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The standard method of geometric quantization produces the
tempered representations of a semisimple Lie group. Here an
extension of that method is described, which produces singular
unitary representations. The method has strong formal similar-
ities with Gupta-Bleuler quantization of the transverse photon.

Just to place the context of my talk, let me remind you that
a semigimple lLie group has several kinds of unitary representa-
tions. The ones that enter into the Plancherel formula for the
group are the ones whose characters are tempered distributions.,
These are very well understood now. For each conjugacy class of
Cartan subgroups H in the semisimple Lie group G, there is a
series of representations with a discrete parameter assoclated to
the compact part of H and a continuous parameter assoclated to
the noncompact part of H. See (5) and (10). .

The delicate part of this 1s the case where H 1is compact
(modulo the center of G). The analysis of those representations
is Harlgh—chandra's famous theory of the discrete series, which 1
denote Gyqg.. See (1), (4) and (10). 1In fact, both for conven-
iénce and for technical reasons, one deals with a slightly larger
class of groups, the reductive Lie groups. The discrete series
picture for reductive groups is summarized in Plate I. Part 1 is
the heart of the matter there, Parts 2 and 3 are just some
necessary technicalities.

The serlies for the other conjugacy classes of Cartan sub-
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PLATE I. Discrete Series

G: reductive Lie group, identlty component G°, Lie algebra u,
such that ) Zc(h )/7 is compact,
(11) 6J6' 1a Fintte, where 6" = 2 ¢(€+6°, and
(111) 1r x‘:G then Ad(x) is an lnner automorph{sm
on the complexiffed Lie algebra g = u, @y C.
T: compactly embedded Cartan subgroup of G, {.e. t, 1s a Cartan
subalgebra of g,, T = 2.(1,), and T/Z (P") is compact
K: maximal compactly embedged subgroup o? G that contains T,
i.e. 2 (P ) CK and K/7 (C ) is a maximal compact subgroup
of the 1linear sem!qlmple Lie group C/7G(C ).
W: Weyl group W(G°,T°) = Noo (M/T.
®: root system of g rvelative to4; ot: positive roots.
p: half the sum of the positive roots.
G': regular elements of G, L.e. elements x€ G such that the
fixed point set of Ad(x) is a Cartan subalgebra of g.

pPart 1: Topological Identity Component G°,

G&isc = {n® € ¢°: a°® has coefficients in L,(c°/zco)} has an
element wx. for every nonsingular integral A € {t* whose
distribution character is given on T N (G°)' by the formula
G("X) = i{z sign(u)e")‘I/'lT(eu/2 -0/2) . The ﬂ: exhaust
Cdlsc' "X =m, 1f and only 1f A € W(A'), and nx has infinftes-

imal character X,.

Part 2: Algebraic Identity Component c* - zG(G").G°

~ k-
é}lsc ‘"x W V€ 7G(G°) agtees with e 7

‘,(zg) = J(z)® ﬁ)‘(g) for z € 2,(6°) and geG’. M
infinitesimal character XA and has distribution character
e(n; o @8 = {trace v(2)} x B (@)

Part 3: The Entire Group G.

on anl where

Gdisc = {“A " - Ind(f(nx W)' “l v has infinitesimal character
Xy, and has distribution character O(n W) =0 on c\¢t .
o, ) (z8) = 29(",\ I "zgx,) on Gf, where 0= uxct.
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groups are constructed from the discrete series of certain special
subgroups. Any Cartan subgroup has a natural splitting H = TxA
where TCK 1s the compact part and where A = exp(uu) is a
vector group that is orthogonal to K in a suitable sense: roots
are pure {imaginary on t, and real on #,. Restrict the roots to

#, to get the & -roots of B, pick a posltive subsystem, let n,

be the sum of the positive 8,-root spaces, and you have a cuspidal
parabolic subgroup

P = MAN MA=M>‘A’Z.(,(A) .
M satisfies the reductive group conditions for G on Plate I,
and T {is a compactly embedded Cartan subgroup of M. The corre-

sponding series of unitary representations,

G UTIN & *

{lndp(n ®e'): ne M1 and U € uo} .
depends only on the cdnjugacy class of H = TxA. My only point
here {s that the parameters of n provide a discrete parameter
for this serfes, and p is a continuous parameter,

What about the other unitary representations? There certain-
ly are many non-tempered representations in general. One gets
some by letting the continuous parameter go non-real inside
u=1u® C. 1'll discuss the ones obtained by letting n go
singular, in other words by dropping the nonsingularity condition
on X in the parametrization (Plate 1) of the discrete series of M.

Now let us concentrate on the key case: continuation of the
discrete series when G 1is connected.

Specifically, I want to describe the early stages of a .
unlform geometric construction of unitary representations, which
includes the geometric construction of the discrete serfes. This
represents completed joint work with John Rawnsley and Wilfried
Schmld and continuing joint work with Wilfried Schmid. See (8).
In the language of geometric quantization, it may lead to quantl-
zation of all elliptic co-adjoint orbits, in particular to a
geometric treatment of all positive energy (= lowest weight)
representations. The basic setup is given in Plate II. That
picture, and the polut of looking {n dimension s, 1s motivated
by the classical case, which is recalled in Plate 111. 1In that
classical case, note that (2) really is the Kostant-Langlands
Conjecture, and that given a discrete serfes representation one
can choose a positive root system ¢+ so that the representation
does occur on harmonic forms of degree s.

As the representation goes singular, its coefficlents grow
faster, and we cannot hope to find it on a space of square
integrable forms on G/(compact) for any finite dimensional vector
bundle. So 1t is natural to try to imitate the classical procedure

215

PLATE 11. Setup for the Elliptic Case

G: connected relative lLle group, e.g. U(k,R).

i: centralizer of a torus subgroup, e.g. Uk, ,2,) x Uk, ,2,)
tnside U(k,+k,, 2,+2,).

8,.h,: respective real Lie algebras.
8,h : complexified Lle algebras.

Invariant complex structures on G/H are In one-one correspon-
dence with parabolic subalgebras h+q_ of g with reductive
part b; here n, = §_ represents the holomorphic tangent space
of G/M. Example: G/M = U(k +k,,8,+2,)/U(k,,2,) x U(k,,2,)
where Gg = GL(k,+k, + 2,+2,;C)
has Lie algebra given in matrix b oa, b )
block form as indicated here. + + )
There are two invariant complex b u, b ) K,
"

structures; interchange n, and

n to obtain the one from :he h b om ) L
other. They are realized as b oa_ g } e,
open G-orbits on the complex — o o

flag manifold cc/urq_. k, k, 2, 2,

¥: irreducible unitary representation of H, {.e. [
V: representation space of ¢.
V + G/H: associated G-homogeneous holomorphic vector bundle
with invariant hermitian metric derived from V.
s: complex dimension of the maximal compact subvariety K/I,
L = KNH, of G/H.

HP(G/H,V): Dolbeault cohomology in degree p.

ig(G/H,V): “cohomology" from L harmonic forms.

The Problem: ]
Define the space ﬁ:(C/H.V) so that it Is a Hilbert space,
understand the unitary representation of ¢ on if(c/n,v),
and use that to unitarize the Fréchet representation of

G on H%(G/M,V).

g,
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PLATE III. Classical Case.
Schmid's Solution to the Kostant-Langlands Conjecture.

G and W are as before, but with § compact. Fix a (positive
definite) G-favariant hermitian metric on G/H. Choose a compact
Cartan subgroup T of G which 1s contained in K. As before,
¢ denotes the root system of (go.tn). Let ¢+ denote a positive

root system such that n = 2: []
acd*\P*(h)
holomorphic tangent space. ¢, V and V are as before, with ¢
frreducible, thus finite dimensional.

» represents the

Define: .
X: highest weight of the irreducible representation §.
L3 (G/H,9) = {V-valued (0,p)-forms ¢: [ 1ol dx < =}
3%: formal adfoint of d: Lg(c/u,V) — L?+I(GIH,V).
0 = 33* + 3*), complex Laplace-Beltrami operator.
wf(c/u,v) = {¢€ Lf(GIH.V): 04=0 as distribution}.
Theorems:
L. 1f X+p is singular then every J(f(G/H,V) = 0.
2. Suppose that X+p 1s nonsingular and define
q(X+p) = #{compact positive roots a: (a,X+p) < Ol
+ #{noncompact positive roots B: (B, X+p) > o} .

If p#q(X+p) then ¥P(c/n,v) = o;
If p = q(X+p) then ME(G/H.V) # 0, and G acts {rreduc-

ibly on it by the discrete series representation "X*D’

3. Suppose that X+p {s nonsingular and s = q(X+p).
Then the map K:(C/H.V) > HS(G/H,V). of a harmonic form to
its Dolbeault class, 1is an isomorphism on the K-finite level;
so th(c/u,V) unitarizes H°(G/H,V).

on a bundle ¥V + G/H where H need not be compact and V need
not be finite dimensional.

What are the difficulties in imitating the classical proced-
ure, when H 1s noncompact? In order to answer that 1 must be
more specific about just what we are trying to do.

PLATE 1V. Specific Program

0: Cartan involution of G such that O(H) = n.

K: maximal compactly embedded subgroup of G given by K= Cﬂ.

L = HNK, so K/L is a maximal compact subvariety of G/H and s
is the complex dimension of K/L.

¢, ): G-invariant indefinite-Kaehler metric on c/n.

Problems:

1. Define an auxiliary K-invariant G-bounded positive definite
hermitian metric on G/H, and define the space Nf(C/N.V) of
V-valued (0,s)-forms on G/H that are L, for the positive
definite metric and harmonic for the fnvariant metric.

2. Show that the G-invariant global hermitian form
(0.0')01" = [ (4(x),4'(x)Vdx  1s semidefinite on
x5@m,v. " ‘

3. Show that the natural map X3(G/H,V) + W(G/H,V) of a
harmonic form to its Dolbeault class is surjective on the
K-finite level.

4. Show that the kernel of (,);,. on H3(G/M,V) coincides

" with the kernel of the natural map to Dolbeault cohomology.

If all this goes through:

then the action of G on ﬂf(G/H,V) induces a unitary representa-
tion of G on ﬂs(G/M,V)/(kernel of ( , )C/H) which unitarizes

the Fréchet representation of G on W3(G/H,V).
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Note the similarity to the Gupta-Bleuler quantization scheme.
This was pointed out to me separately by Flato, Fronsdal and
Varadarajan after they heard about this work. The kernel corres-
ponds to the longlitudinal photons, and the quotient corresponds
to the space of transverse photons. The scalar photons allso have
an analog here — we'll see it later.
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Several conditions are necessary before a program like this
can have any hope of success.

1. The notion of L, should be canonical and well defined.
First, the auxillary positive definite hermitian metric must be
K-invarfant so that we can keep track of K-types. Second, even
though a general element of G distorts L,-norm, it should be
bounded on any closed space of L, forms. Third, the global
fovariant hermitian form ( , )G i should be jointly continuous
on any of those Hilbert spaces. Wilfried Schmid and I have
carrled this out in general.

2. The notion of "harmonic” must be clarified. There
really are two cholces,

(3 =0 and 3% =0) and (35* + *Pp =0 .

We use the first because we need to be able to compare our
harmonic spaces with Dolbeault cohomolopy spaces. That compari-
son comes Iinto the unitarization procedure itself, and we also
usé it to identify the resulting representations and prove that
they are irreducible. See item 3 just below.

3. We must uhderstand the Fréchet representation, say Ty,
of G on W?(G/H,V). 1deally this means that we should show that
ny is admissible, we should find its infinitesimal,distribution
and K-characters, and we should work out a concrete description
of tts Kespectrun. Schmid and I have carried this out in a
moderately general setting.

4. The indefinite-Kaehler geometry of G/H should be related
to the Kaehler geometry of K/L so that we can understand what ft
means for a fotm on G/H to be harmonic. Schmid and 1 have done
this In a somewhat restricted context.

The key to #3 and #4 1s a fibration a: G/H + K/L and a
variation on the Leray spectral sequence. See Plate V, next page.
When the fibre V of V+G/H 1s finite dimensional, this reduces
analysis of the K-spectrum of #5(c/M,V) to an algebraic question,
and when dim V = | the algebraic question is easily answered
and 1t shows that HS(G/W,V) is K-multiplicity free.

More getterally, Schmid and I get character information by
resolving the vector bundle V + G/H and usling methods of coherent
contlnuation. The main results for the finite dimensional case
are collected in Plate VI. These character formulae are completely
explicit when V + G/H is finite dimensional and hermitian and
n: G/H + K/L is holomorphic; see (6).
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PLATE V. The Fibration and the Spectral Sequence

The Fibration:
8 = By ta, where q =(n + a) N,
8, = koi-po where ¥, is the (-1)-eigenspace of 0 on g .
Theorem of Mostow (7): n
(k,E,n) + keexp(£) * exp(n) défines a diffeomorphism of
K x (po nqo)x(unn lo) onto G.
Reformulation of Mostow's Theorem:
nlkeexp(E)*exp(n)) = kL (k€K, E€EpNg, ne pOY)
defines a C” fibre bundle n: G/l + x/: w:th ribr: )
F=p,Nn, and with structure group L acting on F by

restriction of the adjoint representation of G.

The Spectrél Sequence:

1. Suppose PN, = m,Np, for some B-stable subalgebra m, of

8,. Then F is a bounded symmetric domain hol
embedded in G/H, say F = M/L. otonorphically

2. Further, there 1s a spectral sequence abutting to n*(c/H.V)
Prq
vith E3*% = EP0T o« yP(k/L, R9M/L,¥))  on the K-finite
level. 1If G/H Is symmetric it glves
" s 8 0
™) w@Gmwn, = HB(K/L.lI (H/L.V)L)K as a K-module,
where § 1s a certain first order differential operator on

the bundle H°(M/L,¥) + K/L.

3. Is G/H 13 symmetric and n: G/H + K/L is holomorphic, then
B (M/L,¥) + K/L 18 holomorphic, & reduces to its 3-oper-
ator, and (*) gives the K-spectrum of H®(G/H,V) by means
of the Bott-Borel-Weil Theorem.




PLATE VI. Character Formulae: Case Rank G = rank K

If ¢ 1s finite dimensional but not necessarily unitary:

lLet C: negative Weyl chamber in ll:

O(C,)): the coherent family of invariant eigendistributions

on G such that, if )\ 1is regular, then O(C,)\) is

the character of the discrete series representation

LI
X: heighest weight of {.
Then
_1,dimK/T
2 nPeuP@mwyy = CU E:( det (0)O(C, u(X+p))
p20 '"L' ueW(il)
and
Iy :/_; P, (P @/m,v) =
2 wlu(X+p) -p+p, - Zn, B
det(w) e K ! 1)
wE W(K)
nz0 TT (ea/2 - e-G/Z)
u€W(H) o>0 compact

If dim ¢ < w, ¢ unitary, u: G/H + K/L holomorphic:
Each WP(G/N,V) 1s a Harish-Chandra module of finite type,

T-finite with weights bounded from above, infinitesimal charac-
ter X 400 Write Ev for the sum over the set of all v in W(l)
such that v(p)-p is L-dominant. Then the O(C,)) are just holo-

morphic characters and the above formulae reduce to

- dimK/T
S enPoaP@mm = C Y der) ovix+ o))
So Jw | “

Z vPo mP@/m,M) = }:det(v)OK(v(X +p)) =
p20 v

Z det (u) evd(v(xw) -ptpg- znim)
zdet(v) Z u € W(K)
v

n;20 T (80/2 _ e-alz)

a>0 compact

and

We now make the working assumption that G/H 1s symmetric (so,
in particular, rank K = rank G here), that V -+ G/M 1s hermitian
(i.e. ¥ is unitary), and that w: G/H + K/L is holomorphic. Then ft
is easy, at least when V 1is finite dimensional, to follow
equation (*) on Plate V, K-type by K-type, and the character
theory described in Plate VI is explicit. 1In any case, one can
follow square integrability through the spectral sequence, and
the notion of "harmonic" on G/H becomes transparent. Thus, under
certain negativity conditions on V which T will describe in a
moment, we carry out the program described in Plate IV and produce
irreducible, possibly singular, unitary representations in a
uniform geometric manner.

write AP(G/H,V) for the space of V-valued ¢ (0,p)-forms
on G/H. We call a form ¢ € AP(C/M,V) horizontal 1f {t is hgri-
zontal relative to G/Hl + K/L, f.e. 1f ¢(KM) C V ® AP(knn )"

Theorem. A form ® € A®(K/L,A"(M/L,))y 1s a harmonic on
K/L 1f and only if the corresponding ((*) in Plate V) horizontal
form ¢ € AS(G/H,V) 1is harmonic relative to the invariant indefi-
nite Kaehler metric on G/H.

Since G/H is symmetric, H is the fixed point set of an
involutive automorphism T of G, and T commutes with the Cartan
involution @ defining K because 8(H) =H. So the group M and
its Lie algebra -, in #1 in the description (Plate V) of the
fibration and spectral sequence, are the respective fixed point
sets of 8T on G and 8,. Let {Vll be the maximal roots of the
noncompact simple factors of m,. Consider the

L, Condition: 1f VvEL and v\,fo then (v+py,Yy) < 0 for all 1.

Theorem. If the L, condition holds, then every class
c € HS(C/H,V)K has a unique horizontal L, harmonic representative.

Notes. Modulo tensor factors of V corresponding to sub-
groups of H that act trivially on G/n, the L, condition forces V
to have a highest L-type. If V has a highest L-type, say X,
then the L, condition reduces to: (X4-DH, Yl) < 0 for all 1.

Theorem. Suppose that, whenever VEL and vaO, we have

(**) 2(vi~p“.Y‘)I(Y‘,Y‘) ¢ -1 for all i .

Then (-1)%, ), 15 positive semidefinite on ¥ @c/m,v), 1ts
null space on X, (G/H,V) coincides with the kernel of the natural
map Mf(G/H,V) + H%(G/M,V), and that natural map is surjective on
the K-finite level. In consequence, G acts on K:(G/H.V)I
(kernel ( , )G/“) by a unitary representation, and this unitarizes
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the Fréchet representation of G on H®(G/H,V).

Notes. 1f G, or even just M, is a linear group, or if V is
finite dimensfonal, then (**) reduces to the L, condition. 1In
any case one can get an almost identical but slightly less geo-
metric result, with ¢ -1 in (**) weakened to § -Y%.

Theorem: 1f V is finite dimensional, and Ty is the unitary
representation constructed just above, then my 1s irreducible and
fts characters are explicitly described in Plate VI.

Let me indicate how this works in a very special case, the
ladder representations of the conformal group. So G is the
double cover of U(2,2), H is the subgroup of G that covers
U < u(1,2), K/L = {U(2) xu) 7 {u) x v1) x ()} =
U(2)/u(1) xu(1) 1s the complex projective line (Riemann sphere),
s=1, and by using the theorems just above with various negative
holomorphic line bundles V + G/H we obtain all but one of the
ladder representations. See (8), Section 13. The ladder repre-
sentatlon not obtained this way is the one with a l-dimensional
K-type. 1t is the very singular representation of $S0(2,4) that
remalns Irreducible on S0(1,4), and is associated to a nilpotent
coad joint orbit rather than an elliptic orbit. See (9) and (1).

Finally, let us return to quantum electrodynamics, specific-
ally to the photon. Fronsdal and others have studied the notion
Gupta-Bleuler Triple in the context of QED. That 18 an indecom-
posable but reducible representation 0 = XOC X,cx,c X, = X
where X 1s an indefinite-unitary representation space, X, is
a totally Isotropic invariant subspace, and X, 1is the orthogonal
of X‘. See (2) and (11). The scalar product on X pairs the
representations X/X, and X,, which turn out to be unitary in the
cases described by Fronsdal. Thus, in the photon case, X/X, gives
the scalar photon, X,/X| gives the transverse photon, and X, gives
the longitudinal photon. 1In the material I describe here, the
setting is really different but the spirit is similar. Thus the
analog of X 1s the weak harmonic space

{0 € L:(C/",V): 0¢ = 0 in the sense of dlstributions} N

the analog of X, is the harmonic space K:(GIH,V) studied here,
and the analog of X; consists of the 3-exact forms in Rg(G/H,V).
The quotient representations I have described then correspond to
the quantization of the transverse photon, the other two pieces
to the scalar and longitudinal photon. But so far there 1s no
general argument in the holomorphic setting that the invariant
fndefinite global hermitian form is nondegenerate on the weak
harmonic space.
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