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w 1. I n t r o d u c t i o n  

In this paper we relate two constructions of representations of semisimple Lie 
groups - constructions that appear quite different at first glance. 

Homogeneous vector bundles are one source of representations: if a real 
semisimple Lie group Go acts on a vector bundle E --* M over a quotient space 
M=Go/Ho, then Go acts also on the space of sections C~(M, E), and on any 
subspace VcC~(M, E) defined by a Go-invariant system of differential equa- 
tions. Ordinary induction, so-called cohomological induction and the construc- 
tion of representations by "quantizat ion" all fit into the framework of homoge- 
neous vector bundles. 

For  any complex semisimple Lie algebra g, there is an equivalence of catego- 
ries, due to Beilinson-Bernstein [1], between ~-modules on the one hand, and 
sheaves of ~-modules over the flag variety X of g on the other. In the context 
of real semisimple Lie groups this equivalence of categories associates infinitesi- 
mal representations to orbits in the flag variety of the complexified Lie algebra 
- orbits not of the group Go itself, but  of the complexification of maximal 
compact subgroup Ko c Go. 

We shall show that these Beilinson-Bernstein modules are naturally dual 
to modules attached to certain homogeneous vector bundles. In the special 
case of a compact group, both the Beilinson-Bernstein construction and the 
construction via homogeneous vector bundles reduce to the Borel-Weil-Bott 
theorem; our duality theorem is then a particular instance of Serre duality. 
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To be more precise, we fix a connected semisimple Lie group Go, with finite 
center, and a maximal compact subgroup Ko c Go. We write g and ~ for the 
complexified Lie algebras of Go and K0. By definition, a Harish-Chandra module 
V is a module over the universal enveloping algebra q/(g), equipped with an 
action of Ko such that 

a) V is finitely generated over q/(g); 
b) Ko acts locally finitely and continuously (i.e., V is the union of finite 

dimensional Ko-invariant subspaces in which Ko acts continuously); 
c) the actions of Ko and g are compatible (i.e., ~ c g operates by the differen- 

tial of the K0-action). 
Harish-Chandra modules arise as infinitesimal representations corresponding 
to global representations of Go. 

For the purposes of this introduction, we suppose Go is linear, to ensure 
that its Cartan subgroups are abelian. The datum of a Cartan subgroup Ho c Go 
and a character X of H o determines a homogeneous line bundle E ~ Go/Ho, 
whose fibre at the identity coset is the representation space of X. In the terminolo- 
gy of geometric quantization, the choice of a Borel subalgebra b c g with b ~ b 
(=  complexified Lie algebra of Ho) puts a G0-invariant polarization on the sym- 
plectic manifold Go/Ho. The sections of E which are annihilated by the polariza- 
tion constitute a sheaf (gb(E). At one extreme, in the case of a real polarization, 
6b(E) consists of all sections that drop to Go/Bo, the quotient of Go by the 
largest subgroup with complexified Lie algebra b. At the opposite extreme, if 
b n b = b, Go/Ho carries an invariant complex structure, E --* Go/Ho is a homoge- 
neous holomorphic line bundle, and Ob(E ) the sheaf of holomorphic sections. 
In all cases Go acts on the sheaf Cb(E), and thus also on its cohomology groups. 

For  technical reasons, it is simpler to work not directly with the global 
representation of Go on the cohomology groups, but rather with certain analo- 
gously defined Harish-Chandra modules. The idea is due to Zuckerman (see 
1-22]); translated back into geometric terms, it can be explained as follows. 
The cohomology of Oh(E) is computed by a complex of E-valued differential 
forms. Conjugating Ho if necessary, we may suppose that Ko n Ho is maximal 
compact in Ho. Both g and Ko act on the complex of Ko-finite, E-valued forms 
on a formal neighborhood of Ko/(Ko n H0) in Go/Ho - in other words, differential 
forms with coefficients which are formal power series in directions normal to 
Ko/(KonHo), but smooth along Ko/(KonHo) itself. The cohomology groups 
of this formal complex, equipped with the induced actions of .q and Ko, are 
Harish-Chandra modules, the standard Zuckerman modules corresponding to 
the homogeneous line bundle E--* Go/Ho and the polarization b. These are the 
modules that appear on one side of our duality theorem. 

The assignment (Go/Ho, b ) ~ o r b i t  through b sets up a bijection between 
pairs (Go/Ho, b) as above, modulo isomorphism, and Go-orbits in the flag variety 
X of g. The bijection extends to homogeneous line bundles: the Go-stabilizer 
of b e X  contains H0 as Levi component, so the character of Ho that defines 
E can be continued uniquely to the stabilizer. In this manner the standard 
Zuckerman modules are parametrized by triples (S, E, q), consisting of a Go-orbit 
S c X ,  a Go-homogeneous line bundle E ~ S, and an integer q (the degree of 
the cohomology). 
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The complexification K of Ko acts on X via the adjoint homomorphism. 
A K-orbit  Q ~ X will be said to be dual to a Go-orbit S c X if Ko acts transitively 
on the intersection Q nS; according to [17], this notion of duality pairs the 
two types of orbits in a bijective, order-reversing fashion. Each Go-homogeneous 
line bundle E over a Go-orbit S is carried along by the duality: there exists 
a unique K-homogeneous algebraic line bundle F over the dual orbit  Q, such 
that E and F coincide as Ko-homogeneous line bundles over the intersection 
Q ~ S. In addition to F, the line bundle E (equivalently, the character of H o 
that defines E) determines a g-equivariant twisted sheaf of differential operators 1 
@ on the flag variety X, whose restriction to Q operates on sections of F. 
The addit ional datum of the sheaf 9 makes the correspondence E ~ (F, 9 )  bijec- 
tive. 

For  the moment, we consider a particular K-orbi t  Q c X, a K-homogeneous 
algebraic line bundle F ~ Q, and a g-equivariant twisted sheaf of differential 
operators ~ on X which, when restricted to Q, acts on sections of F. Then 
~q(F) can be pushed forward to a sheaf of Y-modules j+Cq(F) on X, the 9 -  
module direct image with respect to the inclusion j :  Q--*x.  Both g and Ko 
act on j+(gQ(F), and hence also on the cohomology groups Hq(X,j+(gQ(F)). 
These cohomology groups are Harish-Chandra modules, the Beilinson-Bernstein 
modules corresponding to the data (Q, F, 9, q). 

The duality theorem is now easily stated: if S and Q are dual orbits, and 
if the duality relates E to (F, 9),  the Beilinson-Bernstein module Hq(X,j+(9o(F)) 
is canonically dual, in the category of Harish-Chandra modules, to the standard 
Zuckerman module in degree s - q ,  corresponding to the bundle E* |  ~2 x ~ S; 
here s = dimR(Q n S ) - d i m c  Q depends on the orbit Q, Ox denotes the canonical 
bundle of X, and E* the dual of E. 

The example of Go=SL(2, ~), Ko = S0(2) may help to clarify the theorem 
and its setting. In this case X = P  1 = C u  {~}. Up  to conjugacy, Go contains 
two Cartan subgroups, namely Ko and the diagonal subgroup Do. The choice 
of an invariant polarization for Go/Ko amounts to an identification with the 
Go-orbit in ~ • { ~ }  through one of the fixed points of Ko: either Go/Ko_~ Go" i 
= U = upper half plane, or Go/Ko _----- Go-(-- i) = / J  = lower half plane. The homoge- 
neous holomorphic line bundles E , ~  U~--Go/Ko are parametrized by n ~ Z ~  
character group of Ko. Since Ko.i={i}, the Zuckerman modules for (U, E,) 
are computed by the complex of Ko-finite germs of E,-valued (0, p)-forms at 
i, with coefficients in the ring of formal power series. The polynomial  Dolbeault  
lemma shows that this complex is acyclic. In degree zero its cohomology reduces 
to the space of Ko-finite, holomorphic formal germs (i.e., with formal power 
series coefficients) of sections of E,  around i; both K o and g operate on such 
germs by translation. The same discussion applies to the other polarization 
of Go/K o . 

Two Borel subgroups of Go contain the R-spl i t  Cartan subgroup Do, but 
they are conjugate and thus correspond to the same Go-orbit in the flag variety: 
Ru{c~}=Go.O~-Go/Bo, with B0=lower  triangular subgroup. Since Do 

{_+ 1} x R ,  the datum of a character e of the two-element group {_+ 1} and 

See [21] for a heuristic discussion of the Beilinson-Bernstein construction in general and of twisted 
sheaves of differential operators in particular 
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of a complex number ( (~E~ character group of R !) determines a homogeneous 
line bundle E~,,~ Go~Do; as in the general case, the bundle drops to Go/B o. 
The formal complex in this situation consists of Ko-finite, E~,~-valued, relative 
differential forms for the fibration Go~Do ~ Go/Bo, defned in a formal neighbor- 
hood of the Ko-orbit through the identity coset. The polynomial Poincar6 lem- 
ma, applied fibre-by-fibre, shows that cohomology occurs only in degree zero - 
the space of Ko-finite C ~ sections of E~, ~ over Go/Bo ~-~ u { oo }. 

Still in the case of Go=SL(2, R), K=SO(2, ~E) has three orbits in the flag 
variety X= lEu{oo} ,  namely {i}, { - i} ,  and their common complement. The 
duality pairs these orbits with the three Go-orbits U, t,?, R w  {oo}, in the given 
order. For each neZ,  the line bundle E , ~  U extends SL(2, ~)-equivariantly 
to all of ~Eu{oo}. To be consistent with our previous notation, we write F, 
for the fibre of E. at i; then F, is a "K-homogeneous line bundle" over the 
one-point space {i}. The Beilinson-Bernstein sheaf j+(9~i~(F.) is supported at i, 
and has no higher cohomology. Its sections are E,-valued "algebraic distribu- 
tions" with support at i - i.e., principal parts around i of rational sections 
of E.. Via multiplication and residues such "algebraic distributions" are dual 
to germs of regular sections of E_, | t2 x at i, even to formal germs. The pairing 
exhibits the Beilinson-Bernstein module and the module of Ko-finite formal 
germs as dual Harish-Chandra modules - the assertion of the duality theorem 
in this special case. For  the Go-orbit /.7 and the dual K-orbit { -  i} the situation 
is entirely analogous. 

At points of X -  { _ i}, K has isotropy subgroup { + 1 }, so the duality between 
orbits carries a line bundle E,,~ ~ R  u {oo} to a K-homogeneous bundle F~ 
X -  { + i} which depends only on e, and not on the continuous parameter (. The 
second ingredient of the construction, the twisted sheaf of differential operators 
3 ,  is specified by (. Since X contains X - { _  i} as an open subset, the direct 
image j+(gx_~• coincides with the direct image in the category of sheaves. 
Again the higher cohomology vanishes; the space of global sectio0s consists 
of the algebraic sections of F, over X - { _  i}. The Lie algebra g acts via the 
inclusion g ~  F~,  whereas Ko acts already on the level of the bundle F~. Global 
sections of F~ can be restricted to the Ko-orbit R u { o o } ,  and their restrictions 
can then be integrated against Ko-finite smooth sections of E-~,~| 
Ru{oo} .  This pairing is g-equivariant and realizes the duality between the 
two constructions. 

The fact that all K-orbits in X are affine and the resulting vanishing of 
the higher cohomology groups of the sheaves j+(9o(F ) is an atypical feature 
of SL(2, R). A vanishing theorem, formally analogous to Cartan's Theorem 
B, exists also in the general case, but it depends on a positivity conditions 
for the twisted sheaf of differential operators ~ [1]; cohomology may occur 
in various degrees when this condition fails. 

By its very nature, the Beilinson-Bernstein construction leads to a classifica- 
tion of the irreducible Harish-Chandra modules. The equivalence of categories 
between ~'(g)-modules and sheaves of ~-modules on X associates irreducible 
K-equivariant sheaves to irreducible Harish-Chandra modules. Such sheaves 
can be classified by geometric arguments: they arise as unique irreducible sub- 
sheaves (of ~-modules) of direct images j + CQ(F). Whenever the vanishing theo- 
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rem applies, the global sections of the subsheaf constitute an irreducible Harish- 
Chandra module or reduce to zero. In this manner irreducible Harish-Chandra 
modules correspond bijectively to certain Beilinson-Bernstein data (Q, F, ~). 

Two earlier classification schemes, due to Langlands [15] and Vogan-Zuck- 
erman [22], can be interpreted geometrically in terms of Zuckerman's construc- 
tion, though the original statements and proofs are non-geometric. In effect, 
Langlands classifies irreducible Harish-Chandra modules as quotients of stan- 
dard modules attached to "maximally real" polarizations, whereas Vogan-Zuck- 
erman work with quotients of standard modules that correspond to "maximally 
complex" polarizations. Via the duality theorem, the Beilinson-Bernstein classifi- 
cation can be rephrased as follows: under mild regularity conditions, standard 
Zuckerman modules corresponding to negative polarizations have unique irre- 
ducible quotients; every irreducible Harish-Chandra module arises as such a 
quotient. In a continuation of this paper we shall show how changes of polariza- 
tion affect standard modules. This, coupled with the duality theorem, makes 
it possible to relate the three classifications directly and totally explicitly. 

The Beilinson-Bernstein construction - alternatively, a similar idea of Bry- 
linski-Kashiwara [6] - is the crucial ingredient of the proof of the Kazhdan- 
Lusztig conjectures: the equivalence of categories between q/(g)-modules and 
sheaves of Y-modules, followed by the equivalence of categories between sheaves 
of Y-modules and perverse sheaves (the "Riemann-Hilbert correspondence" [5]) 
translates the decomposition problem for Verma modules into a combinatorial 
problem, which has already been solved by Kazhdan and Lusztig [14]. The 
same line of reasoning was carried over to the setting of Harish-Chandra mo- 
dules by Lusztig-Vogan [16] and Vogan [23]. The first of the two papers treats 
the combinatorial aspects, the second identifies the standard modules of Lang- 
lands' classification, in the case of integral infinitesimal characters, with their 
Beilinson-Bernstein counterparts. In effect, this last step is a special case of 
our results on the connection between the different classifications. 

Via the duality theorem a number of known, but seemingly subtle results 
on the Zuckerman modules become consequences of quite general, or even obvi- 
ous properties of the Beilinson-Bernstein construction. The vanishing theorem 
of Beilinson-Bernstein and the vanishing of cohomology below degree zero, 
for example, are far more transparent than the equivalent statements on the 
Zuckerman side. In the continuation of this paper we shall explore other, less 
immediate implications of the duality, in particular geometric explanations and 
proofs of certain irreducibility theorems. 

Our main result was announced in [21]. It is related to work of Bernstein, 
who has given a ~-module interpretation of Zuckerman's functor. He has recent- 
ly informed us that he now sees how this may be used to prove the duality 
theorem. 

The paper is organized as follows. Section two recalls details of the Beilinson- 
Bernstein construction; we then express the cohomology of the sheaves j+ 6Q(F) 
in terms of a particular complex. We do the same for the Zuckerman modules 
in section three. The proof of the duality theorem is completed in section four, 
where we set up a duality between the two complexes. An appendix, addressed 
to non-experts on the theory of ~-modules, summarizes some technical results 
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for which there is no ready reference. To simplify the exposition, the main 
body of the paper establishes the duality in the setting of a connected group 
with finite center; a second appendix shows how both of these restrictions can 
be removed. 

While this paper was written, two of us were guests at the ETH Ziirich and the Institute for 
Advanced Study; we thank both institutions for their hospitality. We are also indebted to Armand 
Borel: he followed our project with interest, and made available to us a preliminary version of 
his manuscript [5]. 

w 2. Localization of Harish-Chandra modules 

In this section we describe first, in a sketchy way, the results of A. Beilinson 
and J. Bernstein on the localization of g-modules [1]. For more details see 
[183. 

Let g be a complex semisimple Lie algebra, and G the group of inner 
automorphisms of the Lie algebra g. Let b be a fixed Borel subalgebra in g 
and B the corresponding Borel subgroup in G. Then the flag variety X = G/B 
of G can be identified with the variety of Borel subalgebras of g. The group 
G acts naturally on the trivial vector bundle X x g-+ X, and the vector bundle 

of Borel subalgebras is a homogeneous vector subbundle of it. For each 
x e X, we denote the corresponding Bore1 subalgebra of g by bx, and the nilpotent 
radical of bx by nx. Hence, we have the homogeneous vector subbundle g/" 
of ~ of nilpotent radicals. 

Let ~ = M/X.  Then Jg is a homogeneous vector bundle over X with fiber 
b~/nx over xeX. The group B acts trivially on b/n, hence ~ is the trivial vector 
bundle over X with fiber b ---- b/n. We call the abelian Lie algebra b the (abstract) 
Cartan algebra for ,q. 

Let (9 x be the structure sheaf of the algebraic variety X, i.e. the sheaf of 
regular functions on X. Let g ~ 1 7 4  be the sheaf of local sections of the 
trivial bundle X x g. Denote by b ~ and n o the corresponding subsheaves of 
local sections of g and ~,, respectively. If we denote by z the natural homo- 
morphism of the Lie algebra g into the Lie algebra of vector fields on X, we 
can define a structure of a sheaf of complex Lie algebras on go by putting 

[f  | ~, g|174 | + fg| q] 

for f, ge(gx and ~, q~g. Then b ~ and n o become sheaves of Lie subalgebras 
of go. In fact, the homogeneity of :~ and A/" implies that b ~ and n ~ are sheaves 
of ideals in go. We extend z to a homomorphism from go into the sheaf of 
Lie algebras of local vector fields on X. The kernel of this extension, which 
we also denote by z, coincides with b ~ The quotient sheaf b ~  b~ ~ is the 
sheaf of local sections of ~ and is therefore equal to the sheaf of abelian Lie 
algebras (9 x |162 b. 

Similarly, if we denote by ql(g) the universal enveloping algebra of g, we 
can define a multiplication in the sheaf 0//o= 6x |  ~ (g) by 

(f|174174 fg| 
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where f, ge(9 x and ~eq, r/eq/(g). In this way q/o becomes a sheaf of complex 
associative algebras on X. Then go is a subsheaf of q/~ and the natural commuta-  
tor in o//o induces the bracket operation on .qO. It follows from the previous 
remarks that the sheaf of right ideals n o q/o generated by n o in q/o is a sheaf 
of two-sided ideals in ~//o. The quotient ~ =  ~176 ~ ~ll ~ is therefore a sheaf of 
complex associative algebras on X. 

Since b ~ is a sheaf of Lie subalgebras of ~ there exists a natural  homomor-  
phism of the enveloping algebra q/(b) of b into F(X, ~0" One can check that 
its image is equal to the G-invariants of F(X, @~). On the other hand, the natural  
homomorphism of ~(g)  into F(X, ~b) maps the center ~ (9 )  of q/(g) into the 
G-invariants of F(X, ~0" Finally, there is the canonical Harish-Chandra homo- 
morphism 7: ~e(f l)~q/([) ,  defined as follows: For  any xeX,  the sum of the 
subalgebra q/(bx) and the right ideal nxq/(g) contains the center Lr(g) of q/(g), 
so ~ ( g )  projects naturally into 

(b~)/(nx o~(~) ~ 0a(bx)) = ~ (bx)/n~ ~ (bx) = ~'(bx/nx); 

the composition of the projection with the natural isomorphism ~//(b~/n~)~ q/(b) 
is independent of x and, by definition, equal to T. A simple argument shows 
that the diagram 

~b 

is commutative. 
Let x~X. Fix a Cartan subalgebra c in bx. Let R be root system of g in 

c* and for ct~R denote by g~ the corresponding root subspace of g. We order 
R so that  the set R + of positive roots corresponds to n~, 

R + = {c t~Rig~n~}  

(this is the ordering opposite to the one used by Beilinson and Bernstein [1]). 
The canonical isomorphism c ~ b~/nx--* b induces an isomorphism of the triple 
(r R, R +) onto the triple (I~*, Z, E +) - the Caftan triple of g. We call the inverse 
isomorphism of the Cartan triple (b*, X, Z+) onto (r R, R +) a specialization 
at x. 

Let W be the Weyl group of 27. Let p be the half-sum of all positive roots 
in Z. The enveloping algebra q/(b) of [ is naturally isomorphic to the algebra 
of polynomials on b*, and therefore any 2~b* determines a homomorphism 
of q/(b) into II~. Let l~ be the kernel of the homomorphism a~: q/(b)--* C deter- 
mined by 2+p. Then 7-1(I~) is a maximal ideal in ~e(g), and, by an old result 
of Harish-Chandra,  for 2 , / ~ b * ,  

- 1 (Ia) = 7-1 (I~) if and only if w 2 = # for some w ~ IV. 

Fo r  any 2~b*, the sheaf I ~  b is a sheaf of two-sided ideals in ~ ;  therefore 
~a = ~ / I a  ~ is a sheaf of complex associative algebras on X. In the case when 
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2 = - - p ,  we have I -p=bq/(b) ,  hence ~_p=q/~176176 i.e. it is the sheaf of local 
differential operators on X. In general @~, 2~ D*, are twisted sheaves of differential 
operators on X. In the parametrization of homogeneous twisted sheaves of differ- 
ential operators which we use in Appendix A, we have 

The shift by - p  in this parametrization, which is unnatural in general, reflects 
the Weyl group symmetry of the global sections of ~ which we shall now 
discuss. 

Let 0 be a Weyl group orbit in t)* and 4~0. Let Jo=7-1(I~) be the maximal 
ideal in ~(g)  determined by 0 (it is independent of the choice of 4, by the 
previously mentioned result of Harish-Chandra). Then the elements of q/0 
=vC(g)/Jo~(g ) determine global sections of @x; in fact, we have 

F(X, ~)=~ for any 4e0 

([1]; for a simple proof of this statement see [19]). 
Any g-module V with infinitesimal character Z~=~oT, 4~0, can be consid- 

ered as a module over ~0, thus 

A~(V)=~| V, V~(~o), 

defines a covariant functor A~ from 

J/(~//0) = the category of g-modules with infinitesimal character Z~ 

into 

J4 ( ~ ) =  the category of quasi-cobercnt ~ -modu les  on X. 

The functor A~ is called the localization functor. 
For  any quasi-cohercnt ~ - m o d u l e  ~f~ on X, the cohomology groups 

HI(X, ~f), 0 < i < d i m  X, arc g-modules with infinitesimal character Z~; i.e. they 
define covariant functors going in the opposite direction. 

For  any root a~Z we denote by a v its dual root in the dual root system 
Z v in [~. We say that 2El)* is regular if av(4) is non-zero for any a~E  and 
that 4 is antidominant if a v (4) is not a strictly positive integer for any a~E +. 

Now we can state the results of Beilinson and Bernstein [1]. First we have 

2.1. Theorem (Beilinson, Bernstein). Let V be a quasi-coherent ~-module on 
the flag variety X. Then 

(i) if ~ is antidominant, all cohomology groups HI(X, ~),  i>0,  vanish; 
(ii) /f4 is antidominant and regular, ~ is generated by its global sections. 

This result can be viewed as a vast generalization of the classical Borcl-Weil 
theorem. As one consequence, the localization functor is an equivalence of cate- 
gories, if 4eD* is antidominant and regular, and the functor F is its inverse. 
If 4 is singular and antidominant the situation is more complicated (as can 
be seen already from the Borcl-Weil result). Still, the equivalence of categories 
statement remains true if one replaces J t ' ( ~ )  with its quotient by the full subcate- 
gory consisting of modules with vanishing cohoraology. In particular, we have 
the following simple result [19] : 
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2.2. Lemma. Let )~eD* be antidominant. 
(i) I f  ~ is an irreducible @k-module, F(X, ~e-) is an irreducible wmodule or 

zero. 
(ii) For any irreducible g-module V with infinitesimal character Z~, there exists 

a unique irreducible ~-module  ~" such that V= F(X, ~) .  

We shall use the localization functor in a more restricted category of modules. 
Let K be a connected complex linear algebraic group and cp: K ~ Aut (g) a 
morphism of algebraic groups such that the differential of q9 is an injection 
of the Lie algebra ~ of K into g. Then we can identify the Lie algebra f with 
its image in g. The group K acts naturally on the variety X. We say that 
the pair (g, K) is a Harish-Chandra pair if the following condition is satisfied: 

(HC) The group K acts on the variety X of Borel subalgebras of g with 
finitely many orbits. 

By making the assumption that K is connected we avoid some minor techni- 
cal difficulties. We shall show in Appendix B how to remove this restriction. 

Let (g, K) be a Harish-Chandra pair. We say that a representation n of 
K on a complex vector space V is algebraic if 

(A 1) the space V is a union of finite-dimensional K-invariant  subspaces, 
(A2) for each finite-dimensional K-invariant subspace U of V, the action 

of K induces a morphism of the algebraic group K into the algebraic group 
GL(U). 

The category J/s~(a//0, K) is the full subcategory of J/(0?/o) consisting of finite- 
ly generated modules on which K acts by an algebraic representation, such 
that the actions of g and K are compatible; concretely: 

(CM) the action of f as a subalgebra of g agrees with the action of I which 
is the differential of the action of K. 

We call the objects of Jlyg(Yi o, K) Harish-Chandra modules (with infinitesimal 
character Z~). 

Similarly, Jlcoh(~x, K) is the full subcategory of d / ( ~ )  consisting of all 
coherent ~z-modules on X with an algebraic action of K ([20], Ch. I, w 3), 
such that the action of ~ is K-equivariant and compatible with the action 
of K, i.e., 

(CD) the action of [ as subalgebra of g c q/0 = F(X, 94) agrees with the differ- 
ential of the action of K. 

We call the objects of ~r K) Harish-Chandra sheaves on X. 
The localization functor Aa maps Harish-Chandra modules into Harish- 

Chandra sheaves. Conversely the cohomology groups of Harish-Chandra 
sheaves are Harish-Chandra  modules. The finiteness condition (HC) puts severe 
restrictions on the structure of Harish-Chandra sheaves: 

2.3. Lemma (Beilinson, Bernstein [1]). Any "t/'eJgr K) is a holonomic 
~-module. In particular, le ~ is of finite length. 

The preceding results lead to a classification of irreducible Harish-Chandra 
sheaves. If ~ is an irreducible Harish-Chandra sheaf in ~r K), its support  
supp ~e- is an irreducible subvariety of X. Also, supp ~ is K-invariant,  hence 
a union of K-orbits  in X. Thus supp ~ is the closure of a K-orbi t  Q in X. 

Let i: Q ~ X  be the natural  immersion and X '=X\ (Q . \Q) .  Then X'  is an 
open subvariety of X, Q is a closed smooth subvariety of X'  and ~ ] X '  is 
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a holonomic ~zlX'-module  on X'. As explained in Appendix A, ~ "induces" 
a K-homogeneous twisted sheaf of differential operators (~a)i on Q, and the 
irreducible ~x [ X'-module ~ I X'  is isomorphic to the 0 th direct image of a holo- 
nomic (~z)i-module ~ on Q under the immersion of Q into x ' .  Since Q is a 
K-orbit and ~ a (@4, K)-module, z is an irreducible ((~z)i, K)-connection on 
Q. On the other hand, the 0 th direct image R ~ i+ (~) is a holonomic ~x-module 
on X which is a Harish-Chandra sheaf. We denote it by d(Q,  ~), and call it 
the standard Harish-Chandra sheaf for the data (Q, z). We can view J (Q ,  z) 
as the ~ - m o d u l e  obtained by applying to z the 0 th direct image for closed 
immersion of Q into X', followed by the 0 th direct image for the open immersion 
of X'  into X. By the very nature of the second step, every nonzero ~a-submodule 
of d(Q,  z) restricts to the same ~xlX'-module on X', which is isomorphic to 
V tX'. Therefore d(Q, z) has a unique irreducible Harish-Chandra subsheaf, 
which we denote by &o (Q, ~). By construction it is isomorphic to #~ 

This leads to the classification of irreducible Harish-Chandra sheaves [1]: 

2.4. Theorem (Beilinson, Bernstein). (i) ~(Q, z )=~(Q ' , z ' )  if and only if 
(Q, r )=  (Q', v). 

(ii) Any irreducible H arish-Chandra sheaf is isomorphic to some ~q~(Q, z). 

From 2.2 it follows that, for a fixed antidominant 2eb*, the module 
F(X, ~q(Q, z)) is either an irreducible Harish-Chandra module or zero, and all 
irreducible Harish-Chandra modules in J//ig(Y/0, K) are obtained in this way. 
Any irreducible Harish-Chandra module in J#:~(qlo, K) is attached to a unique 
set of data (Q, z). 

Let 2el)*, Q a K-orbit in X and xeQ. Then 2 + p  determines a linear form 
on bx. The irreducible ((9~)i, K)-connections z on Q are parametrized by the 
irreducible finite-dimensional algebraic representations of the stabilizer Sx of 
x in K with the property that their differential is a direct sum of copies of 
the restriction of 2 + p  to [c~bx. To describe them, we must first understand 
the structure of Sx. Let U~ be the unipotent radical of Sx. Then Ux is a connected 
closed subgroup of Sx ([13], Chap. 10). The Lie algebra of Ux is a subalgebra 
of n~, hence the irreducible representations determining irreducible 
((ga) ~, K)-connections on Q are trivial on U~. On the other hand, if T is any 
maximal closed reductive subgroup of S~, Sx is a semidirect product of T with 
Ux ([13], 14.2). The Lie algebra t of T is a reductive subalgebra of the Borel 
subalgebra b~, hence an abelian subalgebra of some Cartan subalgebra of g. 
The canonical isomorphism of b~/n~ onto D identifies t with a subalgebra of 
b, hence 2 + p  defines a linear form on t by specialization and restriction. It 
follows that the irreducible ((~x) ~, K)-connections are parametrized by irreducible 
finite-dimensional representations of T whose differentials are direct sums of 
copies of this form. 

Let r be a Cartan subalgebra of fl and R + a set of positive roots in the 
root system R of(g, c) in r We call such pair (c, R +) an ordered Cartan subalge- 
bra. Let Y be the set of all ordered Cartan subalgebras of 9. The group G 
acts on Y by conjugation, and this action is transitive. The stabilizer of a point 
y~ Y is the corresponding Cartan subgroup of G. Therefore Y has a natural 
structure of an algebraic variety, which we call the variety of ordered Caftan 
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subalgebras. Since Cartan subgroups are reductive, a result of Mumford ([20], 
Theorem 1.1) implies that Y is an affine variety. Each ordered Cartan subalgebra 
(c, R +) determines a Borel subalgebra b spanned by c and the root subspaces 
of fl corresponding to the elements of R +. We thus have a natural projection 
p from the variety of ordered Cartan subalgebras Y onto the flag variety X 
of .q. Then p is a morphism of algebraic varieties, in fact an affine morphism 
since Y itself is affine. 

The group K acts on Y by conjugation. Let y be a point of Y and by the 
corresponding Cartan subalgebra. Then the stabilizer Ty of y in K is a reductive 
subgroup of K with Lie algebra ty equal to t c~ by- By the previously mentioned 
result of Mumford, the K-orbit  of y is an affine variety. We conclude that 
all K-orbits  in Y are affinely imbedded in Y. 

Let Q be a K-orbi t  in X. We say that a K-orbit  in Y lies over Q if p maps 
it onto Q. We want to study in more details the structure of a particular type 
of K-orbits  in Y lying over Q. Let xeQ, and B x the corresponding Borel subgroup 
of G. Then, by the previous discussion, the stabilizer Sx of x in K is the semidirect 
product of a maximal reductive subgroup T and the unipotent radical U x. The 
integer s = dim Ux depends only on Q. As a closed reductive subgroup of Bx, ~0 (T) 
is contained in a Cartan subgroup Hy c Bx for some y ~ Y. Therefore T stabilizes 
y; in other words T c  Ty. But T is a maximal closed reductive subgroup of 
S,, so T =  Ty. The K-orbi t  (~ of y in Y, which lies over Q, has the following 
property:  

(O) The canonical projection n: Q ~ Q is an affine morphism with fibres 
isomorphic to C ~. 

We call such orbit Q a standard orbit lying over Q. It is clear that (O) 
characterizes completely standard orbits lying over Q and they are all mutually 
isomorphic. 

In the following we fix a K-orbi t  Q in X and a s tandard orbit  Q lying 
over Q. Also, we fix x~Q and y~Q such that p(y)=x. We denote by n: (~--* Q 
the canonical projection, and by i: Q ~ X and j :  Q ~ Y the canonical injections. 
We then have the following commutative diagram 

J ---, Y 

Q ~ x  

in which the morphisms p, n and j are affine. 
Let 2~I)*. The natural  isomorphism of b~/nx onto b defines Lie algebra 

morphisms of bx c~ f into b and ty into b. F rom the previous discussion it follows 
that there is a bijeetion between the irreducible finite-dimensional algebraic 
representations of Ty whose differential is a direct sum of copies of 2 + p special- 
ized at x and then restricted to ty, and the irreducible finite-dimensional algebraic 
representations of S~ whose differential is a direct sum of copies of the representa- 
tion of bx c~ f defined analogously by 2 + p. This bijection induces a bijection 
of corresponding K-homogeneous connections on (~ and Q. If z is such a connec- 
tion on Q we denote by f = n  +(z) the corresponding connection on Q. The 
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connection ~ is a left ((~a)i)~-module, and 

( ( ~ ) i ) ~  = ( ~ x ,  ~ + p)i~ = ( ~ x ,  ~ + p)poi = ( ( ~ x ,  ~ + ~)P)J = ( ~ .  ~ + #, 

hence we can view f as a left (@r, ~ + p}/-module. 
The inverse of the map �9 ~ ~ is given by the following result, which is critical 

for our purposes. 

2.5. Lemma. We have 
R~ re+ ('?)=0 f o r  q # : - - s ,  

R-Src+ (?)=z.  

P r o o f  Since f is a ( (~r ,~+j ,K) -connec t ion ,  its direct images are 
(~z)i, K)-modules, and in part icular K-homogeneous (9Q-modules. Hence they 
are completely determined by their geometric fibres at a point x considered 
as modules for the stabilizer S~, and all their higher geometric fibres vanish. 
Let F = n-1  (x), n' the projection of F into {x}, and i~ : {x} --* X and i v : F --* Q 
the natural  immersions. Then F is a smooth closed subvariety of O isomorphic 
to ~ .  Moreover, it is the orbit  of y under S,  and under its unipotent radical 
Ux. Since ~ is a K-homogeneous connection, the inverse image i~-(z-) is a 
S,-homogeneous connection and all higher inverse images of ~ vanish. By base 
change ([5], 8.4), we have 

Tx(R q 7r + (~)  = i+~ (R ~ It+ ( ~)) = R q ~z'+ (i + ( f)) .  

As U,-homogeneous connection, i~ (~ is isomorphic to a direct sum of a number 
of copies of d~v, since the stabilizer of y in U~ is trivial. F rom the description 
of the direct image functor for submersions in terms of the de Rham complex 
in A.3.3, and using the isomorphism of F with IE s, we see that Rqzr'+ (i~ (z-)) 
is the (-q)tla homology of the Koszul complex associated to the natural action 
01 . . . . .  0~ on a direct sum of IE[X~ . . . . .  X~]. By ([7], Chap. X, w no. 6, 
Remarque 4) it follows that R~n'+ (i~ (z'))=0 for q + - s  and R-~n'+ (i~ (z')) is 
the space of constant global sections of i~ (~. Hence, as S,-module, R -  ~ n+(te' "+ (z')) 
is isomorphic to the geometric fibre of ~ at x. The lemma follows. [ ]  

As we have seen, the irreducible ((~a) ~, K)-connections on Q are parametrized 
by irreducible finite-dimensional algebraic representations of Ty whose differen- 
tial is a direct sum of copies of the specialization and restriction of 2 + p to 
t r. The standard Harish-Chandra sheaf J ( Q ,  z ) = R ~  corresponding to the 
data  (Q, ~) is a special case of the following expression for the direct images 
of the connection z: 

R~ i + ( z )=(Rq  i + ) ( R - S  n + ) (z-)= Rq-S( io  n)§ (z') 

-- Rq-S(poj)+ (z') = R~-Sp+ (R~  (z')), q~7~; 

here we have used the spectral sequence for the composit ion of the direct images, 
as well as the fact that the morphisms p, n and j are affinc and that i and 
j are immersions. 

Using the relative de Rham complex (A.3.3) we can express this in the follow- 
ing form. First,  we transfer our situation from left ~-modules  to right ~-modulcs.  
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The left ~a-module Rqp+(R~ is a right ~_z-module. In the notation of 
A.I 

( ~ -  z)P = ( ~ x ,  - z + Y  = ~Y,  - z + p .  

Moreover, R~ is a left ~r,z+o-module, hence a right ~ r , - z - o  -module. It 
follows that, if we denote by s x the invertible (g r-module of relative differential 
forms of top degree for the projection of Y to X, R~174 is a right 
~r . -z+o  -module. As explained in A.3.3, this implies 

RqP + (R~ (~) = nq(p.(Crlx(R~ (~ | g2rlX))), 

as left ~z-module. Then 

nq-s(p.(Crlx(R~174 for q~Z;  

in particular 
n-~(p ,  (Crlx(R~ + (z") | Orlx)))= J (Q ,  z). 

This gives the expression for the standard Harish-Chandra sheaves we alluded 
to before. We can use it to calculate the cohomology of Harish-Chandra sheaves. 
Since the morphism p and the variety Y are affine, the components of the direct 
image of the relative de Rham complex are F(X, .)-acyclic. We therefore have 
the spectral sequence 

Hq( X, H~(p,(Crlx(R~ + (~ | Orlx)))) 

=~Hq+*(F(X, p,  (Crlx(R~ ('~) |  f2r ix)))) 

= Hq +r(F( Y,, Crlx(R~ (~ | f2r Ix))) 

([-123, 11.2.4). This leads to the following result: 

2.6. Proposition. There exists a first quadrant spectral sequence 

nq( X, R~i+ (z))=c'nq+"-~(F( Y, Crlx(R~ (~ | f2rlx))). 

SinceW~176 wo,0 , L~ 2 =L, oo , ,,,~ conclude: 

2.7. Corollary. 

r (x,  J (Q, z)) = H-Sir(Y, Crlx(R~ + ('~) |  f2rlx))). 

In two important special cases the spectral sequence 2.6 collapses. If 2 is 
antidominant, all higher cohomology groups vanish by 2.1, and we have 

F(X, R q i+ (z)) = n ~-~(F(Y, Crlx(R~ + (z") | f2rlx))). 

If i is an affine imbedding, the higher direct images vanish and we have 

nq(x ,  g ~ i+ (z)) = n~- ' (r (Y,  Crlx(R~ (z") | f2r Ix))). 

As we shall see in Sect. 4, all K-orbits are aftinely imbedded if (9, K) is a Harish- 
Chandra pair with the additional property that the Lie algebra [ of K is a 
fixed point set of an involution. In particular, the preceding identity applies 
in this case. 
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On the other hand, we remarked before that (~ is an affine variety and 
therefore affinely imbedded into Y. This enables us to rewrite the right-hand 
side of 2.6 in a simpler way. The connection ~ is a left (~r,a§ hence, 

|  j* (t2rlx) is a left (~r, ~- p)/-module, and therefore a right (~r, - ~ + o)~-module. 
The dual (~ |  j* (f2r ix) ) v of ? | (f2rlx), which we denote by q/, is a homoge- 
neous (9O-module. By differentiation of the K-action q/ becomes a connection 
for @~=(~y _~§ From A.3.3 we know that, in our situation, the shifted 
relative de Rham complex can be written as 

Crl x(R~ (z') | f2rlx) = (R~ (?) | f2r i x) | MIx 

=(R~ (? |162 (f2rlx)))| ^ ~rlx. 

Moreover, the right action of ~//(g) described in A.3.3, composed with the princi- 
pal antiautomorphism, defines a left action of q/(g) on the complex. In addition, 
since the varieties Y and Q are affine, we get 

F(Y, Crlx(R~ (z-) |162 f2rlX)) = F(Y,(R~ (? | (f2rlx)) | A Mix) 

=F(Y, R~ + ('? |174 /,, Mix) 

= F (Q, f | J* (Or IX)) |162 ~,~ F ((~, G 0 + r. - z + v) ~rcr. cy) F (Y, A Mix)" 

In terms of the notation 

Rf2~rlx,~= F(Q,~0 ~ r, u) | F(Y, A Jrlx), 

this becomes: 

2.8. Lemma. As left ql (g)-module, 

F ( Y, Crlx(R~ j + ( O |  Orlx))= F (Q, e | (f2rlx)) |  Ra~ rlx, _ ~ + p. 

w 3. Standard Zuckerman modules 

Let g be a complex Lie algebra, T a complex reductive linear algebraic group 
and ~0: T ~  Aut (g) a morphism of algebraic groups such that its differential, 
which is a Lie algebra morphism from the Lie algebra t of T into the derivations 
of g, factors through an injective morphism of t into g. Then we can identify 
the Lie algebra t with its image in 9. Also, t is reductive in ft. 

We say that (n, V) is a (fl, T)-module if it is simultaneously a module for 
g and T, such that 

(Z1) T acts by an algebraic representation; cf. Sect. 2, 
(Z2) the action of t as a subalgebra of g agrees with the action of t which 

is the differential of the action of T, and t .~ . t  -1 . v= (Ad  q~(t)r for t~T, l e g  
and v~ E 

A morphism of (g, T)-modules is a linear map which preserves the g- and 
T-module structure. We denote by Home, T(U, V) the linear space of all (g, T)- 
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morphisms between the (g, T)-modules U and V. The (g, T)-modules form an 
abelian category, which we denote by d/(g, T). 

Let (L T) and (g, T) be two pairs such that the Lie algebra ~ is a subalgebra 
of g containing the Lie algebra t of T. We then can define two exact covariant 
functors ind~J and pro~-f from the category ~//(~, T) into the category J/C(g, T) 
as follows. 

If U is a (~, T)-module, the linear space of ind~;r(U) is q/(fl)| U, where 
q/(.q) is considered as right #/(f)-module via right multiplication. The action 
of g is given as left multiplication on the first factor, and the action of T as 
the tensor product of the adjoint action on q/(.q) and the action on U. This 
procedure gives us a covariant functor, and the Poincar&Birkhoff-Witt theorem 
implies that it is exact. 

For  any T-module V, we denote by V m its largest algebraic submodule. 
Let Homt(q/(g), U) be the space of all /-morphisms from q/(g), considered as 
[-module via left multiplication, to U. The adjoint action of T on q/(g) and 
the action on U induce a natural action of T on the space Homr(~//(9), U). 
The linear space of pro~,'rT(U) is Hom~(~/(g), U)tTr The action of fl is given 
by right multiplication on q/(g). This construction gives a covariant functor, 
and its exactness follows again from the Poincar6-Brikhoff-Witt theorem. 

We have the following two forms of Frobenius reciprocity: 

Hom~, r (ind~'~(U), V)= Hom~, T(U, V) (3.1) 

Homg. T(V, pro~,'~(U)) = H o m  L T(V, U) (3.2) 

for any (g, T)-module V; therefore ind~,'r r is the left adjoint, and pro~,'r r the right 
adjoint of the forgetful functor from J[(9,  T) into J//(~, T). 

Let V be a (.q, T)-module. Both g and T act on the linear dual V* of V 
by the contragredient action. One checks that V v = Vt, l is also g-invariant, and 
in fact a (g, T)-module. We call V v the contragredient of V. The functor V~, V v 
from the category s//(~, T) into itself is exact and contravariant, it relates the 
functors ind~.'~ and pro~.'~: 

3.1. Lemma. Let U be a (1, T)-module. Then 

(ind~,,r(U)) v = pro~.rr(U v). 

Proof. This is a minor modification of ([10], 5.5.5). [ ]  

Now let T be a closed reductive subgroup of another reductive algebraic 
group K, and ~0T: T ~ A u t ( g )  and q~K: K ~ A u t ( g )  morphisms of algebraic 
groups which induce inclusions of Lie algebras, such that r T. We then 
have the natural forgetful functor For:  d/(g, K ) ~ / ( g ,  T). In his lectures at 
the Institute for Advanced Study, Princeton, in the fall of 1977, G. Zuckerman 
introduced a covariant functor Fx. T from the category ~/g(g, T) into the category 
~g(g, K) which is the right adjoint of For (for a detailed discussion of Zucker- 
man's construction and related results see Chap. 6 of D. Vogan's book [22]). 
The two forgetful functors Fr: .//(.q, T)~,~'(~,  T) and Fr: .A/(g, K ) ~ J r  K) 
fit into a commutative diagram: 
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~r T) e* , J/t'(t, T) 

~(g ,  K) ,~(~,  K). 

Moreover, F~, T is left exact, and its right derived functors R i FK, T, 0 < i < dim(K/T),  
satisfy the analogous commutativity property with respect to F r and F x. This 
justifies our use of the same symbol R~FK, r in both instances. 

The functors RiFx. r :  ~/(g,  T)~-~ Jg(9, K) play an important  role in represen- 
tation theory. In the remainder of this section, we calculate these functors by 
means of a particular resolution, for certain T, K and certain modules in J//(g, T). 

Let c be an abelian subalgebra of g and T a closed reductive subgroup 
of K which centralizes c, with Lie algebra t equal to c c~ f; in particular, c ~ t. 

3.2. Lemma. For any (t, T)-moduIe U, pro~:rr (U) is F~. r-acyclic. 

By the previous remark, it suffices to show that it is (~, T)-injective. Let 
V be a (f, T)-module. Then by (3.1) and (3.2) 

Homt, r(V ' , . r  �9 g , T  g , T  proc, r (U)) = Hom~, r (mdt, r (V), pro,, r (U)) = Horn,. r (ind~:rr (V), U). 

The (~, T)-injectivity of pro~;~(U) thus reduces to the following statement: 

3.3. Lemma. Let V be a (I, T)-module. Then ind~'~'(V) is (c, T)-projective. 

Proof. Let a be a complement of t in r Because T is reductive and a n ~ = {0}, 
we can find a T-invariant subspace ~ of g such that g = a @ ~ @ ~, as T-module. 
Let 2 be the symmetrization map from the symmetric algebra S(g) into q/(g) 
([8], Chap. I, 2.6). We can define a linear map 

by the rule 
~o({ | n | ~)--- {,t(n) ~, 

for ~eq/(a), ~/eS(~) and ~eq/([). According to Poincar6-Birkhoff-Witt, this map 
is an isomorphism of T-modules. It is also an isomorphism of left q/(a)-modules 
for left multiplication, and right q/(I)-modules for right multiplication. Therefore 
ind~;rr(V)= q/ (a) |162174162 V both as an Q- and T-module. 

Let W be a (c, T)-module. Then 

Horn,. r(ind~,'rr(V), W)= Hom,(indp'rr(V), W) n Homr(ind~'f(V),  W) 

= HomT(S(~) |162 E W). 

Since T is reductive, the functor W ~ , H o m r ( S ( ~ ) |  V, W) is exact. This implies 
the conclusion of the lemma. [ ]  

We now consider a pair (g, K) with g semisimple. Let c be a Cartan subalge- 
bra of g, and T the centralizer of c in K. Then T is a reductive subgroup 
of K. The choice of a set of positive roots R § in the root system R of (g, c) 
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determines a Borel subalgebra b, spanned by c and the root subspaces corre- 
sponding to the positive roots. Let n be the nilradical of b. Then T normalizes 
b and u. 

Denote by N(n) the standard complex of n, 

N-q(n)=ql(n) |162 O=<q=<dim n, 

with differential 
q 

d(~ | ~/1 ^ ... ^ ttq)= ~ ( - 1 )  I+1 ~ i |  ~h ^ - - .  ^ ~ ^  ---^t/q 

+ ~] ( - 1 ) ~ + ~ |  
1 <i<j<=q 

for ~eq/(n) and t/l, t/2, ...,  t/qen. This is a right resolution of the trival n-module 
IE in the category of R-modules ([9], Chap. XIII, Theorem 7.1). Let U be a 
(b, T)-module in which n acts trivially. The complex (N(n)| U, d |  1) is then 
a left resolution of the n-module U. Because n and U are (c, T)-modules, the 
spaces N(n)|  U are (c, T)-modules and, as can be checked, the differentials 
commute with the (c, T)-action. Therefore N(n)|162 is a complex of (c, T)- 
modules. For  each q, 0 =< q =< dim n, there is a natural  map from Nq(n)|  
into q/(b) |  ^ q n |162 U), and by the Poincar~-Birkhoff-Witt theorem this map  
is an isomorphism of vector spaces. Also, the c-action on N(n) | U corresponds 
to the action by left multiplication on the first factor of q / ( b ) |  n |  U). 
Similarly, this isomorphism preserves the T-module structures. Thus we can 
interpret our complex as the complex " b, r lnd~, r ( ^ n |162 U), with differential d | 1. 
The differential commutes with the (b, T)-action. We have produced a left resolu- 
tion of the (b, T)-module U. Tensoring from the left by q/(~), considered as 
right q/(b)-module, we obtain a left resolution of ind~,;~(U) in Jg(g, T) by the 
complex ind~'rr( ̂  n |162 U); here we have once more used the Poincar6-Birkhoff- 
Witt  Theorem. According to 3.1, the contragredient of our complex 
ind~:rr(^ n | 1 6 2  U) is g,T n* v pro,, r ( ^ |162 U ), which resolves p r @  T T (U v) on the right. 

This proves the following result (compare [11], (5.2)). 

3.4. Lemma. Let U be a finite-dimensional (b, T)-module, in which n acts trivially. 
There is a right resolution of prog:~r(U) in Jg (g, T), 

g, T ~ g, T * 0 pro~,r(U) p ro , . r (n  |162  . . . . .  p r o ~ : r ( ^ ~ n * | 1 6 2  .. . .  

with differential 

q 

dR(~)(~h ^ ~ h ^  ... ^ ~/~ |  ~ ( -  1)iR(rh ~)(~h ^ ... ^ ~ ^  ... ^ ~/q |  
i=1  

+ Y. (-1)~+JR(~)(En, n j ] ^ n l . . . ^ ~ i ^ . . . ^ ~ ^ . . . ^ n q |  
l < i < j < q  

for ~eq/(g), rh, r/2 . . . . .  t/qen a n d f e U  v. 
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Any finite-dimensional (c, T)-module U can be interpreted as (b, T)-module 
with trivial n-action. The (0, K)-module 

I q (c, R +, U) = (R q FK, r) (pro~,: r (U)), 

is the qth-standard Zuckerman module for the data (c, R +, U). 
Combining 3.2 and 3.4, we get: 

3.5. Proposition. The standard Zuckerman modules lq(c, R +, U), 0 < q < dim (K/T), 
are the cohomology modules o f  the complex 

FK, r(pro,g:TT( ̂  n* |162 U)). 

We return to the setting of Sect. 2, in particular we again assume that K 
is connected. Let y be the point in the variety of ordered Cartan subalgebras 
Y determined by the data (c, R+), and Q its K-orbit. The triple (c, R, R § is 
a specialization of (b, s ,  Z+). For ~t~b*, we denote by II;~ the one-dimensional 
c-module determined by the specialization of the linear form p to c. We consider 
a finite dimensional (c, T)-module U which is, as c-module, a direct sum of 
copies oflE~ for some 2~b*. Let q/be the K-homogeneous locally free C0-module 
with geometric fibre U at y. As explained in Appendix A, the linear form 2 
on I) determines a homogeneous twisted sheaf of differential operators Dy.~ 
on Y, and D~ = (Dr, ~}/is the K-homogeneous twisted sheaf of differential opera- 
tors on ~) which corresponds to the differential of the K-action on q/. At the 
end of Sect. 2, we introduced a complex R ( ~ r l x ,  ~ of left F((~, D~)- and right 
q/(g)-modules. Therefore we can consider the complex 

Homr(~, ~)(R~) ~ rl x, 4, F((~, ~//)) 

of left q/(g)-modules. Since (~ is an affine variety, localization defines an equiva- 
lence of the category of F((~, ~ ) -modu les  with the category ~g(D~). In addition, 
if we denote by iy: {y} ~ Y the natural injection, we have the functor i ;  from 
the category J / ( ~ )  into the category of vector spaces, which associates to 
a @~-module o~ its geometric fibre Ty(~-) at y. The composition of these two 
functors defines a right exact functor ~ky from the category of F((~, D~)-modules 
into the category of vector spaces. 

Now we calculate the action of this functor on our complex. We start with 
a discussion of the action of ~k r on Rf2~rlx, ~. The localization of R(d~rlx. ~ 
is equal to D 0 ~ r, ~ |  ^ ~rl x). Therefore, in the notation of A.3.3, 

Hence ~by (R 0 ~ r lx, ~) is a left resolution of the right q/(g)-module 

T , ( ~  ~ x.,)=(po i,)* (D,.,) = T . ( ~ , . , ) = r  | 

In addition, we have the following result: 
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3.6. Lemma. Let #el* .  Then 

~ (R~ ~ r l x, ,) -- ( ~ -  ~ |  ^ q n) | ~g (,q) 

as right ~ (g)-module. 

Proof. As we remarked above 

~y(R~q~ fix, u) = ~{y~r,u | A q~-rlx, y, 
which contains 

{E| ^ qJrlx, y = ^"Tr lx ,  y ( r ) =  Aqn  

as a linear subspace (here we denoted by Trlx, y(Y ) the kernel of the differential 
of the projection p: Y - * X ) .  Using this natural identification, we can define a 
bilinear map go: ^ q n • ag (g) _+ ~by(R~ q~ r lx, x) by 

~o(s, 0 = ( 1  | s)-~, s~ ^~n, ( ~ ( g ) .  

For ~ec, s~ ^qn  and (~5//(g), we have 

~(s, ~ 0 = ( 1  | s ) . ~  =((1 | s).~)-( 

--(#(~) (1 |  1 |  ~)s). ~ = go(#(~)s+s.~, ~). 

Hence go defines a linear map from (r | ^ q u)| Jg(g), which we denote 
by the same symbol. This map is a homomorphism of right ~#(.q)-modules. 
The filtration of ~{y} ~ r,,, by degree of differential operators, induces a filtration 
on ~,y(R(~ q fix, ~). If we denote by Ty(Y) the tangent space of Y at y, we have 

Gr ~y(R~q~ fix, z)= S(Ty(Y)) |162  ^ q Trl x, y(Y). 

We equip q/(g) with a filtration F~//(g) such that F~//(g), r~Z+,  is the left ~//(c)- 
submodule of q/(g) generated by ~//r(g) ( = ? h  subspace of ~//(g) with respect to 
the standard filtration). By the Poincar&Brikhoff-Witt theorem, this induces 
a filtration on (~_~ |  ^ q n) |  q/(g) with 

Gr (IE_ ~ |162  ^ ~ rt) |  ql (~) = ( ~  _ ~ |  ^ q rt) |162 S (.q/c). 

Then go is compatible with these filtrations and induces the natural linear 
isomorphism of the graded spaces. The lemma follows. []  

According to the preceding discussion, the functor ~by induces a morphism 
of the complex Homr(Q, ~.)(Rr ~ r lx, ~, F((~, q/)) into the complex 
Home((~_ ~ |162  ̂ n) |  0g (~), U). Since the action of T on 
(~_ x |  ^ n) | q/(g) is algebraic, the complex of (g, T)-modules 

Horne((~_ ~ | ^ ,t) |  ~'(g), U)l~ 

is a right resolution of pro~,: ~(U). In addition, 

Homr |  ^ n) |162 U)tr I = Hom~(ql (g), ^ n* |  U)tr~ 

= pro,~?rr( ̂  n* |  U), 
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and the terms in our resolution are equal to those of the resolution introduced 
in 3.4. One can check that the differentials agree up to sign, but this is not 
necessary for our purposes. 

To  sum up, Sy defines a morphism of complexes of (g, K)-modules 

~: Homr((2,~,)(R(2~rlx, a, F(4,  ar 

Fx, r (Homc(((E_ ~ |162 ̂ n) |162 (g), U)trl ), 

and the cohomology of the latter complex calculates standard Zuckerman mod- 
ules. 

3.7. Lemma. The morphism ~P is an isomorphism. 

From Appendix A we know that ~ .  r, x has a natural filtration according 
to normal degree. The filtrants F~ ~ .  r, x, r ~ Z  +, are K-homogeneous and invar- 
iant under the right 1-action, and 

Since 4 is affine, this filtration induces a filtration F~F(4, ~ r , ~ ) ,  r~Z+ ,  on 
the global sections of ~Q ~ r, ~- We note that 

Gr, r(4, @O~r,~)= r (4 ,  Gr,~r,~) 
= r(4,  ~ |  s~(~lQ)) 
= r(4,  ~ )  |  s'(~l~)).  

For any q e Z + ,  ^ q ~ r l x  is a locally free (.0r-module of finite rank, hence 
F(Y, ^ ~ r t x )  is a projective F(Y, (gr)-module. It  follows that 

F~R~Lrlx, x=F~F(4, ~ r , x )  |  Y, Aq r < 

for r e Z + ,  defines a filtration of R ~ r l x ,  x by left F(Q , ~ ) -  and right ~([)-  
modules, with 

Gr~R~L rlx, x = F(4, ~ )  | S ' ( ~ l ~ )  | ^ ~J* (~YIX)). 

Again, S ' ( ~ I O  ) | ^ ~J* (~ lx )  is a locally free Co-module of finite rank, hence 
F(4,  S ' (~ r  I 0) | ^ qJ* (~lx))  is a projective F (4, ~o)-module and Gr, R~ L r lx, 
is a projective F(~, ~ - m o d u l e .  By restriction 

V~ = Homr(~, ~.)(R~L r lX, 4, F(4, q/))[K] 

maps into 
v~.~ = Homn~" ~.~(~ RSZ r~x, ~, r (4 ,  ~)). 

According to the preceding discussion, there is exact sequence 

0--* Homr(~, ~,)(Gr~ R~L fix, ~, F(4 ,  q / ) )~ Vq,, ~ Vq,~_ ~ --, 0. 

In particular, restriction from Vq,, into V~,r ~ is surjective. Also, 
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Homr((2. ~ )  (Grr R~_ ~ r lx, 4, F ((~, q/)) 

= Homn0,~o~(r(0 ,  S'(XrlO)|  ^ q J* (~lx)) ,  F(Q, ql)) 

= F (0, Jtgm* 0 ( S* (Wr I O) | A q j* (~r I x), a//)) 

= r(O. ,  ( s ' ( ~ l o ) |  ~ ^ q j * ( ~ l x ) )  V | ~), 

where L,e v denotes the dual of a locally free C0-module &a. Hence 
Homno,~)(Gr, R6_Lrlx, ~, F((~, q/)) is the module of global sections of a K-ho-  
mogeneous C0-module and the K-act ion is algebraic. By induction on r we 
see that each V~,r is an algebraic K-module.  The modules {Vq,,lr~Z+} form 
a projective system in the category of algebraic K-modules,  and Vq is its limit. 

Since F,R~Lrlx,  z and Gr, R~Srlx, ~ are the spaces of global sections of K- 
homogeneous  C0-modules, the functor er  induces an exact sequence 

0 ~ ~b, (F~_, R6q~ rl x, 4) ~ $,(F~ R6L rl x, z) ~ $,(Gr, R~.~ fix, 4) --* 0 

of algebraic T-modules. We put 

Uq, r= Hon~(~by(FrR6~ rlX.,), V). 

Since T is reductive, there is exact sequence 

0 ~ Horn , ( r  , R~L fix, ~), U)trl ~ (Uq, ~)[r] ~ (Uq.~_ 1)tr] ~ 0 

of (L T)-modules. We argue as in the proof  of 3.7, to show that 

r (Gr~ R~ q_. r lx. z) = ( ~ -  ~ |162 S~ (9/(f + c)) | 162  A ~ n) |  q/([) ; 

here we view Sr(g/(f + c)) as the geometric fibre of S'(JVrl0) at y. This implies 

H~162 R6~ rl x. ~), U)trl = Homt (q/(t), (S'(g/(f + c)) |162 A ~ n)* |162 U)trl 

= pro~: ~((S'(g/(I + c)) |162  ̂ q n)* |162  U). 

Let V be an algebraic T-module and ~ the corresponding K-homogeneous  
C0-module on (~. We can interpret the (t, T)-module 

= Homt(U(t) ,  V)tr ~ = pro[: Tr(V), 

geometrically as a formal completion of F(O, q/') at y. 

3.8. Lemma.  (i) The homomorphism F(Q, "1/') ~ ~r induces an isomorphism of K- 
modules 

r(O~, ~)  = rK, r(~) .  

(it) R~Y~,r(~Fy)=Ofor i>0 .  

Proof. (i) The canonical homomorph i sm we described is injective. On the other  
hand, from Frobenius reciprocity and its algebraic version (3.2) one sees that 
the K-multiplicities in T((~, 1~') and T~,r (~)  are finite and equal. 

(it) Since ~ = p r o [ :  Tr(V) is.injective in - g ( L  T), the assertion is evident. [ ]  
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There is a commutative diagram of K-modules, 

o -~ r(O., ~ . ' )  . . . .  v~,, 

l 'Fq  

' FK, T((Uq.,)trl) 

~_ 

-~r~, r(( V~,,_ ,)tn) 

--~0 

o , r~ ,r ( (~q"); )  -~o,  

with 
~ q " =  (S'(Jffrl0) | A qJ*(Yrlx)) v | #1. 

We already remarked that the first row is exact. By 3.8(ii) the second row 
is also exact. The first vertical arrow is an isomorphism by 3.8 (i), and the second 
and third are the morphisms induced by the functor fir" By induction on r 
we see that the ~ ,  re71§ are isomorphisms. We can therefore identify the 
projective systems {Vq,,[ rEZ§ and {Fx.T((Uq.r)[T])[reZ+}. This gives a projec- 
tive family of morphisms 

~q" FK, T (Homc(0E_ ~ |  ^ q n) @*t,) #1 (g), U)trl) ~ Vq,,, 

which factor through V~ and induce 

45q: Fx. r (Home ((~_ ~ |  A q n) | 0//(g), U)[T] ) ~ Vq. 

It follows that qBqo ~q= 1, and ~q is surjective. On the other hand, any element 
of the kernel of ~ has trivial restrictions to all filtrants ~r(F~ R~L fix. ~), r~7Z+, 
of (~_)~|174 hence is equal to zero. This implies that qbq is also 
injective and ends the proof of 3.7. 

Finally, 3.7 leads to the following "geometric" version of 3.5. 

3.9. Proposition. Fix 2~b* and let U be a finite-dimensional (c, T)-module which, 
as c-module, is a direct sum of copies of ~ .  Let #1 be the coherent Co-module 
of local sections of the homogeneous vector bundle on O_ determined by U. 7hen 
the standard Zuckerman modules Iq(c, R +, U), 0 < q < dim (K/T), are the cohomo- 
logy modules of the complex 

Homr(o, ~.)(Ro~ rlx, x, F(C/, #1))trr 

w 4. The duality theorem 

Now we can formulate the results which relate localization to the Zuckerman 
construction. 

In the following g will be a complex semisimple Lie algebra, K a connected 
complex linear algebraic group and ~p: K ~ Aut (g) a morphism of algebraic 
groups such that the differential of ~0 is an injection of the Lie algebra ~ of 
K into g. We shall identify the Lie algebra t with its image in g. We assume, 
in addition, that the pair (O, K) satisfies the following condition: 

(D) The Lie algebra ~ is the fixed point set of  an involutive automorphism 
tr ofg. 
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Under  this condition we can describe the cohomology of standard Harish- 
Chandra sheaves using standard Zuckerman modules. First we recall a few 
simple consequences. The algebra ~ is reductive in g. Therefore, the group K 
is reductive and the pair (g, K) satisfies the assumptions of Sect. 3. In addition, 
it will be crucial for our purposes to know that K has finitely many orbits 
on the flag variety X and that these orbits are affinely imbedded; therefore 
(g, K) satisfies also the conditions which were imposed in Sect. 2. The finiteness 
of the number of orbits is a consequence of a result of Wolf  [24], and the 
affinity of imbeddings is due to Beilinson and Bernstein. We are indebted to 
Beilinson and Bernstein for communicating their argument to us, which also 
implies the finiteness statement. 

4.1. Proposition (Beilinson, Bernstein). The group K acts on X with finitely many 
orbits, and these orbits are affinely imbedded in X. 

We denote the involutive automorphism of G with differential a by the 
same letter. 

The key step in the proof is the following lemma. First, define an action 
of G on X • X by 

g(x, y)=(gx, a(g) y) 

for geG, x, yEX.  

4.2. Lemma. The group G acts on X • X with finitely many orbits. These orbits 
are affinely imbedded in X x X. 

We claim that 4.1 is a consequence of the lemma. Let d be the diagonal in 
X x X. The lemma implies that the orbit stratification of X x X induces a stratifi- 
cation of A by finitely many irreducible, affinely imbedded subvarieties which are 
the irreducible components of the intersections of the G-orbits with A. These 
strata are K-invariant,  and therefore unions of K-orbits. Let V be one of these 
subvarieties, (x, x)E V and Q the K-orbi t  of (x, x). If we let b~ denote the Borel 
subalgebra of .q corresponding to x, the tangent space Tx(X) of X at x can 
be identified with g/bx. Let Px be the projection of g onto g/bx. The tangent 
space T~x.x)(X x X) to X x X at (x, x) can be identified with g/bx x g/bx. If the 
orbit map f :  G--* X x X is defined by f (g )=  g(x, x), its differential at the identity 
in G is the linear map ~ ~ (p~(~), p,,(a(~))) of ~ into g/bx • g/bx. Then the tangent 
space to V at (x, x) is contained in the intersection of the image of this differential 
with the diagonal in the tangent space T~x.x)(X x X), i.e. 

T~x,x)(V)~{(Px(~), Px(~))l~eg such that px(r 

= {(P~(~), P~(~)) I ~e~} = T~.~(Q). 

Consequently the tangent space to V at (x, x) agrees with the tangent space 
to Q, and Q is open in V. By the irreducibility of V, this implies that V is 
a K-orbit ,  and therefore our stratification of the diagonal A is the stratification 
induced via the diagonal map by the K-orbi t  stratification of X. Proposit ion 
4.1 follows. 

To prove 4.2, we fix a point veX.  Let Bo be the Borel subgroup corresponding 
to v, and put B=a(B,) .  Every G-orbit in X •  intersects X •  {v}. Let uaX.  
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Then the intersection of the G-orbit Q through (u, v) with X • {v} is equal to 
Bu• Because of the Bruhat decomposition ([4], Chap. IV., 14.11), this 
implies the finiteness of the number of G-orbits in X • X. 

To show that the orbit Q is affinely imbedded, we remark first that the 
Bruhat cell Bu in X is an affine variety ([4], Chap. IV., 14.11). Let /V be the 
unipotent radical of a Borel subgroup opposite to B. Then a(N)v is an open 
neighborhood of v in X, and the map , i ~  a(ti)v is an isomorphism of A7 onto 
this neighborhood. The intersection of Q with X x a(N) v is equal to the image 
of the affine variety Bu x/V under the map (x, ~) --* ~(x, v), which is an immersion. 
Therefore this set is affine. It follows that we can construct an open cover 
(U~, l<i<n)  of X x X such that the intersection of Q with each Ui is affine. 
Since affinity of a morphism is a local property with respect to the target variety, 
this ends the proof of 4.2. 

From 4.1 we see that the pair (g, K) satisfies the assumptions of Sect. 2, 
i.e. it is a Harish-Chandra pair. Moreover, the orbits of K in X are affinely 
imbedded, hence the spectral sequence 2.6 collapses. Thus we can calculate the 
cohomology of standard Harish-Chandra sheaves from the complex we 
described there. 

Let d(Q, "l?)e~coh(~$, K) be a standard Harish-Chandra sheaf. We fix a 
standard orbit (~ lying above Q, and a point ye~) lying above xeQ. Then 
y corresponds to a Cartan subalgebra br and a system of positive roots X~- 
in b*- The connection T on Q corresponds to a connection g on (~ given by 
an irreducible finite-dimensional algebraic representation U of (Dr, Ty). As 
Dr-module U is a direct sum of copies of a linear form on by which is the 
specialization of 2 + p e b * .  Set n = d i m  X and s = d i m  (f nnx). Let f2x denote the 
invertible d~x-module of differential n-forms on X. The geometric fibre Tx(f2x) 
at x is a one-dimensional (by, Tr)-module, isomorphic to ^"nx.  The "dual" 
set of data (by, X +, U v |  Tx(f2x)) determines a family of standard Zuckerman 
modules lq(by, X +, U v |  Tx(f2x)), 0 < q < dim (K/T), as explained in Sect. 3. 

We can now state our main result. 

4.3. Theorem. 

Hq(X, j(Q, z))v =P-q(Dy, El, u v |162 T~(f2x)), 

for all qeZ. 

The proof of 4.3 depends on a simpler duality statement which we discuss 
first. Let -9~ be the sheaf of local sections of a homogeneous vector bundle 
on (~, corresponding to a finite-dimensional representation L of T r. Denote 
by ~ v the sheaf associated to the representation L v of Ty. Then L,e | .s v 
is the sheaf associated to the representation L| v of Ty. The natural pairing 
between L and L v induces a g0~-module morphism of ~C,a| v onto d~, 
which is compatible with the action of K. Passing to global sections, we obtain 
a surjective morphism of algebraic K-modules 

r (~, ~ )  |  ~0~ r (0., ~e v) __, r(0., o~). 

By differentiation, this is a morphism of q/(t)-modules. Let q be the projection 
map from the K-module F(~, 6{}) onto its K-invariants, i.e. the constants. Then 
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t/induces a q/(f)-module homomorphism of F(Q, ~ ) |  ~.,~F(5, ~o v) into C. 
We can view ~9 a as a left ~e-module,  and as a right ( ~ ) ~ m o d u l e .  Since the 
representation of Ty on the top exterior power of the cotangent space of O 
at y is trivial, the opposite sheaf of rings (~e) ~ of ~ e  is isomorphic to ~ v  
by A.2. Moreover, this isomorphism is compatible with the principal antiauto- 
morphism of a//(f). On the other hand, O is affine, so F(Q, CO) and the differential 
operators induced by the action of q/(f) generate the global sections of the 
sheaf of differential operators on ~ ,  resp..~a v. Hence, we can form the tensor 
product F(Q, L#)| ~ v )  and q factors through it. Therefore we can 
view t/as a F(5,  ~_~v)-invariant pairing on F(5,  ~ )  • F(Q, Lev). 

Denote by R(K) the ring of regular functions on K. By the algebraic version 
of the Peter-Weyl theorem, the pairing on R(K) x R (K) defined as multiplication 
of functions followed by the K-equivariant projection onto the constants is 
nondegenerate. Moreover, the global sections of ~ can be identified with the 
Ty-invariants (R(K)Qr Ty of the module R(K)|  where T r acts on R(K) 
by right translations and K by left translations, and analogously the global 
sections of Lf v can be identified with (R(K)|162 T,. Hence, our pairing is 
induced by the pairing on R(K) x R(K) we just described and the natural pairing 
of L with L v. Since T r is reductive, we deduce the following result. 

4.4. Lemma. The natural F(5, ~ ~e~)-invariant pairing on F(Q, &a) x F ( 5 ,  ~ v )  
induces an isomorphism between the K-modules F(5, ,L#)v and F(5, ~ v). 

Now we can start the proof of 4.3. As has been remarked the spectral 
sequence 2.6 collapses because of 4.1. Hence we have 

nq(s,  J (Q, z)) = n q-~(F (Y, Crlx(R~ + (~ | f2rlx))). 

From 2.8 we know that the right side can be expressed as the cohomology 
in degree q -  s of the complex 

F(Y, Crlx(R~ + (~Q~r OrlX))= F(5, ? | | rlx, _ ~ +p. 

The duality between | and Horn, together with 4.4, gives a natural pairing 
of this complex and the complex 

Homr(0, ~,)(R0 ~ r Ix, - ~ + p, F (O, (~ |  J* (Or Ix)) V))lKl. 

The latter complex calculates the standard Zuckerman modules 
lq(by, S; ,  U v | T~(Ox)), as was explained in Sect. 3. 

It remains to be shown that the complex 

Homr(0, ~,)(R 0 .  r lx, - x + p, F (5, (~ |  J* (f2r I x)) v))txl 

is the contragredient to the complex 

F(5,  f | |  fix, -z+ , .  

If we identify F(5,(~| v) with the contragredient of 
F(5,  ?| by 4.4, we have 
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H~ e,) (R0 ~ r lx. - ~ + o, r (Q, (f | j* (f2rl x)) v))trl 

= H~162 e,) (R0 ~ r I x, - x + o, F (0, ~ | J* (f2rlX)) v )tKI 

= H~ e,)(RI) ~ r I x, - a + p, F (Q, ? | J* (f2r I x))*)trl" 

Here we used that the action of  K on R(2~rlX,-a+a is algebraic, hence any 
element of Home(Ro~rlx ,_~+p,F(Q,~|  takes values in 
F(Q, ,  ~| v. This implies 

Homr~o.,~.)(Ro~ rtx,  - a + o, F (O., (? @r162 V))tXl 

----'(F(0, ?@cvoJ*(f2rlx)) @r(O.~,)Re-fix. - ~+o)~r~ 

=(F(Q, ?| (f2rlx)) @r(O,~,)Ro.~rlX,-z+a) v" 

Therefore our pairing identifies the second complex as the contragredient 
(in the category of (g, K)-complexes) of the first complex. Because of the exactness 
of the contragredient functor, this implies 4.3. 

The following two results are simple consequences of  4.3. The first is a result 
on vanishing of  standard Zuckerman modules. 

4.5. Corollary. Let U be a finite-dimensional (br, Tr)-module. The standard Zucker-  
man modules lP(I~y, S,~-, U) vanish for p > s. 

Proof  We may suppose that U is irreducible. Thus we can transfer the problem 
to the cohomology of standard Harish-Chandra sheaves, using 4.3. For  these, 
the cohomology vanishes below zero for trivial reasons. [] 

The second is a vanishing theorem for cohomology of Harish-Chandra 
sheaves. It follows immediately from 4.3. 

4.6. Corollary. 
H~(X, J(O, ~))--0 

for p > s .  

Since r c~ nx is the Lie algebra of a unipotent subgroup of K, 

s - < l / 2 d i m ( K / T )  and s < d i m Q .  

Hence 4.6 gives a stronger vanishing result for the cohomology of standard 
Harish-Chandra sheaves than the Leray spectral sequence together with the 
affiness of the orbit irnbeddings. The vanishing result 4.5 for standard Zuckerman 
modules is not entirely trivial either (compare [22], 6.3.21). 

Corollaries 4.5 and 4.6 do no t  depend on the position of 2~b*. If we take 
in the account the position of 2 we can get more precise results from the general 
vanishing theorem ([2, 19]). In  this paper we shall restrict ourselves to the 
simplest case, which corresponds to 2.1 (i). I t  gives a vanishing theorem for 
all ordered Cartan subalgebras (Dr, 2;+) and representations of (by, Tr) satisfying 
a positivity condition. More precisely, we have : 
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4.7. Corollary. Let U be a finite-dimensional (by, Tv)-module such that by acts 
by a sum of copies of  the specialization of  2 ~ 1)*. Assume that p -  2 is antidominant. 
Then the standard Zuckerman modules I q(by, X+, U) vanish for q 4= s. 

In conclusion, we want to discuss how 4.3 applies to real semisimple Lie 
groups. Let Go be a connected semisimple Lie group with finite center and 
Ko a maximal compact  subgroup of Go. Denote by 9 the complexified Lie 
algebra of Go and by K the complexification of K o ([8], Chap. I I I , w  6, Def. 
4). The Lie algebra l of K is naturally identified with the fixed point  set of 
a Cartan involution a on 9. I t  follows that the pair (g, K) satisfies the condition 
(D) which was introduced at the beginning of this section. 

As we mentioned in the Introduction, there is a natural duality between 
Go-orbits and K-orbits  in X:  for each K-orbit  Q there exists a unique G0-orbit 
S such that Sc~Q is a Ko-orbit;  this relation is symmetric in S and Q [17]. 
For any x~S c~ Q, we can choose y~ Y such that 

(i) p(y)= x, i.e. the Borel subalgebra bx is spanned by by and the root sub- 
spaces of 2: + . 

(ii) by is a-stable and defined over ~ .  

One can check that the K-orbit  of y depends only on Q and not on the particular 
choice of x. Moreover,  this K-orbit  is a standard orbit over Q, so that 4.3 
applies in the present situation. 

We fix one such y~Y, and  let T, resp. To, denote the stabilizers of y in 
K, resp. Ko. Then the identity component of T is an algebraic torus and To 
is the compact real form of T. We therefore have a natural bijection between 
finite-dimensional algebraic representations of T and finite-dimensional continu- 
ous representations of T 0. It follows that the K-homogeneous connections z 
on Q, and the corresponding Harish-Chandra sheaves J ( Q ,  z )eJ / r  K), 
are parametrized by irreducible finite-dimensional continuous representations 
of To, whose differentials are direct sums of copies of the linear form 2 + p, 
specialized to by and then restricted to the Lie algebra of To. 

On the other hand, the same data  also parametrize standard Zuckerman 
modules corresponding to S. In  more geometric terms, the point  ye  Y determines 
a Go-orbit S in Y which covers the orbit  S in X. The stabilizer of this point  
is the Cartan subgroup Ho of  Go with complexified Lie algebra Dr. I t  follows 
that irreducible finite-dimensional continuous representations of Ho parametrize 
irreducible Go-homogeneous vector bundles on S. Standard Zuckerman mod- 
ules, as we explained in the Introduction,  are the formal analogues of the coho- 
mology groups of sheaves of local sections of these vector bundles annihilated 
by the right action of the polarization bx. Moreover, To is the maximal compact 
subgroup of H0. Any  irreducible finite-dimensional continuous representation 
of Ho remains irreducible when restricted to To, and its differential is a direct 
sum of  copies of a l inear form on by. 

Finally, we note that the shift s in the statement of the duality theorem 
can be interpreted as the difference of dimensions of orbits: 

s = dime(f ~ nx) = dimr n b~) -  dimr c~ Dy) 

= dimr c~ by))- dimc(U(t c~ b~)) 

= dimR(Q ~ S ) -  d ime Q. 
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Appendix A. Some results on g-modules  

In this appendix we collect some basic facts on twisted sheaves of differential 
operators on smooth complex algebraic varieties, and corresponding sheaves 
of modules, which we use in the paper. These constructions and results are 
implicit in the work of A. Beilinson and J. Bernstein on localization, and were 
announced in part in [1] and [2]. Although complete proofs have not  appeared 
yet, the interested reader can extract the arguments from the discussion of the 
nontwisted case in A. Borel's notes [5]. A complete exposition of the twisted 
case will appear  in [18]. 

A.1. Twisted sheaves of differential operators 

Let X be a smooth complex algebraic variety. Denote by •x its structure sheaf. 
Let 9x  be the sheaf of local differential operators on X. 

Denote by ix the natural homomorphism of the sheaf of rings (~x into 9x .  
We can consider the category of pairs ( d ,  i~) where ~ is a sheaf of rings 
on X and i~:  (~x ~ d a homomorphism of sheaves of rings. The morphisms 
are the homomorphisms tp: ~ - ~  ~ such that ~p o i~ = i~. A pair (9,  i) is called 
a twisted sheaf of differential operators if X has a cover by open sets U such 
that (9 [  U, i[ U) is isomorphic to (gv, iv) [1]. 

Let f :  Y--* X be a morphism of smooth algebraic varieties. Let 9 be a twisted 
sheaf of differential operators on X. Put 

9r~x=  f*(9)=(gr|162 f - a g .  

Then 9 r ~ x  is a right f - 1 9 - m o d u l e  for right multiplication on the second 
factor. Denote by 9 f the sheaf of differential endomorphisms of the Or-module 
9 r ~ x  which are also f - 1 9 - m o d u l e  endomorphisms. Then 9 f is a twisted sheaf 
of differential operators on Y. If g: Z ~ Yis another morphism of smooth algebra- 
ic varieties, one has 9 f~ = (g f )  g. 

Let G be an algebraic group acting on a smooth algebraic variety X. Denote 
by #: G x X ~ X the action morphism, and by pr2 : G x X ~ X the projection 
to the second variable. The notion of algebraic G-action on an (gx-module 
is defined by giving an 0o • x-module isomorphism of the inverse image #*(~-) 
into pr*(~), subject to certain natural conditions; for details see ([201 1.6). 

Let 9 be a twisted sheaf of differential operators on X with an algebraic 
action ~, of G, and 0t: q / (g )~  F(X, 9 )  a homomorphism of algebras such that 

(HI) the multiplication in 9 is G-equivariant, 
(H2) the differential of the G-action on 9 agrees with the action of g given 

by D --* [0t(~), D] for ~ g  and D ~ 9 ,  
(H3) if we consider q/(g) as a G-module for the adjoint action of G, cr is 

a morphism of G-modules. 
Then we say that the action of G on 9 is compatible with its structure as 
a twisted sheaf of differential operators. If, in addition, X is a homogeneous 
space, 9 is a homogeneous twisted sheaf of differential operators on X. 
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We shall describe now the parametrization of all homogeneous twisted 
sheaves of differential operators on a homogeneous space X. Let x o e X  and 
denote by Bxo the stabilizer of Xo, and by bxo its Lie algebra. To each 
Bxo-invariant form 2 on bxo we associate a homogeneous twisted sheaf of differen- 
tial operators ~x, 4. First  we introduce the structure of a sheaf of algebras on 
ql ~ = C x |162 q/(g) by 

( f |  {) (g | r/) = fz({) g | r /+fg  | ~ ~/, 

where f, g e r  and ~eg, r/eq/(g) (here z denotes the natural  action of g on 
t~x). Let gO= (gx |162 g, considered as (Px-submodule of q/o. The natural commuta- 
tor in q/o induces the structure of a sheaf of Lie algebras on gO. The map 
z extends to a homomorphism of gO into the sheaf of local vector fields J x  
on X. Denote by b ~ the kernel of z. Then b ~ is a sheaf of ideals in gO. The 
geometric fibre of b ~ at Xo is b~o. Therefore, to each Bxo-invariant linear form 
on b~o we can associate a G-equivariant morphism tr~ of the Ox-module b ~ 
into Cx. Let qh: b ~  ~ o  given by q~4(s)=s-th(s), seb  ~ Then Im ~oa generates 
a sheaf of two-sided ideals ~ in q/o. We put 

Then G acts on ~x. 4, and the natural  morphism of F(X, all ~ = F(X, Ox) |162 all(g) 
into F(X,  @x.~) induces a homomorphism of o//(g) into F(X, ~x.4). One can 
check that ~x.  ~ is a homogeneous twisted sheaf of differential operators on 
X. 

Let ~ be any homogeneous twisted sheaf of differential operators on X. 
Denote by i 0 the inclusion of x 0 into X. Then @~o has a natural structure 
of a homogeneous twisted sheaf of differential operators on the one-point space 
{x0}, considered as a homogeneous space for Bxo. As such ~ o  is completely 
determined by a B~o-invariant linear form # on b~o. Moreover, ~ is isomorphic 
to @x,~ as a homogeneous twisted sheaf of differential operators. This shows 
that the sheaves ~x,~, ~t~(b*o) ~~ exhaust all G-homogeneous twisted sheaves 
of differential operators on X. 

If ~ = ~ x , ~  and f :  Y--*X is a morphism of smooth algebraic varieties, we 
put ~ y ~ x = ~ Y o x , 4 .  

A.2. ~-modules 

Let ~ be a twisted sheaf of differential operators on X. Then the opposite 
sheaf of rings ~ o  is again a twisted sheaf of differential operators on X. We 
can therefore view left Y-modules as right ~~ and vice versa. Formally,  
the category ~ ,L(~)  of quasi-coherent left ~-modules  on X is isomorphic to 
the category ~ / s ( ~ o )  of  quasi-coherent right ~~ on X. Hence one 
can freely use right and left modules depending on the particular situation. 

In the case of a homogeneous space X, if 6 is the Bxo-invariant linear form 
on bxo which is the differential of the representation of Bxo on the top exterior 
power of the cotangent space at Xo, (~x, j o  is naturally isomorphic to ~x. -4 + ~. 
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For  a category ~//(~) of B-modules  we denote by J//coh(g) the corresponding 
subcategory of coherent @-modules. For  any coherent ~-module  ~ we can 
define the characteristic variety Ch(~t f )  of ~ in the same way as in the nontwisted 
case [5]. Because its construction is local, the results in the nontwisted case 
imply: 

(a) Ch(~l F) is a conical subvariety of the cotangent bundle T*(X), 
(b) dim Ch(~') > dim X. 

If dim C h ( ~ ) = d i m X  we say that ~ is a holonomic g-module .  Holonomic 
modules form a subcategory ~r of ~r 

Modules in ~//~oh(g) which are coherent as (gx-modules are called connections. 
Connections are locally free as 0x-modules and their characteristic variety is 
the zero section of T*(X); in particular they are holonomic. 

Assume that G is an algebraic group acting on a smooth algebraic variety 
X and B a twisted sheaf of differential operators on X with a compatible action 
of G. A (g,  G)-module ~ is an object of J / / (g )  on which G acts algebraically, 
so that 

(i) the action map from B | ~ into ~ is a morphism of G-homogeneous 
(gx-modules, 

(ii) the actions of g on ~ given by the action of g and the differential 
of the action of G coincide. 

A.3. Functors 

A.3.1. 7~ist. Let s be an invertible (gx-module on X. Then ~ |  g has a 
natural  structure of right g -modu le  by right multiplication on the second factor. 
Let g ' ~  be the sheaf of differential endomorphisms of the (gx-module ~ |  g 
(for the (gx-module structure given by left multiplication) which commute with 
the right g -modu le  structure. Then g ' ~  is a twisted sheaf of differential operators 
on X. We can define the twistfunctor from j g L ( g )  into ~'L(B'~) by 

~ ( ~  @~x B) @~ 

for ~ t / '~ 'L(B) .  As (gx-module, 

The operat ion of twist is visibly an equivalence of categories. 
In the case of a homogeneous space X, if s is the homogeneous invertible 

d?x-module on X determined by the character of B~o with differential #~(b*o)BXo, 
we have 

(B~.,Oz =-@~.,. +.,,. 

A.3.2. Inverse image. Let q/ 'EJ/L(B). Put 

f+ (3U')=Br~x| f- l lU ". 

Then f § (q/~)~ ~r is the inverse image of ~ (in the category of B-modules), 
and f §  is a right exact covariant functor from JgL(B) into ~[r Considered 
as d~r-module, 
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f +(C/~)=(gr| f - ' ~ ' = f * ( W  ). 

The left derived functors LPf + : j / c  (~) + ~ / t (~s )  of f + have analogous proper- 
ties. Moreover, if g: Z + Y is another morphism of smooth algebraic varieties, 
we have the Grothendieck spectral sequence 

LPg + o Lqf + =>Lp+q(fog) +. 

A3.3. Direct image. To define the direct image functor for ~-modules efficiently 
one has to introduce derived categories (although in this paper we deal only 
with affine morphisms where one can take also a more elementary approach). 
In addition, it is simpler to define it for right ~Ze-modules. Naively speaking, 
one would like to define the direct image as the functor ~ '~ ' * f . (~ |  ~r~x)  
for ~-~j/a(@I).  Unfortunately, the direct image functor f .  is left exact and 
the tensor product - |  ~ r ~ x  is right exact, so this definition is unsatisfactory. 
We first give the correct general definition of the direct image using derived 
categories, and then discuss the special cases needed in the paper, where more 
naive constructions apply. 

Let Db(JcR(~f)) be the derived category of bounded complexes of quasi- 
coherent right ~Y-modules. Then we define 

L 

for any f " s D b ( ~ R ( ~ I ) )  (here we denote by R f ,  and @ the derived functors 
ef 

of direct image and tensor product) [5]. Moreover, if g: Z --* Y is another morph- 
ism of smooth algebraic varieties, we have 

R f+ oRg+ = R(fog)+.  

Let ~"  be the complex in Db(~[R(~f)) which is zero in all degrees except 0, 
where it is equal to a quasi-coherent right ~f-module  ~ Then we put 

R'f+ (~)  = n'(Rf+ (~'))  for ieTZ,, 

i.e. we get a family R~f+, ieTl, of functors from jCR(~f) into ~,s(~) .  We call 
Rif+ the i tla direct image. This also leads to the spectral sequence 

Ri f  + o RJg + =~ R i + J(f  o g) +. 

Now one can check that 
(i) if f is an immersion, Rif+ = 0 for i < O, 

(ii) if f is affine, R*f+ = 0  for i>0.  
In the first case, if f is an immersion, ~ r o x  is a locally flee ~Y-module. This 
implies that 

Rif+(3~')=Rif.(3tP| for ~//-~ j g a  (~f),  

i.e. R~247 is our "naive" direct image functor, it is left exact, and R~f+ are 
its right derived functors. In the second case, if f is an affine morphism, Rif+ 
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are the left derived functors of R~ Moreover, for an affine open subset U 
of X and V = f -  1 (U), it follows that 

F(U, R~ (q/'))= F(V, q/~) | ~,)F(V, ~ ~x), 

which completely determines R~ (~). 
Finally, if f :  Y ~ X  is an affine immersion, Rif+=O for i:~O and R~ is 

exact. 
We need more precise information in two special cases. 

Closed immersions. If Y is a closed smooth subvariety of X and f :  Y ~  X the 
natural immersion, R~ is an exact functor from ,~/tR(~ I) into J-tR(~). It is 
an equivalence of the category j / R ( ~ I )  with the full subcategory of ~r 
consisting of modules supported in Y As we remarked before, 

R~ (~) = f .  (V | D r ~ x) 

for any 3VeJt'R(~Y). If J r  is the ideal of 0 x consisting of germs vanishing on 
Y, we can define an increasing filtration of ~ r ~ x  by left ~I_ and right 
f -  1 Ox_modules ' by setting 

Fp~y~x = { T e ~ r , x  I T~o =0  for ~o e(Jr) p+ 1}, 

for p e Z + .  We call this filtration the filtration by normal degree. By the previous 
discussion, it induces also a natural (Yx-module filtration of ~-modules sup- 
ported on Y In particular, if ~e~/r 

Gr R~ f + (~)= f , ( ~  |162 S (~ffxlr)), 

where ~ffxlr=f*(~'x)/~ denotes the normal sheaf of Y and S(~ffxtr) the corre- 
sponding sheaf of symmetric algebras. 

Surjective submersions. Let f :  Y-~ X be a surjective submersion. Denote by ~ l x  
the sheaf of local vector fields tangent to the fibres o f f  Then ~ l X  is a sheaf 
of Lie subalgebras of the sheaf J r .  From the construction of ~ s  it is evident 
that ~ l x C ~  -r. Therefore, for any ~//"eJgR(~ s) we can form the complex 
C r l x ( ~ ) ,  

Cklx(~)=  ~ | 1 6 2  A -k3-rlx, ke7Z, 

with differential 

d(u | vl  ^ v2 ^ . . .  ^ vk) 

= ~ .  ( - 1 ) i + l u v i |  ^ v2 ^ . . .  ^ ~ i ^  . . .  Ark 
i : 1  

+ ~ (-1)~+~u| Vj]AVl^...A~iA...A~jA...AVk, 

for u e ~ ,  vl, v2 . . . . .  vk~Jrlx. The complex Cr lx (~ )  is, up to a shift in degree, 
the relative de Rham complex for the right ~S-module ~ .  One can show that 
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Cr lx (~  I) is a left resolution of ~ r ~ x  by locally free left ~I_ and right 
f -  1 Cx_modules" Therefore, as complex of (gx-modules, 

R f+ (V') = R f ,  (r | Crlx (~Y)) = R f ,  (q/" | ^ J r  IX) 

for any ~ '~Db(~q  R (@S)). Moreover, if we assume in addit ion that f is an affine 
morphism, we have 

Rif+ (3V) = Hi ( f ,  ( ' / / ' |  ^ J-rlx))=Hi(f,(Crlx(3V))), 

for any 3ur This describes the direct images for f as (gx-modules. One 
can describe the action of ~ locally in a noncanonical way. 

Fortunately,  in the homogeneous situation, the ~ -module  actions are in- 
duced by the action of the enveloping algebra ~/(g), which makes it possible 
to describe the g -modu le  structure on Hi(f,(Crlx(~))) in a canonical manner. 
Assume that X =  G/B and Y= G/H are homogeneous spaces for an algebraic 
group G such that H c B. Let f :  Y ~ X  be the natural map. Assume in addit ion 
that B/H is an affine variety, so that f is an affine morphism ([3], Lemma 
1.1). Let ~x,~ be a homogeneous twisted sheaf of differential operators on X. 
Then the linear form 2 ~ (b*) A determines, by restriction,/~ = 2[l)~ (b*) H, and there- 
fore a homogeneous twisted sheaf of differential operators ~r.u = (~x. z) y on Y. 
In this situation, ^ ~ t x  is a G-homogeneous (gr-module on Y, and by differentia- 
tion it has a natural structure of left q/(g)-module. It follows that we can define 
a right action of q/(g) on CrlxCg) via 

( u | 1 7 4 1 7 4  

for uE"U and v~ ^ ~ The action induces a right action of q/(g) on the coho- 
mology groups off , (Crlx(~))  that  generates the right action of ~x, a. 

Appendix B: Extension to a larger class of groups 

In this appendix we show how our  arguments can be extended to more general 
situations which play some role in applications of the duality theorem. We 
have avoided this degree of generality in the main body of the paper to keep 
the notat ion simple and to make the basic ideas as transparent as possible. 
Here we restrict ourselves to brief indications of the ideas involved in these 
generalizations. 

To begin with we may assume that the Lie algebra g is reductive, rather 
than semisimple. Also, in the definition of Harish-Chandra  pair, the connected- 
ness assumption on the group K can be dropped and replaced with the assump- 
tion that the image q~(K) is contained in Int (g). We no longer insist that the 
differential of ~o be injective; instead we require that it factors through an injective 
morphism of [ into g. In  this case, K acts trivially on ~(g) ,  and the categories 
.Atlg(~ K) and ~/Qoh(~X, K) are well-defined if we add to the compatibil i ty 
condition (CM) the condition that  the action of q/e is K-equivariant.  Moreover,  
these categories have the same properties with respect to the cohomology and 
localization functors. The 0nly essential difference comes from the fact that  
K-orbits in X are not  necessarily connected. To deal with this difficulty we 
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now analyze more carefully the structure of standard Harish-Chandra sheaves 
J (Q ,  z) and their unique irreducible subobjects ~ (Q,  z). 

For any subgroup K ' c  K of finite index, there is a natural induction functor 
from JCyg(q/o, K') into .//[ys(q/o, K), as follows. Let R(K) be the ring of regular 
functions on K. For any VE..gCrs(ql o, K') we can view R(K)| as the space 
of regular V-valued functions on K. Let Ind~X,(V) be the subspace of all such 
functions F which satisfy 

F(kh)=n(h-1)F(k) for h~K' and kEK. 

We can then define the action of g and K on Ind~,(V) by 

(v(k) F) (h) = F (k- 1 h) for h, k~ K, 

(v(X)F)(k)=n(Ad(k-1)X)F(k) for X~g, k~K; 

one checks that Ind~,(V)~JCy~(q/o, K). 
Fix a K-orbit Q and a point x~Q. Denote by Sx the stabilizer of x in 

K. If K ~ is the identity component of K, K ~ and S~ generate a subgroup K 1 c K 
of finite index which stabilizes the component QO of Q with x~Q ~ Then (g, K 1) 
is again a Harish-Chandra pair. Let i be the natural immersion of Q into X, 
and r an irreducible ((~)i, K)-connection on Q. The restriction z l QO is an irre- 
ducible ((~)itQ~ K1)-connection on QO. The standard module j (Q0,  z lQO) is 
therefore a well-defined object of JCr K1), and its cohomology modules 
are in ,ACys(q/o, K~). We claim that 

HP(X, J (Q, T))= IndrXl (HP(X, j (QO,  z lao))) 

for any p~TZ+. This follows directly from the construction of the direct image. 
Indeed, as q/0-module, HP(X, J(Q, z)) is the direct sum of HP(X, J (Q ' ,  z lQ')) 
taken over all connected components Q' of the orbit Q. Moreover, the elements 
of K/K ~ parametrize connected components of Q. Let k~K be a representative 
of the right K~-coset corresponding to the connected component Q' of Q, and 
zk: X ~ X  translation by k. Then the action of k identifies J(Q~176 and 
z*(~C(Q', zlQ')), which in turn identifies HP(X, j(QO, z lQ~ and 
HP( X, J (Q ' ,  z I Q')). Ou r  statement follows from the classical block matrix con- 
struction of induced representations. 

The proof of the duality theorem holds without any changes for j(QO, z I QO) 
considered as an object of JCr K~). Since K 1 is reductive, passage to the 
contragredient commutes with induction, hence the duality theorem for J ( Q ,  z) 
follows from the description of standard Zuckerman modules for nonconnected 
K ([22], 6.2). 

This discussion applies in particular to the representation theory of real 
reductive groups of the Harish-Chandra class, as discussed at the end of Sect. 
4. 

Another situation which can be treated by the duality theorem is the case 
of a real reductive group Go with infinite center. In this case the action of 
the natural complexification of the maximal compactly imbedded subgroup K0 
on the flag variety X is not algebraic, hence one has to modify the approach 
significantly. The way to do this is an algebraic analogue of a trick introduced 
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in ([25], 3.3). For  simplicity we assume that G o is a connected semisimple Lie 
group and g its complexified Lie algebra. Let Z o be the center of G o. Then 
Zo is a central subgroup of Ko and Ko/Zo is a compact group. 

Denote by ~ 'y,(g,  Ko) the category of Harish-Chandra modules, i.e. the cate- 
gory of modules V with the following properties 

(i) V is finitely generated as q/(g)-module, 
(ii) as a Ko-module it is a sum of irreducible finite-dimensional continuous 

submodules, 
(iii) the actions are compatible, i.e. the differential of the action of Ko agrees 

with the action of the Lie algebra t. 
If V is an irreducible object in J/.rs(g, Ko), the center ~e(g) of q/(g) and 

the center Z o of G O act on V by scalars. The action of Z o is given by a character 
~: Zo ~IE* which we call the central character of V. Therefore, to describe all 
irreducible Harish-Chandra modules for (g, Ko), it is sufficient to describe irre- 
ducible objects in the categories J/ig(q/0, Ko, () of all Harish-Chandra modules 
with infinitesimal character Zz and central character (. We claim that the study 
of ~/i,(q/0, Ko, () can be reduced to the study of the categories analogous to 
the ones we encountered before. 

Let C be the center of Ko and Co its connected component. Let ZI  = Zo n Co. 
One sees that Ko/Z ~ is a compact group. By going to a finite cover of K o, 
if necessary, we can always assume that Ko is the product of its commutant  
and Co. With this additional assumption, there exists a one-dimensional repre- 
sentation co of Ko such that colZl=~lZ~. In the following we assume that 
K0 satisfies the above assumption. 

Let (Tt, V) be an object in ~/yg(q/0, Ko, ~-)- Then 7t | to- 1 is a representation 
of Ko which is trivial on Z~. We can therefore view it as a representation 
of the compact group Ko/Z1. This group has a natural  complexification K. 
It follows that V is a finitely generated q/0-module which is also an algebraic 
K-module via the K-action v, and these actions satisfy the compatibili ty condi- 
tion: 

(IC) for any ~ ,  n(~)= v(~)+to(~); 

here we identify to with its differential. 
This leads us to the following definition of the category of twisted Harish- 

Chandra modules. Let to be a K-invariant linear form on the Lie algebra r. 
The category ~s~(q/0, K, to) consists of objects (n, v, V) such that 

(i) (n, V) is a finitely generated q/e-module, 
(ii) (v, V) is an algebraic K-module, 

(iii) the actions satisfy the compatibil i ty condition (IC). 
There is a natural  equivalence of categories between J'/ss(q/0, K, to) and 
J/s~ (q/0, K, co') if to -co '  is a differential of a one-dimensional algebraic represen- 
tation of K. Moreover, if co is a one-dimensional representation of Ko such 
that tolZ~=(lZx, we have a natural  equivalence of categories between 
~rCs~(q/0, Ko, () and a full subcategory of dCsg(q/0, K, to). More precisely, 
~s~(q/0, K, to) is equivalent to the direct sum of categories JCs~(q/0, Ko, (') for 
central characters ( '  such that ('1Z~ = to I Z~. 

On the other hand, the category ~sg(q/0, K, co) can be studied by localization. 
Define ~r162162 K, to) to be the category of coherent ~ - m o d u l e s  on the flag 
variety X with an algebraic action of K such that the action of ~ is K-equivar- 
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i a n t  a n d  sa t i s f ies  t h e  c o m p a t i b i l i t y  c o n d i t i o n  a n a l o g o u s  to  (IC). T h e n  t h e  loca l -  

i z a t i o n  f u n c t o r  m a p s  o b j e c t s  o f  JCyg(ql o, K, co) i n t o  dC~oh(~a, K ,  co). M o r e o v e r ,  
t h e  c o h o m o l o g y  m o d u l e s  o f  o b j e c t s  o f  v/Ccoh(~a, K ,  co) b e l o n g  to  J/:~(q/o, K, co). 

T h e  c l a s s i f i c a t i o n  o f  i r r e d u c i b l e  o b j e c t s  in  ,grcoh(~a,  K ,  co) in  t e r m s  o f  s t a n -  

d a r d  t w i s t e d  H a r i s h - C h a n d r a  s h e a v e s  p r o c e e d s  as  in  t h e  n o n t w i s t e d  c a s e  w i t h  

m i n o r  m o d i f i c a t i o n s .  T h e  s a m e  is t r u e  for  t h e  c o n s t r u c t i o n  o f  s t a n d a r d  Z u c k e r -  
m a n  m o d u l e s  a n d  t h e  p r o o f  o f  t h e  d u a l i t y  t h e o r e m .  
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