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1. INTRODUCTION

For a connected semisimple Lie group G with finite center, the discrete
series representations play a central role in the decomposition of the
regular representation on L,(G). Similarly, the space °¢(G) of cusp forms,
which is spanned by the K-finite matrix coefficients of discrete series
representations, is crucial in describing the Schwartz space €(G).

For G an arbitrary connected semisimple Lie group, the relative discrete
series plays a role analogous to that of the discrete series in decomposing
L,(G). See [3,4,9]. However, when G has infinite center the matrix coef-
ficients of the relative discrete series are not Schwartz class. In this case the
relative discrete series forms continuous families of representations, and it
is necessary to form wave packets of matrix coefficients along the con-
tinuous parameter, analogous to those defined by Harish-Chandra for prin-

* Alfred P. Sloan Research Fellow and Member of the Mathematical Sciences Research
Institute. Partially supported by the NSF under Grant DMS-8401374.

t Research partially supported by the Miller Institute for Basic Research in Science and by
the NSF under Grant DMS-8200235.

1
0022-1236/87 $3.00

Copyright © 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.



2 HERB AND WOLF

cipal series representations, to obtain Schwartz class functions. In this
paper we construct these wave packets for holomorphic relative discrete
series of the simply connected, simple Lie groups of hermitian type and
show that they are Schwartz functions, in fact, cusp forms.

Suppose G is a connected, simply connected, simple Lie group of her-
mitian type, K a maximal compactly embedded subgroup. The
holomorphic discrete series of G are parametrized by certain irreducible
unitary representations y € K. The representation n, of G corresponding to
(x, V,) can be realized on the space of holomorphic sections of the vector
bundle V,=G x V,. There is an extension of y to a function
x:G— GL(V,) so that holomorphic sections f of V, are in bijective
correspondence to holomorphic functions F: G/K— V, via

f(g)=x(g)"' F(gK), geG. (1.1)

Now K= [K, K] x Z%, where Z$% is a one-dimensional real vector group,
so that the representations of K form one-parameter families of the form
xn=xo®e", heR, where e’ is a nontrivial character of Z%. We choose ¥,
and ¢’ so that the y, correspond to holomorphic discrete series represen-
tations of G for A>0. Now given a K-finite holomorphic function
F:G/K—V, , we can define a one-parameter family of K-finite sections of
the bundles V,, by

f@)=x4(g) ' F(gK), geG, h>0. (1.2)

Given two such one-parameter families of sections f, and f,, we form a
one-parameter family of K-finite matrix coefficients for the representations
n,=m,, by

¢u(8)=<ni(&)fu:S4),  g€G, h>0. (1.3)

Finally, given ae%(R™*), a suitable space of smooth functions on
R* = (0, o) which are rapidly decreasing at both 0 and oc, we define

#ue)=]" alh) g(s)dh,  g<G. (14)

These are the wave packets of matrix coefficients. We show that they are in
the Schwartz space %(G) of rapidly decreasing functions on G defined in
[4] and that they are in fact cusp forms in the sense of Harish-Chandra.
Write G = KAK in its Cartan decomposition. Standard growth estimates
for discrete series matrix coefficients were extended to our situation in [4]
to show that any K-finite matrix coefficient of a relative discrete series
representation is rapidly decreasing along 4. However, since K is not com-
pact, and in fact contains a direct factor Z% =R, this does not imply that
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they are rapidly decreasing on G. In fact, any such matrix coefficient trans-
forms by a unitary character along the infinite cyclic group Z=Z;n Z% of
integral points in Z% so that it cannot vanish at infinity along Z%.

In order to show that the wave packets ¢, defined in (1.4) are rapidly
decreasing on G it is necessary to estimate ¢,(a) and all its derivatives with
respect to A as functions of both ae 4 and > 0. This cannot be done with
the standard estimates obtained from the differential equations satisfied by
$.(a) since they give no information on how the solutions grow as 4 goes
to infinity. Instead we compute directly and obtain a formula
(Theorem 5.1) for ¢,(a) which shows the dependence on A explicitly,
modulo a term which is polynomial in 4. Using this formula it is easy to
obtain the necessary estimates. Important motivation for these results was
provided by the explicit formulas for discrete series matrix coefficients for
the universal covering group of SL(2, R) obtained by Sally in [6].

In a second paper we define wave packets for the non-holomorphic
relative discrete series. There we do not have explicit formulas for the one-
parameter families of K-finite matrix coeficients ¢,(x). However, the
parameter £ lies in a bounded interval, and we are able to use the theory of
asymptotics coming from the differential equations to obtain estimates that
are uniform in the parameter A. It is interesting that, to handle the entire
relative discrete series, we need both the theory of asymptotics for the non-
holomorphic case, where explicit formulas are not available, and the
explicit formulas for the holomorphic case, where we must control growth
at infinity. In that second paper we also prove that finite sums of wave
packets obtained in these two ways form a dense subspace of the space of
cusp forms.

In Section 2 we describe the holomorphic trivialization of the bundles V,
corresponding to holomorphic relative discrete series. We also define a
holomorphic local group containing G which plays the role that the com-
plexification G¢ of a real linear group Gy plays in the standard theory of
holomorphic discrete series. The main results for this local group are sum-
marized in Theorem 2.17.

In Section 3 we organize the holomorphic relative discrete series into
one-parameter families and work out explicit formulas for the one-
parameter families of K-finite sections.

In Section 4 we discuss the global and relative Schwartz spaces for G,
and the corresponding spaces of cusp forms. ‘

The main results of Section 5 are Theorem 5.1, which gives a formula for
the matrix coefficients, and its corollary, which gives the estimates
necessary to form wave packets.

In Section 6 we illustrate the results of Section 5 when G is the universal

covering group of SU(1, 1). The reader may prefer to read Section 6 before
Section 5.
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Finally, in Section 7 we define our wave packets and prove that they are
Schwartz functions and cusp forms. These results are stated in Theorem 7.3.

2. BOUNDED SYMMETRIC DOMAINS

In this section we study an irreducible bounded symmetric domain D as
homogeneous space G/K of the universal cover of its analytic
automorphism group. We recall the Harish-Chandra embedding and factor
of automorphy for D, based on certain structural facts

GrcP,K.P_ cGe

for a linear quotient group of G, and lift this picture up to G itself. The
analogous structural basis

GcP,RcP._

is given in Theorem 2.17. The technical point here is that G does not have a
complexification per se. This problem is met by introducing a holomorphic
local group structure on the universal cover P, KcP_ of P, KcP .

Of course we depend very much on the fundamental results of Harish-
Chandra [0, 1] for the holomorphic discrete series. But our approach and
objective are rather different.

G is a connected, simply connected, simple Lie group of hermitian type.
Fix a Cartan involution 8; so the fixed point set K = G’ is a maximal com-
pactly embedded subgroup of G, and its center Z is the direct product of a
finite abelian group with a one-dimensional real vector group Z%. We write
g, T and 3, for the corresponding real Lie algebras.

Since G is of hermitian type, K is the centralizer of Z%, and in particular
G has a Cartan subgroup 7< K. Note that 7 and K are connected,
K=[K, K]xZ%and T={Tn[K K]} xZ5.

The root system @ = ®(g¢, tc) has a positive subsystem @* with the
following properties. Let g ==f + p, + 1 eigenspaces of 6, as usual, and call a
root ye @ compact if the root space g, < fc, noncompact if g, =pc. Then
there is a unique noncompact simple root, say oy, and pc=p, +p._,
where p, is the sum of the root spaces for roots in which the coefficient
(when the root is expressed as a linear combination of simple roots) of «, is
+ 1. This corresponds to the choice of invariant complex structure on G/K
such that p_ represents the holomorphic tangent space.

We need to see this complex structure directly. Let G denote the con-
nected simply connected complex Lie group for gc. Let Gy, Ky, K¢, Py
and P_ denote the analytic subgroups for g, f, fc, p, and p_. Then
X=Gc/KcP_ is a complex flag manifold. Let ¢: G — Gy denote the
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(universal) covering induced by g g¢c. Then K=¢ '(Kg), ¢: K> Ky is a
covering, Ggc P KcP_ and Ggn(KcP_)=Ky; 50 G/K=Gg/Kyg is an
open Gg-orbit in X. That is the “Borel embedding.” Furthermore, define
(4P KcP_—yp,, Py P, KcP_—Py, K:P, KcP_ - Kc
(2.1a)
by
x=p,(x) &(x)p_(x) and p.(x)=expl,(x). (21b)
We frequently write {(x) for {,(x). If geG we also write {,(g) for

{+(q(g)), p+(g) for p,(q(g)), and (g) for #(g(g))-
{:G—-p, induces a holomorphic difftomorphism of G/K onto a

bounded domain D in the complex vector space p,. That is the “Harish-
Chandra embedding.”

EXaMPLE 2.2. Let Gg = SU(m, n). It consists of all block form matrices
Y ¥) of determinant 1 such that UY*=XV* UU*—-XX*=I, and
VV*—YY*=1I,. Here Gg< P, KcP _ is given by

(U _<IZAO I 0\ [A+ZBW ZB
Y v) \0 I)\0 B\w 1)\ BW B
soif g(g)= (Y ¥) then {(g) can be identified with Z= XV~ in the space of
all complex m x n matrices. This identifies D with
{ZzeC™ " 1,—-2Z*>0}={ZeC" " 1,—-Z*Z>0}
with the action of SU(m, n) given by

U -1
(Y );>.Z—>(UZ+X)(YZ+ vyl

The factor of automorphy is given by

_ A 0 U-XV7'yYy 0
"(g)=<0 B>=< 0 V)'

One can check that {(g) and #(g) are related by I,,— ZZ*=AA* and
1,—Z*Z = (BB*)~'. (End of example.)

Let gx: Kc — K denote the universal covering group. We may view K.
as the complexification of X, and then gx|x=¢ |x. Since G is simply
connected, x: G — K has a unique lift

k:G—Kc  suchthat x|, Ko K. (2.3)

k is the universal factor of automorphy. Compare Tirao [7, p. 64].
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Fix a (necessarily finite dimensional) irreducible unitary representation
x€ K. V=1V, denotes the representation space, and

V=V,=G x x V->G/K

is the associated homogeneous holomorphic vector bundle. Here G x , V' is
G x V modulo the relation (gk, x(k) v)~ (g, v), so sections correspond to
functions f: G-V such that f(gk)=yx(k) ' f(g). The section is
holomorphic just when the right derivatives f(g; ) =0 for all ¢ ep_. This
means that

d
@, {f(g-exp(,)) + if(g - exp(1£,))} =0

where & =¢, + i, with £, &5 ¢eq.

The universal factor of automorphy defines the factor of automorphy for
V,—G/K as follows. First extend y to a holomorphic representation
. Ke— GL(V,) of the complexification of K. Now define a function (not,
of course, a representation)

xG->GL(V,) by x(g)=x(x(g)) (2.4)

That is the factor of automorphy. Note that y(k), k € K, retains its original
meaning, because x(k)=k. It gives a holomorphic trivialization of
V,—G/K as follows. The functions F:G/K—V, are in G-equivariant
correspondence with the sections f of V, — G/K by

flg)=uxlg) ' F(gK). (2.5)

Since K normalizes p_, f is a holomorphic section if and only if Fis a
holomorphic function.

We now lift the local group structure of the dense open subset P, Ko P _
in G¢, to a local group structure on its universal cover, which we think of
as P, KcP_. This will be a key tool in our analysis of matrix coefficients.
The result we need is Theorem 2.17 below.

The map p, xKcxp_—P KcP_, given by (& k,n)—-exp(é)
k- exp(n), is a holomorphic diffeomorphism. As K. is simply connected,

G=(1xqex1): P, xKcxP —P, KcP._ (2.6)
is the universal covering space. It locally is a holomorphic diffeomorphism.

LEMMA 2.7. Let x,ye P _ KcP_. Then xye P_ KcP_ if and only if
p(x)p,(y)eP KcP_.

Proof. Write xy=p (x) k(x) p_(x) p (¥} k(y)-p_(y) It is in
P, K.P_ if and only if &{x)-p_(x)-p, (¥) #(y)eP, KcP_. Write the
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latter as Ad(&(x)){p_(x):p.(»)} R(x)- &(y). As Ad(Kc){P,KcP_}=
P,KcP_,and P_Kc.P_Kc=P, KcP_,our assertion follows. Q.E.D.

Lemma 2.7 describes the local group structure. Note that Gg, P, , K¢
and P_ are subgroups, and that K. normalizes P, and P_ within
P, K-P_. See Lemmas 2.11 and 2.14 below.

Write ~ for conjugation of g¢ over g, G over Gg. It interchanges p
andp_, P, and P_.

LemMa 2.8. The bounded symmetric domain
D={lep, :geexp(&) KcP_ for some ge Gy}

has complex conjugate

D={nep_:ge P, K¢ exp(n)for somege Gy}

Proof. Let ¢={,(g),g€Gg. Theng '=g 'eGgand é=—{_(g~ ).
Note —D = D since D =Ad(Z%) D= {e”D: 0 real}. Q.E.D.

LEMMA 2.9. If £ & € D then exp(&) exp(E')e P, Ko P_ .

Proof. Let g,g'eGg such that £={_(g) and &' ={,(g'). As
gg'€Gpc P, KcP_, Lemma 2.7 says that exp(€) exp(¢')e P, Ko P .
Q.E.D.

LEMMA 2.10. Let (£ &)= — (& &, the positive definite hermitian form
on gc invariant by the compact real form g, =%+ ip, where nisn=0(7) is
conjugation of gc over g,. Relative to ( , ), choose orthonormal bases

{10 En} O Poy (Mises i)t of Ee, and {E,,.., E,} of p_. Write block
Sform matrices for this basis of a¢. If E€p ., then there is an n x m matrix Z
such that

0z 0 0 0 0
ad(¢) = (0 0 — ’Z) and ad(&) =( Z 0 0)
00 O 0 -Z 0

where Z means the complex conjugate of Z.

Proof. Note that

0 Z 0 0 0 0
ad(«f)z(O 0 Z’) and ad(§) = (W’ 0 0)
0 0 O 0 w o

for some nxm matrices Z, V-V and mxn matriges Z',W'. Now
ad(§)n,=% z;,¢;, implies ad({)n,=ad(é)n,=XY7;&=-37;¢, so
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W= —=Z. Similarly W'=-2Z". Check ad({)*=ad({) so that
(@d(&) &, 1) = (,, ad(£) ,), i.e., W ="'Z". That does it. QED.

LEMMA 211, Let &, &' ep ., say

02z O 0 zZ 0
ad(f)=( 0 0 ——’Z) and ad(é’)=( 0 0 -’Z’)
00 O 0 0 0

in the notation of Lemma 2.10. Then exp()-exp(¢')e P, KcP_ if and only
if the nxn matrix 2-'Z-Z'-'Z' + Z-'Z' + I is invertible.

Proof. Tt suffices to prove that Ad(exp(€))- Ad(exp(¢’))eAd(P.):
Ad(K¢) Ad(P_) if and only if 3Z-'Z-Z'-'Z'+Z-'Z' + I is invertible,
where Ad means Adg,. in every instance. To see this, we check that the
conditions

(a) exp({)-exp(l’)eP, KcP_, and
(b) Ad(exp(£))- Ad(exp(¢')) e Ad(P, ) Ad(Kc) - Ad(P_)

are equivalent. Clearly (a) implies (b). For the converse it suffices to show
that K¢ contains the kernel of Ad, which is the center of G.. As KcP_ is a
maximal parabolic subgroup of G, K¢ is the G¢-centralizer of the circle
group €xpg.(3«), and thus contains the center of G.. Now (a) and (b) are
equivalent.

Compute
Ad(exp £)- Ad(exp ¢')
I 0 ON\/I Z 707
( 2 10)(0 -
—1z'Z —Z 1/\0 0 1
I VA —iz'-'z
—.—( 'z 'Z-Z'+1 AR ARV A )
-1Z'Z7 -17'Z-Z-Z LZ-'2-Z2-'Z+Z2-'Z +1

This is in Ad(P, K- P_) if and only if it has expression

TU —iU-'Uy;4 0 0 I 00
(01 —U )(0 B 0)( 1% I 0)
00 I 00 c/\ypv -7 1

(A+ UB'V+iU-'U- V-V UB+iU-'UCV —1iU- ’UC)

B-V+yU-C-V- ¥V B+'UCV —'UC
—iCV-'T —CV C
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If it has that expression, then
C=Ad(k((exp ENexp EN) |, =3Z2-'2-2'-'Z'+Z-'Z' +1

is invertible. Conversely, if the latter is invertible, we solve for U and V,
then B, and finally A. Q.E.D.

LEMMA 2.12. Let & E'ep, . Suppose that there exists r>0 such that
EerD and &' e(1/r) D. Then exp(€)-exp(¢')e P, KcP_.

Proof. (1/r) &, rE' e D, so Lemma 2.9 says that exp((1/r) )-exp(ré’)e
P_K-P_, and now Lemma 2.11 says that

r

1 \/1 - 1
%(— Z)(; ’Z) (rZ')r'z2")+ (; Z) r'ZHY+1
is invertible. All the r’s cancel there, so Lemma 2.11 ensures that
exp(&)-exp(&')e P KPP . Q.E.D.
We now define subsets of P, KcP_ and P, x Kcx P_ by
Q={(x,y)e(P,KcP_)x(P,KcP_):Ir>0with{_(x)erD
and (. (y)e(l/r)D}; (2.13a)
G=(Gx§)" Q) (2.13b)

LEMMA 2.14. If (x,y)€R then xye P, KcP_. @ is simply connected
and (§x §): @ - Q is the universal covering.

Proof. For the first assertion, combine Lemmas 2.7 and 2.12.

Let a(t)=(0,(1), 0,(1)), 0<t<1, be a closed curve in @ starting at
(1,7), where T=(1,1,1)eP, xKexP . If 0<u<1 define o(u, t)=
(o,(u, t), 05(u, t)), where

oi(u, 1) = (exp((1 —u) {, (6,(1))), k(o (1)), exp((1 —u) {_(a(1)))).

For each u, 1+ a(u, t) again is a closed curve in @ starting at (1, T). This
gives a homotopy of the closed curve o(-)=0(0,-) to the closed curve
o(1,-) in Kcx K, which is simply connected. Thus ¢ is null-homotopic.
Now @ is simply connected. As

(GxG): (P xKexP_)x(P,xKcxP_ )= (P,KcP_)x(P,KcP_)

is a covering and @ is the inverse image of an open set, now (§x §): 2 - Q
is the universal cover of Q. Q.ED.
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LEMMA 2.15. View G as a subset of P, x Kcx P_ under the injection
p.xxxp_. Then §|s is the covering q: G — Gg and Gx G (.

,Pro_of. The statement on § | follows from (2.3) and (2.6). D={(G)
and D={_(G) as a consequence of Lemma 2.8, so we have Gx G c Q.
Q.ED.

Multiplication m: Q - P, K- P_ is well defined by the first part of
Lemma 2.14. In view of the rest of that lemma, there is a unique lift

@ —2 P xKexP_

1‘7*‘7 l" (2.16)
Q _m_’ P+ K(jPA
such that (1, T)=1.

THEOREM 2.17. (P, xKcx P_,m) is a complex analytic local group,
which we denote P, KcP . G is a closed real analytic subgroup of
P.K.P_,and P,, K. and P_ are closed complex analytic subgroups. If
peP_ and ke K¢ then kp = p'k, where p' = Ad(§(K)) - p. Finally,

G P,KcP —-P,KcP_
is the universal local group covering.

Proof. Since i is well defined, it must be given by lifting curves, as
follows. If (%, ) € @ then there are curves {%,} fromT to % and {7,} from T
to 7 such that {(%,, 7,)} is a curve in @ from (1, T) to (%, 7). Now m(X, §)
is the endpoint of the §-lift, starting at 1, of the curve {G(%,)-§(7,)} in Q.
In particular, / restricts to the original group laws on G, P, I?C, P_,
and the semidirect products K. - P, . All are closed real analytic sub-
manifolds, and all but G are complex submanifolds. The local group cover-

ing statement follows as well. QED.

We will need the local group result of Theorem 2.17 in order to avoid a
monodromy problem in the proof of Lemma54. That problem
corresponds to the choice of a branch of the logarithm in the argument of
Lemma 6.4.

3. HOLOMORPHIC RELATIVE DISCRETE SERIES

In this section we organize the holomorphic relative discrete series of G
into one-parameter families along which we will later form our wave
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packets. We work out explicit formulas for the K-finite vectors in these
one-parameter families and obtain some estimates that will be needed to
analyze the wave packets. )

Retain the set-up and notation of Section 2. In particular, ye Kand V =
G x xV — G/K is the associated holomorphic homogeneous vector bundle.

Since y is unitary, the fibres of V — G/K are Hilbert spaces, so a section f
has well defined pointwise norm | f(g)| = ({f(g), f(g)>,)"% As usual,
that gives a Hilbert space

L,(G/K, V)= {measurable sections [~ L/K I f(g)lI* d(gK) < oo}

with global inner product <f, f'>=<{ffDex = [eax<f(g)
f'(8)>v d(gK) and norm || fll =1 fllgx = <f, > G acts unitarily by
(g° f)(x)= f(g~'x). The subspace

H,(G/K, V)= {holomorphic sections f- L/K | f(g)]I? d(gK) < oo}

is a closed subspace. A famous result of Harish-Chandra [1] says that
H,(G/K,V)#£0<«{A+p, u><0 (3.1)

where 4 is the highest weight of y, u is the maximal root, and p is half the
sum of the positive roots. When that condition holds, G acts on
H,(G/K,V) by an irreducible unitary representation n,, which is the
holomorphic relative discrete series representation of Harish-Chandra
parameter A+ p.

We organize the holomorphic relative discrete series into one-parameter
Sfamilies as follows. Define ve iz} by 2<v, ag /{0y, o> = —1, so v is the
negative of the fundamental highest weight corresponding to the noncom-
pact simple root a,. Given y e K with highest weight 4, we set A, =A+av
and yo =y ®e®, where a=2{1+ p, u>/{u, u>. The longest element w, of
the Weyl group of K exchanges a4 and . See the discussion around (3.13)
below. As wov=v, now 2{v, u>/{p, u>= —1. Thus y, has highest weight
Ao such that {4y + p, > =0. Now

Xn = %o ®e™ € K has highest weight A, = 1, + hv,

3.2
and g, satisfies the conditions of (3.1) <> /1> 0. (32)

Any y®e” leads to the same one-parameter family {xn: h>0}, so we
could have avoided duplication by choosing y e [K, K] ~. Thus we have
the holomorphic relative discrete series partitioned into one-parameter
families {n,: #>0}, where n, =r,,, as x ranges over [K, K] . Here =, has
Harish-Chandra parameter A, + p =4, + hv+ p.
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Harish-Chandra proved (3.1) in [ 1] by a method that amounts to use of
the holomorphic trivialization of (2.4), carrying the pointwise norm from f
to F. He noted that F is K-finite just when it is polynomial and showed that
if some polynomial F is L, then the constant functions F are L,. Going
back, now, this shows that if (3.1) holds then every K-finite holomorphic
section of V — G/K is square integrable. So we take a close look at K-finite
sections.

Let U be a finite-dimensional K-invariant space of sections of V — G/K,
let feU, and let {f;} be any basis of U. Fix an abstract K-module W
isomorphic to U. Let we W correspond to f, let {w;} be the basis
corresponding to {f;}, and let {w*} be the dual basis of W*. Then

flkg)=3 <k~ tw,wi) fie) (33)

for all keK and geG. For flkg)=[k ' f1(g) and k 'w=
Y k7w, wFdw,.

In (3.3) if we start with a K-finite section f, we may take U=%(f) f. In
particular, if f is holomorphic we may assume that the f; are holomorphic.

Write @(p . ) for the set {a e ®: g, =p . } of noncompact positive roots.
Choose root vectors E, €g,, a€®(p, ), such that (E,, E,>=1 where
E,=E_,eg_, results from conjugation of gc over g. The monomial
complex valued functions on p , are the

Y z,E, H(Z zaEa)"=H o n=(ny), (3.4)

ae®(p, ) and n, integers >0. Fix a basis {v,} of V consisting of weight
vectors. Then the K-finite holomorphic functions G/K — V are the finite
linear combinations of the

F,,:gK—{(g)"v,. (3.5a)

Corresponding to this, the K-finite holomorphic sections of V — G/K are
the finite linear combinations of the

Srp: 8 0(8)" x(8) ™! v, (3.5b)

Note that f,, , is a vector of weight §—3" n, -a, where § is the weight of v,,.

Now fix a K-finite holomorphic function F=3 c,,F,,: G/K—V.
When we pass to the one-parameter family {y,} = K, F corresponds to a
one-parameter family of sections

&)=Y cnsl(8)" xn(8) " 05

=e "(x(8)) Y cnpl(8)" 20(8) " Vs (3.6)
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of the respective bundles V, - G/K. Here note that v, has weight f, + v
relative to y,, where B is its weight with respect to y,.

In order to be more precise and to be able to estimate sections and coef-
ficients, we need some information on the root structure and the Cartan
decomposition G = KAK.

Let I'= {y,..., ;,} be a maximal strongly orthogonal subset of &(p , )
obtained by cascading down from the maximal root u: y, =p and y;,, is
any root in @(p , ) maximal with respect to the condition y,, ; L {y,... ¥;}-
Let E; e g, such that {E,, E:,-} =1 and set H, = [E;, E;]. Define a to be the
real span of the X; = E; + E; and A =expg(a). Then G = KAK.

The “Cayley transform” element for G is c=exps (372 Y;), where
Y,=iE;,—E)ep. If we split t=t*+1t~, where t* =I"* and it~ is the
span of the H,, then Ad(c) fixes t* and carries it~ to a. Thus
Ad(c)tc ng=1t"* + a is a maximally split Cartan subalgebra of g. We use
the positive a-root system &} consisting of all Ad(c) «}, such that ae ®*
and «|,- #0. Write p, for half the sum (with multiplicities) of the elements
of @7, s0 p, =Ad(c)pl,-

The positive Weyl chamber is a* = {Xea: §(X)>0 for all 5e @} }. Let
g[y;] be the span of E;, E; and H,. It is the Lic algebra of a subgroup
Gcly;1= G isomorphic to SL(2;C) under E; < (§ }), E; < (} J) and
H; & (§ ° ). Calculate in SL(2; C)

nif 01 1 0 01
(o (57 0))) (o -1)=(1 o)
to see that Ad(c) H; = X,;. We will need this for (3.15) below, where we see
that

at ={Zstj:s1 > >s,>0};
then the form of the Cartan decomposition
G=K-c(4%) K, A" =expg(a*)

will be sufficiently precise so that we can make certain estimates.
We look in Gc[I]=]]Gc[y,]=G¢ to compute the decomposition
q(a)eexp({(a)) - k(a) - P_ for an element ae A. Note that

0 s\ _(1tanh(s)\/1/cosh(s) O 1 0
cxp (s 0)'(0 1 )( 0 cosh(s))(tanh(s) 1)'

It follows that, for a, =exps 2 5, X},
{(a,)=Y tanh(s;) E;
and (3.7a)
k(a,) ' =expg,. 2, log cosh(s;) H;.
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Lifting the curve t+—expg{r ¥ 5,X;} from P, KcP_ to P, KcP_ as in
Theorem 2.17, we conclude

x(a,) ' =expg. Y. log cosh(s;) H,. (3.7b)

Combine (3.5) and (3.7) to see that F,,(a,K)=0 and f,,(a,) =0 if some
n,>0 for a¢ I', and that if n, =0 whenever a ¢ I" then
F,(a,K)= {I'[ tanh(sj)"f} vy, n,=n,,

(3.8)

fraka) = {1 antis o oshis 2420/ Lo,

where f is the weight of v,.

Combine (3.3) and (3.8). Thus f is a K-finite holomorphic section of
V> G/K, say f=3 c,; fas, U is a finite-dimensional K-invariant space of
holomorphic sections which contains all the f, , involved in this expression
of f, and W is an abstract K-module isomorphic to U. We have we W
corresponding to f. We may assume that U has a basis of the form
{fus}nensen- Let {w,,} be the corresponding basis of W and {w*,} the
dual basis of W*, Then for k, k'€ K,

flkak)= 3 <kmlwowk) a7 fuu(ay), (3.9)

nehN’
beB

where N'= {ne N: n, =0 whenever a¢ I'}.

Now combine (3.6) and (3.9). Thus we start with a K-finite F=3 ¢, F,,
and it defines the one-parameter family of sections f, of V, - G/K
associated to0 y, = yo ® ¢ € K. Here U, has basis consisting of the

Srnp: 8 € " (k(8)) fons(8), neN,beB. (3.10a)

Note, from (3.8), that
Frnsla)) = {n tanh(s,)" cosh(sj)z<'*”f>/<vf=w>} v

where B, = f, + hv is the weight of v, in x, =y, ® e”. The same vector
space W supports the abstract K-modules isomorphic to U,. If 1, denotes
the action of K on W corresponding to U,, then using (3.3) one sees that
7, =1, ®e™. Thus

fulkak') =3, (ouk) ™ 'w, wky) xulk) 7' fhasla) (3.11)

ne N’
be B

where N'={neN:.n,=0 for a¢ I'}.
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Finally, we put together some information on the growth properties of
the f} .5, in regard to the parameter 4 and the highest weight 4, of x,.

If 2 is the highest weight for K on V/,, then every weight of K on V, has
the form

f = A — (sum of compact positive roots).

Since the compact roots vanish on 34, that gives

ef(z)y=e*(z)  for zeZ%and B any weightof V,. (3.12)

Recall the definition of vei3k: 2{v, ay /{0, @y > = —1, where a, is the
noncompact simple root. The longest element of the Weyl group W,
exchanges o, and the maximal root u=y,, and a subgroup of W,
permutes the v, transitively. See [1, 5, 8]. Thus

2<V, ')),> — 2<V, ,Lt> —_ 2<V, <10>
{ris Vi sy {0g, 090

SO

2<V, YA> —
Yo i

~1  for 1<i<li (3.13a)

Combine this with (3.7) to see that

™ (x(a,)) =[] cosh(s,)". (3.13b)

The Restricted Root Theorem of Harish-Chandra [1] and Moore [5] is
usually formulated relative to a set I = {y},.., y;} of strongly orthogonal
roots where y| is the noncompact simple root and v}, , is a lowest root in
@(p . ) that is orthogonal to {yi,.., y;}. The longest element of the Weyl
group of K, the one that interchanges ®(f)* u@(p,) with
{—®(f)*} U D(p, ), interchanges I with our set I" of strongly orthogonal
roots. Thus, relative to I, the Restricted Root Theorem as stated in [8,
p. 285] says that restriction of roots, from t to the subspace t~ such that
it~ is the span of the H;, has the following property.

Case 1. D is of tube type. Then rest(@)u {0} ={+1iy, +1y;: 1<q
Jj<!}, and

rest(P(H) ") u {0} = {0} u {3 (y; =y 1<i<j<I},

(3.14a)
rest(®(p  ))u {0} = {0} U {3(y, +7,): 1<i< <}

580/73/1-2
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Case 2. D is not of tube type. Then rest(®) U {0} = { £ 37y, £37,, 37::
I<i<j<l}, and

rest(@(F)*)u {0} = {0} U {3 (yi =) i</} o {37}, (3.14b)
rest(@(p )0 {0} = {0} U (v +nyi<ilofint

An immediate consequence is
ifaoe®tands;, =5,> - >s,>0thena<2siHi)>0. (3.15a)
Since Ad(c)H; = X,, we also get
a+={2s,-X,-:sl>s2>--~ >s,>0}. (3.15b)

The highest weight A for K on V,, and an arbitrary weight B, differ by a
sum of compact positive roots. If si2---5;>0 then (3.15a) gives
A siH)=B(X siH;). Use (3.15b) and take s;=Ilogcosh(s;), where
a,ecl(A™); then, using (3.7), —A(log k(a,)) = —B(log x(a,)). So,

e P(k(a))<e *x(a)) forall aecl(4™). (3.16)

The condition (3.1) can be phrased (1+p,y> <0 for all ye®(p.)
in particular for y=y,. Now from (3.2), {4, +p, y;> <0. As above,
if a,ecl(4%), so logcosh(s;)= --- =logcosh(s;)=0, we get
(4o + p)(—log k(a,)) <0, so

e~ M+ (k(a)) <1 forall aecl(4™). (3.17)
Again using (3.7) and (3.15), we have
e*(k(a)) <1 for aed®* andaecl(4™). (3.18a)

In particular,

ef(k(a)) <1 for aecl(4™). (3.18b)

4. RAPIDLY DECREASING FUNCTIONS

We recently defined and studied the space of rapidly decreasing functions
on a general semisimple Lie group [4]. In this section we recall some
definitions and facts needed to form our wave packets. These are somewhat
simplified from [4] because here we are dealing with a connected group.

First, we normalize Haar measures. Let Z; denote the center of G and
define Z=Z;nZ% Then K/Z=[K, K]x(Z%Z). Let He3, be the
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element such that ad(H) is +i on p,. Then the circle group

Z%Z ={z4Z}, zg =€xps(60H), as 8 runs from 0 to 2zn. Normalize Haar
measures by

f dk’=1 and d(zZ)=1
[K.K]

J‘Z")(/Z

so that

1 2n
jK/Z dkZ)=1  and jzo/z #(:Z) d(z2) = o L #(2,Z) df.

K

Further normalize by

| pkryd=] 3 ko) dikz)

KiZ ;ez

Define D: A >R by

D(a)=]] le*(a)—e~*(a)|™,  m,=dimg,.
¢+
Let da denote the euclidean measure on A4,

| #a)da=| ) __f: b(a,) ds, - ds,

— o —

Then we normalize the invariant measure on G/K by
[ serrdgr)=] [ ¢tka) Dia)da d(kZ)
G/K K/ZvAa*
Now we normalize Haar measures on G and G/Z by
| #enrdeznr=] [ p(ekz)dkz)d(gk)
G/Z G/K *K/Z
and
[ #erde=] | g(gk)dk d(gk)
G G/K YK

=[ T #ez)d(s2)

GIZ ;e z

This has no effect on the considerations in Section 3.
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The first ingredient in the definition of rapidly decreasing function is a
distance or norm, to keep track of polynomial growth. The Killing form of
G defines the structure of riemannian symmetric space on G/K. Let o=
1-Ke G/K and define 6: G>R™* by

a(x) =distance(s, x(o)). (4.1a)

ThisA is the norm used to define the relative Schwartz spaces 4(G/Z, {),
{eZ, which can be viewed as the direct integrands of the absolute
Schwartz space €(G). As G is connected and K= [K, K] x Z%,

[K, K] is the group KV of [4, Lemma 6.3],
Z% is the group V¥ of [4, Lemma 6.3],
G is the group GV of [4, Lemma 6.3].

Of course (z, k', &) zk' expg(&) is a diffeomorphism of Z% x [K, K] xp
onto G, and o(zk'expg(£))=1¢&|. Define a norm |zy | =|0], zg=
expg(0H), on Z%. Now define 6: G > R™* by

G(zk" exp(&))=z| + & for zeZ% k'e[K, K], Eep. (4.1b)
Note that

G(x)=o(x) forall xe G, and G(a)=o(a) for aeA.
(4.2a)

Also, since k(o) =+ in G/K, and since
Ad(zk")(zok' exp(€)) = zo - Ad(K")k' - exp(Ad(zk") E)
for ze Z% and k', k" € [K, K], we have
olkxk~")=0o(x) and é&lkxk ')=d6(x) for keK (4.2b)
In addition, from [4, Sects. 2 and 6], if k, € K and k/e [K, K], then
a(k,xk,)=0a(x) and G(kixks)=d(x); (4.2¢)
o(xy)<o(x)+a(y) and G(xy) < 3(6(x) + 6(p)). (4.2d)

The second ingredient in the definition of a rapidly decreasing function is
a term to compensate for negative curvature on G/K or G/[K, K]. That is
the zonal spherical function on G for 0 e a*,

Bx)=| e a(kz) (43)

K/Z
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where xe N-exp H(x) K with H(x)ea, for the Iwasawa decomposition
G = NAK. Among the properties of = (see [2, Lemma 10.1] and [4, 2.5
and 6.12]) one finds

Za) e P(a) g1 for aecl(4*) (4.4)

Let {eZ and C*(G/Z, {)={feC*(G): flxz)={(z)"" f(x) for ze Z,
xeG}. If Dy, D, e%(g) and reR, set

o | flhp, =sup (1 +0(x))" 2(x) " [ f(Dyx; D). (4.5a)

xeG
The relative Schwartz spaces on G are the
4(G/Z,{)={fe C*(G/Z,{):ifreRand
D;e%(g)then p, | f|,p, <} (4.5b)
As shown in [4, Theorems 2.7 and 2.8],
C2(G/Z,()=¥(G/Z,{) = Ly(G/Z, () (4.5¢)

are continuous inclusions onto dense subspaces.
Similarly, for f € C*(G), set

o | f 1o, =sup (1+6(x))" Z(x)~" | f(Dy:x; D). (4.6a)

xeG

The Schwartz space on G is
%(G)={feC®(G):ifreRand
D;e(g)then p, || fll,p, <00}
As shown in [4, Theorems 6.11 and 6.13],
Cr(G)c¥(G) < L,(G) (4.6c)
are .cpntinuous inclusions onto dense subspaces. The direct integral decom-
position

Ly(G)= | Lx(G/Z,0)dl

is implemented by fc(x)=jz f(x2){(z) dz, say for fe CG). In fact [4,
Theorem 7.2], if f € 4(G), then each f, e ¥(G/Z,{), and f — f, is a con-
tinuous map from €(G) to €(G/Z, {).

If fe€(G) and if P'=M'A'N’ is a parabolic subgroup of G, then we set
S (x)={u f(xn") dn’. The integral converges absolutely, uniformly for x in
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compact subsets of G. f'is a cusp form if " =0 for all proper parabolic sub-
groups P’ of G. The space of cusp forms,

%(G)={fe¥%(G): fisacuspform} (4.7a)

is a closed G-invariant subspace of €(G).

Similarly, if f € ¥(G/Z, {), then f* converges absolutely uniformly for xZ
in compact subsets of G/Z. We say that f is a relative cusp form if f*' =0
for all proper parabolic subgroups P’ of G. The space of relative cusp
forms,

%€(G/Z,{)={fc¥(G/Z,{): fis a relative cusp form}  (4.7b)

is a closed G-invariant subspace of 4(G/Z, {).

LEMMA 4.8. Let f e 4(G). Then f € *€(G) if and only if f, € °€(G/Z, ()
forall [eZ.

Proof. Let f€°¢(G) and { € Z. Then 1 €4(G/Z,{), and

") =] fewyan' =] [ fom'z)¢(c) dz aw

=] (@] soxmydn dz= (/7))

because Z centralizes N’ and all the integrals converge absolutely. If P’ is a
proper parabolic subgroup of G, now f* =0 implies (/;)” =0, so f; is a
relative cusp form.

Conversely let f, € °¢(G/Z, {) for all { € Z. Then

17 (x) = fN’ flxn') dn’ = fo L foloen') d¢ dn’

= JZ, va Selxn'y an' d{ = _[Z_ ()7 (x)dL,

which vanishes, so f'is a cusp form. Q.E.D.

We understand the spaces of relative cusp forms. See [4, Corollary 5.7
and Theorem 5.8]. °¢(G/Z,({) contains every Z-finite element of
€(G/Z, (). In particular, if e G is a relative discrete series representation,
then every K-finite matrix coefficient of = is a relative cusp form. Moreover,
if we denote

b4is-(G/Z, {): closed subspace of €(G/Z, {) spanned by relative
discrete series matrix coefficients, (4.9)
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then °€(G/Z,{)=%4(G/Z,(). In view of Lemmad4.8 one expects
something similar for °¢(G). This paper is a step toward proving the
corresponding results for °¢(G) and €, (G).

5. MATRIX COEFFICIENTS

Let ¢, be a one-parameter family of matrix coefficients corresponding to
K-finite sections of the bundles V, — G/K as in (1.3). In this section we will
obtain a formula for ¢,(a), aecl(4*), which gives precise information
about the asymptotic behavior of ¢,(a), and all its derivatives with respect
to A, as a function of both a and A. The precise statement is as follows.

THEOREM 5.1. For aecl(A*), ¢,(a) is a finite linear combination of
terms of the form
e M) | e #(x(a)) Da)) pla, a, h) da,

At

where B, =P +hv and B,=Po+hv are weights of x,, pla,a h) is a
polynomial in h of the form 377, cfay, a)h’, where the coefficients c/(a,, a)
are bounded for a, a, ecl(A™), and D(a)=1l.co} |e*(a) — e~ *(a)|™, for
aeA.

COROLLARY 5.2. Let r >0 be an integer. Then there are a constant ¢, >0
and an integer m >0 so that for all aecl(4*), h>0,

r+1)
an <c(l+h)" <1 +;l->( (14 0(a)) e~ R+ M™(k(a)).

‘ifbh(a)

The remainder of this section is devoted to the proofs of Theorem 5.1
and Corollary 5.2. Let f,, f, be one-parameter families of K-finite sections
of V, - G/K For xeQG,

$u(x)= CL(x) fns [nDoix =L/K Slx1g), f1(2)D, d(gK)
=J.K/Z -[A+ <fh(x*lka)’ Silka)>, D(a) dk da.

Now writing £}, as a finite linear combination of monomials as in (3.6), and
using (3.10b) and (3.11) to expand f}, we see that ¢,(x) is a finite linear
combination of terms of the form

=[] ey GERTTw W

x {(a;)™ e_m'("(al)) <Xh(xA1kal)_l v,uyy D(a,) dk da, (5.3)
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where u, ve V are weight vectors of weights 8, = 5+ hv and B, = B, + hv,
respectively, for the action of y, on V, ne N, me N', we W corresponds to
S under the action t,, and w*e W* is a weight vector of weight
—B,+2i_ my, for the action dual to t,. We want to show that for
aecl(A™"), y,(a) is a term of the form given in Theorem 5.1.

LEMMA 5.4. Define s, as in (5.3). Then for aecl(A™),

Vila)=e k(@) | Crolk™ Y ww*>

[K.K] L+

x {(a)™ efzﬂ;'("(‘h)) D(ay) I,(a, a,, k) dk da,

where
I(a, a k)——l——-[zne_iM"C(a’lex (e®l(ka,)))"
I A%t el B _27_[ o p 1
x {yn(p_(a~ ") exp(e®C(kay))) v, yulk)u), db
and

/
M= m;.
j=1

Proof. Decompose K/Z as [K,K]xZ%/Z and write z, =exp(6H)
as in Section4. Now for ke[K K], <{t,(z;'%k "yw,w*y =
el mi(z,) (1o(k ™ )w, w*) since w* has weight —pB,+3 m;y,. Now
ePh(zp)=e*(z,) by (3.12) since 4, is the highest weight of x,, and
e Zmi(zg)=e "M since y(H)=1i for all ye ®(p , ).

View G as a subgroup of P, K-P as in (2.17). We can decompose
ka, =exp({(ka,)) kx(a,) p_(a,). Then

zgka, = exp(eiBC(kal)) zgkx(a,) p_(a;)

since ad z,E = e”E for all Ecp, . Thus

{(a™'zgka,)={(a" " exp(e{(ka,)))
and
K(a™'zpka,) = k(k(a) p_(a~ ') exp(e®{(kay)) zgkn(a,))
=x(a)k(p (a~") exp(e®l(ka,))) zokx(a,).
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So

anla™zpkay) o, udy
=e " (z4) {xn(p_(a~")yexp(e”(ka,))) ™! an(@) ™ o, xulk) xulay) " udy,

since x,(a;)* = xs(a,) and Xh(k)*:‘Xh(k)_l' But Xh(a)_lv=e‘ﬁh(’<(a))v
and y,(a,) " 'u=e Pi(x(a,))u. Q.E.D.

To complete the proof of Theorem 5.1 we need to show that
fixxy <tolk"yw, w*> {(a))" I,(a, a,, k) dk is a polynomial in h with
bounded coefficients. To do this we will evaluate the integral I,(a, a,, k)
over Z%/Z by making a change of variables s=¢” and using residues at
s=0. Thus we rewrite

1
Ih(a,al,k)=2—m.jl e exp(stka))

x xu(p_(a 'y exp(st(kay))) ™ o, xa(k)uyy ds. (5.5)

LEMMA 5.6. The function b(s)=b(s, a, a;, k)={(a""' exp(s{(ka,)))" is
holomorphic in a neighborhood of |s| < 1. For any integer r 20, (0"b/0s")
(0, a, a,, k) is bounded for all a, a, ecl(4™), ke [K, K].

Proof. Write E={(ka,). Then E is in the bounded domain D of p, so
there is ¢>0 so that sEeD for all |s|<1+e& Thus for |s|<1+e¢,
a 'exp(sE)e P, KcP_ so that b(s) is defined.

Recall that {(g)" =TT.cow.)l(8)" n, =0, where {,(g) denotes the
coefficient of E, in {(g). It is enough to prove the lemma when b(s)=
{(a~'exp(sE)), ae®(p,). Then b(s)= —{,(a)+e*(x(a)){p (a™')"
exp(sE)), where for aecl(4™), using (3.7) and (3.18b), {,(a) and
e*(k(a)) are both bounded. Thus it is enough to look at b,(s)=
L A(p_(a ') exp(sE)). Now s> p_(a ')exp(sE) is a holomorphic map
from {seC: |s| <1+e¢} into P, KcP_. Further, the projection x — {,(x),
ae®(p,), is a holomorphic map from P, K.P_ to C. Thus b, is
holomorphic for |s| <1 +e.

Let E, F denote arbitrary elements of cl(D). Then Fe 2D and sE€ D for
|s| <4, so that as in (2.12), exp(F) exp(sE)e P, Ko P_ for |s| <4.

Define b(s, E, F)=/{(exp(F)exp(sE)) for |s| <}, E, Fecl(D). As
above, b is holomorphic for |s| <1 and continuous for E, Fecl(D). Thus
bi(s, E, F)=32 o c{E, F )s/, where the coefficients are continuous
functions of E, Fecl(D), hence bounded. But now for |s|<4,

bi(s,a,a,,k)y=by(s, { (kay), {_(a ")) so that (8'b/ds")(0, a,a,, k) =

rlefl, (ka)), {_(a~ ")) is bounded for all a,a, ecl(4™), ke [K, K].
Q.E.D.
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We ‘next want to prove a result similar to that of Lemma 5.6 for the
function of s in (5.5) involving x,. Thus we write

Bh(s)= Bh(s’ a, al’ k)
= {aalp (@ ') exp(stka;))) o, xulK)u )y, (5.7)
a,a,ecl(A*), ke [K K].

LEMMA 58. The function B,(s) is holomorphic in a neighborhood of
|s| < 1. For any integer r 20, ("B, /05")(0, a, a,, k)=37]_, c/(a, a,, k)h is
a polynomial of degree <r in h with coefficients c{a, a,, k) bounded for all
a,a,ecl(4*), ke [K, K].

Proof. Pick £>0 so that s{(ka,)e D for |s|<1+¢ Then {_(a ")eD
and s{(ka,)e D so that the product p_(a ')exp(s{(ka,)) is defined in
P,K.P_ for |s|<1+¢ and as in (5.6), s> p_(a~')exp(s{(ka,)) is a
holomorphic map from {seC: |s|<1+¢} into P, RcP_. But x— «(x) is
a holomorphic map from P, K.P_ to K¢ and y, is a holomorphic
representation of K so that the matrix coefficient B,(s) is holomorphic for
|s|<1+e

Let E, F be arbitrary elements of cl(D). For any ke[K, K],
ad k(E)ecl(D) also, so, as in (56), we have the product
exp(F)exp(s ad kE) defined in P,KcP_ for all |s|<4, E, Fecl(D)
Define Biy(s, E, F, k) = {yo(exp(F)exp(sad kE))™'v, xolk)u),. By is
holomorphic for |s| <} and continuous for E, Fecl(D), ke [K, K]. Thus
as in (5.6), for any r=0, (0"By/0s')(0, a,a,, k) = (0"By/ds")0, { ,(a;),
{ (a "), k) is bounded for all a, a, ecl{4 ™), ke [K, K].

Now B,(s, a, a,, k)=e " (p_(a~ ") exp(s{(ka,))) Bo(s, a, a,, k). By the
above we may as well assume that yo,=1 so that B,(s,a,a,,k) =

e "(p_(a ") exp(st(ka,))). Since K¢ =LK, K]c exp((3x)c), there is a
holomorphic map from P .KcP_ to C given by x—»xz(x), where x e
P_[K K]c exp(rcz(x)H)P_. For E, Fecl(D), |s| <3, define k%(s, E, F) =
Kk z(exp(F) exp(sE)) and B,(s, E, F)=exp(—hv(H) K’Z(s, E, F)). Clearly x5
and B, are holomorphic for |s| <! and continuous for E, Fecl(D).
Further, any derivative (8"B}/ds")(0, E, F) is a polynomial in A (of degree
<r) and the derivatives (0/k%/ds’)(0, E, F), 1 < j<r, since xZ(O E, F)=0.

Thus (0'B,/0s')(0,a,a,,k) = (0°B,/0s" )0, (ka,),{ _(a” T (@b is a
polynomial in /4 with coefficients bounded for all a, a; ecl(4 %), ke [K, K],
as required. Q.E.D.

Proof of Theorem 5.1. In the notation of (5.6) and (5.7),

I,,(a,a,,k)=—1—, s~ b(s) B,(s) ds.

Lds1=1
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Using Lemmas 5.6 and 5.8, b and B, are holomorphic in a neighborhood
of |s|<1. Thus we <can evaluate [, by [fa,a,,k) =
Residue,_ o(s ~¥* 1) b(s) B,(s)). Further, using the results of (5.6) and (5.8)
regarding derivatives of b and B, at s=0, we know that this residue is a
polynomial in 4 with coefficients bounded as functions of a, a, ecl{4*)
and ke [K, K7]. Now it is clear from Lemma 5.4 that Theorem 5.1 is proved
with

pla,,a, h)= LKK) {(tolk™YYyw, w*> {(a,)" I(a, a;, k) dk. Q.E.D.

Proof of Corollary 5.2. By Theorem 5.1, ¢,(a) is a finite linear com-
binationr of terms of the form

Yaula)= e PH( a))f ~*Hx(a,)) Dlay) play, a, h) da,,

where B, =B, +hv, B, =fo+hv. For a, =exp(X!_, 5, X)), e "(x(a,))=
!_, (coshs;)~" by (3.13b), so for a, ecl(4™),

Wia)=e"(x(a)) | e P (x(a,)) Dla,)

/ —h
x ( [] coshs; cosh? t,-) pla,, a,, h) da,.

i=1

But clearly

ar { —h
W( [ cosh s; cosh? t,-) pla,, a,, h)
i=1

! —h
=< [] cosh s; cosh? t,) pa,, a,,h)
i=1

whete p,(a,, a,, h) = 7050 ¢ a, a,)(log [T, cosh s, cosh? 1,)7 k¥ is

a polynomial in /4 and log []; coshs cosh? ¢, with coeﬁicwnts satisfying
Supa,,a,ecl(A*) |Cj,k,r(an as)l < . Thus fOI' all asa a, € CI(A * )’ | pr(an ag, h)l
< C(1+h)"(1+%;logcoshs;)(1+3;logcosh ), where we use C,
generically to denote constants depending on r. Now

r

0
(7/1’ l/lh(as)

<C,(1+m™ (1 + Z log cosh s ) e Pr(x(a,))

X L ) e~ *x(a,)) D(a,) (1 + Z log cosh ti)r da,.
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But e Phk(a,)) <e ™*")(k(a,)) using (3.16), since A, is the highest

weight of y,, and 3, log cosh s; < Ca(a,). Thus to prove the corollary it
suffices to show that

J(r, h) =J e *h(x(a,)) D(a,) <1 + Y log cosh z,)r da,

A+
1 Hr+1)
<C (14~ .
c(1+)
But
D(a)=e*a) [[ (1—e *(a))™
aetb:
<e®da) for aecl(A*).
But for
{
a,ecl(4™), ezf’ﬂ(a,)zexp< > 2f,Pu(X,-)>
i=1
!
—exp( 3 20,0(H,) )
i=1
!
< Cexp( Y. 2log cosh t,-p(H,-))
i=1
= Ce™*(k(a,))-
Thus

—2h
Dla,) e~ (x(a)) < Ce =+ (xla) (T cosh
<C (H cosh t,-) —2h
since e 2% 7 k(a,)) <1 for a, ecl(4*) by (3.17). Now

—~2h r
J(r, h)scf (H cosh ti) (1 + Y log cosh t,-) da,
a+ \7; -

I oo
<C, |1 L (cosh ;)= (1 +log cosh t,)" dt,.
i=1
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But
Jm (cosh 1)~?"(1 4 log cosh t)" dt
4]
<2’+coth(1)ro (cosh 1)~ (1 + log cosh 1y SPBL 4,
h 1 & cosh ¢
=2’+coth(1)ro e~ (1 + x)" dx
log cosh 1
1 r+1
< 1+-— .
c.(1+3)
Thus J(r, h) < C,(1 4 1/h)+ 11 Q.E.D.

6. UNIversaL CovVEer oF SU(1, 1)

In this section we will illustrate the method of Section 5 when G is the
universal covering group of SU(1, 1). Explicit formulas for the matrix coef-
ficients in this case were obtained by Sally in [6].

In this case K=Z% so that there is a single one-parameter family y, =
e!' " e K corresponding to holomorphic discrete series for A>0. The
K-finite holomorphic sections of V, — G/K are the finite linear com-
binations of the

Jom &= 271 (g),  m=0,1,2,.. (6.1)

As in (54) we write Z%={z,: 6OeR}, where g(zp)=
«? 9,]eSU(1,1). Then for any geG, {(zy'g)=e "®{(g) and
K(zg'g)=2z4 'k(g), so

Irml25'8) =€ 11(20) frm(8)- (62)

Thus £, ,, is a weight vector of weight (1+ h)v —ma, for the left action of
K=2Z5, where {a} =P(p,).

For fixed n, m >0 we will compute ¢,(a)= {L(a) fin> fomr> a€CA™).
Using (6.1), (6.2) and the integration formulas of Section 4,

da)=], [ ta'z0a) 10 200) " €™ s(20)

K/ZG A

x{(a)™ Xh(al)_lD(al)dal dzy. (6.3)
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Write A* = {a,: >0} where

()= cosh ¢ sinh ¢
)=\ sinht cosh ¢

] e SU(1, 1),
LEMMA 64. For y>0

$la,) = (cosh y)~ ¢+ ro(tanh ry"(cosh £) 25+ V(¥ _¢=2) [(a  a,)di
) ,

where

Ih(ay, at)

1 J~2n _mo| €°tanh7—tanhy
= —— (4 n
2n o 1 —e® tanh y tanh ¢

] (1 —e“ tanh y tanh 1) =%+ 1 4g.

Proof. As in example (2.2), if g(g)= (% HeSU(L, 1), {(g)=[3 4 "]
and #(g)=[3" %]. We will identify p, with C and write C(g)—xv !
Since v= —oy/2 is the negative of the fundamental hlghest weight we have

e'(k(g))=v. It follows that {(a,)™ = (tanh t)", y,(a,) " —(cosh t)~ D)

and y,(zg)=e "#* D2 Recall that D(a)= [Ticos le*(a)—e *(a)|™, so
that in the present case, D(a,) = |e* —e |
Now g(a,'za) = (% 7), where x = €% cosh y sinh t —

~2sinh y cosht and o=e-®2cosh y cosh 1 — e sinh ysinh 7. Thus

C(ay 'zga) = xv~' = (e”tanh¢—tanh y)(1 —e” tanh ytanhs)~' and
e'(i(a; 'zpa,)) = v = e~ cosh y cosh #1 — ¢” tanh y tanh t). Now

the lifting w(a,'zoa,) must satisfy e “*"(k(a 'z4a,)) =

e+ D02(cosh y) =+ (cosh 1)+ 1)(1 + ¢ tanh y tanh ¢)~ d’* where
the last term is defined by taking the principal branch of the logarithm
since Re (1 — e tanh y tanh 1) > 0. QED.

Using the change of variables s =e” we can rewrite

Ia,, “’)zzinij.ﬂ:, s="*Db(s,a,,a,) B(s,a, a)ds  (6.5)
where
b(s, a,, a,) =< stanh ¢ —tanh y >"
1 —stanh y tanh ¢
and

B,(s,a,,a,)= (1 —stanh ytanh )=*+",
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For fixed y, >0, 0 < tanh y tanh r <1 so that b and B, are holomorphic
for s in the neighborhood of |s| <1 given by |s| < 1/tanh y tanh ¢. For any
r=0, (9'b/0s") (0,a,,a,) is a polynomial in tanh y and tanh¢ and
(0"B,/0s')0, a,,a,) = (h+1)---(h+r)(tanh y tanh ¢)". Thus [,(a,, a,) =
Residue, _,{s " *(bB,)(s)} = (1/m!)(8"/0s™)(b- B,)(0) is a polynomial
in A, tanhy and tanht We have proved the following version of
Theorem 5.1.

THEOREM 6.6. For y >0,

#u(a,)=(cosh y)~4+"V ro (cosh ) ~2+1)(e¥ —¢ =2} p(h, tanh y, tanh 1) dt
0

where p(h, tanh y, tanh ¢) = (tanh ¢)" I,(a,, a,) is a polynomial in h, tanh y,
and tanh ¢.

7. WAVE PACKETS

Let £, f}» h >0 be one-parameter families of K-finite sections of the bun-
dles V, — G/K as in (3.6), ¢, the corresponding one-parameter family of
matrix coefficients given by ¢,(x)={(L(x)fs, f4), x€G. Then each
¢, € °€(G/Z,{,) for an appropriate {, € Z. In this section we will show
how to form “wave packets” of the ¢, which are in the space of global cusp
forms, °¢(G).

Write R* for the open interval (0, c0). Given ae C*(R*) and r, s20,
k=0,1,2,., we define

”a“r,s,k=sup(1+h)r(l+ ) dhk

h>0

h)’ (7.1a)

Then we set

ZR*)={xeC®R™"): ||a|, . <o forallr,s=0,
k=0,1,2,..} (7.1b)

Corresponding to a one-parameter family ¢, of matrix coefficients we
define wave packets ¢, by

.(x)= jow a(h) gy(x)dh, x€G,acBR"). (72)
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THEOREM 7.3. (a) The integral defining ¢ .(x) is absolutely convergent for
any a € €(R*), uniformly for xe G.

(b) ¢,€€(G) and v — ¢, is a continuous mapping of €(R*) into
€(G); ie. given r=20, D, D, €U(g), there is a continuous seminorm p on
E(R™) so that for all ae ¥(R™),

sup Z ' (x)(1 +6(x)) |$o(D;: x; D,)| < p(a).

(c) 4.€%6(G).

The proof of the theorem will be given as a series of lemmas.

LEMMA 74. For all ae¥(RY) Io a(h) ¢,(x) dh converges absolutely,
uniformly for xe G.

Proof. Let U, be a one-parameter family of K-invariant spaces contain-
ing both f, and f), (t,, W) the corresponding abstract K-modules. Let w,
w’' e W correspond to f, and f}, respectively. As in (3.11), we write, for
keK and xeG, f[flkx)=Y,{t k" Yyw,wk> f,{x) and fi(kx)=
3 talk =YW, w¥> £, {x). Then if we write xe G as x =k, ak,, k,, k, €K,
aecl(A™),

Bulkiaks) =] CSilksta™ty), Filky ) dy
= <alls o) kT
x| ka0 S0

Thus |¢,(k,ak,)| <SCZ, ;|44 (a)| where
C=max sup |<z,(ks)w, wi>| | (ke W, wi |

i,j kikaekK

is finite and independent of h since |e”'(k)|=1 for all k€K, and ¢,,;
denotes the one-parameter family of matrix coefficients corresponding to
f»i and f, ;. Now using Corollary 5.2 for each of the ¢,, ; we find a con-
stant C>0 and an integer m>=0 so that |¢,(kak,)|<

C(1 +h)™(1+1/h) e~ “*"(x(a)). But using (3.13b), (3.17), and (3.18D),
e Rt (k(a)) <e M(i(a)) <ef(k(a))< 1 for all aecl(A*). Thus for all
xeg,

® @ 1 t
et g0l dn<C | |oc(h)|(1+h)’"<1+z> dh

SC N alme 220

since [&° (1 4+ h) ™2 dh < 0. Q.ED.
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LEMMA 7.5. There is a constant C>0 so that for all xe G, ae ¢(R™"),

SUP ke k&) | Bulki XK) | S C Y, 5 | @i, (x)| where the P are a finite
collection of wave packets corresponding to one-parameter families of matrix

coefficients ¢, ;.

Proof. As in the proof of Lemma 7.4 we write for k,, k, € [K, K],
x€G, @ulkyxky)=F, (tulk)w, wk) Cuylki)w', wk> ¢y, (x). But for
ke[K, K], e”(k)=1 so that t,(k)=1(k) is independent of h. Thus

sup | @alk;xks)|

ki.kye [K,K]

= sup | ) Celk)w, wrHelk Hw', w6 (%)

kikye [K.K] 1,

SCZ '¢a,i,j(x)|:

where C =max; ; SUpy, s, rx.x1 | <t(k2)w, w* > <{lky Dw, w*> . Q.E.D.

LEMMA 7.6. For each nonnegative integer r there is a constant C, >0 so
that for all xe G and ae 4(R™),

sup (1+46(2,2,))" |9a(z1X2,)|

zl,zzeZ{;(

w | g"
<, Tmax{[” | @th) b1 )

ah. | o) )

where the ¢, ; are a finite collection of one-parameter families of matrix
coefficients.

Proof. We use the notation from the proof of Lemma 7.4. The one-
parameter families f), ; can be chosen to be weight vectors so that for each j

there is an integer #, so that if z, = exp(tH) € Z%, f,, (2, 'x) = """V, (x)
for all xe G. Write z, =exp(t;H), i=1, 2. Then 6(z,z,)=1t, +1t, | and

bu(zixz) = CnwiO W [ ez x W) S fz 0 dy

=Y (w, wrIKW, Wy el g T TEING, L ().
L

580/73/1-3
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Thus  |4,(z,x2,)|SCX, ;| f& alh) e™ 1+ D¢, . (x)dh|. Now for =
t, +1t, #0, and any integer r >0,

[ [ ath) ey, () dhf

[ e
o (it)" Ok

(a(h) ¢,,,f,,(x>)dh’

dh.

x| gr
<U1 [ |55 o a0

Thus for || =1,

(T4 121)" | 9a(z,x25) |
o | gr
<2Cy jo }5;1— (oh) ¢,,,,.,_,.(x))‘ dh.

But for [#]| <1, (1 +111) |alzix20)| S 27C X, ; |5 |a(h) @y (x)| dh. Thus
the conditions of the lemma are satisfied by C, =2"C. Q.E.D.

LemMMA 7.7.  For any r >0 there is a continuous seminorm p on €(R*) so
that

sup Z )1+ 6(x)) | @, (x)] < pu(a) forall ac%(R™).

xeG

Proof. Write xeG as k,z,az,k,, where k,, k, e [K, K], z,, z,€ 2%,
and aecl(4"). Then by (4.2¢),

ETN)1+6(x)) 19(x) | =Z7 (@)1 + 6(z,az,)) | $u(ky 2 az,k5) .

By Lemma 7.5, sup, uerxkyl9alkiziaz:kr)| < C2y 1.2 a25)l,
where we assume the f,; are weight vectors.

Now by (4.2b) and (4.2d), 6(z,az,) =6(z,z,a) < 3(6(z,z,) + 6(a)). Thus
(1 +6(z,az,)) € C.(1+6(z,2;,)) (1 +0(a)), where we write C, generically
for any constant depending on r. We may as well assume that r is an
integer. Using Lemma 7.6,

sup (14d(z,z,)) ’¢a,f.j(21‘122”
:1.2262‘,)(
< C, max {Jw ‘ 9
0

oh'

(@(h) ()| b [~ 1a(h) )] dh}.
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Thus it suffices to show that for any r >0, any nonnegative integer s, and
any one-parameter family ¢, of K-finite matrix coefficients, there is a
continuous seminorm yu so that

aS
oh*

sup £ (a)(1+a(a)) [~ (a(h)qsh(a))‘dhsu(a)

aecl(4t)

for all x € (R ™), or equivalently, that for any two integers p, ¢ = 0, there is
u so that

sup 5 'a)(1+0)) Lw |6 P(h) ()| dh < ().

aecl(4?t)

But, using Corollary 5.2,

sup E(a)(1+a(a)) [ |2 ()| 145(@)] b

accl(At)

< sup C,E7'(a)e “(x(a))(1+a(a))

aecl(At)

<[ +h)’”<1 +%>"4+“e*"V(x(a)) 2P (h)| dh.

=}

By (44), £ '(a)<e”(a) for all aecl(4*) so that as in Corollary 5.2,
e (k(a)) E~'(a) < Ce ***(x(a))< C. Further, for all #>0,

sup (1+a(a)) e "(x(a))

aecl(A4t)

! { r+gq
SC,Hsup(H coshs,.)"<1+ Y s,-)
i=1

5i20 \j=1

<C,, [1:2, {sup (coshs))"(1+s5;) "¢}

siz0
But

sup (cosh §) ~"(1 +5)"+¢

520

<C,,,sup (cosh s)7*(1 +log cosh s)" *¢

s=20

1 r+gq
<C,,, supe (1 +x)’+"<C,+q<1 +—) .

xz20 h
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Thus
sup 7' (a)(1+o(@) | |27 ()] 14a)] dh
aecl(At)
o 2¢+r+1)
<C,| (1+h)’"<1+%> | P () | dh
0
S Cr,q “ od ||m+2,1(2q+r+ 1, p
which gives a continuous seminorm on ¢(R ™). Q.ED.

LeMMA 78. Let DeU(g) and let f, be a one-parameter family of
K-finite sections. Then there are a finite collection of one-parameter families
of K-finite sections f,; and polynomials p; of degree bounded by deg D, so
that ny(D) f, =% pAh) frs

Proof. 1t suffices to prove the lemma when D= Xeg. Write f,(g)=
xx(g) ! F(gK), where F: G/K— V is a V-valued polynomial. Now for each
fixed >0, n,(X) f, is a K-finite holomorphic section of V, — G/K, so it is
of the form 7,(X) f,(g)=yxi(g) ' FX(gK), where F}: G/K—V is a
V-valued polynomial with coefficients depending on A, ie., Ff(gK)=
b Coslh) F,,(gK), where the F,,: G/K— V' are monomials defined in
(3.5a).

But differentiating directly,

d
mN fie)= | Aexp(-mg)

dr

. xi(exp(—1X) g) ' F(gK)

=

d
+n(8) "

7 Flexp( —1X) gK).

t=0

Now

x(exp( —1X) g) = x(exp( —1X) exp({(g))) x(g)
and ¥, = 1o ® " so that

Zo(exp(—1X) exp({(g))) "

t=0

dt

d d
I ’_Oxh(exr)(—tX)g)"=xh(g)‘{—

d
+hg| e ep(-m expltie):
t=0
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Thus

d
FY(gK)=—

pr F(exp(—tX) gK)

=0

%o '(exp(—tX) exp({(g))) F(gK)

=0

.
dt

e "(exp(—1X) exp({(g))) F(gK)

t=0

d
+hZ

is a linear function of h. Thus the coefficients c,,(h) of FY are linear
functions of A, and since for each 4, ¢, ,(h)=0 for all but finitely many
pairs (n, b), there are only finitely many that are not identically zero.
Thus the collection f,,,(g)=1x.(g) ' F.,(gK) satisfies n,(X)f,=
Zn,b Cn,b(h) fh,n,b' Q'E'D'

LEMMA 7.9. Given r=0, D,, D, €e9(g), there is a continuous seminorm
1on €(R™) so that for all e €(R),

sup £ (x)(1 +8(x)) |9o(Dy: x; D)1 < p(a).
xeCG

Proof. Let D,, D,e%(g). Then since the integral converges abso-
lutely, uniformly for xeG, ¢,D,:x;D,) = [ a(h)¢,(D,:x;D,)dh
where ¢4(D,: x; Dy) = {my(Dy) mp(x) mW(D3) fis 3D = {Ru(X) T4{(D3) S
n(D)* f,>. Using Lemma7.8 we write =,(D,)f,=%,p{h)f,; and
(D) fh=2,8/h) f} ;> where the f,,, f} ; are one-parameter families of
K-finite sections and the p,, g; are polynomials. Then ¢,(D,;x, D,) =
2, Pidh) qi(h) ¢, (x), where @, ; (x) = {L(x) f4:, fh ;> Thus

14D3:x: D)< | [ pih) G,08) (k) 6 ) |

But since p;, g; are polynomials, a; = p,§,ac ¥(R*). Using Lemma 7.7
there are continuous seminorms pu; on ¢(R*) so that
SUP e g (X)L +6(x)) |u(D1:x; D) < X, myley) for all xe@(RY).
But a+>a; is a continuous map of ¥(R™*) into itself so there are con-
tinuous seminorms v;; so that p;(a;) <v,(«) for all «€ (R *). Thus we can
take u=3 v;. Q.E.D.

We now show that ¢,e%(G). Because of Lemma48 and
Theorem 7.3(b), it suffices to show that (¢,), € “6(G/Z, () for all {eZ.
Recall that Z=Z; N Z% = {z,: € 2nZ}. Write z(n) = z,,,, neZ. Let {, =
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e~ *m)| Then {,={,, 4 for all neZ and Z={{,: 0<h<d}, where
v(H)=i/d. Note

{alz(n)) =Co(z(n)) e ™2 heR,nel; (7.10)

Pu(xz(n))={4(z(n)) du(x), x€G,neZ, h>0. (7.11)

LemMa 7.12. For O0<h<d and any x€eaq, (@) (x)=

dy> oalh+dn) @, . 4(x). The sum converges absolutely, uniformly for xe G
and O <h<d.

Proof. The statement about convergence of the sum is proved using the
estimate |¢,(x)] < C(1 +h)"(1 + 1/h)' of (7.4) and the definition of €(R™*).
The equality is the Poisson summation formula for

alx), h
= {1080, 120

Fe L, (R)n C*(R) and for any ne Z, using (7.10) and (7.11),

F(—nn2/d)= jw a(h) gu(x) e dp
0

= Loz(n) |~ alh) dy(xz(m) d

= {o(z(n)) P,(xz(n)).
Define H(h)=d} F(h+dj). Then HeC*(R/dZ) and H(n)=

j= — o0

F(nn2/d) for all ne Z so that for 0<h<d,

H(h)= f F(—nn2/d) e~

n=—oo

= i ¢a(x2(n)) {(2(n)) = (), (x). QE.D.

n

LemMa 7.13. ¢, € °6(G).

Proof. Since ¢, € 4(G) we know that (¢,), € 6(G/Z, () for all (e Z. It
remains to show tht (¢,)f(x) =0 for every x € G and proper parabolic sub-
group P of G. Write {(={,, O<h<d, and P=MAN. Then using
Lemma 7.12,

B4 = ] (Ba)(xn) dn

=dj S ah+dm) ¢y, 4n(oen) dn.
Nm=0
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But the sum converges absolutely, so that we can integrate term by term,
and for all m>0, [y@,,m(xn)dn=0 since @, 4, €°4(G/Z,{,) by
Corollary 5.7 of [4]. Q.ED.
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