x V
and Zsn Vis co-compact in both V and Zg. Since Ad;(K) is compact
we may assume that it stabilizes the Lie algebra of V, and thus that V is
normal in K.
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PrOPOSITION 10.2. The group Z of (10.1a) can be chosen so that Z =
(Z N G°)x E, where

(a) FE is a finitelv generated free abelian group,
(b) E is a closed normal subgroup of G, and

() ZNG°=Zpnt.

Then ZG'=G "< E and ZK° =K' x E= K| x V'x E.

Proof. Start with Z, that satisfies (10.1a). Then Z,=7, 7 does also,
and Z,/Z¢ is finitely generated by (10.1c). Now [7, Lemma 6.3] Z,=
{Z-F} x E', Ffinite abelian, E’ finitely generated free abelian.

Zy={Z NV} xE has finite index in Z,, Z,n V is normal in G = KG*
because it is normal in K and centralized by G° and the finite index
subgroup Z,G"c G centralizes Z,. So Z, has a finite index subgroup
Zy=1{ZopnV}xE" that is normal in G and thus satisfies (10.1a).

Split ¥'=1"x V", where V"=V [G’, G°] and V" <= Z» is normal in K.
Then Z,on V=L x V", where L' is a lattice in V', normal in G = KG"
because it is normal in K and central in G°. By (10.1b), V" is central in G.
So is any lattice L" < ", Now L=L"x L" is a lattice in V, normal in G.
So Z"=LxE" is a finitely generated free abelian group that satisfies
(10.1a).

The action of G on Z” by conjugation defines a linear representation ¢
of G on the rational vector space Z,,=Z2"®, Q. As ¢(G) is finite the
invariant subspace L, has an invariant complement B. Let E=Z"n B and
Z'=LxE Then L and E are normal in G so Z' satisfies (10.1a). Proposi-
tion 10.2 follows with Z=(Z o V) x E. Q.ED.

From now on, we choose Z as in Proposition 10.2. For convenience
we write G” for ZG" and use © and “ to indicate items pertaining to G°
and G".

Recall that the Schwartz spaces for G” and G were defined in [7, Sect. 6]
as follows. For xeG", define = and & as in (2.4) and (2.7). Since V is
normal in K we can assume that ¢, is K-invariant. Let ¢, be a norm on
E coming from an Adg(K)-invariant positive definite inner product on
E,=E® ., R Now we extend 6 to G"=G" x E by

Glxe)=da(x)+0,.(e), xeG’ ecE. (10.3a)

This is equivalent to the definition of & in [ 7, Sect. 6]. Using (2.9¢), we see
that

Hx) <G +6(0M) forall x". " eG”  (10.3b)
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and since ¢, and ¢, are chosen to be K-invariant we have
Gthkx"k 'y=6(x") forall kek (10.3c)
Extend = to G” by
E(xe) = E(x), xeG ¢cE. (10.3d)
Then clearly
S(k"x"y=Z(x"k")=Z(x") forall x"eG". k"eK". (10.3¢)

Finally, because of (10.1b), every element of N (A4,)/Z(A4,) can be
represented by an element of K° Now since coset representatives of K/K°
can be chosen to normalize A, we have S(kak~'})= Z(a) for all keKk,
ae A,. Thus

Skx"k “\=Z(x") forall keK, x"eG". (10.3f)
For fe C*(G"), g,, g, €%(qg), r =0, we define

el Fl o= sup [f(g,:x: g2)] Z(x) 7' (1 +6(x))". (10.3g)

ceG”
Then
CG)={feC G ) Ifl, ,<cforallg,, g.e#(g), r=0}, (10.3h)
and

F(Gy=feC(G):(L(x)f)l s €B(G") forall xeG}. (10.3i)

Let {b,,.., b,} be coset representatives for G/G". For fe C~(G) and
1<t<n, define f,=(L(b,")f)g. Then €(G)={fecC"(G):f,e6(G"),
1 <r<n}, and it can be topologized by the seminorms

a Sl e=alfil e & 8e#(g),r=0,1<r<n (103))

The next step is to extend Theorem 9.20 from G° to G" =G°x E.
Fix a f-stable Cartan subgroup H"c G” and let P"=M"AN be an
associated cuspidal parabolic. Let

nl={n, heZandvea*} (10.4a)

be a continuous family of H” n G%series representations of G° as in (3.8).
The corresponding continuous family of H”-series representations of G is

ne={n,,, =1l ®n:hed vea* nek}. (10.4b)
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Let EAP"n G :F:h:v:x) be a family of Eisenstein integrals on G as in
(6.6) corresponding to the family n{. and a family F of t-spherical functions
on G° coming from a holomorphic family of matrix coefficients on
M"~G° as in (6.5). Now

NP NG Fhivix)=E%P NG F:hiv:ix)1:1) (10.5a)
is a smooth family of matrix coefficients of n{.. Since every matrix coef-

ficient of nj, ., is of the form f(x:e)=f"(x) y(¢), where [ is a matrix coef-
ficient of 7, , we obtain a smooth family of coefficients of n}; by defining

(P F:hvig:xe)=nle) " (P" NG :Fihiviy). (10.5b)

Let #° and 2" denote the respective algebras of differential operators on
7 xF and ¥ x .7 x E whose coefficients are polynomials on 7 x.# and
constant on E. If he & then, as before. d(h} is the distance from A to bd(Z).
The seminorms on C * (¥ x %)

2|, , = sup |Daih:v)| (1 +d(h) 'Y (10.6a)

e
and on C 7 (¥ x # x E)

I Bllp,= sup .1Dﬂ(/1:\':;;)| (1L+d(h) 1y (10.6b)

s F o<
define Schwartz spaces
CIXF)={aeC(PxF):|al),<xfor De#" t=0) (10.7a)
and
CUXFxEV={BeC (I xF xE):|fll}, <=
for De#" 1>0}. (10.7b)
The space (10.7a) was used to form the wave packets for G° in
Theorem 9.20. We will use (10.7b) to form the analogous wave packets

for G".
Two remarks:

Lemma 108, Let d be a constant coefficient differential operator on E
and p a continuous seminorm on 6(4 x F). If Be6(P x F x E) define
ayalhv)y=pBlhivinid). Then Ayn €6 (L xF) and Br>sup, pula,,) is a
continuous seminorm on ¢ ( x . # x E).
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Lemma 109. Let fe%(Z x F x E) and let oy, be as in Lemma 10.8.
If mp(h:v) Blhivin) extends to be C” on @ xFxE then each
mplh:v) o, (h:v) extends to be C* on & x . F.

Now we extend Theorem 9.20 to G” Let feb(Y xF F x E) such that
mglh:v) B(hivin) extends C~ on & x F x E. Form the wave packets

(,DE(-V@):L B [“8”(P”:F:h:v:r]:x:e)B(h:v:n)dhdvdn. (10.10)

THEOREM 10.11.  Ler £"(P":F) be a smooth family of matrix coefficients
on G'=G°xE defined as in (10.5b). Let Beb(ZxF x E) such that
mg(h:v) Blhivin) extends to be C* on @ x F x E. Then @€ (G"). More
precisely:

(i) Let g,, g-€¥(g), r=0. Then there is a continuous seminorm u on
6(7 x F x E), independent of € 6(<Z x F x E), such that al@p ] o S u(f)

(i) There is a constant ¢ so that for all xe G”",

Qpx)= c[ COH"hvin)(R(x)@y) m(h:v) dhdv dy.

rxF s E

Proof. For (i) split 6(xe)=G(x)+ c,(e), where xe G° and e E. Then
the integral defining  [l@jll, ., is bounded by

sup (1+d(x)) E(x) "sup (1 +ax(e))

xe GO ve E

X J (P Fhiviyigix: goie) Blhivin)y mhiv) dhdv dr]l
D x FxE

<sup (1+6(x)) E(x) " sup (14 0.(e))

xeGP cel

L_\ nie) yy(x:n) dn{,

where

tj//,(x:r]}zf P NG F:hiv:ig,:x; g,) Blhovin)y m(h:v) dh dv.

L% F

Now wﬂ(.x)eC"(E). For given r>0 we have a constant coefficient
operator d on F such that

l/’ﬁ x:n)dn| <sup |d¢’1f x:n)|

ne £

sup (1

cek
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independent of x. So the integral defining @7, .. is bounded by

sup (1+6(x)) Z(x) ||
xe Gl v
ne k&

(P NG Fihivig,:xigs)

[ZARY

Plhcvens d)ymihovy dhodv

Since o, ,(h:v)=Blh:vig:d)e 6(2 x F), Theorem 9.20(i) gives us a con-
tinuous seminorm u" on ¢(% x % ), depending only on g,. g,. and r, such
that this is bounded by sup, . ; #’(2,,). Thus we have a continuous semi-
norm p(f)=sup,.p ;z“(a[,_,,) on €(” x.F xE) such that the integral
defining , {¢}l, .. 1 bounded by u(f).

For (ii) note O(H" th:v:n:x:e)=nle) O(H" A G’ :h:v:x) and note that
the Plancherel density functions for G” and G" are related by m"(h:v:n)=
m(h:v). Now, using Theorem 9.20(ii)},

Pylxe)= J n(e) {j i NP GO Fihvix) Bthoviogym(h:v) dh d\'} dn

1  F
= J nie) @9 (x) di.
L
where a,(h:v)=B(h:vin)e 6 (¥ x #) and
<p2"(,\') = [ ) (P NG Fhevixya,(hev)y m(hev) dh dv.

YR F

So

ol =c|

o

xn

COH"N G hv)R(x) @V Yym(h:v) dh dv
and thus

pixe)=c f

R F ok

CUH" G hv){R(X) (p‘:”} n(e) m{h:v) dh dv dy

= (-J CO(H":h:v:n)(R(xe) op) mh:v) dh dv dy
o F ox F

using the Fourier inversion formula on E. Q.E.D.

Our final step is to extend Theorem 10.11 from G”=ZG° to G. First
note that G” is normal in G and of finite index.
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Our continuous family of H-series representations, as in (10.4), will be
ng={m,,=Indé(n},,):heZ vea* nek}. (10.12)

Note that in general G" < Z,(G°)G". Thus the representations =, , are in
general finite sums of irreducible H-series representations.

Choose coset representatives {b,, .., b,} for G/G”. Since K meets every
component of G, we can assume that b,e K, | <i<n.

Now 7, ,l¢-=2" 7., Ad(h,)~". In fact, given ve #(n;,,) we

construct {v,,..,v,} < #(n,,,) as follows:
v.:G— A(m, ) is supported in b, G”, (10.13a)
v(bexX)=mj . (x) v for xeG" (10.13b)

Similarly, if we #(n},,,) we have {w,, .., w,} in #(x,, ).

LemMma 10.14.  The coefficients xv+s {m, , (X)W 0> of 7., IS sup-
ported in the coset b,G" for which b, =b b, mod G". On b ,G" it is given by
bx"— (my, lag) - (b, b)) w, v),“,, EY where a,=b, 'b.b;e K"

Proof. Drop the subscripts on 7, , and 7;,, , and compute

{m(x)w,, Uk>,r/(n1: Z <‘1'i(,x"lh,), VilB D iy

I<i<n
Let x=bx", x"€G", so w,(x 'b,)=0 unless b, 'b,e b,G". Note v,(h,)=0
unless k=1 So x> {(m(x)w, v,> is supported in the coset b ,G"” with
b, =bh_ b, Given that, b ,b,=b,a, and we compute
(X)W 0Dy = (X ]h/\» Lvdbe)D wine
= (wilh;- (b I-V"bf) ! “dy; "), U) 4 (")
={m"(ay) -7 (b, 'X"B;) W, 0) 4 (nr
as asserted. Q.E.D.

Lemma 10.14 tells us how the family (10.5b) of matrix coefficients of G”
defines families for G. Let ¢"(P":F:h:n:v:x") be as in (10.5b) with x” in
place of (x:e). For 1 <i, k <n define

e4(P:F:h:n:v):G— C supported in the coset h,G" for
which b, =5 b, mod G” (10.15a)

by the formula
ex(PiF:hiqivib X"y = &"(P":F:h:ip:viazh, 'x'b;) for

sit0i

e G", b, as specified in (10.15a) and a ;= b, 1h'\b,. (10.15b)
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The e, (P:F:h: n:iv) are matrix coefficients of =, , .. Now, as in (10.10), let
Beb(ZxF xE) such that mg(h:v)p(h:viy) extends to C7 on
% x.F x E. and form the wave packets

(p,,\,j(.\‘)::Jﬂ eg(PiFheviix) flhevig)ym(hov) dhodv dy. (10.16)

S Fow E

THEOREM 10.17.  Let E'(P ~G":F) he a family of Eisenstein integrals on
G° as in (6.6) and /er }'fe(/w x .7 x E) such that mglhov) flh:vin) extends
10 be C* on @ x.F xE. Then the ¢ Quy of (10.16) belong to €, (G). More
precisely:

(1) Let g\, g€ (), r=0,1 <1< n. Define s as in (10.15). Then if
[F#5, 4. ,H(p,,‘J,H, «=0. For t=s, there is a continuous seminorm i on
C(Z x F x E), independent of B, so that ., |¢ypll, . <u(p)

(i1} There is a constant ¢ so that for all xe G,

Puplx)=c¢ ' COUH: evin:R(x) @) mlhiv) dh dv dy.

ViR F o

Proof. Using (10 15) we see that Py is supported in the coset #.G" and
Quplb X"V = @pla,b, 'x"h,). Now using (10.3b, c., e, f) it is easy to see that
there are a constant dnd g1, gyel(g ) depending on r, g, g1, a,;, and
b.. but not on f, so that . [l¢,l, ,.< Cy; logll, o Part (i) now follows
from Theorem 10.11.

For (i), we first fix A, #.v and write @ and @" for the characters
O(H:h:v:y) and O(H":h:v:y), respectively. Since @ is supported on G,
we have @(R(X) ¢,,) =0 unless xe b G". Thus it suffices to prove (it} for
xeh,G'. On G" we have O= Z] pen (@), where (@) (v")y=
O"(h,y"b, "), ¥"€G". Thus we have O(R(h.X")@up) =%, ., . (0")
(R{u;b, 1.\‘”/),)({)/;). We can assume as in [6, 6,5] that b, =1.h,, .. b,
normalize H. Let w, e W(G, H) be the Weyl group clement represented by
h,. Then (@(H":h:v:y))" is the character of the H"-series representation
with parameters w, (4, + k(W) eir*, w,x(MeZ, (M")", w,veia* and
w,n€ E. By part (ii) of Theorem 10.11 and the uniqueness of the Plancherel
formula representation of ¢j. @(H":h:vin) (R(»") @) =0 unless

there are s€ W(G", H")and k' € &/ so that
wlx(hYy=sy(h')yand w,(Ag+ A () =s(Ay+ by (h)). (10.18)

Let S={1<r<n:w, satisfies 10.18}. Note [S]>1 since 1€ S. Fix 1S
and write w=w,. Since w and s 'w represent the same coset of G/G”, we
may as well assume that wi,=4i,, wy,=y,. and w¥ =7, so that
O(H":hiyvp)'=6O(H" :whowv:iwy). As in [6.6.8], mOwhwy)=m(h:v) so
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we can change variables in the integration and apply part (ii) of Theorem
10.11 to write

cj CO(H":hvig)"(R(ayb'X"b,) @) m(h:v) dh dv dn

o FoxE

] (’f CO(H":h:vig)(R(ab, 'x"b,) @) m(h:v) dh dv dn
U ox FXE
= pjlab; 'x"h) = puglb,x").

Thus
Puplb X" )= f OH: h:vn)(R(b,X") ¢ yp) mlh:v) dh dv dy,
X F xE
where ¢’ = ¢/[S]. Q.E.D.

o
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