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Wilfried Schmid’s lecture ended with an indication of our uniform
construction of (possibly) singular representations of semisimple and
reductive Lie groups. The positive energy representations and Gupta-
Bleuler triples, described by Chris Fronsdal, typify our situation, though
the correspondence is not yet exact. Here I will describe the construction
in some detail and try to indicate the direction this work is now taking.
Complete details of much of this can be found in the paper, Singular
unitary representations and indefinite harmonic theory, November 1981, by
Rawnsley, Schmid and myself.

Some notation is needed before I can begin. G will be a reductive Lie
group, assumed connected to avoid technicalities, such as a unitary group
U(k, 1) or the universal cover SO(4,2) of the conformal group. Lower
case gothic letters denote complexified Lie algebras. Thus g, is the real
Lie algebra of G and g = g, ® C. So, if H is a Lie subgroup of G we also
have subalgebras h, C g, and h C g. A “grammar” of this sort is useful
because we deal with many subgroups of G.

Let me remind you of the “tempered” or “regular” or “Harish-
Chandra” series of representations of G, in order to indicate the “loca-
tion” of the representations I will be constructing. Let B be a Cartan
subgroup of G. In other words, b, is a subalgebra of g, which is maximal
for the property that

b, is abelian and ad(b) is diagonalizable, and

B = {g e G,Ad(g) = ¢ forevery £ € b}.
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Then B = T X A where T is the compactly embedded (compact modulo
the center of G) part and A is the split part (ad(a,) has all eigenvalues
real). Further, there are subgroups P = MAN, called cuspidal parabolic
subgroups, such that

MA = M X A is a reductive subgroup of G,

T is a compactly embedded Cartan subgroup of M,

N is the nilpotent radical of P.
M is specified because MA = {g € G: Ad(g)a =a for alla € A}. N is
not unique, but the result does not depend on the choice of N. Now one
considers

p: (relative) discrete series representation of M,

a: element of a}, i.e. e’* is a unitary character on 4.
That gives a unitary representation of P on the space of p,

(1 ® e™)(man) = e(a)p(m)
and thus defines the unitarily induced representation

, = Ind ® ia
7k, a) = Ind (4 ® ')

of G. There are about a half dozen “standard” names and notations for
these representations. I call the set of all #(u, &), constructed from B, the
“B-series”. If B is as noncompact as possible, it usually is called the
“principal series”. When B is as compact as possible it usually is called
the “i.ndamental series”. If B is compactly embedded, then 4 = 1,
M = G = P, and we have the (relative) discrete series.

One can try to get other representations by letting the parameters y, a
go “out of range”. If @ € a* but a & af, one still has #(p, @), but it is
not unitary. Sometimes it can be unitarized when « satisfies a technical
condition. That gives a “complementary” series. I will avoid those. If p is
a continued discrete series representation of M of some sort, one still has
a unitary representation m(p, o). The uniform geometric construction,
which I will describe, gives some continued discrete series representations
(as well as the usual discrete series), and thus gives the sort of singular
(., a) obtained by letting p go singular.

Here is the setting for the geometric construction. Let H be the
centralizer of some torus subgroup of G, and let y be a unitary represen-
tation of H. The space G/H has a number of structures as complex
manifolds; they come from embeddings of G/H as open G-orbits in a
certain compact complex manifold G./H-Q_. On the Lie algebra level, §
is the reductive part of a parabolic subalgebra ) + q_ of g, g, =q_
represents the holomorphic tangent space, and necessarily fj, contains a
CSA b, of g, such that B is as compact as possible. Now ¢ defines a
holomorphic vector bundle V - G/H, fiber V = representation space of
Y. We look at the representation of G onL, cohomologies of V — G/H.
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All this is classical when H is compactly embedded in G. There, the
statement is mostly contained in the Kostant-Langlands Conjecture of
the 1960s, which was refined and proved by Schmid in the 1970s. The
interest here will be when H is not compactly embedded in G.

Classically, with H compact modulo the center of G, there is a (positive
definite) G-invariant hermitian metric on G/H, so we have a positive
definite pointwise inner product {@(x), ¢’(x)) of V-valued differential
forms, thus a global linear product

(0.90em=[ (o(x).9(x))d=H),

and genuine Hilbert spaces
L{(G/H,V) = {V-valued (0,9)-forms w on G/H: {w, @) g/m < )

on which G acts by unitary representations. Let 3* denote the formal
adjoint of 0 on V-valued forms. Then the Kodaira-Hodge-Laplace opera-
tor is
O: closure of 33* + 9*3 on LYG/H,V) from the dense subspaces
consisting of C* forms.
The kernel

I4(G/H,V) = {0 € LY(G/H,V): Ow = 0)

is the space of harmonic forms. It is closed in L§, so G acts on it by a
unitary representation. Note that compactness of H is crucial at the very
start of this construction.

The “compactly embedded” condition on H forces dim ¥V < o0, so, in
particular, ¢ has a highest weight, say A. Let p be half the sum of the
positive roots. The Kostant-Langlands Conjecture is as follows.

1. If A + p is orthogonal to some root of G then I#(G/H,V) = 0 for
all g.

2. Suppose that A + p is not orthogonal to any root of G. A root is
called “compact” if it is a root of the maximal compact subgroup,
“noncompact” otherwise. Let

g(X + p) = (number of compact positive roots a with (A + p, &) < 0)
+ (number of noncompact positive roots 8
with (A + p, B) > 0).

Then 3C{(G/H,V) = 0for g # g(A + p), and G acts on II***(G/H, V)
irreducibly by the discrete series representation with Harish-Chandra
parameter A + p.

In general, there is no good relation between the harmonic L, spaces
3CJ(G/H,V) and ordinary Dolbeault cohomology H%(G/H,V), though
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there is of course a natural map
¥4(G/H,V) > H(G/H,V) bywm [w]

which simply sends a harmonic form to its Dolbeault class. In the course
of his work that resulted in proving the Kostant-Langlands Conjecture
stated above, W. Schmid also showed that

3. If (A + p,a) <0 for every noncompact positive root, i.e. if the
bundle V — G/H is negative, then }(I***X(G/H,V) - HI**?X(G/H,V)
is an isomorphism on the subspaces of vectors that have finite expansion
under the maximal compact subgroup K of G.

The hypotheses of (3) can always be arranged by suitable (depending
on ) choice of the complex structure, and then g(A + p) is equal to

s = dim¢ K/H, dimension of the maximal compact
complex submanifold K/H of G/H.

The resulting isomorphism 3(5(G/H, V), - H(G/H,V)x of Harish-
Chandra modules is useful in a number of contexts. In our situation with
H noncompact it leads to a K-type analysis of 3(3(G/H, V).

We want to carry this work over to the case where H is not necessarily
compact. The first major problem is to define the appropriate analogues
- of the spaces 3(J(G/H, V). Neither “harmonic” or “square integrable”
has a completely obvious definition here, where the only invariant
hermitian metrics are indefinite. Some technical tricks, using the fibration
I will describe below, allow us to define an auxiliary positive definite
hermitian metric on G/H, which is not G-invariant except in the rather
special case, described above, where H is compact. But this auxiliary
metric only suffers bounded distortion under any element of G. So, if we
use it to define the LY(G/H,V), then G acts on that Hilbert spaces by
bounded linear transformations. Then we say that a form

w € LY(G/H, V) is harmonic if 9w = 0 and 3*w = 0 where 3*
is the formal adjoint of 9 relative to the G-invariant indefi-
nite-hermitian metric on G/H

and harmonic forms are gnderstood as distribution solutions to the
hyperbolic system dw = 0, 3*w = 0. Thus, we have a closed G-invariant
subspace of LY(G/H,V),

all V-valued (0, ¢)-forms on G/H that are L,

¥{(G/H,V) = 1 relative to the auxiliary positive definite metric and
harmonic relative to the invariant indefinite metric.

It is a Hilbert space on which G acts continuously by bounded linear
operators. Since Dolbeault cohomology can be done with distribution
forms just as well as with smooth forms, we still have the canonical maps
¥XHG/H,V) - HY(G/H,V).
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The invariant indefinite metric defines a hermitian inner product
(s )G rrjust as in the classical setting. Let s = dim: K/K N H, dimen-
sion of the maximal compact subvariety. Calculating in a special case,
Rawnsley and I were amazed to see that, for negative V,

(@) (-1)°C, ) /5 is positive semidefinite on 3(3(G/H, V),

(b) the canonical map 3(3(G/H, V) - H(G/H,V) is surjective on the
level of K-finite vectors,

(c) the kernel of 35(G/H,V) - H(G/H, V) coincides with the kernel
of {, ) mon I3(G/H,V).

Thus, in the special case, passage to the quotient defined a unitary
representation

my,: action of G on ¥(5(G/H,V)/(kernel of ( , ) 1)
which unitarized the Fréchet representation of G on H(G/H,V). These
representations 7, were irreducible and singular in the sense described
earlier.

Schmid and I now discovered that (a), (b) and (c) hold in some
generality, and for essentially geometrical reasons. There is a C* fibra-
tion

7: G/H — K/L with structure group L = K N H.

When G/H is indefinite-hermitian symmetric, i.e. is a semisimple sym-
metric space with invariant complex structure, the base and fiber are
complex manifolds. The projection need not be holomorphic, but still we
find an analogue of the Leray spectral sequence and show that

HY(G/H,V) g = Hj(K/L,H (fiber, V)) .

as a K-module. Here d is the 9 operator of K/L modified by a term that
measures the failure of 7: G/H — K/L to be holomorphic. This, some
estimates and some tensoring arguments lead to a complete analysis of
the global character, the K-character and the K-spectrum of the Dolbeault
cohomologies HY(G/H, V).

When 7: G/H — K/L is holomorphic, the K-decomposition
H*(G/H,V)x = H*(K/L,H (fiber, V)), can be done on the level of
harmonic forms, even L,-harmonic forms for negative V. Thus, when
V — G/H is negative, we obtain (a), (b) and (c). Since we understand the
Dolbeault space H*(G/H,V), we then have complete character and
spectral information on the unitary representations m,. That is the
content of the Rawnsley-Schmid-Wolf paper which I mentioned at the
beginning of this talk.

Schmid and I are now trying to get rid of various restrictions, e.g. that
@: G/H - K/L be holomorphic, or even that rank K = rank G. So far,
we have made some progress in obtaining the fundamental series repre-
sentations of G in this way. To be precise we have that now on the
Dolbeault level, modulo correctness of a result of Schmid that has not yet
been written down in complete detail. This, incidently, completes the
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proof that Zuckerman’s derived modules are the same as the correspond-
ing Dolbeault cohomologies, and we are now investigating the L, proper-
ties of certain harmonic representatives.

The unitary representations =,,, for G/H — K/L holomorphic, are
highest weight representations. So their duals 7} are lowest weight
representations, that is, positive energy representations. The scheme for
the indecomposable G-module JC5(G/H, V) given by

I3(G/H,V)/ (ker(, Yo ) ~ (ker(, y/m) ~ 0
has formal similarity to the scheme

(transverse photons) ~> (longitudinal photons) ~> 0
of Gupta-Bleuler quantization. This appears to be tied to our definition
of harmonic. More generally, if one defines a generalized harmonic space

503(G/H,V) = {@ € L5(G/H,V): (33* + 33)"w = 0 for N >0},
then the scheme of quotients of
53(G/H,V) D H3(G/H, V) D (ker(, Yg/u)

has strong formal similarity to the Gupta-Bleuler triples of C. Fronsdal’s
talk: singletons, de Sitter electrodynamics, conformal QED and possibly
conformal gravity. The intriguing fact here is that, in Fronsdal’s setting,
an inspection of the table printed with his lecture shows that in each case
he has the formal analogue of

GC3(G/H, V) /33(G/H, V) = (ker{ , Y6/n)

and in each case his module is an irreducible positive energy module. It
will be interesting to understand this from the viewpoint of our L,
harmonic forms.
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