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1. Introduction

Let G be a connected reductive Lie group. The representations of G
involved in the decomposition of L,(G) are the Indf (n® «) where
P=MAN is a cuspidal parabolic subgroup in Langlands’ decomposition,
m is a discrete series representation of M, and « is a unitary character on
A. The difficult part of the construction is that of the discrete series
representation n. Other irreducible unitary representations of G exist, say
on L,(G/T') where I is a discrete subgroup, and their construction usually
comes about by some sort of continuation of m (as in the ‘analytic
continuation’ of the holomorphic discrete series) or of «a (as in the various
‘complementary series’). The representations Ind§ (n®a) can be
realized geometrically, e.g. on partially holomorphic cohomology spaces,
and there the difficult part is the realization of n as the action of M on
some space #%(MJ/U,E) of L, harmonic forms on a flag domain M/U,
with values in an appropriate vector bundle E— M/U. This naturally
leads to the question of realizing ‘continued discrete series’ representa-
tions in a similar manner. That same question arises in at least three other
contexts: intrinsic realization of the ladder representation of the groups
U(k, 1), intrinsic construction of the Penrose Inner Product in twistor
theory, and unitarization of Zuckerman’s derived functor representations.
Here we sketch a partial answer to that problem.

Let G/H be an indefinite-Kaehler semisimple symmetric space. In
other words, H = G” fixed point set of an involutive automorphism 7 of
G, H contains the centre of G, and G/H has a G-invariant complex
structure. Fix an irreducible unitary representation ¢ of H, say on a
Hilbert space V, and let V— G/H denote the corresponding holomorphic
vector bundle. We define spaces

WG/H; V): L, harmonic V-valued (0, q)-forms on G/H
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on which G acts naturally, preserving an hermitian form ( , ) which is the
integral of the pointwise inner products of V-valued forms. Let s be the
dimension of the maximal compact subvarieties of G/H. Under a certain
negativity condition on V— G/H, we prove

(1) (—=1)°(, ) is positive semidefinite on #5(G/H,V),

(2) the nullspace of { , ) on #5(G/H, V) is the kernel of the natural
map ¢ —[¢] to Dolbeault cohomology,

(3) the K-finite subspace (K a maximal compactly embedded subgroup
of G) #5(G/H,V)x maps onto the K-finite subspace of the
Dolbeault cohomology.

Thus, we have a wunitary representation =@ of G on
#5(G/H, V)/(kernel of ( , )), and m, unitarizes the Dolbeault space
H*(G/H, V). Furthermore, we work out the K-spectrum of H*(G/H, V),
and thus are able to compute the character of my. In the very special case

G/H=U(k, )/ UL)xU(k—1,1) and dimV=1

we realize the ladder representation intrinsically. The even more special
case k = | =2 gives an intrinsic formulation of the Penrose Inner Product.

In 1979, Rawnsley and Wolf carried this out by direct computation for
U(2,1)/U1)x U(1, 1) and a line bundle. They also made some progress
on Un, 1D)/U1)xU(n-1,1). Then Schmid and Wolf reworked and
extended that calculation, in Lie algebra terms, by explicitly solving for
the radial part of the ‘harmonic’ differential equations. Now we have a
simpler geometric approach, which we will try to indicate here.

2. The spaces and the fibration

G is a connected reductive Lie group and G/H is an indefinite-Kaehler
semisimple symmetric space. In other words, g, =, +qo under the involu-
tion 7 that defines H, and b, has an element ¢ such that ad ({) is 0 on b,
and has square —1 on qo. Choose a Cartan involution 8 of G that
commutes with 7, and denote

K=G° M=G", L=KNH=KNM=MnNH.

Then K is a maximal compactly embedded subgroup of G, as is L in M
and H. The corresponding Cartan decompositions are

8o =To+ o, me=l+®sNay), bo=1p+peNho).

An old result of Mostow gives a diffeomorphism K X (p,Nqp) X
(PpoNby) = G by (k, &) — k -exp (&) - exp (n). First that says G/H =
KM(x,) where xo=1' He G/H, and second it results in a K-equivariant
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fibration
7:G/H — K/L with structure group L

of G/H over its maximal compact subvariety K/L. An example: if
G/H=U(1,n+1)/U(1, n)x U(1), open set in complex projective space
P"*}(C), then K/L is a hyperplane U(n+1)/U(n)x U(1)=P"(C), so 7 is
a fibration (in this case, holomorphic) of G/H over a hyperplane that sits
inside it as a sort of equator.

We order the roots relative to a Cartan subalgebra contained in I, so
that g=(qo)c =q. +4q_ in such a manner that q,, which is the sum of the
positive root spaces in g, represents the holomorphic tangent space of
G/H.

3. The spectral sequence and the K-types

Fix an irreducible unitary representation ¢ of H on a Hilbert space V.
Let V— G/H denote the associated hermitian holomorphic homogene-
ous vector bundle. For simplicity, assume that m:G/H — K/L is
holomorphic. Then there is a holomorphic vector bundle H*(M/L, V) —
K/L, typical fibre H°(M/L, V) and structure group L, and an analog of the
Leray Spectral Sequence, as follows

Eg?=AP(K/L,A*(M/L,V)) and d,= (—1)D5M/L s

E%?=0 for q>0, E?°=A"(K/L,H°(M/L,V)) and d,= 51(/1.,

H®(G/H, V)= E3° = H"(K/L, H°(MIL, V)).
This depends on detailed computations within the Lie algebras and is
specific to our situation. The point is that, by means of Bott—-Borel-Weil,
it lets us approach an understanding of the K-spectrum of the Dolbeault
cohomologies H?(G/H, V) in terms of the L-spectrum of V. That, in turn,

gives us the K-spectrum of the unitary representation to whose construc-
tion we now turn.

4. Harmonic forms on G/H

The Killing form of g, specifies a G-invariant indefinite-Kaehler metric
on G/H. As in the positive definite situation, the metric specifies a
Kodaira—Hodge orthocomplementation on V-values (p, q)-forms

#:E”(G/H, V) — E"™*""9(G/H, V¥)
where n=dimec G/H and V* — G/H is the bundle dual to V— G/H.
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Then
8: E™(G/H, V) —» E**"(G/H, V)
has formal adjoint
8% = —#8#: E***(G/H, V) — E™(G/H, V)

relative to the global G-invariant, generally indefinite, hermitian form

(¢, ¢")= J dAH#HP

G/H

Here A denotes exterior product followed by contraction of V against
V*

We say that ¢ € E™(G/H, V) is harmonic if ¢ =0 and 9*¢ =0. Of
course this implies

Oé =0 where [=085*+06*3

but the converse fails because { , ) is not definite.

By computation we compare 3* on G/H and 3* on K/L. This works
well for (0, s)-forms when 7 is holomorphic. The result: if 7: G/H — K/L
is holomorphic, then every K-finite class in H°(G/H, V) has a unique
K-finite harmonic representative ¢:G— V®A*(q.)* such that
d(KM)c= VR As(tNq)*.

5. Square integrability

In addition to the G-invariant indefinite Kaehler metric, G/H carries a
K-invariant positive definite hermitian metric given on q by ((§, 1)) =
—B(& 67) where B is the Killing form. G distorts it by

lldt, ()P = —B(Ad ()¢, 6 - Ad (h)€)

where t, : gH +—> zgH denotes translation on G/H, £ q= T, (G/H) gives
&m=dt dt, & at km -H, ke K, meM, xe G and xkm € KMh.

A basic fact: if xe G then dt, is uniformly bounded on the tangent
spaces of G/H, with bound continuous in x. Thus the natural action of G
on forms specifies continuous representations by bounded transforma-
tions on the Hilbert spaces

L3%(G/H, V):completion of the space of compactly supported forms
in E™¥(G/H, V) relative to the positive definite inner
product.

The invariant indefinite hermitian form ( , ) is continuous on L5%G/H, V).
Tracing measures through the fibration w:G/H — K/L, when = is
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holomorphic one sees that the ‘L, condition’
if veL with V,#0 then (v+py, v) <O for all roots v of pNq,
implies

if ¢ € AS(G/H,V) is K-finite and 3-closed, and satisfies ¢(KM)c
V@A (tNq.), then ¢ LS(G/H, V).

Combining that with the result described in Section 4, we have

Theorem. If w:G/H— K/L is holomorphic and every (nonzero)
L-type V, satisfies (v+pn, v)<O for all roots v of pNq., then every
K-finite class in H*(G/H, V) is represented uniquely by a form ¢:G —
V ® A%(q.)* $uch that: p(KM) <= V Q A*(ENq_)*, ¢ is harmonic relative to
the invariant metric, and ¢ is L, relative to the positive definite metric.

In view of this it is convenient to denote the L, harmonic space
#H5(G/H,V)={¢p € A*(G/H,V): ¢ is harmonic and L,} and its ‘special’
subspace F(G/H,V)={d e #5(G/H,V): ¢(KM)c V®A*(tNq.)}. Ac-
cording to the theorem just stated, the natural map of a form to its
Dolbeault class gives an isomorphism $(G/H, V) = H*(G/H, V) on the
K-finite subspaces.

6. The unitary representations

The L, harmonic space #35(G/H, V) is a G-module on which the invariant
inner product is usually indefinite and the positive definite inner product
is not invariant. If 7:G/H — K/L is holomorphic and every nonzero
L-type V, satisfies

2{v+p,v)/(v,y)=—1 for all roots y of pNaq,

then every element ¢ in the kernel of the map #5(G/H,V)—
H*(G/H, V) to Dolbeault cohomology is in the kernel of the invariant
bilinear form ( , ) on #3(G/H, V). Since (—1)*( , ) is positive definite on
F(G/H, V) we can prove

Theorem. If w:G/H— K/L is holomorphic and every nonzero L-
type satisfies 2(v+p, v)/(y, v)=-1 for all roots vy of pNaq,, then

(1) (=1)°(, ) is positive semidefinite on #,(G/H,V) and its nullspace
there is the kernel of the natural map to Dolbeault cohomology,

(2) the natural action of G on V-valued forms induces a unitary
representation , of G on the ‘reduced L, harmonic space’

#5(G/H, V) = %#5(G/H, V)/(kernel of { , )),



REPRESENTATIONS OF REDUCTIVE LIE GROUPS 131

inner product from (—1)°( , ), and
(3) my unitarizes the action of G on the Dolbeault cohomology space
H*(G/H, V).

'The key argument here, that [¢]=0 inside H*(G/H, V), implies
(¢, #5(G/H,V))=0, comes down to finding K-finite forms m; e
L3*"YG/H, V) such that 3n; — ¢ in L,. That depends on the fact that the
fibres of #:G/H — K/L are bounded symmetric domains.

There is a slightly weaker result which uses part of #5(G/H, V) in case
the inequalities 2(v + p, v)/(7y, v)=—1 are relaxed a little.

Theorem. If w:G/H— K/L is holomorphic and every nonzero L-
type satisfies 2(v+ pyg, v)/(v, ¥) <—3 for all roots of pNq,, then

(1) (=1)*(, ) is positive semidefinite on the subspace U(g) - ¥(G/H, V) of
#5(G/H, V) and its nullspace there is the kernel of the map to Dolbeault
cohomology,

(2) G acts by a unitary representation , on the ‘reduced special L,
harmonic space’

F(G/H, V) =U(g) - $(G/H, V)/(kernel of { , )

with inner product from (—1)°( , ),

(3) under the stronger conditions 2(v+p, v)/(v, v) = —1 the two represen-
tations my agree, and

(4) my unitarizes the action of G on H*(G/H, V).

If G is linear or 'V is finite dimensional, then » is integral so the above
inequalities coincide with the L, condition: (v + py, v) <O for all roots vy
of pNaq..

7. K-spectrum and characters on Dolbeault cohomology

If A is a K-dominant-regular weight, then there is an irreducible K-
module W,_, of highest weight A —p, and one has the corresponding
homogeneous holomorphic bundle W, _, — G/K. The Fréchet G-module
H°(G/K,W,_,) is in the ‘continuation of the holomorphic discrete series’.
Its subspace of K-finite vectors, H°(G/K, W, _, )k, has finite composition
series, has infinitesimal character of Harish—-Chandra parameter A, has
K-module structure W,_, ® S(p_), and is T-finite with highest weight
A —p. So G carries a distribution

6(A): global character of G on H(G/K,W,_,).

Hecht worked out explicit formulae for those 6(A). We extend their
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definition to all A in the weight lattice, by

0 if A is Wg-singular,
0()\)——‘{ Kk -SIng|

e(w)8(wr) if we Wy and wA is K dominant regular.
Similarly we extend

0 (A): formal character of K on HY(G/K, W, _,)x
by Wg-antisymmetry to arbitrary weights A.

Theorem. Let w:G/H — K/L be holomorphic, dim V<o, and x=
¥ | L. Then for every integer p =0, the K-finite Dolbeault cohomology space
HP(G/H, V) is a Harish-Chandra module of finite length which is T-finite
with weights bounded from above and which has infinitesimal character

x tp. Let W' ={ve Wy_:vp—p is L-dominant}. Then the global characters
0(H?(G/H, V)) exist and satisfy

Y ()POHP(G/H, V)= Y &(v)0(v(x+p)).

p=0 veW’

The formal K-characters 6x(HP(G/H,V)) also exist; they satisfy the
K-analog of the alternating sum formula above, and also

Y (~1)P0x(H"(G/H, V))

p=0
S et 5 Deewge(merTemnc e e
= e(v
veW’ ny,..., n=0 l-[ acdm® (e°‘/2—€ m/2)
where {B, ..., B} is an enumeration of the roots of p..

If one has H?(G/H,V)=0 for p#s, then the theorem gives precise
formulae for the global and K-characters of H(G/H, V).

8. K-spectrum and characters of the unitary representations

Suppose that 7 :G/H — K/L is holomorphic, dim V<, and y=¢|L
satisfies the L, conditions: (x +pag v) <O for all roots y of pNgq,. From
dim V<o, x is integral in M, so in fact we have the condition

2(x+om, V(v v)=-1,  all roots vy of pNaq,

which provides a unitary representation m, of G as described in Section
6. The L, condition also allows us to verify the vanishing

H®(G/H,V)=0 for p#s.

5
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Thus the characters of #y are given precisely by the theorem stated in
Section 7, and we identify the . For example, in the case U(k, I)/U(1) X
U(k—1,1) with dim V=1, the 7y and their duals give, among other
things, the ladder representations of U(k, I).

Details will appear in a paper of John Rawnsley and ourselves.
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