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BOUNDED ISOMETRIES AND HOMOGENEOUS
RIEMANNIAN QUOTIENT MANIFOLDS

ABSTRACT. Let M be a Riemannian manifold that admits a transitive semisimple group G’ of
isometries, G’ of noncompact type. Then every bounded isometry of M centralizes G’ and so is a
Clifford translation (constant displacement). Thus a Riemannian quotient '\ M is homogeneous if
and only if I' consists of Clifford translations of M. The technique of proof also leads to a
determination of the group of all isometries of M.

1. INTRODUCTION

Let M be a connected homogeneous Riemannian manifold, I" a properly
discontinuous group of isometries acting freely on M, and M =I'\M the
Riemannian quotient manifold. In a variety of cases (see the discussion below)
it is known that the conditions

(L.1) I' is a group of Clifford translations (isometries of constant
displacement) of M

(1.2) M is a homogeneous Riemannian manifold

are equivalent. In this paper we prove that (1.1) and (1.2) are equivalent when
M admits a transitive semisimple group of isometries that has no compact
local factor. Examples of such manifolds M include the flag domains used in
representation theory [16] and automorphic cohomology [9].

Equivalence of (1.1) and (1.2) was proved first for manifolds of constant
curvature ([10]. [11]), later for locally symmetric spaces ([12]; also see [5] in
the case where the Clifford translations form a group, and [ 5] and [ 7] for cyclic
groups of Clifford translations), then for manifolds of nonpositive curvature
[14]. The equivalence is also known for Riemannian nilmanifolds [13] and for
some classes of nonsymmetric compact manifolds [1].

It is straightforward [ 10] to see that (1.2) implies (1.1). The converse depends
on the structure of M and its isometry group.

When M has sufficient negative curvature, all bounded (i.e. bounded
displacement) isometries of M are trivial, so I is reduced to {1} in (1.1), and
(1.2)
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is immediate. In case M is a symmetric space of noncompact type this is
equivalent to Jacques Tits result [8] that bounded automorphisms are trivial
for semisimple groups of noncompact type.

When M has sufficient nonpositive curvature, bounded isometries of M are
ordinary translations along the Euclidean factor of the de Rham decompo-
sition, so I' is under control in (1.1), and (1.2) is immediate.

In the présence of positive curvature the matter is much more delicate,
especially in the cases where the Clifford translations of M do not form a
group. In our case, positive curvature may be present, but we are able to push it
aside by using some Lie group structure theory. The new ingredient is a
structural result [6, Th. 4.4] of Carolyn Gordon.

2. STATEMENT OF MAIN RESULT

G’ is a connected semisimple Lie group without compact local factors. Let G’
act transitively and effectively by isometries on a Riemannian manifold M.

(2.1) THEOREM. View G’ as a subgroup of the isometry group I(M). Let B
denote the centralizer of G’ in I(M). Then B is the set of all bounded isometries of
M. In particular, every bounded isometry of M is a Clifford translation.

To be more precise, let G denote the closure of G' in I(M). Then G is a
connected reductive Lie subgroup of I(M) and G’ is its derived group. Fix a
base point x,eM and view

2.2) M=G/H where H={geG:gx,=1x,}.

H is compact because G is transitive on M and is closed in I(M). The
normalizer of H in G,

(23)  Ng(H)={g9eG:gHg ' = H},
acts differentiably on M by

(2.4) Ru):gH—gu 'H, ie. gxomgu lx,
so we have a closed subgroup of G given by

(2.5) U = {ueNg(H): R(u)el(M)}

Theorem 2.1 will be proved as a consequence of

(2.6) THEOREM. R(U) is the set of all bounded isometries of M.

Evidently, R(U) centralizes G, thus G', in I(M). On the other hand, if be (M)
centralizes G', then it is a Clifford translation since dist(bgxg,gx,)=
dist (gbxq, gx,) = dist (bxq, X,) for every geG'. So Theorem 2.6 gives
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(2.7) COROLLARY. R(U) is the centralizer of G' in I(M), and it consists of
Clifford translations of M. ‘

Now Theorem 2.1 follows from Theorem 2.6, and we have the result which is
the main point of this paper:

(2.8) COROLLARY. Let T be a discrete subgroup of I(M). Then the following
are equivalent;
(1) T consists of Clifford translations of M,
2) T consists of bounded isometries of M,
3) T is a subgroup of R(U),and
4} M =T\M is a homogeneous Riemannian manifold.

(
(
(

3. PROOF OF MAIN RESULT

Retain the notation of Section 2. View G x U as an abstract Lie group and
G’ x U as a dense subgroup. Define.

(B1)  @GxU—->IM) by o(g,u):yxe—gyu~ 'x,

for all yeG. Write U, and I,(M) for the identity components of U and I(M).
Our first main tool is a result of Gordon [6, Th. 4.4]:

(3.2) LEMMA. ¢ is a continuous homomorphism and o(GxU,) =
(G’ x Ug) = I(M).

In fact Gordon proves (G’ x U,) = I,(M), and the other equality follows
since ¢ is continuous and G is connected. Note, since H is a compact subgroup
of G, that

(3.3) @(H x {1}) is a compact subgroup of I,(M).

The point of the passage from G’ to G was so that we would have (3.3) available
for use with our second main tool, which is a minor variation on a result of Tits
[8, Th. 3, Cor. 2]:

(3.4) LEMMA. Let o be a bounded automorphism of G, i.e. suppose that G has a
compact subset € such that a(g~')-ge% for all geG. Then o = 1.

In effect, if Z(-) denotes the center, then « induces a bounded automorphism
& on G/Z(G) = G'/Z(G'), and & = 1 by [8]; then do = 1 on the derived algebra
[g.9] =g, so a =1 on the corresponding analytic subgroup which is G, and
finally & =1 because G’ is dense.

Now we can start to study the map o.

(3.5)LEMMA. ¢ has kernel {(z,zh):ze Z(G) and heH}.
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Proof. Let o(g,u)=1.If yeG thengyu™* H=yH,i.e. y~ ! gyu~'eH. The case
y=1 gives gu”'eH, so ug~'-y " 'gyu~'eH. As ueN4(H) now a(y~ ') yeH
where o is conjugation by g~*. By (3.3), « is a bounded automorphism of G,
thus is trivial by Lemma 3.4. Now geZ(G) and u=gh where h=g lu=
u t(gu " t-ueH.

Conversely, if ze Z(G) and heH then

@(z,zh): yxo zyh™ 'z 7 xy = yh ™ txy = yx,,
0 (z, zh) is in the kernel of ¢. Q.ED.

(3.6) LEMMA. ¢(G x {1}) is a closed normal subgroup of I(M).
Proof. Tt is closed by construction of G as the closure of G’ in I(M).
Gordon [6,Th.4.1] showed that (G’ x {1}) is the subgroup of I,(M)
generated by the noncompact normal simple analytic subgroups. Now
(G x {1})is invariant under every automorphism of I,(M), hence is normal
in I(M). Thus its closure ¢(G x {1}) is normal in I(M). Q.ED.

Proof of Theorem 2.6. Let b:M —M be a bounded isometry. Then
g bgb™1isabounded automorphism of I(M), hence also of G by Lemma 3.6,
hence trivial on G by Lemma 3.4. Now b centralizes G. Let goeG with
bx, = goXo. Then, for all geG,

(3.7)  blgxo) = gb(xo) = ggolxo)-

If geH, replace g by gh in (3.7) to see ghgoXo = gdoXo, 1.€. go€Ng(H). Thus
b= R(u) where u=gg 'eU.

Conversely, if ue U then, as noted just before Corollary 2.7, R(u) is a Clifford
translation and thus is a bounded isometry. Q.E.D.

(3.8) Remark.U/Z(G) is a compact subgroup of G/Z(G). In effect, Adg(U) is
closed in Ad(G) because it is defined by equations, and it preserves a positive
definite bilinear form on the Lie algebra g/3(q).

(3.9) Remark. If G’ has finite center, then G'= G and U is compact.

(3.10) Example. Here is a family of examples for which H n G’ is noncompact,
and so G’ # G, i.e. G’ is not closed in I(M). Let G’ be a noncompact simply
connected semisimple Lie group corresponding to a bounded symmetric
domain G’/K’. Then K'=[K',K'] x Z(K")o, Z(K'), is a real vector group, and
Z(G)n Z(K’)o is a lattice in Z(K"),. Let H' be any nontrivial discrete subgroup
of Z(K"), such that Z(G')n H' = {1}. Then H' is infinite, any Ad;(H')-invariant
positive definite bilinear form on g defines a Riemannian metric on
M= G'/H', and G’ acts transitively, effectively, and by isometries, on the
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Riemannian manifold M, with noncompact isotropy group H'. Here
H’ = H G where G is the closure of G’ in I(M) and H is its isotropy subgroup.
More generally, let V' be any closed subgroup of [K’, K], let Z’ denote the
finite group Z(G'Yn V', and set
G'=G'/Z" and H"=(V'H)/Z.

Then g’ has Adg.(H")-invariant positive definite bilinear forms, any such form
defines a Riemannian metric on M” = G"/H", and G" acts on M"” as a transitive
group of isometries with noncompact isotropy subgroup H".

4. STRUCTURE OF THE ISOMETRY GROUP
Decompose the Lie algebra of G as

4.1 g=bh@®m wherel)is the Lie algebra of H

and m = b" relative to the Killing form.

Then Adg(H)m = m, the projection n: G - M by n(g) = gx, maps m isomor-
phically onto the tangent space T, (M), and we lift the inner product there to
an inner product {, ) on m. Define

4.2) F ={yeAut(G):y(H) = H and dy|, preserves {,>},
4.3) F° ={yeF:y is an inner automorphism of G}.

Then F° is a normal subgroup and F/F° is finite.
Let beI(M). Then we have geG such that bgx, = x,. In view of Lemma 3.6,
bg normalizes G and H inside I(M), and thus define an automorphism

(4.4) 1:G—>G by y)=(bg)ybg) "

that belongs to F. If g’ is another element of G and bg'x, = x,, and if y'€F is
conjugation of G by bg', then y~'y’eF°®. So (4.4) defines a continuous
homomorphism

4.5 p:I(M)— F/F°.

If p(b) = 1, then y+ byb ™" is an inner automorphism of G, so we have geG
such that bg centralizes G. Now bg is a Clifford translation of M, so by
Theorem 2.6 we have bge R(U). Thus be (G x U). Conversely, if be p(G x U),
then the automorphism y of (4.4) is inner, yeF°, so p(b) = 1. We have just
proved that

4.6) @(G x U) is the kernel of p.

If yeF, then g —7(g) defines an isometry b of M = G/H, and p(b) = yF°.
In summary, we have proved
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(4.7) THEOREM. There is an exact sequence
{1} > (G x U)y-> I(M)— F/F° - {1}.

The case of Theorem 4.7, where M is a Riemannian symmetric space, is due
to Cartan ([2] and [3]; or see [15, Th.8.8.1]).

Consider the case where M is the group manifold G with a left invariant
Riemannian metric, i.e. where G is simply transitive on M. Lemma 3.6 says that
G is normal in I(M). Let x, = 1. Simple transitivity says I(M) = G-I(M), and
GnI(M),, = {1}. Thus I(M) is a semidirect product,

4.8) I(M) = G-1(M),, semidirect,
and Theorem 4.7 says that
(4.9) I(M),, = {yeAut(G):y preserves {,>}.

This is especially interesting for the Riemannian metrics studied in [4].

One can prove (4.8) and (4.9) for arbitrary semisimple group manifolds,
provided that the metric is not bi-invariant on any simple factor, so that
g+ g~ !is not isometric on any simple factor. See [2] and [15, Th. 8.8.1] for bi-
invariant metrics.
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