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O. INTRODUCTION 

This is a survey of some new methods in the representation theory 

of semisimple Lie groups. At f i r s t  acquaintance these methods are not 

completely straightforward, but they already have proved to be quite 

powerful. Much of their power is the fact that these methods have rather 

different perspectives but turn out to be equivalent. 

Roughly speaking, the three methods discussed here are 

i)  methods of differential geometry which on the surface are 

variations of classical geometric quantization, 

i i )  methods of homological algebra such as the Zuckerman derived 

functor construction, and 

i i i )  methods of algebraic geometry, specifically~P-modules and 

the Beilinson-Bernstein localization theory. 

There are a number of methods that I won't discuss in any serious way, 

but I ' l l  t ry to point out which of them f i t  into the same framework as 

the ones that wil l  be described in some detail. In this regard, there 

are some interesting open questions, and some of those wil l  be described 

at the end of this note. 

*Research part ial ly supported by National Science Foundation grant 
DMS-8740992. 
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I .  THE BASIC DATUM 

The groups we consider wi l l  be those of "Harish-Chandra class." In 

other words we consider real Lie groups G, say with real Lie algebra go' 

complexified Lie algebra g = go ®R C and topological ident i ty component 

G o , such that 

(1.1) 
G is reductive, i . e . ,  go = (semisimple)@(commutative), 

G/G ° is f i n i t e  and the commutator [G°,G ° ] has f i n i te  center, 

and i f  x E G then Ad(x) is an inmer automorphism of g. 

This last condition ensures that the Casimir operators act by scalars in 

any reasonable category of irreducible representations of G. 

Let H be a Cartan subgroup of G. Thus, i ts  real Lie algebra h o 

is a Cartan subalgebra of go' that is ,  h = h o ®R C is a maximal ad diag- 

onalizable subalgebra of g, and H is the centralizer of h0 in G. 

Let × be a f i n i te  dimensional representation of H. Denote the 

representation space by E=E X and the associated homogeneous vector 

bundle by E = E×--> G/H. So sections of E can be identi f ied with 

functions f :  G--> E such that f(gh) = X(h)-1-f(g) for geG and heH. 

Choose a Borel subalgebra b c g that contains h. In other wor6s, 

choose a positive root system @+ : @+(g,h) and define 

( I .2)  n = ~ g_~ and b = h+n 
~+ 

Then n = [b,b] and our choice amounts to a choice of polarization on 

G/H. 

We refer to the t r ip le  (H,b,X) as a basic datum. The various 

constructions of representations wi l l  be described in terms of basic 

data. This wi l l  make i t  convenient to compare constructions. 

2. CLASSICAL CONSTRUCTIONS 

Fix a basic datum (H,b,×) as above. Note that dX extends to a 

representation of b on E by dX(n) = O. So we have a system of d i f fer -  

ential equations on the sections of E--> G/H, 
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(2.1) f(g;~) : 0 for gE G and ~ E n 

Here, i f  ~ = ~' + i~" with ~',C"E go then f(g;~) means 

~ i  0 d  f(g.exp(t~'))  + i ~t 0 f(g'exp(t~' '))" So the system (2.1) defines 

a sheaf 

(2.2) On(E) --> G/H : germs of C ~ sections annihilated by n . 

G acts naturally on sections of E by (x.f)(g) : f (x- lg).  This action 

commutes with differentiation from m, so G acts naturally on On(E) 

and thus on the cohomologies of that sheaf. 

Classical geometric quantization leads to the natural representations 

of G on the cohomologies Hq(G/H, On(E)), especially on the space 

H°(G/H, On(E)) of sections of E that are annihilated by n in the 

sense of (2.1). 

ExamRle: total ly  complex polarization. This is the case n n ~ = 0. 

Then [14] G/H has an invariant complex structure for which (2.1) is the 

Cauchy-Riemann equation, and [28] E--> G/H has a G-invariant holomorphic 

vector bundle structure, again defined by (2.1), such that O~(E) is the 

sheaf of germs of holomorphic sections. Thus Hq(G/H, On(E)) can be 

calculated as Dolbeault cohomology. I f  G has a compact Cartan subgroup, 

i .e . ,  i f  H is compact, then the resulting representations of G are 

those of the "discrete series" and i ts l imits ( [ I ] , [23 ] , [24] , [26] , [27] ) .  

In general in this case, H is maximally compact among Cartan subgroups 

of G and the representations in question are those of the "fundamental 

series" and i ts l imits ([26],[27]). 

Example: total ly  real polarization. This is the case n = n where 

G is quasi-split and H is maximally noncompact among Cartan subgroups 

of G. Note that n = n o ®R c where n o = n n go' so G has a(minimal) 

parabolic subgroup P with Lie algebra Po = ho +no" and P=HN where 

N =exp(no). As n (and thus N) acts t r i v ia l l y  on E, the bundle 

E--> G/H pushes down to E --> G/P. The Poincar~ Lemma along the fibres 

of G/H--~ G/P shows that Hq(G/H, On(£)) vanishes for q>0. By defi- 

nition of induced representation, H°(G/H, ONCE)) = Ind,(E) in the C ~ 
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category, i .e.  the action of G on H°(G/H, On(E)) is just the C ~ induced 

representation Ind,(X). The resulting representations of G are those 

of the "principal series". 

Exa_~:  H general, b chosen to maximize nn~.  Then the result- 

ing representations of G include the ones that occur in Harish-Chandra's 

Plancherel formula for G. Specifically, let B be a Cartan involution 

of G, i .e.  an automorphism with square l whose fixed point set is a 

maximal compact subgroup K of G. Without loss of generality one may 

assume e(H) = H. Then h : t+a  where d8 is +I on t and is -l on a. 

That splits H = TxA where T : HnK and A = exp(ao). The respective 

centralizers of a in g and A in G are of the form m+a and MxA 

with dS(m) = m and 8(M) = M. Choose a system of positive ao-roots 

on go, let  n H be the sum of the negative root spaces and N H = exp(nH), 

and define P =MAN H. The P is a cuspidal parabolic subgroup of G 

associated to H. I f  n is a discrete series representation of M, say 

with Harish-Chandra parameter ~+pM where PM is half the sum of the 

positive roots of M, and i f  oEa o so that exp(iq) is a unitary 

character on A, then we define X = exp(v+i~). For a certain index 

q=q(q), G acts on the cohomology Hq(G/H, ~(E))  by the standard 

Ind~(q ® exp(io)) (see [24] and [32]). tempered representation 

The third case described above combines the f i r s t  two by using 

Dolbeault cohomology to the greatest extent possible and ordinary induc- 

tion for the other "variables". This strongly suggests that one should 

try to compute Hq~G/H, On(E)) as follows. 

(2.3) (g/h)* ® E ® Aqn * --> E ® Aq+Im * 

induces an operator 

First, the map 

by ~®e®m --> e ® (~In^~) 

(2.4) dn: C~(G/H, E®AqN *) --> C~(G/H, E®Aq+l~l *) 

The pullback to G is a complex 

(2.5) (C~(G) ® E ® A'n*) H, d 

where d is the coboundary for Lie algebra cohomology of n. 
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The complex (2.5) does compute the cohomologies Hq(G/H, ~n(E)) in 

the cases 

n is real or n is maximally complex for the choice of h 

because in those cases the complex e m(G/H, E®A'N*), d n of sheaves of 

local C ~ sections of E®A'N* is acyclic. But in general that complex 

is not acyclic, and so in general (2.5) does not compute the cohomology 

of @n(E) but rather computes the hypercohomology of a complex of sheaves. 

There is also a topological problem with (2.5). Experience shows 

that, in the cases where one can use (2.5), one must work very hard to 

show that d has closed range. And i t  is very l ikely that d does not 

always have closed range. This range problem is entangled with the 

question of whether a decomposition of E (as (H,b)-module) wi l l  always 

be reflected in decompositions of the Hq(G/H, On(E)). 
These problems are addressed [24],[26],[27] by combining the methods 

mentioned in the introduction with the notion of maximal globalization 

[25] for Harish-Chandra modules. 

3. METHODS OF HOMOLOGICAL ALGEBRA 

The Zuckerman derived functor construction (see [29]) is defined in 

a rather abstract way but in fact f i ts  into the picture sketched above. 

H is a e-stable Cartan subgroup of G as in the third example above. 

We write ~(g, HnK) for the category (g, HNK)-modules, i.e. of g-modules 

which are, in a consistent way on hnk,  modules for HNK. Similarly, 

write ~/(g, HnK)(HnK ) for the subcategory that consists of the (HnK)- 

f in i te modules in ~(g, HnK). ~/(g,K)(K ) has an analogous meaning. 

Consider the "functor" 

(3.1) r : ~ (g ,  H nK)(H n K) ~/(g'K)(K) 

that maps VEJ~/(g, HnK)(HNK) to its maximal k-semisimple k-f ini te 

submodule. I t  is left-exact, but generally has nontrivial right derived 

functors Rqr. The basic datum (H,b,X) specifies the derived func~r 

modules 
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(3.2) Aq(H'b'X) = (Rqr){H°mb(~/(g)'E)(Hn K)} 

To interpret these in bundle language, write C f°r for formal power series 

sections at the base point l.H in G/H. Evaluation at l.H defines an 

isomorphism cf°r(G/H, E®AqN *) ~ HOmb(~(g), E ® Aqm*). The operator d n 

of (2.4) acts on the f i rs t  term, defining a complex of (g,H)-modules. 

That gives us 

Ker(dn: cf°r(G/H,E)(HnK ) --> cf°r(G/H , E®N*)(HnK )) -= Homb(~i(g),E)(HnK ) . 

Resolve the right-hand side by the complex cf°r(G/H, E®A'N*)(HnK ), d n. 

The result is 

(3.3) Aq(H,b,X) ~ Hq(cf°r(G/H, E ® A'N*)(K ), d n) 

Note that the coefficient homomorphisms, defined by Taylor series at l.H, 

gives a (g,K)-module homomorphism 

(3.4) Hq(cf°r(G/H, E ®A N )(K)' dn) --> Hq(cf°r(G/H' E ® A N )(K)'dn) " 

4. COMPLETIONS OF HARISH-CHANDRA MODULES 

At this point we have to be a l i t t l e  bit careful about what we mean 

by a representation. By representation of G we will mean a strongly 
continuous representation of f ini te length (f inite composition series) 

~n a complete locally convex topological vector space. By MaPtsh-Chandra 

module for G we will mean a (g,K)-module that is ~(g)-f inite and 

K-semisimple, and in which every vector is K-finite. 

(~.V) is a representation of G, then V(K) = V is a Harish- I f  
Chandra module for G. I f  V is a Harish-Chandra module for G, then 

any representation (~,V) of G such that V(K) : V is called a globa]i- 

zatlon of V. Globalizations always exist. 
We are interested in a particular functorial globalization, the 

maximal g lobal i : t ion Vma x [25]. I t  has the properties 
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I f  V is any globalization of V then V(K) --> V 

induces a continuous inclusion of V into Vma x. 

(4.2) V--> Vma x is an exact functor . 

I f  V is a globalization on a reflexive Banach space, V' is the dual 

Banach space, and (V')e is the space of analytic vectors in ~ ' ,  then we 

define the space V-m of hyperfunctlon recurs to be the strong topolog- 

ical dual of (V')m. 

(4.3) 

I f  V is a globalization on a reflexive Banach 

space then V-U--> Vma x is an isomorphism of 

topological vector spaces. 

The construction i t se l f  is straightforward. Let (V~}l<i< n generate 

the dual Harish-Chandra module V' = VTK ). Map vEV to the n tuple 

(fv! v ) E C~(G) n of matrix coefficients, fv!,v(X) = <v~,~(x)v>. This 
i, m n " " ~he completion of V in the injects V into C (G) . Vma x is deflned as 

induced topology. Since any two choices of f in i te generating sets for 

V' di f fer by a ~/(B)-valued matrix, Vma x is well defined. 

5. DIFFERENTIAL-GEOMETRIC METHODS 

Using the maximal globalization we can describe some variations 

([26],[27]) on the classical construction (2.5) that wi l l  solve both the 

acyclicity problem and the closed range problem. 

First note that the operator of (2.4) works perfectly well with 

byperfunction sections, giving us a complex 

(5.1) (C-m(G/H, E ®A'N*), dn}: hyperfunction version of (2.4) 

The pullback to G is the hyperfunction version {C'm(G) ® E ®A'n*) )H,d} 

of (2.5). The point of hyperfun~tions here, at least at f i r s t  glance, is 

to get around the closed range problem. There is, however, a more serious 

point as well, which we wi l l  see in the next section, that the cohomologY 
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resulting from (5.1) wi l l  be the maximal globalization of its underlying 

Harish-Chandra module. 

Let X denote the flag variety of Borel subalgebras of B. X is a 

compact complex manifold, in fact is a complex projective variety. The 

real group G acts on X by conjugation and there are only f in i te ly  many 

orbits [33]. Let S denote the orbit G-~ c X. As in the principal 

series example in Section 2, the bundle E--> G/H pushes down to a 

bundle E--> S. There i t  has a Cauchy-Riemann structure from the Cauchy- 

Riemann structure on S that is induced by the complex structure on X. 

Let NS-->S denote the antiholomorphic tangent bundle of S, that is, 

the part of the antiholomorphic tangent bundle of X that is tangent to S. 

I t  has typical fibre represented by m/mn~. Let §S denote the Cauchy- 

Riemann operator for S and Cauchy-Riemann bundles over S; i t  is the 

part of the B operator of X that involves differentiations only in the 

N S directions. Now we have the Cauchy-Riemann complex for E-->S with 

hyperfunction coefficients: 

(5.2) {C-m(S, E ® A'N~), @S}: hyperfunction Cauchy-Riemann complex . 

In effect, (5.2) wil l  make i t  possible to describe a topology on hyper- 

function forms despite the fact that G/H is generally noncompact. 

One can spread (5.2) out a l i t t l e  bi t  inside X as follows. E - > S  

extends uniquely to a B-equivariant holomorphic vector bundle E-->S 

where S is a germ of a neighborhood of S in X. Then we have the usual 

Dolbeault cohomology of E--> S. That, however, loses track of some of 

the structure of S inside X. So, instead, we look at Dolbeault coho- 

mology with coefficients that are hyperfunctions on S (or any open 

neighborhood of S, even all of X) with support in S: 

(5.3) {Cs(~(S, E ® A',~), ~}: hyperfunction local Dolbeault complex . 

I t  turns out that one needs (5.3) for technical reasons: one can calcu- 

late the infinitesimal character of G in i ts action on the cohomology 

of (5.3). Note that Hq(Csm(S, E ®A'N~), B) is just the local cohomol- 

ogy H~+C(s, O(E)) where c is the real codimension of S in X. 
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. EQUIVALENCE OF DIFFERENTIAL-GEOMETRIC AND HOMOLOGICAL METHODS 

The result here is 

6.1. Theorem (Schmid-Wolf [27]). There are canonical G-equivariant iso- 

morphisms between the oohomologie8 of the complexes (5.1), (5.2) and (5.3) 

for the same basic datum (H,b,X), 

Hq(c-m(G/H, E ® A'N*), dn), Hq(c'~(S, E ® A'N~), ~S ) , and 

Hq(Csm(S, E ®A'N~), ~) = H~+C(s, @(E)), c = codimR(S in X) 

These cohomologies carry natural Fr~ohet topologies such that the action 

of G is continuous. The resulting representations of G are canonically 

and topologically isomorphic to the representation of G on Aq(H,b,X)ma x, 
the maximal globalization of the Zuckerman derived functor module (3.2) 
defined by the same basic datum. 

As mentioned above, the complex (5.1) is closest to what one expects 

for geometric quantization, while (5.2) carries the topology of and (5.3) 

gives access to the infinitesimal character. 
The topological part of the theorem must be understood in one of 

two equivalent ways. First, the cohomology of the Cauchy-Riemann complex 

(5.2) can be calculated from a certain subcomplex that has a natural 

Fr~chet topology in which ~S has closed range. Thus Hq(C-w(S, E®A'N*), @S ) 

inherits a Fr~chet topology, and natural isomorphisms carry the topology 

over to the cohomologies of (5.1) and (5.3). This makes the statement 

precise. Second, the topology is determined by the underlying Harish- 

Chandra module Aq(H,b,X) because [25] the topology on its globalization 

Aq(H,b,X)max can be defined in purely algebraic terms. 
The subcomplex of (5.2) to which I alluded to just above, is given 

as follows. Let P be the cuspidal parabolic subgroup of G mentioned 

in Section 2. Then S fibres over G/P, and in (5.2) one restricts the 

hyperfunction coefficients to hyperfunctions that are C ~ along the 

f ibres of S--> G/P. That defines a subcomplex {CG~p(S, E®A'N~), ~S} 

of (5,2). The inclusion is isomorphism on cohomology. G/P is compact 

so hyperfunctions on G/P do not have a natural topology, The C m 

objects along the f ibre are Fr~chet. That leads to the topology on 

Hq(C'm(S, E ® A'N~), ~S ). 
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7. EQUIVALENCE OF HOMOLOGICAL AND ALGEBRAIC-GEOMETRIC METHODS 

The complexified group T G c acts on the flag variety X of Borel 

subalgebras of B. K c acts with only f in i te ly  many orbits [33]. 

Bernstein showed that every orbit is aff inely embedded in X (see [15]). 

Comparing the description [31] of the G-orbits on X with the descrip- 

tion ([19] or [33]) of the Kc-orbits on X, one sees $ that the relation 

a G-orbit ScX and a Kc-orbit QcX are dual 

(7.1) i f  SnQ is a K-orbit 

defines a one-to-one order-reversing correspondence between G-orbits 

and Kc-orbits on X. 

Recall the bundle E--> S specified by the basic datum (H,h,X). 

Let Q be the Kc-orbit dual to S. We may, and do, assume that h E S n Q. 

Then E-->S restricts to S:~Q and extends to an algebraic K c homogen- 

eous vector bundle over Q. That extension is unique provided that one 

includes the~-module structure defined by the basic datum (H,b,X). 

See [2] for the original work on~-modules, Bernstein's University 

of Maryland lectures for the f i r s t  exposition, [7] for a more recent 

exposition of the general theory of~-modules, and [20] for the basic 

applications of~-module theory to representation theory. 

For simplicity of exposition suppose that G c G c ,  so H is commu- 

tative, and assume that X is irreducible. Then X = exp(~) for some 

E h*. Write E~ for E, p for half the sum of the positive roots. 

Now ~/(B) specifies a sheaf ~)L+p--> X of twisted differential operators 

that act on E~--> Q. The~L+p-module direct image sheaf j+OQ(Ex--> Q) 

TThe centralizer of G O in G acts t r i v i a l l y  on X, so G acts on X as 
i f  i t  were a linear group. We can view G c as the complexificat~on of 
that linear group Ad(G), s t i l l  acting on X of course, and K C as the 
complex analytic subgroup of G c such that Ad~(K) is contained in 
and meets every topological component. See [ l~]  for details. Here, C 

K 

in order to avoid technicalities that are essentially irrelevant, we 
wil l speak as i f  G were a linear group, G c G c ,  with K c = K.K~, 
K~ connected with Lie algebra k. 

~These descriptions and the duality were given for connected groups G, 
but the passage to our case presents no d i f f icu l ty .  See [15] for details. 
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is a Kc-invariant sheaf of ID~+p-modules. Its cohomologies give us a 

family of Harish-Chandra modules Hq(x, j+OQ(Ex-->Q)). 

The result here is 

7.2. Theorem (Hecht-Mili~id-Schmid-Wolf [15]). Let 

s : dimR(SnQ) - dimeS and × = exp(~). Then Aq(H,h,X) and 

HS-q(x, j+OQ(E~.2 p --> Q)) are canonically dual in the category of 

Harish-Chandra modules. 

The pairing of (7.2) can be described intuit ively as follows. 

Using (3.3) we can view the Zuckerman module Aq(H,b,×) as cohomology of 

E--> SnQ with function coefficients in the S-directions transversal to 

SnQ. Using the definition of the~)_~_p-module OQ(E ~.2p--> Q) we can 

view the Beilinson-Bernstein modOle Hs-q(x, j÷OQ(E_~.2 p --> Q) as coho- 

mology of E.~_2 p --> SnQ with differential operator coefficients in 

the Q-directions transversal to SAQ. The idea is to pair the two by 

pairing the differential operators against the functions obtaining a real 

differential form in degree dimR(SnQ), which we then integrate over the 

compact manifold SnQ. The p~oof [15] has to be somewhat more technical, 

but given the result (7.2) this description is valid [27]. 

The result (7.2) has a number of interesting consequences. The 

basic point is that many things are easy from one of the Zuckerman or 

Beilinson-Berstein viewpoints and d i f f i cu l t  or previously unknown from 

the other. For example, the classification of irreducible Harish-Chandra 

modules and the irreducibi l i ty question for standard modules are relative- 

ly easy in the Beilinson-Bernstein picture [16] but quite d i f f i cu l t  in 

the Zuckerman picture, the the Beilinson-Bernstein picture has made i t  

possible [lO] to extend the Knapp-Zuckerman classification of tempered 

representations from linear semisimple groups to general semisimple groups. 

Between (6.1) and (7.2) we see that the methods of geometric quanti- 

zation, Zuckerman derived functor modules, and Beilinson-Bernstein local- 

ization, are essentially equivalent. 
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8. ENVELOPING ALGEBRA METHODS 

Enveloping algebra methods are another general sort of method for 

constructing and analyzing representations of semisimple Lie groups. 

Enveloping algebra methods start with a f in i te  dimensional (usually 

irreducible) K-module F and construct Harish-Chandra modules V for G 

as quotients of ~/(g) ®~/(g)K.~/(k) F where ~(g)K is the centralizer of 

K in ~'(g). I f  we decompose g = k+p under the Cartan involution 

then typically one may try to build up V by successively applying 

elements of p, i .e. as a quotient of the tensor product S(P) ®C F of 

the symmetric algebra with F. This method works best i f  other conditions 

are required. Important examples of such additional conditions are ( i )  

uni tar i ty of V with concrete choice of G (as in the work of Angelopoulos, 

Sijacki and others); ( i i )  a requirement that V be a highest weight (g,K)- 

module (as in [8 ] , [ l l ] , [12 ] , [18 ]and [30 ] ) ;  ( i i i )  unitari ty and the stipu- 

lation that V come from a highest weight module by the derived functor 

construction as in [13]; and (iv) the condition that F be a minimal 

K-type of V in the sense of Vogan [29]. 

I t  is unfortunate that mathematicians and physicists using envelop- 

ing algebra methods do not communicate well. There is some psychological 

reason for this in that physicists tend to work with specific groups and 

often see no reason to have a lot of general machinery, while mathemati- 

cians tend to feel that the theory is defective unless i t  can treat all 

semisimple Lie groups. Nevertheless, both do roughly the same thing with 

enveloping algebra methods, and so communication certainly is possible. 

In [9], Vogan's minimal K-type classif ication of irreducible Harish- 

Chandra modules is put into correspondence with the Beilinson-Bernstein 

classif ication. In view of the discussion leading up to (7.2) i t  thus 

can be formulated in terms of basic data (H,b,X). In view of the results 

described in (6.1) and (7.2) i t  also is in correspondence with the 

Langlands classif ication and with the Vogan-Zuckerman classif ication. 

Now i t  should be feasible, and i t  certainly would be interesting, to 

translate the parameterizations in some important classifications 

(perhaps Sijacki 's classifications of the unitary dual of the double 

COver of SL(n;R) and Angelopoulos' classif ication for SO(p,q)) into the 

Parameterization of the basic datum (H,b,X). And that certainly would 
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be a positive step in improving communication between group theoretical 

mathematicians and physicists. 

9. SPECIAL METHODS 

By "special method" I mean a method for constructing representations 

that that has somewhat restricted validity. Howe's theory of dual reduc- 

tive pairs applies to semisimple groups of classical type. The Kostant- 

Sternberg-Blattner method of moving polarizations ( [4] , [5 ] , [6 ] , [17])  

applies to the Segal-Shale-Weil oscil lator representation of the double 

cover of the real symplectic group [17] and to a ladder representation 

of the double cover of SL(3;R) [22]. The Rawnsley-Schmid-Wolf method 

of indefinite harmonic forms applies to certain semisimple groups G for 

which G/K is an hermitian symmetric space. I t  should be possible to 

reformulate these methods, at least the second and the third, in terms 

of general methods and special circumstances. 

[ i ]  

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 
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