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1 Introduction

In this note we interpret some questions of discrete observability of linear
systems dz/dt = Az in terms of finite dimensional group representation
theory. Some results of Martin and Smith [3] and of Martin and Wallace
[4] are reformulated as results concerning cyclic representations, and then
completed in some sense when we give a complete characterization of cyclic
representations and their cyclic vectors. We then examine the case where
the set of observation points generates a subgroup with the Selberg density

property ([2], [5])-

Thanks to George Bergman for discussions and examples of cyclic repre-
sentations.

2 Group Theoretic Interpretation of Constant Coeflicient Systems

We start by casting some of the basic definitions of (3] and [4] into group
theoretic language.

2.1. Definition. Let » be a representation of a group G on a vector
space V of dimension n < oo . Fix a vector 2o € V, a (co)vector ¢ in
the linear dual space V’ of V, and a subset § = {g1,...,gn} C G. The
triple (x,¢’, S) is discretely observable if we can always solve for 2 in
the system of equations

d - n(gi)zo = e, 1<i<n (2.2)
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Discrete observability of (x,¢’, S) is equivalent to nonsingularity of the
matrix

o - m(g1)
M= M(xd,S)= . (2.3)
d - 7(gn)

The notion of discrete observability for a linear system dz/dt = Az with
constant coefficients, corresponds to the case of a 1-parameter linear group,
where G is the additive group of real numbers, 4 is an n x n matnx,
#(t) = ezp(tA), and g; = t; for some real numbers t;,...,%a, 80 that
x(gi) = ezp(ti A). See [4].

The point of the group-theoretic interpretation is that it has a useful
formulation, as follows.

2.4. Theorem. Let ' denote the dual of 7 , representation of G on the
linear dual V’ of V. Let H denote the subgroup of G generated by S. If
(=, ¢, S) is discretely observable then ¢ is a cyclic vector for *lu .

Proof. If (x,¢’, S) is discretely observable then the matrix M of (2.3) is
nonsingular, so #’(S)¢ is a basis of V'. Then x'(H)c’ spans V', ie. ¢ is
cyclic for #'|x. QED

In particular, in Theorem 2.4, ¢’ is a cyclic vector for x’, so x’ is a cyclic
representation.

2.5. Definition. A cocyclic representation is a representation whose
dual is cyclic.

2.6. Corollary. There exist ¢ € V' and S C G such that (1!',c’ ,S) is
discretely observable, if and only if the representation 7 is cocyclic.

Proof. The vector ¢ is cyclic for ' if and only if one can choose § =
{91,-.. ,gn} such that the #’(g;)¢’ form a basis of V' . QED

Combining Corollary 2.6 with Corollary 3.10 below, in the case of a linear
system dz/dt = Az  with constant coefficients as described above, we
see that x is cocyclic if and only if 4 is admissible in the sense of [4].
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2.7. Counterexamples. First, the converse to Theorem 2.4 fails, for
example in the case where

0 0 2
G = < go > infinite cyclic, S = {1,g0,90°} and =x'(go) = (2 0 0) .
0 2 0

Second, a cyclic semisimple (completely reducible) representation is co-
cyclic, but this fails without semisimplicity, as in the case where

a 0 d
G is the linear group consisting of all real (0 a c) with a,0#£0.
0 0 b

There G is cyclic on V = R3 (column vectors) but is not cyclic on V’ (row
vectors). Dually, cocyclic does not imply cyclic in general.

In order to apply Theorem 2.4 and Corollary 2.6 one needs to be able to
recognize cyclic and cocyclic representations. For that, see Corollaries 3.9
and 3.10 below.

3 Characterization of Cyclic Representations
We first reduce to the case of semisimple representations.

3.1. Theorem. Let x be a finite dimensional representation of a group
G. Then 7 has a unique maximal semisimple quotient! representation, say
¥ , and 7 is cyclic if and only if ¢ is cyclic.

Proof. Since the representation space V of r is finite dimensional, it has
a minimal invariant subspace U such that the representation of G on V/U
is semisimple. The representation ¢ of G on V/U is a maximal semisimple
quotient representation of # . If T is any invariant subspace such that
G acts semisimply on V/T then G is semisimple on V/(T N U) , because
V/(T NU) embeds equivariantly in V/T @& V/U by the direct sum of the
projections. So T'C U . This proves uniqueness of the maximal semisimple
quotient of r .

If x is cyclic, so is every quotient representation, including ¢ .

Now suppose that the maximal semsimple quotient representation ¢ is

1This quotient, when it exists (as in our case) is the cosocle of »
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cyclic. Let V/U be its representation space. If U = 0 then * = 4, so
suppose U # 0 and choose an irreducible invariant subspace T C U. Then
V/U is a quotient of V/T' , so ¢ is the maximal semisimple quotient of
the representation ¢ of G on V/T. By induction on the length of the
composition series now ¢ is cyclic. Let v € V represent a cyclic vector for
¢ and let W denote the span of 7(G)v .

WNT =0,then V = W&T . As W maps onto V/T it maps onto V/U,
so V/U = W/(W NU), and the representation of G on (W/(WNU))®T =
V/(W NU) is a semisimple quotient of x that is larger than ¢ . That is a
contradiction.

Now WNT # 0,80 T CW by irreducibility of T'. Thus W =V and v
is a cyclic vector for x . This completes the proof. QED

Theorem 3.1 dualizes to

3.2. Theorem. Let x be a finite dimensional representation of a group
G. Then « is cocyclic if and only if its maximal semisimple subrepresenta-
tion? is cyclic.

The rest of this section, characterization of semisimple cyclic represen-
tations, is essentially standard. It is included here because there does not
seem to be a good reference.

If A is a simple finite dimensional associative algebra over a field*F
then A is isomorphic to the algebra of n x n matrices with coefficients
in a finite dimensional division algebra D over F. See ([1], p. 39). The
number n = degr A, the degree of A over F, is the maximal size of a set
of commuting idempotents in A. The left regular representation of A (on
itself, by left multiplications) is n times the canonical representation of A
on D", and the latter is irreducible over F.

3.3. Definition. Let x be an F-irreducible representation of a group
G on a finite dimensional vector space V over a field F, so the set »(G) of
linear transformations of V generates a simple finite dimensional associative
algebra A over F. Then degpx denotes degr A, the integer n such that A is
isomorphic to the algebra of n x n matrices with entries in a division algebra
D over F. Note that degpx = dimpV . This is slightly nonstandard.

3.4. Proposition. Let 8 be a semisimple representation of a group

2The maximal semisimple subrepresentation, which always exists, is the socle of »
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G on a finite dimensional vector space V over a field F. Decompose 8 =
k151 ® ... & k.5, where the G are mutually inequivalent F-irreducible
representations. Then beta is cyclic if and only if k; < degpg; for 1 <i<r

. Proof. Th algebra A of linear transformations of V generated by #(G)
is of the form A, @...® A, where A; is the F-simple algebra generated
by #; . So the condition

ki <degrfi for 1<i<r (3.5)

is equivalent to

B is a quotient of g (3.6)

where ) is the left regular representation of A .

Let J be any finite group of order prime to the characteristic of F , such
that A is isomorphic to an ideal in the group algebra ofJ over F . Then
we have a representation a of J on V such that A is the algebra of linear
transformations of V' generated by a(J). Each of the conditions, cyclicity
and (3.6), depends only on A . So we may replace G by J.

Now G is a finite group whose order is prime to the characteristic of F.
So (3.5) is equivalent to

B is a quotient of the left regular representation of G. (3.7

The left regular representation of a finite group is cyclic because any
nonzero function supported at a single group element is a cyclic vector.
Any cyclic representation of a finite group is a quotient of the left regular
representation; just apply the group algebra to the cyclic vector. Now (3.7
is equivalent to the condition that 8 be cyclic. That completes the proof of
Proposition 3.4. QED

3.8. Remark. In Proposition 3.4, decompose V = V; @ ...@ V, and
V; = F% ® U; with the U; inequivalent and irreducible under 8 . In other
words, U; is the representation space of & where B=k&®...0 kS,
such that the 4 are mutually inequivalent and F-irreducible. Express the
algebra of linear transformations of U; generated by Bi(G), as the algebra
of n; x n; matrices over a division algebra D; . When 8 is cyclic, that is
each k; < n; , one can check that its cyclic vectors are exactly the
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v=v 4.t v, v =(Fia@ui) + ot (fir O uik)

such that {u;;} C U; is linearly independent over D; and {f; ;} is a basis
of F¥i , :

Combine Theorems 3.1 and 3.2 with Proposition 3.4:

3.9. Corollary. Let x represent a group G on a finite dimensional vector
space over a field F . Then = is cyclic if and only if every F-irreducible
summand of the maximal semisimple quotient of x has multiplicity bounded
by its F-degree (Definition 3.3). In that case the cyclic vectors for  are
just the vectors whose images in the maximal semisimple quotient o x are
cyclic, and the latter are specified in Remark 3.8. -

3.10. Corollary. Let 7 represent a group G on a finite dimensional
vector space over a field F . Then 7 is cocyclic if and only if every F-
irreducible summand of the maximal semisimple subrepresentation of =
has multiplicity bounded by its F-degree. In that case the cyclic vectors
for n' are just the vectors whose images in the maximal semisimple quotient
of x' are cyclic, and the latter are specified in Remark 3.8.

4 Dense Observation Subgroups

When one knows the structure of the group G, Corollary 3.10 leads to
a quick decision as to whether the representation « is cocyclic, and thus
(Corollary 2.6) whether there exist ¢ € V' and S C G such that (x,d,S)is
discretely observable. If one tries to apply Corollary 3.10 to the subgroup
H generated by S, one runs into problems because the structure and repre-
sentation theory of H may be far from clear. However, if H has the Selberg
density property inside G then a result of Borel shows that enough of the
representation theory of H is clear so that there is no problem in applying
Corollary 3.10.

In ([5], Lemma 1) Selberg shows that if G is locally compact, and if the
quotient G/H has finite invariant measure, then H has the density prop-
erty: if g € G and U is an open neighborhood of the identity element of G
then there exist u;, uz € U and an integer n > 0 such that u;g"u;~! € H.
Borel named the property and proved ([2], Corollary 4.5) that if G is a con-
nected semisimple Lie group without compact factor, H is a Selberg dense
subgroup of G, and 7 is a finite dimensional real (resp. complex) linear rep-
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resentation of G, then every element of #(G) is a real (resp. complex) linear
combination of elements of x(H). Since x is automatically semisimple, it
is cyclic if and only if it is cocyclic, so Borel’s result gives us

4.1. Lemma. Let H be a Selberg dense subgroup in a connected
semisimple Lie group G without compact factor, and let » be a finite di-
mensional real or complex linear representation of G . Then the following
are equivalent: (i) = is cyclic, (ii) x|y is cyclic,(iii) x is cocyclic, and (iv)
x| is cocyclic.

Now combine Corollary 3.9 and Lemma 4.1 with Corollary 2.6 to see

4.2. Theorem Let G be a connected semisimple Lie group without
compact factor, let x represent G on a vector space V of finite dimension n
over F = R or C, and let Sy = {g1,...,gn} C G generate a Selberg dense
subgroup H of G. Then the following are equivalent: (i) there exist ¢’ € V'
and S = {hy,...,ha} C H such that (¢, S) is discretely observable,
(ii) there exists S = {h1,...,hn} C H such that (n,¢,S) is discretely
observable for almost all ¢’ € V! , and (iii) every F-irreducible summand
of » has multiplicity bounded by its F-degree.

4.3. Remark. In (i) and (ii), ¢’ can be any cyclic vector for #’ . Recall
that those are described in Remark 3.8.
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