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R I E M A N N I A N  Q U O T I E N T  M A N I F O L D S  

ABSTRACT. Let M be a Riemannian manifold that admits a transitive semisimple group G' of 
isometries, G' of noncompact type. Then every bounded isometry of M centralizes G' and so is a 
Clifford translation (constant displacement). Thus a Riemannian quotient F \ M  is homogeneous if 
and only if F consists of Clifford translations of M. The technique of proof also leads to a 
determination of the group of all isometries of M. 

1. INTRODUCTION 

Let M be a connected homogeneous Riemannian manifold, F a properly 
discontinuous group of isometries acting freely on M, and M = F \ M  the 
Riemannian quotient manifold. In a variety of cases (see the discussion below) 
it is known that the conditions 

(1.1) F is a group of Clifford translations (isometries of constant 
displacement) of M 

(1.2) ,~t is a homogeneous Riemannian manifold 

are equivalent. In this paper we prove that (1.1) and (1.2) are equivalent when 
M admits a transitive semisimple group of isometries that has no compact 
local factor. Examples of such manifolds M include the flag domains used in 
representation theory [16] and automorphic cohomology [9]. 

Equivalence of (1.1) and (1.2) was proved first for manifolds of constant 
curvature ([10]. [11]), later for locally symmetric spaces ([12]; also see [5] in 
the case where the Clifford translations form a group, and [5] and [7] for cyclic 
groups of Clifford translations), then for manifolds of nonpositive curvature 
[ 14]. The equivalence is also known for Riemannian nilmanifolds [ 13] and for 
some classes of nonsymmetric compact manifolds [1]. 

It is straightforward [10] to see that (1.2) implies (1.1). The converse depends 
on the structure of M and its isometry group. 

When M has sufficient negative curvature, all bounded (i.e. bounded 
displacement) isometries of M are trivial, so F is reduced to {1} in (1.1), and 
(1.2) 

* IMAF, Cdrdoba, Argentina. Partially supported by Conicet, Argentina, and by IMPA, Rio de 
Janeiro, Brazil. 
** IMAF, C6rdoba, Argentina. Partially supported by Conicet, Argentina. 
t University of California at Berkely, U.S.A. Partially supported by National Science Foundation 
Grant DMS-8200235. 

Geometriae Dedicata 21 (1986), 21 27. 
© 1986 by D. Reidel Publishing Company. 



22 I. D O T T I  M I A T E L L O  ET AL. 

is immediate. In case M is a symmetric space of noncompact type this is 
equivalent to Jacques Tits' result [8] that bounded automorphisms are trivial 
for semisimple groups of noncompact type. 

When M has sufficient nonpositive curvature, bounded isometries of M are 
ordinary translations along the Euclidean factor of the de Rham decompo- 
sition, so F is under control in (1.1), and (1.2) is immediate. 

In the presence of positive curvature the matter is much more delicate, 
especially in the cases where the Clifford translations of M do not form a 
group. In our case, positive curvature may be present, but we are able to push it 
aside by using some Lie group structure theory. The new ingredient is a 
structural result [6, Th. 4.4] of Carolyn Gordon. 

2. S T A T E M E N T  OF MAIN R E S U L T  

G' is a connected semisimple Lie group without compact local factors. Let G' 
act transitively and effectively by isometrics on a Riemannian manifold M. 

(2.1) THEOREM. View G' as a subgroup of the isometry group I(M). Let B 
denote the centralizer of G' in I(M). Then B is the set of all bounded isometrics of 
M. In particular, every bounded isometry of M is a Clifford translation. 

To be more precise, let G denote the closure of G' in I(M). Then G is a 
connected reductive Lie subgroup of I(M) and G' is its derived group. Fix a 

base point xo~M and view 

(2.2) M = G / H  where H={g~G:gxo=Xo}. 

H is compact because G is transitive on M and is closed in I(M). The 
normalizer of H in G, 

(2.3) No(H ) = {gE G : gHg-1 = H}, 

acts differentiably on M by 

(2.4) R(u):gH~gu-lH, i.e. gxo~gu- lxo  

so we have a closed subgroup of G given by 

(2.5) U = {ueNo(H):R(u)eI(M ) } 

Theorem 2.1 will be proved as a consequence of 

(2.6) THEOREM. R(U) is the set of all bounded isometries of M. 
Evidently, R(U) centralizes G, thus G', in I(M). On the other hand, ifb~I(M) 

centralizes G', then it is a Clifford translation since dist(bgxo,gXo)= 
dist (gbxo, gxo) = dist (bxo, Xo) for every g~G'. So Theorem 2.6 gives 
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(2.7) C O R O L L A R Y .  R(U) is the centralizer of G' in I(M), and it consists of 

Clifford translations of M. 

N o w  Theorem 2.1 follows from Theorem 2.6, and we have the result which is 

the main  point  of this paper:  

(2.8) C O R O L L A R Y .  Let F be a discrete subgroup of I(M). Then the following 
are equivalent: 

(1) F consists of Clifford translations of M, 
(2) F consists of bounded isometries of M, 
(3) F is a subgroup of R(U), and 
(4) M = F \ M  is a homogeneous Riemannian manifold. 

3. P R O O F  OF M A I N  R E S U L T  

Retain the no ta t ion  of Section 2. View G x U as an abst ract  Lie group and 
G' x U as a dense subgroup.  Define. 

(3.1) ~o:G x U-~I(M) by ~(g,u):yxo-~gyu-lXo 

for all yEG. Wrike Uo and Io(M ) for the identity componen t s  of U and I(M). 
Our  first main  tool is a result of G o r d o n  [6, Th. 4.4]: 

(3.2) L E M M A .  q~ is a continuous homomorphism and ~ ( G x  U 0 ) =  

~p(G' x Uo) = Io(M ). 
In fact G o r d o n  proves  ~p(G' x Uo) = Io(M), and the other equali ty follows 

since ~ is cont inuous and G is connected. Note,  since H is a compac t  subgroup  

of G, that  

(3.3) ~ (H x {1}) is a compac t  subgroup  of lo(M). 

The point  of the passage from G' to G was so that  we would have (3.3) available 

for use with our  second main  tool, which is a minor  var ia t ion on a result of  Tits 
[8, Th. 3, Cor. 23: 

(3.4) L E M M A .  Let ~ be a bounded automorphism of G, i.e. suppose that G has a 
compact subset ~ such that e(g-1)'gECg for all g~G. Then e = 1. 

In effect, if Z( ' )  denotes the center, then ct induces a bounded  au tomorph i sm 

c~ on G/Z(G) = G'/Z(G'), and ~ = 1 by [8]; then de = 1 on the derived algebra 
[g, g] = g', so • = 1 on the corresponding analytic subgroup  which is G', and 
finally e = 1 because G' is dense. 

N o w  we can start  to s tudy the m a p  ~p. 

(3.5) L E M M A .  ~p has kernel {(z, zh):z~Z(G) and hEH}. 
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Proof Let q~(g, u) = 1. If yeG then gyu- ~ H = yH, i.e. y -  1 gyu- 1oH. The case 
y =  1 gives gu- l eH ,  so u g - t . y - l g y u - l e H .  As u~NG(H) now ~(y- l ) . yeH 
where e is conjugation by g-  1. By (3.3), e is a bounded automorphism of G, 
thus is trivial by Lemma 3.4. Now gEZ(G) and u=gh where h = g - l u =  
u-l.(gu-1)-l.u~H. 

Conversely, if z~Z(G) and h~H then 

qg(z, zh): yx o ~ zyh- az - ax o = yh- ix o = yxo, 

so (z, zh) is in the kernel of q~. Q.E.D. 

(3.6) LEMMA. q~(G x {1}) is a closed normal subgroup of l(M). 
Proof. It is closed by construction of G as the closure of G' in I(M). 
Gordon [6,Th.4.1] showed that (G 'x  {1}) is the subgroup of lo(M ) 

generated by the noncompact normal simple analytic subgroups. Now 
q~(G' x { 1}) is invariant under every automorphism of/o(M), hence is normal 
in I(M). Thus its closure q~(G x {1}) is normal in I(M). Q.E.D. 

Proof of Theorem 2.6. Let b : M ~ M  be a bounded isometry. Then 
g ~ bgb- 1 is a bounded automorphism of I(M), hence also of G by Lemma 3.6, 
hence trivial on G by Lemma 3.4. Now b centralizes G. Let gonG with 

bx o = goXo . Then, for all geG, 

(3.7) b(gxo) = gb(xo) = ggo(Xo). 

If g~H, replace g by gh in (3.7) to see ghgox o = ggoxo, i.e. go~No(H ). Thus 
b = R(u) where u = go 1 ff U. 

Conversely, i fue U then, as noted just before Corollary 2.7, R(u) is a Clifford 
translation and thus is a bounded isometry. Q.E.D. 

(3.8) Remark. U/Z(G) is a compact subgroup of G/Z(G). In effect, AdG(U ) is 
closed in Ad(G) because it is defined by equations, and it preserves a positive 

definite bilinear form on the Lie algebra g/~(9)- 

(3.9) Remark. If G' has finite center, then G' = G and U is compact. 

(3.10) Example. Here is a family of examples for which Hc~ G' is noncompact, 
and so G' # G, i.e. G' is not closed in I(M). Let G' be a noncompact simply 
connected semisimple Lie group corresponding to a bounded symmetric 
domain G'/K'. Then K' = [K', K'] x Z(K')o, Z(K')o is a real vector group, and 
Z(G') n Z(K') o is a lattice in Z(K') o. Let H' be any nontrivial discrete subgroup 
of Z(K')o such that Z(G') c~ H' = { 1}. Then H' is infinite, any Ada,(H')-invariant 
positive definite bilinear form on g' defines a Riemannian metric on 
M = G'/H', and G' acts transitively, effectively, and by isometries, on the 
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Riemannian manifold M, with noncompact  isotropy group H'. Here 

H'  = H n G' where G is the closure of G' in I (M) and H is its isotropy subgroup. 

More generally, let V' be any closed subgroup of [K', K'],  let Z'  denote the 

finite group Z(G ' )n  V', and set 

G" = G'/Z'  and H" = (V'H')/Z' .  

Then fi' has AdG,,(H")-invariant positive definite bilinear forms, any such form 

defines a Riemannian metric on M" = G'/H",  and G" acts on M" as a transitive 

group of isometries with noncompact  isotropy subgroup H". 

4. S T R U C T U R E  OF THE ISO METRY G R O U P  

Decompose the Lie algebra of G as 

(4.1) ~ = l ) G m  where t) is the Lie algebra of H 

and m = [ "  relative to the Killing form. 

Then AdG(H)m = m, the projection ~: G ~ M by ~(g) = gx o maps m isomor- 
phically onto the tangent space Txo(M), and we lift the inner product there to 
an inner product ( , )  on m. Define 

(4.2) F = {TEAut(G):7(H)--H and dTIm preserves ( , )} ,  
(4.3) F ° = {7EF:7 is an inner automorphism of G}. 

Then F ° is a normal subgroup and F/F  ° is finite. 

Let beI(M).  Then we have gEG such that box o = x o. In view of Lemma 3.6, 
bg normalizes G and H inside I(M), and thus define an automorphism 

(4.4) 7 : G ~ G  by 7(Y)=(bg)y(bg) 1 

that belongs to F. If g' is another element of G and bg'x o = Xo, and if 7'~F is 
conjugation of G by bg', then 7 17'~F°. So (4.4) defines a continuous 
homomorphism 

(4.5) p: I (M) ~ F /F  °. 

If p(b) = 1, then y ~ byb-1 is an inner automorphism of G, so we have g E G 

such that bg centralizes G. Now bg is a Clifford translation of M, so by 
Theorem 2.6 we have bgER(U). Thus b~q~(G x U). Conversely, i fb~p(G × U), 

then the automorphism 7 of (4.4) is inner, 7~F °, so p(b) = 1. We have just 
proved that 

(4.6) ¢p(G × U) is the kernel of p. 

If 7EF, then g~7(g )  defines an isometry b of M = G/H, and p(b)= 7F °. 
In summary, we have proved 
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(4.7) T H E O R E M .  T h e r e  is an e x a c t  sequence  

{1} ~ q ) ( G  x U ) ~ I ( M ) - - , F / F ° ~ { 1 } .  

The  case  of  T h e o r e m  4.7, whe re  M is a R i e m a n n i a n  s y m m e t r i c  space,  is due  

to  C a r t a n  ( [2 ]  a n d  [3];  or  see [15, Th.  8.8.1]). 

C o n s i d e r  the  case  where  M is the g r o u p  m a n i f o l d  G wi th  a left i n v a r i a n t  

R i e m a n n i a n  metr ic ,  i.e. where  G is s imp ly  t r ans i t ive  on  M.  L e m m a  3.6 says t ha t  

G is n o r m a l  in  I (M) .  Le t  x o = 1G. S imp le  t r ans i t iv i ty  says  I ( M )  = G ' I (M)xo  a n d  

G c~ I(M)xo = { 1 }. T h u s  I ( M )  is a s emid i r ec t  p r o d u c t ,  

(4.8) I ( M )  = G . I ( M ) ,  o semidi rec t ,  

a n d  T h e o r e m  4.7 says  t h a t  

(4.9) I(M)xo = { ~ A u t ( G ) : ~  p rese rves  ( , ) } .  

This  is espec ia l ly  in te res t ing  for  the  R i e m a n n i a n  me t r i c s  s tud i ed  in  [4].  

O n e  can  p r o v e  (4.8) a n d  (4.9) for  a r b i t r a r y  s emis imp le  g r o u p  man i fo lds ,  

p r o v i d e d  t ha t  the me t r i c  is no t  b i - i n v a r i a n t  on  any  s imple  fac tor ,  so t ha t  

g ~ g -  1 is no t  i some t r i c  on  a n y  s imple  factor .  See [2]  a n d  [15, Th.  8.8.1] for  bi-  

i n v a r i a n t  metr ics .  
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