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§1. Introduction

A couple of years ago, Wolf [11] studied the Poincaré series
operator 2;}/for a homogeneous holomorphic vector bundle TE -+ D. over’
a flag domain D = G/V and an arbitrary discrete subgroup T C G .
He showed that if E - D is nondegenerate (see below), and if G acts
on the square integrable cohomology space HZ(D;IE) by an integrable
discrete series representation, where s 1is the complex dimension of
the maximal compact subvariety K/V in D , then every I'-automorphic ‘Lp
cohomology class 1 € H;(P\ Dy E), 1<p<w ) is represented by a

Poincaré series

(1.1‘) Y = 77(¢) = ¥ y*¢ with ¢ € H;(D; E) .
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The purpose éf this note is to shift the context from Lp bundle-
valued harmonic forms over flag domains G/V to eigenspaces of the
Casimir operator of VG on Lp sections of bundles over symmetric
spaces G/K . This lets us drop the nondegeneracy condtions of [11],
where it was used fo ensure that every K-finite element of HZ(D;IE) is
in Hi(D;ZE) , using [10]. This allowed sharp estimates on the Lp
behavior, 1<p <o , of the reproducing kernel for H;(D;IE) inside
the space of all E-valued square integrable (O, s)-forms on D . These
estimates replaced the explicit calculations of Bers [3, 4] and Ahlfors.
[1, 2] for classical automorphic forms over the unit disc. Here, over
G/K , those sharp Lp estimates are obtained»very easily. Once we have
them, everything proceeds as in [11].

For simplicity we work with the‘case of a connected semisimple Lie
group G' in this paper. However, all the results go through in the same
way for the larger class of reductive Lie groups considered in [12].

We thank the University of California at San Diego for its

‘hospiﬁality during Winter, 1981, at which time this note was written.
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§2. The Bundles

G 1is a éonnected real semisimple Lie group, 6 is a Cartan
involution of G , and K = Ge is its fixed point set. So K 1is
the Adél image of a maximal compact subgroup of Ad(G) . We assume
that rank K = rank G , so G has relative discrete series representa-

- tions, and we choose a Cartan subgroup T CK of G . Write

?O" ]Qo . %:0 Lie algebras of G, K, T ;
(2.1) o r®r , ¥ : complexifications of o > }QO , f();
o, @K , QG/K : £ -roots of 2 ¥ -roots of k , @\ @K .

- If necessary, replace by G a double covering group so that in some

1

. :
hence every) positive root system & , P = 5—2 + 0 exponentiates to
o]

a character on T . G has center Z CT CK CG .

*
Let A EE-[ be:?—regular and K-integral. Denote the corresponding

<

(Harish Chandra parameterization) relative discrete series representation

.
of G by L its class by [ﬂA]'E G . Then

(2.2) o' ={a€d: (A, a)>0}, ¢-=0 nao*, o =0 not
K K

G/K G/K

are the positive roots systems with which we work. Denote

. ' 1 1
(2.3) p=5l,0, Pg = E'Z + % Pox T §-Z¢+ o .
? % ek

N+

+
Then A - Pr + 0 is ®K~dominant and K-integral. Denote the

G/K




Page 4

irreducible representation of K with that highest weight by

(2.4) T =T , representation space E

= E .
A=Ppt0q /e A=pyt

Pe/k
It is (see Schmid [7] or Wallach [9]) the lowest K-type of Ty s in
the sense that all others have highest weights obtained by adding elements
+
- +

oo
- Consider the associated homogeneous hermitian C  vector bundle

and it has multiplicity 1 in Ty«

(2.5) . E =G X & > X =G/K, typical fibre E .
Denote its space of Lp sections by
-1
(2.6) ;p(x,:E) = {f: ¢ »B: flgk) = (k) flg), I£(*)] € LP(X)} .

7

Let ! be the Casimir element of the universal envelopihg algebra 1{&9) »

§ its closure as operator on LP(X, E) . Then, for 1<p <o ,
: 5 2 02
(2.7) , Hp(X,IE) = {re LP(X,IE): ef = (IS = lpll®)r}
is a closed subspace of Lp(X » E) on which G acts continuously and
isometrically. In particular G acts on Hz(X,IE) by a unitary

representation. The point is that (Hotta [6])

(2.8 the representation of G on H2(X,ZE) is equivalent to my .
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If [m] € G and H is the representation space of w , we have

the coefficients

(2.9) fu v G >0 by fu,

, ’V(X) = (u, W(X)V)H for u, v €H .

We recall that [m] is said to be Lp if its K-finite coefficients
satisfy lfu vl € LP(G/Z) where 7 is the center of G . So [m]

2
is in the relative discrete series if it is L2 , 1s in the integrable

relative discrete series if it is _Ll . The Trombi—Varadarajan-Hecht—

Schmid condition for a relative discrete series class [ﬂk] to be

integrable is ([5], [8])
(2.10) [<x, v | > ;-Z Ka, y)| for all y € o . .
R s 2 OLE(D+_ ] } G/K

Finally, we note that

(2.11)

if [”A] is Lp and f € H2(X,IE) is K-finite then lrll € LP(G/Z) .

' * Co%

For f €EH®H E, H = H',T , and H ®H is the Lg—closure of the
. | A :

space of coefficients of - nk . We are assuming f left-K-finite.

f(gk) = T(k)—lf(g) forces it to be right K-finite. That proves (2.11).
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§3. The Reproducing Kernel

The K-type (T, E) occurs with multiplicity 1 in T, « Denote
the isometric K-equivariant inclusion which is adjoint to evaluation
at 1€ G, by

(3.1) i; E~>E = He(x, JE)T .

Denote also

(3.2) e: L,(X, E) +E , orthogonal projection, and

(3.3) B G GL(E) by E(x)v =i eeem (x)rilv) .
We are‘going to prove that

(3.4) Kx(x, y) = dkitrace E(y_lx) » &) = formal degree of [ﬂA] ,

is the reproducing kernel for H2(X,IE) inside LE(X,IE) .

Let {v ""’Vﬁ} be an orthonormal basis of E and {¢j = i(vj)}

1
the corresponding orthonormal basis of E . We have K-finite coefficients
of WA .
. ' f. =1 DX # s T (x)0.
(3.5) Ty et x (e mG0)

and we note from the definition (3.L4) that
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2

-1 _ _
(ﬂk(y X)¢j’ ¢j) 4y jZlfj(x

(3.6) KA(X, y) = a,

1
v) .

[ P

J=1

We assert that i: E - HZ(X,iE) is given by

/2,2, 1

(3.7) i(v)(x) = " “*E(x ")v for VEE, x€G.

To see this, let ¢: G > E be given by ¢VCX) = E(x

1-1 -1 -1 -1
) )

- = - = ] . L] —l _l. ]
¢V(Xk) = Bk x )v=1 "-e ﬂk(k)v WA(X

ci(v) =1 7em (k)
= T(k)—l'i_l'e'ﬂx(x_l)'v = T(k)_l¢v(x) for k€K, so ¢ is a
section of E - X . Also, writing H for H2(X,IE) .

2

leem, (x™H)+1(v)15a ()

J o, (x)15a(xk) = N

X

i
2 1y | >
= j I Z (HA(X )eilv), ¢j)H¢jﬂHd(xK)
X

i

j=1
g 5

= jzl lKl(v), HA(X)¢j)H| é(xK)

. I 12 = a M2 = a7 hvIe

= jz fi(v),¢j L,(6/2) - 4 My = a4 vl

so ¢v e L2(X,iE) . TFurther,

i)

() 1(v) = (2 - 1o1®)6_(x)

2 (x) = 17 resan, (9)em, (x

(A2 - 1pl2)iYeeen

I

A

so ¢v € H2(X,ZE) . Finally, if k € K then




AT IR ARy v i

Page 8

Hx D rx)v = =5((x %) v

Rl

S i)y (™)

0, (%) = (m,

_ . . . 2 _ =1, .2 1/2
so v ¢ is K-equivariant. As "¢v"H =4, Ivls , now v b 4" "¢,

coincides with i: E - E up to multiplication by a scalar of absolute value 1.

(3.7) follows by our choice of 1 as adjoint to evaluation E~+E at 1€ G .

3.8. Theorem. If f €L.(X,E) , then its orthogonal projection

2
to H2(X,ZE) is given by an absolutely convergent integral
(3.9) w0 = [ (e, p)elyan)

G/Z

Proof. Let ¢ €7Z such that t(kz) = g(z)t(k) for k €K .and

2z €7 . Then the action T of G on LQ(X,ZE) satisfies

Fz)f(x) = £(z71x) = £lxz™1) = 1(2)ef(x) = g(z)8(x) ,

so T and.its}subrepresentation ﬂA have central character r . Now
Ky (x, yz) = C(z)-lKA(x, y) » so K (x, yz)f(yz) = K (x, y)£(y) , and
the integrand in (3.9) is well defined. |

In (3.5) we have lfj]’e L2(G/Z) , so (3.6) shows that IKK(X, v)|
is in L2(G/Z) for each variable separately. Thus the integral (3.9)

converges absolutely; Now compute'

Now
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Hf(xk) = [d)\'trace By Lxk) £(y)alyz)
G/7

ey x)£(y)alyz)

1]
{1}

f d}\°trace
G/Z

f d)\'trace E(y_lx)f(yk)d(‘yz)
- G/Z

(y"1x) -1 (x) Lely)alyz)

[1]

dx'trace
G/Z

-1

(k) “Hf(x) .

.Thus Hf is a well defined section of E ~ G/K .

Denote (u, v ® &)y = (u, V)Har for u, vEH and a€E . If

f e LQ(X, E) and u, v€ H then

fu,v ®r: x+ (u, W(x)V)Hf(X)

is integrable over G/Z . That defines a map mf): H>H®E by

G, Moy = [ G, v etat) -
G/Z

_ -1/2
As llfu vl L (¢/2) d ||u|l ||v|| now

_1/
[{u, I f)v)H] IIuII Ilvll Il 2( X)

so t.e operator norm
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-1/2

(el <dx

llfllL (

(%) 7

The calculation just above, will allow us to estimate

’ 2 2 ‘ 2
llellL2(X) = f IIHf(x)”Ed(xK) = J "Hf(x)llEd(xZ)
X G/Z

I £, )eate) Igata)
¢/z c/z Tt

1]

o
>
Il o~

For the inner integral, note

£ 6T = [ ey w6 e )alve)
G/Z G/z

= (n(x) 5, MEW Dy -

Thus .

| : %
wrt? = tay I @, (), 1 2a0x2)
G/Z

a L (mla)ey, Weo)y, (mx)e,, T(£)g ) dlxz)

>N

1]

d>2\ jzk d;\l(CbJ., O Iy s TENO )y e,

_ 2
= 4, § "H(f)‘bj"H@E

4, +dim E-IT(£)1°

. 2
< (dim E)Ilflllz(x) .

Thus Hf € 1°( 12

X, E) with Il < (dim E Finally,
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(QeHF)(x) = f dx-trace(ﬁgE(y—lx))f(y)d(yZ)
G/Z

1]

d, edm

\ +am (Q)traceE(y x) £ (y)a(y2)
G/Z

(12 < 1ol®)me(x)

showing Hf € H2(X,iE) . Now the integral operator (3.9) is a bounded

operator H: L.(X, E) - Hg(x, E) .

2

Next, we prove that H is a projection. It is hermitian because

( (Hf, f )L2(X)
\ ) |
f ( J dy* ) fj(x— y)f(y)alyz), £ (x))Ed(xZ)
o/z o/z 971

2 1 ,
dy* N fj(x— y)(£ly), £ (x))
j:l ’ .

(3.10) { a(yz)d(xz)

E
G/Z G/Z

%
f (tly), f dy ) fj(y‘lx)f'(x)d(xz))Edcyz)
G/Z ¢/z 7

(£, Hf')L (

2X).

And H 1is idempotent because




]

Pre) = [ K0 [ K viagmaee)
G/7 G/Z ‘ :

f di ¥ fj(g"lx)fk(x'ly)f(y)d(yz)d(xZ

G/Z G/Z Jok

]

A ~ ~
G/Z Jos G/Z Tr(g)¢J ’q)J W(y)d)k’(bk

[ 4 1 ey, 7o )T areae)
o/z  IoF .

1l

2
[4,1 £ e = rete) -
ez It ’

The projection H is G-equivariant because (ﬂk(g)-Hf)(x) = Hf(g—lx)

I Kx(g—lx, y)f(y)d(yz)
G/Z G/Z

j Ky (x, V(e ™y )alyz)
c/%

G-invariant subspace of the G-irreducible space H?(X,ZE) .

vE€E and ¢V = d;l/gi(v): X E(xfl)v as in (3.7)

proof. Then

%
0,(x) = 17 e m (T ilv) = T (M)A, g

Thus
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)

f a2 L { j ¢ o)e <x)a<xz)}f<y>a<yz>

f Kk(g—lx, g )re y)alyz)

H(m(g)f)(x) . Thus its range is a

Let

and its
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-1
KX g £y, 07 ) z 1 (w),, A
G/Z

)(x)vk convolution over G/Z

d (f, *f
b e o0

jgk (i(v), ¢ )Hf¢j ’¢k(x)vk

.E (v, VJ)E(TTA(X—l)ij, ¢, ) vy

]
1

<

X

In particular H #0 . This completes the proof of Theorem 3.8.

g.e.d.
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§h. Projection to HP(X,IE)

We now assume that the relative discrete series representation

m, of G on H2(X, E) is integrable, i.e., that A satisfies (2.10).

A

h,1. Lemma. IKA(X, y)l is in LP(G/Z) in each variable, for

1<p<w, with Lp norms "KA(X, »)IILP(G/Z) = IIK}\(-? y)lle<G/Z)

independent of x,y € G .

Proof. By (3.6), xw |KA(X, 1)| 1is a finite sume of K-finite
coefficients of T, » hence is LP(G/Z) for 1<p<w, If yE€G

and 1 < p < ® then

f |, (x, ¥) [Pa(xz)

Y -
(0 12 (/) .
" G/2Z

- f K\, 1) [Palxz) = g (1, DIE () <o
o/2 ’

and

"K)\(‘, y)“Loo(G/Z) = ess Su?xEGlKA(X’ Y)I

-1 B . -
vess squEG[KA(y x, 1)| = "KA( s l)“Lm(G/Z) < w

The same argument works in the other variable. qg.e.d.
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Now define a constant b = b(G, K, A) by

(h52) b = I, (x, ')"Ll(G/z) = I, (- y)"Ll(G/Z) .

4.3, Theorem. Assume [WX] integrable. Let 1 S<p S , If

£ € LP(X, E) , then

U R i) = [ K0 veaee)
‘ G/Z

converges absolutely to an element of HP(X,IE) . Furthermore,

H: LP(X,IE) > HP(X,IE) has norm [H| <b , and if ¢ € Hp(X,:E) then

Hp = ¢ .

Proof. Convergence and the bound on H are clear for p = « :

lirl,, <ess s, | 1 e, 7)) Ipaly2)
a/z

< .
< sup o f IKA(X, v)|alyz)-ess sugYEGHf(y)HE
G/Z

= plsl_ .

If f 4is continuous with support compact modulo K , it is in QW(X,ZE)

so Hf converges absolutely, as just seen, and of course
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Hanl = f Il J Ky (x, y)f(y)d(yZ)HEd(xZ)
G/Z G/Z

< f f K(x, ¥)[Ie(y)1galyz)a(xz)
G/Z G/Z

<b f Hf(y)uEd(yz) = beHl .
G/Z

Extend H to LP(X, E) by continuity for 1 <p < ® ., The Riesz-Thorin
Theorem gives convergence of (L4.L4) and shows that H: LP(X, E) > Lp(X, E)

has norm IHI <b . Also,
(QHE) (x) = m, (Q)HE(x) = (A2 = Hpl®)me(x)

for 1 <p<w, so in fact H: Lp(X, E) ~ Hp(x, E) .

1

If p, 9 =21 with i)— + %— = 1 , then we have a sesquilinear pairing

(4.6)

LP(X,IE) X Lq(X,ZE) > ¢ Dby (f,‘f')X = J (£(x), f'(x))Ed(xZ)
G/Z

We assert that it satisfies

b

kel o
+
Q|-
I
-

',(h'7) (HF, f')X =\(f’ Hf')X- for f € Lp', £’ e Lq

If one of f, il is in the space CC(X, E) of continuous compactly
supported sections, and the other is in CC(X, E) or LOQ(X, E) , then
this follows by the calculation (3.10). As H is Lp ; Lq bounded,

it now follows when one is in the closure of Cc(X’ E) in its
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Lr(X’ E) , and the other is Loo or also in the closure of CC in its

r(X’ E) . This covers all cases, so we have (L.7).

Now let f EEHP(X,ZE) . Ir £ € C,(X, E) then (4.7) applies, so

((1 - H)f, £'), = (£, (1L -H)T) Let

X X

D= Fq) - (IMZ = 1ol®) .

The L, range of D is dense in (1 - H)LQ(X,jE) . The same follows
for the 'L range, Lilo1 ., Thus (1 - H)F' = lim Df_ in
q b q N~ n

Lq(X,IE) , and

((r - "), f’)X lim(f, Dfn)X

n-co
= 1im(Df, fn)X =0 .
n->oco
We have shown that f = Hf as distribution section of E -~ X . It

follows that Hf = f . , g.e.d.
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§5. Projection to Hp(X/T,iE)

Fix a discrete subgroup I CG +that acts discontinuously on X = G/K ,

i.e., such that IZ 1is closed in G . Let F be a fundamental domain for

~the action of ' on X . Then we have

all measurable I'-invariant sections f
(5.1) LP(X/I‘,IE) : {of E =+ X with ll'f}F(o)Il GLP(F)
and norm “f"F,p = “fIF(.)"Lp(F)

and its closed subspace

(5.2)  H(UT,E) = {£ €L (/T , B): 8 = (I° - Tol%)se)

L.

As in (4.6), for %—= 1 these Banach spaces have a nondegenerate

sesquilinear pairing

(5.3)

LX/T, E) % LT, B) - € wy (5, )y = [(e0), £ () pata)
.F

The arguments of Wolf [11, §5] now apply without any modification.

The result is

5.4. Theorem. Assume [ﬂk] integrable. Let 1<p <o, If

£ e LP(X/F, E) then Hf is well defined by

K = [ 500 e for 3w,
G/Z '
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Lp limits from cc(x/r, E) for 1<p<®,

Furthermore,

(5.5) H: L (X/T, B) > H (X/T, ) with Il <v ,

(5.6) if f € Hp(X/I',]E) then Hf = £ , and

lif f€L (X/T,E) and f' €L (X/T, E) with
(5.7) P -9

1 1 Py '
p+q-1, then (Hf,f)r-—(f,Hf‘ )F.

In effect, if p = © then (5.5) is a computation and (5.6) follows
from Theorem 4.3. If p =1, then (5.7) is proved ﬁy approximation,
and (5.5) and (5.6) are extracted in the distributional sense from the
case q =« ., If } < p < © the assertions extend from‘ CC to Lp

by Riesz-Thorin.

Proceding exactly as in Wolf [11, 86] we obtain

5.8. Theorem. Assume [HA] integrable. Let 1< p < © and

+ == 1. Then the pairing (5.3) establishes a conjugate-lineér

Rl
Q|-

isomorphism between Hq(X/F,ZE) and the dual space of -HP(X/F,ZE) .
Ir r'e€ Hq(X/F,IE) corresponds to the linear functional £ , then

bR . < el < el .
I',q I',a

5.9. Corollary. Let fELp(X/F, E) and f' ELq(X/I', E) . Then

Hf = 0 if and only if (f, Hq(x/r, }E))I. =0, and f"E€ Hq(x/l“, E)

’ ___0.

if and only if ((1 - H)LP(X/I‘, E), f )1"
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§6. The Poincaré Series Operator

The Poincaré series of a section f of E ~X , relative to a discrete

subgroup I € G , is defined by

(6.1) Vie)x) = T 2y ) for x €
ver

whenever the right hand side converges in some suitable sense. In that
case, '(f) is a T-invariant section of E - X .

For example, if f € Ll(X,IE) then 1¥(f) converges absolutely a.e.

because [ l(x)la(xz) = § f Ie (v ") Ia () =l
G/7 Y g

Vie) e L (X/T, B) with "7?(f)ﬂr,l <lsl, because

1] ey Iaak)

f 1) () I (e
‘ T

F

le(y Lol ale) = ] [ P2yl atxk) = Hel
Yer YET &

e
*J

and if f € Hl(x, E) then 7f(f) € Hl(X/I’, E) Dbecause

DV (5) (x) = ZF X (v o) = Vlae)x) = W2~ 10127 (2) (x)
YE

In brief, using ellipticity of Q on X ,

V. H (X, B) > H (X/T, ) with 12721 <1, and
(6.2)

here each {/(f) converges absolutely and uniformly on compact sets.
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If f € Ll(X, E) and f' €L (X/T,E) we compute

[, e gt = 1 [ (e, ) gat0

(B(r), £y =
F A

. YEr
= ] J (£0), £100)gaGa) = [ (260, £7(0)pax0)

yer \F %

= (£, £')y -
Thus 271 L (X, E) > L (X/T, B) has adjoint
* .
VL, (X1, B)S (X, E)

which is continuous inclusion of a clbsedvsubspace, This says that
1 Ll(X, E) > Ll(X/F,IE) is surjective. The case p = 1 of Theorem

5.8 lets us specialize this to Hl , as in (6.2). Thus

6.3. Proposition. The Poincaré series map 77: Hl(X,ZE)-+ Hl(X[F,ZE)

is continuous and surjective, and its adjoint is the inclusion

V5 H_ (T, B) > Ho(X, E) .

One now continues just as in Wolf [11, §T]. 2¥ converges on the

dense subspace Hl(X,ZE) N HP(X,ZE) of Hp(x E) -- dense because it

contains all K-finite elements -- so %0 1 converges on

(6.4) Jpg = {xf: £ € cc(X/F, E)}
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where ¥ is‘the indicator function of the fundamental domain F of

I' and CC(X/F,IE) is the space of I'-invariant sections of E » X

 with support compact modulo I from X , i.e., compact modulo TI'Z

from G .

If € Ll(X/I‘, E) , then xf €L (X, E) , so H(xf) € Hl(X, E)

1
and thus T/ (H(xf)) € H (X/T, B) . Ir £' €H (X, E) then

(Hf, f')P = (f, f')F by Corollary 5.9

and, using the calculation just after (6.2),

(Waxe), £1), = (8xe), £)y = (xf, £ )y = (£, £ -

Thus, from Theorem 5.8 with p =1 ,
(6.5) T7H(xt) = Bf for all f € L (X/T, E) .

In @articular, if n=xf € JF then (5.5) says uﬂﬁH(n)"F b = "7ﬁi(xf)ur,p

2

< vlel =blnl . That is the L bound on Z'H in
I',p P P

b 2

6.6, Proposition. Let 1<p <, If n€E Jp then 27H(N) converges

absolutely, uniformly on compact subsets of X , to an element of

, <3l
Hp(X/F,IE) , and IVH( b"ﬂ"L (

So Z’H extends by
b .

I
n) I',p

continuity to a linear map

X)°
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27 u: (Lp—closure of JF) > Hp(X/F, E)

of norm <b . This extension is surjective: if ¢ € HP(X/FF, E) then

X is in the Lp—closure of JF and 2PH(x9) = ¢ .

The case p =« is slightly different. If f € L _(X/T, E) then

H 1is absolutely convergent on '7/?'()(1?) because

) (v ) Igalyz) < vlxel

j ) K, (x, ¥)
Xyel"

since V(xf) = £ now Y (H(xf)) =‘H(7/"f(xf)) = Hf . Thus

6.7. Proposition. If n € H(x*L _(X/T, E)) then 2 (n) converges

absolutely to an element of H _(X/T, E) . The map
P H(x-L_(X/T, E)) ~ H_(X/T, E) is surjective: if ¢ € H_(X/T, E)

then VH(x¢)) = ¢ .

In summary, now, we have completeness of Poincaré series for the

bundles E - X .

6.8. Theorem. Suppose that [1T>\] is integrable. ILet 1 <p <= .

Then the Poincaré series operator is defined on

p=1 : all of H,(X, E) as in (6.2);
1 <p <o H(X°LP(X/I’, E)) as -in Proposition 6.6;

p = : H(x°L_(X/T, E)) as in Proposition 6.T;
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and maps that space onto Hp(X/P,IE) . 1In fact, if ¢ € Hp(x/r,JE)

then MH(x)l ) <vlol~ and VHa(x$) = ¢ -
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