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CANONICAL SEMI-INVARIANTS AND

THE PLANCHEREL FORMULA FOR PARABOLIC GROUPS

BY

RONALD L. LIPSMAN1 AND JOSEPH A. WOLF2

Abstract. A parabolic subgroup of a reductive Lie group is called "good" if the

center of the universal enveloping algebra of its nilradical contains an element that

is semi-invariant of weight proportional to the modular function. The "good" case

is characterized here by invariance of the set of simple roots defining the parabolic,

under the negative of the opposition element of the Weyl group. In the "good"

case, the unbounded Dixmier-Pukanszky operator of the parabolic subgroup is

described, the conditions under which it is a differential operator rather than just a

pseudodifferential operator are specified, and an explicit Plancherel formula is

derived for that parabolic.

1. Introduction. This paper continues our work on the Plancherel formula for

parabolic subgroups of reductive Lie groups. Earlier, we considered maximal

parabolic subgroups ([7] and [11]), minimal parabolic subgroups ([4] and [6]), and

parabolic subgroups whose unipotent radical has square-integrable representations

modulo its center ([7] and [12]). In each case we described the representation

theory, the Plancherel measure, and the Dixmier-Pukanszky operator that appears

in the Plancherel formula to compensate for nonunimodularity. We now consider

arbitrary parabolic subgroups.

We isolate the common features of all previously treated cases which enabled us

to describe the fundamental semi-invariant polynomial that gives rise to the

Dixmier-Pukanszky operator. That is our first main result here. The second main

result is a simple characterization of which parabolics have the requisite property,

and the third is the construction in that case of the canonical semi-invariant

polynomial. We explicitly compute the Dixmier-Pukanszky operator and the

Plancherel formula for parabolics that have the requisite property.

Here is a brief summary of the contents of this paper.

In §2 we describe the key property (see Definition 2.1) for parabolic groups that

guarantees the existence of a unique appropriate semi-invariant (Theorem 2.2) in

the center of the universal enveloping algebra of the nilradical. We call such

parabolics "good". Let P be a good parabolic and P = NAM its Langlands

decomposition. We prove (Proposition 2.4) that the generic stability groups S¡ for
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112 R. L. LIPSMAN AND J. A. WOLF

the action of the Levi component MA on Ñ are unimodular, and (Theorem 2.7) we

derive the Plancherel formula

(1.1) f{\P) = 2   f. trace tr,a{Df) dp,(a)
i   Js¡

where the sum runs over the (finite) set of generic MA -orbits on N, the tria are

associated to the z'th orbit by the Mackey machine, D is the Dixmier-Pukanszky

operator on P, and /x, is ordinary Plancherel measure on the unimodular group S¡.

Actually one might have to use cocycle representations here, but (1.1) is the same.

In §3 we characterize good parabolic subgroups as those whose defining set of

simple roots is stable under a certain symmetry of the Dynkin diagram (Proposi-

tions 3.3 and 3.10). That stability says that a certain finite dimensional representa-

tion of the reductive group has a bilinear invariant. That bilinear invariant leads to

an explicit construction (Proposition 3.12) of the canonical semi-invariant, and thus

describes the Dixmier-Pukanszky operator D in (1.1). Theorems 3.13 and 3.14

reformulate and summarize these results, and Proposition 3.15 applies them to

characterize the tube domains among bounded symmetric domains.

In §4 we compile a collection of examples addressing the questions of whether D

is differential and whether the S¡ are reductive. With [12], these examples inciden-

tally complete the detailed discussion of the case where N is abelian or 2-step

nilpotent.

In §5 we consider the "domain problem", the problem of describing a subspace

of the Schwartz space dense in L2 for which (1.1) holds. There, one needs that

Df G LX(P) so that the trja(Df) are defined, that the tr¡a(Df) are of trace class for

/ij almost all a, and that a i-> trace tria(Dß is integrable against ju,. This problem has

been with us throughout our work in this area. When the canonical semi-invariant

lives on an abelian ideal of the nilradical n the domain problem is tractable. We

describe some conditions which guarantee the existence of such an ideal.

This paper completes the basic Fourier Inversion theory for good parabolics.

There the recipe is complete: Given a good parabolic subgroup of a reductive Lie

group, our results tell one how to write down all the ingredients of its Plancherel

formula (1.1). We point out that most of this is valid on/7-adic groups with only

minor modifications.

We thank Tony Joseph for suggesting that we express the modular function in

terms of the maximal set of strongly orthogonal roots. That is essential for §3.

2. Good parabolic subgroups. In this section we define the category of "good

parabolics". Parabolic groups are always nonunimodular. Thus their Plancherel

formula contains a Dixmier-Pukanszky operator-that is, an invertible, positive,

selfadjoint unbounded operator D on the Hubert space of square-integrable func-

tions on the group, which is semi-invariant of weight the modular function and

affiliated with the left ring (see [7, Theorem 1.1] or [5, Theorem 6.4]). Another

ingredient in the Plancherel formula is of course the Plancherel measure ¡i. Neither

D nor ju is unique, but D ® n is uniquely determined (see [7, Remark 2, p. 121]). A

fundamental question in nonunimodular Plancherel theory arises: Is there a best
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CANONICAL SEMI-INVARIANTS 113

possible choice of D (and so also of n)l That quality of good parabolics that

distinguishes them is that for these parabolics there is such a choice. We show in

this section that for a good parabolic P (see definition below) there is a canonical

element T in the center of the enveloping algebra of the nilradical and an integer

k > 0 (eventually 1 or 2) such that \T\l/k is a Dixmier-Pukanszky operator on P.

Then we prove that the generic stability group for the action of P/N on the dual N

of its nilradical is unimodular. This gives immediately a canonical choice of a

measure ¡iP on P in the Plancherel class. Then by an explicit computation we

demonstrate that the pair (\T\l/k, ¡xP) occur together in the Plancherel formula.

Before beginning, we remark that there is a domain problem for the operator |T\l/k

that is not completely resolved. We shall comment on that in greater detail in §5.

2a. Definition of a good parabolic. Let G be a reductive algebraic group defined

over the real number field R. Then G = G(R), the set of all real points of G, is a

real reductive Lie group. We identify G with the set G(C) of complex points and

view G as the complexification of G.

Suppose that P is a parabolic subgroup of the algebraic group G. Then P = P(R)

is a parabolic subgroup of the Lie group G. Suppose we have a Levi decomposition

P = NL of P, where N is the nilradical and L is a reductive Levi component. We

set TV = 7Y(R) and L = L(R). Then L splits canonically L = AM so that P =

NAM is a Langlands decomposition of P.

We will need Calvin Moore's result that P has a Zariski-open orbit on rt*, so

there is a finite set of open /'-orbits on N whose union is conull with respect to

Plancherel measure. Moore presented this and a number of related results in a

seminar at Berkeley in January 1972, but he did not publish it. In June 1973,

Carmona circulated a slightly sharpened version, but that too seems not to have

been published.

We set

8(x) = detc Ad(*)|n, 8: L -*C,

8(x) = 8\L(x) = detR Ad(*)l„. 8: L^R*.

Then

8p(nx) = |ô(jc)|,   n G N, x G L, 8P: P->R*

is the modular function of P. We also put L0 = Ker 8, P0 = NL0.

2.1. Definition. We say that P is a good parabolic if P0 does not have an open

orbit on n*. Otherwise we say that P is bad. These definitions are justified by

Theorems 2.7 and 3.13.

It is clear that in the case of a good parabolic, the dimension of the generic

P0-orbits on n* is diim- N — 1 = dimR N — 1.

Now we set P0 = P0(R) = NL0, where L0 = L0(R) = Ker 8. If A0 = L0 n A,

then A0 = Ker 8P\A and P0 is of finite index in Ker 8P. Therefore, P0 has an open

orbit on n* <=> P0 has an open orbit on N «=> Ker 8P has an open orbit on N.

Finally, let 0 be the Zariski-open /"-orbit in n*. Then 0 = 0(R) is a disjoint union

0 = U/_] 0,- of open f-orbits in n*. Let S¡ be the stability group in L of a

representation y, G TV that corresponds to a point <p¡ G 0,. For any /', 1 </</■, the
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114 R. L. LIPSMAN AND J. A. WOLF

conjugacy class of S¡ in L is uniquely determined. Write 3(") for the center of the

universal enveloping algebra.

2b. Canonical semi-invariants. We prove the following

2.2. Theorem. Let P be a good parabolic. Then there exist a positive integer k and

a nonzero T G 3(n)> semi-invariant under P of weight 8k, such that the operator

D = \T\^'k-considered as an operator on L2(P)- is a Dixmier-Pukanszky operator.

Furthermore D is uniquely determined up to scalar; that is, if T' G 3(n), k' > 0, is

another such pair, then

|T-|.A = c|r|'A'

for some scalar c.

Proof. By [2, Lemma 4.6], 3(tl) 's finitely generated and hence is an affine

algebra. Let A denote the corresponding affine variety of maximal ideals. The

variety A-which we think of as n*/TV-is an affine L-space, and there is an open

orbit. Restrict the action to L0. By assumption, the codimension of a generic

L0-orbit in A is one. Now the group L0 is reductive. Hence there is a quotient. Let

ß be the affine variety whose algebra of regular functions is C[S2] » Síü)^- We

now consider the action of C* on C[ñ] given by factoring the action of L through

L0 via fi-that is A •/ = x -/if 8(x) = A G C*,/ G C[ß] s 3(n)-°- Of course C* has

an open orbit on S2.

Now we diagonalize the action of C* on C[S2]. Let m G Z and set

Km={/GC[fi]:A-/=A'"/}.

We assert that Vm is a complex vector space of dimension zero or one. That it is a

complex vector space is clear. Let /,,/2 G Vm where neither is identically zero.

Choose a point co G ß which is in the open C*-orbit. Then a — /](«) ¥= 0, ß = /2(co)

=£ 0. Furthermore, for any A G C* we have

(/V«)/,(A • co) = (/3/«)(A-1 •/,)(«) = (/?/«)X-m/,(") = /8a-

= A"/2(co) = (A"1 -/2)(co) = /2(A • co).

Therefore (/?/ a)/, =/2.

Choose n G Z such that \n\ is minimal among the integers for which Vn contains

a nonconstant function. Then n J= 0 because otherwise the existence of a noncon-

stant invariant / would contradict the fact that C* has an open orbit on ñ (or that

L has an open orbit on A). Select /0 G Vn, f0 =£ 0. Of course /0 corresponds

canonically to a nonscalar element T G 3(o)~°- But m ract T is semi-invariant of

weight 8". To show that, it is enough to demonstrate it for /0. But that is true

virtually by definition

x -/o - 8(x)•/„ = 5(x)70,       x6L.

Therefore if we set Z) = ITI'^", then D is semi-invariant of weight |S| = 8P under

the action of P. That it is actually a Dixmier-Pukanszky operator follows by the

kind of reasoning employed in [7]. To wit, it is nonsingular by nilpotent Fourier

analysis. Indeed any operator in 3(ü) (resp. a power of the absolute value of such
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CANONICAL SEMI-INVARIANTS 115

an operator) defines a nonsingular operator on L2(N) because its Fourier trans-

form is a polynomial (resp. power of the absolute value of a polynomial) on n*. D

is in the left ring because any operator that lives on TV, is right invariant there, and

given by Dh(nx) = D{hx){ri), hx(n) = h(nx) is automatically so [7, §5a].

Next we show that n must be positive. We choose a Carian subgroup H of G

inside P such that H(R) 2 A- We also choose a collection of positive roots 2 in tj*

so that a G 2 <=* a\a ^ 0 and

(2.3) n=  2   0"-

Then 8(a) = exp(2oej: naa(log a)), a & A, where the na are the nonnegative in-

tegers na = dime g". We can pick a basis for n that is compatible with the

decomposition (2.3). Then any element of 3(n) is a polynomial in those basis

elements. In particular an element T G 3(n)-° as above is a homogeneous poly-

nomial. Since T is semi-invariant of weight 8", we have

8"(a) = expi 2   maa(ioëa))>       a G A,

for some nonnegative integers ma-because a ■ X = ea^°%ä)X, X G ga. It follows

that i2ae2 naa = 2ae2 maa; and hence that n > 0.

Finally suppose T' G 3(n)> k' > 0, is another pair. 7" corresponds to an element

f¿ G C[fi] that must satsify x-f¿ = 8(x)-f¿ = 8(x)% Consider/*' and/„n. Then

A •/*' = \nk'fk' and X-f¿" = A*'n/Un. Therefore/¿' = c/¿" for some nonzero scalar c.

This implies that

|J-|l/n   _   lei1/"*'!/"!1/*'.

The proof of Theorem 2.2 is now complete.

If P is a good parabolic, we shall always select (T, k) from Theorem 2.2 so that k

is minimal. Then T is uniquely determined up to scalar. We shall refer to T as the

canonical semi - invariant. Later we shall see that D = \T\l/k is the best choice of

Dixmier-Pukanszky operator on P.

2c. Unimodularity of the generic stability group. Recall from 2a the definition of

the stability groups S,.

2.4. Proposition. Let P be a good parabolic. Then all the stability groups S¡ are

unimodular.

Proof. Let dn be a Haar measure on TV and dfiN the corresponding Plancherel

measure on TV. As before we fix </>, G 0, ç n*, y¡ G TV the corresponding represen-

tation. Then we have a homeomorphism S¡ \ L -» L • y,. Now dn is relatively

invariant under the action of L with modulus 8P. Therefore d¡iN is relatively

invariant with modulus 8PK Restricting to the open set L ■ yt, we find that S¡ \ L

carries a relatively invariant measure of modulus 8Pl. But that can only happen if

the modular function 8^ extends to a homomorphism of L into R* and then

(2.5) 6P\S, = 8Sr
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116 R. L. LIPSMAN AND J. A. WOLF

Now consider the canonical semi-invariant T constructed in Theorem 2.2, but

viewed as a semi-invariant polynomial/0 on n*. It must be that/0(</>,) ̂  0-because

the P-orbit of tj>¡ is Zariski-open in n*. Let s G S¡. Since s- y¡ = y„ there must exist

w G TV such that s ■ <¡>¡ = u ■ c¡>,. That and the equation s -f0 = 8(s)"f0 enable us to

compute

/ofo) = /o(" • </>,) = /o(* • */) = (*"' -/o)(*) = «(*)"7ofo)-
Therefore \8(s)\ = 1. But 8P(s) = \8(s)\ = 1. Hence, by (2.5), S¡ is unimodular.

2d. Computation of the Plancherel formula. We now derive the Plancherel formula

of a good parabolic. First we must describe the irreducible representations of

P = NL. We shall do that by applying the Mackey machine to the group extension

TV < P. Since we are only interested in the Plancherel formula, it is enough to

restrict our attention to generic representations.

We start with the TV-equivariant Kirillov map k: n* —> TV. Put % = k(0) and

% = k(0,), 1 < / < r. Then the conull set % = U-^x% is a disjoint union of

open L-orbits. Let y, G %, and set S¡ = L^. Let y, be an extension of y to TVS',.. y¡

may fail to be an ordinary representation-but the worst that can happen is that the

obstruction, say co,, is of order 2 [1]. Hence, according to Proposition 2.4, Sf* is

either the unitary dual of a unimodular group, or the projective dual of a

unimodular group with a fixed order 2 multiplier. In either case the Plancherel

measure (ordinary or projective) of Sf* is unique up to scalar. We shall use that

momentarily. But first, we observe that the generic irreducible unitary represen-

tations of P are given by

w, „ = Ind£s y,: <8> o,        1 < / < r,   a G S/*.

Now fix a Dixmier-Pukanszky operator D = \T\l/k according to Theorem 2.2.

We fix choices of Haar measure dn on TV and dx on L, so that dndx is right Haar

measure on P = NL. Let y G TV. Then the scalar y+(D) is well defined. Indeed

yt(T) is the infinitesimal character of y evaluated at T G 3(ü) and ym(D) =

\y*(T)\i/k > 0- Alternatively, D is diagonalizable-considered as an operator on

L2(TV)-with respect to the spectral decomposition provided by the Plancherel

Theorem-and {y,(Z>): y G TV} is its spectrum. Thus for h G L2(N), we have

y(Dh) = yt(D)y(h) for ^-a.a. y G TV.

Next note that for x G L, the semi-invariance says that x • D = 8P(x)D. Since

8P(L) = R^., we can choose for each i = 1, 2, . . . , r an element y, G %, so that

(Y,),tf>) = L

We assume henceforth that such a choice has been made. We continue to write S¡

for Ly; by Proposition 2.4, all the 5, are unimodular. Furthermore, the choices of

measures already made uniquely determine a Haar measure on S¡ as follows. The

choice of dn uniquely specifies a Plancherel measure ju,^ on N, therefore also on the

open set %. The map x —* x ■ y„ L —» %, factors to a Borel isomorphism

(2.6) S,\L^>%.

We put the unique Borel measure dx on S¡ \ L so that 8P(x) dx —» dnN\^ under the

map (2.6). dx is L-invariant; 8P(x) dx and <//% are relatively invariant. But then the
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CANONICAL SEMI-INVARIANTS 117

measures dx and dx, on L and 5, \ L respectively, uniquely determine a Haar

measure ds¡ on S¡ according to

f f(x) dx = f       f f(s¡x) ds¡ dx.
JL JS¡\L JS¡

Finally we pick ¡xs to be the Plancherel measure on Sf' corresponding to ds¡ (see [5,

Theorem 7.1 and Remark 2 following]). Our main result of this section is

2.7. Theorem (Plancherel Formula for the good parabolic P).

h(lp) = 2   f.   Tr ^a(Dh) d^io).
¿-1 -'S!*'

Proof. It has become standard in computations of this sort to use the formula

for the character of an induced representation, namely [5, Theorem 3.2]. By (2.5)

the c7-function of S, \ L is identically 1. Hence [5, Theorem 3.2] gives

Tr -nia{Dh) = f     8P\x) Tr f    (Z)A)(x-1/w,x)(y, ® a)(ns¡) dn ds¡ dx
JS¡\L JNS¡

= |       Tr j    (Z)A)(«x_1j,x)(y, <8> o)(xnx~xs¡) dn ds¡ dx.
JS,\L JNS¡

Therefore

f    Tr tt^Dh) d^io)
JSf

= (      j      Tr I    (£)/j)(nx^15',x)(y,:® a)(xnx~ls,) dn ds,dx dfis(a)
JS¡"' JS¡\L JNS¡ '

= I        |     Tr I    (£)/j)(nx_1Ä,x)(y, ® a)(xnx~ls¡) dn ds¡ dfis(o) dx
JS¡\L JS?' JNS¡ '

(2.8) = f     Tr f D/i(«)y,(xnx-1) dn dx
JS¡\L JN

= f     Tr f Dh{n)(x~l ■ y,)(«) dn dx
JS,\L ¿N

= f      Tr(*-' • y){Dh) dx = f     (x* ■ y),(Z>) Tr(x-'y,.)(A) dx
JS¡\L ■/Si\L

= /    (y¡Ux ■ D ) Tr(*-' • Y/)(/i) dx = f     8P(x) Tr(xl • y)(h) dx
JS¡\L JS,\L

= /   Tr y(h) ¿Mr)-

Consequently

2    f    Jrw,a(Dh)dH(a)=J:   f   Try(/0¿Mr)

= f  Tr y(A) ̂„(y) = A(l*) = Ml,).    Q-E-D.
Ja,
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2e. Remarks and observations, (i) All the details implicit in the computation in the

proof of Theorem 2.7 are straightforward except in two instances. The first is step

(2.8); the second is the specification of the exact collection of functions h for which

it is valid. The latter is a delicate problem and we postpone its discussion to §5. The

former is not serious. Step (2.8) is most easily understood as just a formal

application of the Plancherel Theorem on the unimodular type I (perhaps projec-

tive) group 5,. The precise details are exactly the same as in [7, proof of Theorem

4.9].

(ii) We saw earlier (Proposition 2.4) that if P is good, then the generic stability

groups S¡ are unimodular. Actually, the following conditions are equivalent:

(a) P = NL is good;

(ß) each generic stability group S¡ is contained in Ker 8P\L;

(y) each generic stability group S, is unimodular.

Proof, (a) => (y) is already done.

(/?)<=> (y). This follows immediately from (2.5).

(/?)=> (a). If 5, Ç Ker 8P\L, then the index of S¡ n L0 in S¡ is at most 2.

Therefore dim(L0 n S¡) \ Lq = (dim S¡\ L) — I = dim TV — 1. Hence P0 cannot

have an open orbit on n*.

(iii) As an immediate corollary of (ii) we obtain: Minimal parabolics are good.

That is true because any Lie subgroup S¡ Ç AM is reductive, and so unimodular.

(iv) If P is good, the generic stability groups S, may or may not be reductive. See

§4.
(v) The stability groups S¡ may not be mutually conjugate in L, but they are the

real points of L-conjugate complex groups. Here is an argument to demonstrate

that. Consider the natural map $: n* -> A. As before, we denote by 0 the open

P-orbit in n*. Of course $ is /j-equivariant, so % = $(0) is an open P-orbit in A.

Define

J = {x G n*:4>(x) = <i>(y)^>y G TV-x}.

By results of Rosenlicht [9], *Y contains an open set. But note that 'Y is P-invariant.

Indeed  if x G % g G P,  then <ï>(g • x) = <!>(y) => 4>(x) = <^g_1 -y) => g-1 • y G

TV• x =>_y G g/V■ x = TV• g- x (since TV < P). Therefore the open P-orbit must be

contained in T, i.e. BçT.

Now let x, G 0,, A, = $(x,). Then if we define

&, = {g £ L.gx, e TVx,},       SXf = {gEL:g-\i= A,},

it is the case that these are equal. Indeed

g • x, = « • x, => g • A, = g • <î>(x,) = 4>(g • x,) = $(« • xt) = $(x,.) = A,;

and conversely

g • A. = A, => <D(x,.) = g • 4>(x,) = 4>( g • x,),

whence x, G T^g-x, G TVx,. So Sx¡ = Sx¡. The conjugacy follows now be-

cause: S¡ = S^ÇR); and all the groups Sx, are P-conjugate, since {A,, . . ., \) ÇZ

H -_i ©i' = 6» a singte f-orbit.
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(vi) In at least one bad parabolic, the appropriate semi-invariant in the envelop-

ing algebra has been computed [14]. Since it does not live on the nilradical, it does

not correspond in any immediate way to an operator, and so its role in harmonic

analysis is still obscure.

3. Characterization and semi-invariants for good parabolics. Every parabolic

subgroup P in a reductive Lie group G is characterized by a subdiagram of the

Dynkin diagram of G. The subdiagram is the Dynkin diagram of the reductive part

MA of P = NAM. The Weyl group of G has a distinguished element w0 that sends

the positive chamber to its negative, so -vv0 induces an automorphism of the

Dynkin diagram. We will see that P is good if and only if its subdiagram is stable

under -vv0, and in that case the stability will give us the required semi-invariant

T G 3(n). Since -w0 preserves every component of the Dynkin diagram of G and

acts by the identity except in the cases

/ i—o>
o-o— . ..  —o-o , o

A.    i k —   ¿.

and      °-°-?-o-°

E6

this specifies the good parabolics.

3a. Preliminaries: strongly orthogonal roots. Let g be a real reductive Lie algebra,

ïj a Cartan subalgebra, and A = A(bc, gc) the system of f)c-roots on gc. Choose a

positive system A+, so the corresponding simple roots ^ = {a G A+: a not a sum

of two elements of A+) form the vertices of the Dynkin diagram.

We recall Kostant's "cascade construction", found in [2], which is basic to the

result of Moore mentioned in 2a. Two roots y, y' are called strongly orthogonal if

neither of y ± y' is a root. Then of course y-Ly' under the (dual of the) Killing

form, and the 3-dimensional simple subalgebras

9c[ï] = 8c + Qc  + [öo Qc]    and    gc[y'] = g£ + q¿' + [g£, $/]

of gc centralize each other. We denote this by yly'. The cascade construction

produces a maximal strongly orthogonal family of roots B = { ß) c A+ as follows.

Level 1. Decompose the Dynkin diagram into its components, i.e. decompose

¥ = ■*! U • • • U ̂ fq into minimal mutually orthogonal subsets. That decomposes

A+ = A,+ u • • • U A+    where A,+ = A+ n (Z-span of %),

and defines a set {/?,,..., ßq) of mutually 1 roots by: ß, is the maximal root in

-o— —oí

'211+1

jo

^o

• nil
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120 R. L. LIPSMAN AND J. A. WOLF

Level 2. For each i, 1 < i < q, let T,+ = (y £A,+ : y-J-A}- Consider the subalge-

bra gc[r,+] with root system T,+ u ~r,+, and decompose its Dynkin diagram into

components, i.e. decompose

{* e %: *J_&} = *Mu • • • u*,,g(l)

into minimal mutually orthogonal subsets. That decomposes

r,+ =A¿u--- uA,^,,

where A,+ = A+ n (Z-span of ^¡j), and defines a set { ßiX, . . ., /3,)î(/)} of mutually

1   roots by:  ßtJ is the maximal root in A,^. Note that  {/?,, /î,. •:   I < i < q,

1 < / < (?(/)} are mutually 1.

Leue/ /c + 1. For each / = (/,,..., fk), 1 < i} < ç(/,, . . . , /,_,), decompose

{^G*,:^/^} = *A, U • • •  U*,Mn

into minimal mutually orthogonal subsets. Let AA,     denote A+ u (Z-span of

¥,,-   ), and define: ß,,      is the maximal root in A^,    . Note that {ß,: J =

(»i. • • • > >k+\)> 1 < '} < ?('i> • ■ ■ . '}-i)} are mutually Jj..

The procedure eventually ends, giving us a maximal set B = { ß ) of strongly

orthogonal roots.

3.1. Lemma. Let w0 be the Weyl group element such that w0(A+) = -A+. Then

Mß) = ~ßf°r every ß G B-

Proof. First, -w0 preserves each A,+, so we may assume gc simple. If gc is not of

type A„ D¡ (I odd) or E6, then -w0 is the identity and the assertion is clear.

If gc is of type A,

O-O— . o .   —o

then -w0(a¡) = a¡+, _, and B consists of the roots

«,+ ••• + «,+ i-„      1 </ <|(/+ 1).

If gc is of type D,

o-o

oí .      oc
1     °"Z °\f-2°^j(-l

with / odd, then -w0 interchanges <*/_, and a, but fixes the other a„ and B consists

of the roots a2,_, and a2,_, + 2(a2, + • ■ • +a,_2) + a,_l + a, for 1 < / < [1/2].

If gc is of type E6

o--O-p-o-o

*1        °<2 "3     °^       "5

then -w0 interchanges a, and a5, interchanges a2 and a4, fixes a3 and a6, and B

consists of the roots a, + 2a2 + 3a3 + 2a4 + a5 + 2a6, al + a2 + a3 + a4 + a5,

a2 + a3 + a4, and a3.    Q.E.D.
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3b. Necessary conditon for the semi-invariant. Retain the notation of (3a) and let

pc be a parabolic subalgebra of gc standard with respect to the choice of b, and A+.

Thus we have a subset 4> c ^ such that p = p^, the parabolic with

reductive part   p¡^ = bc +    2     8c>
ve<*>

nilradical   p£ =    2     So

where <i>> denotes all roots that are linear combinations of elements of Í».

Evidently, $9 acts on pjj, with trace 8<¡, = 2A+N<#> y. It is known (see the proof of

[10, Theorem 8.5]) that 8$ specifies $$, more precisely that if y G A then

positive     for y G A+ \<4>>,

zero for y G <í>>,

negative    for -y G A+ \<3>>.

In particular 8^ is a dominant weight.

(3.2) <y, 8«) is

3.3. Proposition. If there is a ^-semi-invariant polynomial of weight kS^ on (p$)*

for some k ¥= 0, then -w0(í>) = 4>.

Proof. Any such semi-invariant polynomial corresponds to a p^-semi-invariant

element T of weight kS^ in the universal enveloping algebra U(p¡J,). Here T is

invariant under ñ = 2r(=A+ gc, in particular under pj, so it is an ft-invariant in the

center 3(P<J>) of that enveloping algebra. But A. Joseph showed [2, §§4.10-4.12] that

the weights of bc on 3(f *)" are those nonnegative integral linear combinations of

the roots in B, which are dominant. Since l/c^ = ± k8<¡, is dominant by (3.2), we

now have an expression

(3.4) ±k8* =   2   "ßß>       "ß integers > 0.
ßeB

Lemma 3.1 now tells us -w0(Ô^) = 8$, and from (3.2) we conclude that -w0(í>) =

$.   Q.E.D.
3c. Construction of the semi-invariant. Given p G b£ dominant and integral, we

denote

t„: irreducible finite dimensional representation,

Vv: representation space of rv

for highest weight v.  Furthermore, define £>„ = {« G ^:   (a, v} = 0} c ¥.  If

0 ¥= v„ G F„ is a highest weight vector, then the parabolic subalgebra p„ = £„,  of

gc satisfies

(3-5) p, = iy = {i G gc: t„(ÉK G t>,C}.

We write p£ for the reductive part p$ , p" for the nilradical p¡j,, and p~" for the

"opposite" nilradical 2A+X<<t>g¿1'. Recall the symmetrization map from the symmet-

ric algebra to the universal enveloping algebra,

(3.6) s: S(p;») -> U(p;n) by S(|,.O = i 2 Ski, ■ ■ ■ W
' *      a
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Here the sum is over the symmetric group, s(£,.£r) involves the product in

5(p-"), and £,(1) • • • 4(r) is the product in U(p;").

3.7. Lemma. Suppose that t„ has a (nonzero) bilinear invariant bv: Vp X Vv—>C

Then the function

¿: S(p;") -> C by   fp(Z) = bMs2)v„ v„)

is a nonzero p„-semi-invariant of weight 2v.

Remark./„(£) is linear in S, and to use it we identify/, G S(p"")* = S((p"H)*) =

5(p") = (algebra of polynomial functions on (pn)*).

Proof. By (3.5) we have V„ = t„(U(P~")) • vp, so/, is not identically zero.

Define^: p;" X • • • xp;"-*Cby

<t>(Íi, . ..,£,) = K{rPi\ ■ TA.T,£t^ vv).

If f G gc with Ty(Ç)vp = pvp then we compute

r

(-£■ <fO(£i, • • •, i) = 2 K(T¿i.*Â-i • [t,S, tá] • T,i+i.t£v„ vp)
1

r

= 2   Ki^A\.T&-\ ■ TJ • TÂ.Tr4.0„ t>„)
1

r

- 2 K(TÄ\.rÂ ■ TJ 'TÂ+\.T£r*>r> %)
I

= ¿>„(T„f • t^,.r£v„ v„) - bX-r^i.T& ■ Tr?or, ©„)

= -¿\(T,£i.rJ&>,> T,fry) - bAT¿\.r£.-r,$o„ ©„)

= -2p*($„ . . . , t).

Thus the /--linear function t> on p~" is p„-semi-invariant of weight 2»». Since

/,(£i.Í) " -r 2 «p(£ku» ■ • • ' £»(»■))

we conclude the same semi-invariance for/,.    Q.E.D.

In order to turn Lemma 3.7 around, starting with p«, and going to t„ such that

<I> = <£>„, we recall the standard fact

(3.8) t„ has a bilinear invariant if and only if -w0(v) = v.

Now suppose that -w0(4>) = 0 as in Proposition 3.3. Define

Í \ 8$    if 4*4« is m tne weight lattice,
(3.9) v = i»4 = \

\8<¡,      if j- 8$ is not in the weight lattice.

Then -w0(v) = v, so by (3.8) r, has a bilinear invariant bp, and Lemma 3.7 gives a

nonzero p„-semi-invariant function// S(p¿")-» C of weight j». According to the

Remark, we have

3.10. Proposition. Suppose -w0(<ï>) = 4>. 7V»e« /Acre is a p^-semi-invariant poly-

nomial on (P5,)* o/ weight 8<¡, if \ 8^ is in the weight lattice, of weight 28$ if \ 8<¡, is not

in the weight lattice.
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3d. Degree of the semi-invariant. Suppose that the parabolic p* has a semi-

invariant polynomial of some weight k&9 on (p*)*. According to Propositions 3.3

and 3.10, we may take k = 1 or k = 2. Now, from (3.2) the sign in (3.4) is +, and

(3.4) gives us an expression

(3.11)

if ¿S«, G A   then 89 =   2   nßß = 2v,
ßEB

ifió^GA   then 25*=   2   nßß = 2v,
ß£B

where A is the weight lattice and the nß are integers > 0, and where t„ gives rise to

the semi-invariant of weight 2v.

The bilinear invariant bp: V„ X K„ —> C pairs the highest weight space vpC with

the lowest weight space vw¿p)C = v^„C. Thus the function /, of Lemma 3.7 has

value /,(-) ^ 0 precisely when tp(sK)vp has nonzero component in v_pC

3.12. Proposition. // y G A choose a nonzero ey G Qyc. In the notation of (3.11)

define

E =   II  (e_ßT> G S(P7).
ßeB

Then /,(—) ¥= 0, and/„ is a polynomial of degree n = "ZßeB nß on (p£)*.

Proof. Let q = ©ßefl Qclß]> direct sum of the three-dimensional simple alge-

bras qI + Qeß + [g£, g¿^]. Here we are using strong orthogonality of any pair

ß, ß' G B. Under t„, each Qc[ß] generates a cyclic module Wß from vp and q

generates a cyclic module W. The representation theory of §1(2) says that Wß is

irreducible under Qc[ß], has dimension (2{ß, v>/</}, /?» + 1 = n^ + 1, and has

weight spaces Wß~pß = rp(e_ßYv„C, 1-dimensional (0 < p < n^). Evidently If =

<S>ßeB 1^8, so it is irreducible under q, has dimension WßeB(nß + 1), and has

1-dimensional weight spaces

where £ = {/?„...,/?,} and 0 </>,■< 7ift. In particular 0 =¿= Tr(iS)t?,C = If ""^

= If"", so /,(-) ^ 0 as asserted. In fact, this shows that the component fp(ri) of

degree n = 2 nB of /„ is nonzero, and the uniqueness in Theorem 2.2 shows

/„ =/,<">.   Q.E.D.
3e. Summary and example. We summarize Propositions 3.3, 3.10 and 3.12 as

follows.

3.13. Theorem. Let gc be a complex reductive Lie algebra, ¥ a simple root system

corresponding to a choice of Car tan subalgebra t)c and positive \)c-root system A+, B

the maximal set of strongly orthogonal roots produced by the cascade construction, and

vv0 the Weyl group element that sends A+ to -A+.

Let p* be the parabolic subalgebra corresponding to a subset 4> c ¥, and let

Sq = 2Ä+N<*> y, trace o/p* on its nilradical p%.

1. TTiere is a p^-semi-invariant polynomial on (p$)* of some weight k89, k ¥= 0, if

and only if -tv0(<I>) = <ï>.
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2. In that case, either \8<¡, is in the weight lattice and we may take k = 1, v = {8$,

or \8q is not in the weight lattice and we may take k = 2, v = 8$. Then 2v =

2/3es nßß, nß integers > 0, and the construction of Lemma 3.1 produces a p9-semi-

invariant polynomial of weight k8<¡, and degree n = 2fl nß on (p*)*.

Consider the case where gc is gl(w; C) or êl(m; Q with simple roots

o-o-   ...   -o

1 2 m-1

So B = {ßx, . . . , ß[m/2]) with ß, = a, + • • • +am_, for 2/ < m, ß = a, in case

2/ = m. Let 4> be such that p* is the gc-stabilizer of a "flag" CcC""'' inside C\

2/J < m, or a subspace C in case 2p = m. In the usual a, = e, — e,+, notation,

P m P

K = (m -/>)2 £i ~{m -p)   2    «,-= ('"-/')2 A-
1 m-p+1 1

If w - /? is even, now j ô* is in the weight lattice A, leading to a semi-invariant

polynomial of weight ô* and degree \p(m — p). If m — p is odd, then \ 8# £ A,

and the semi-invariant polynomial has weight 28$ and degree p(m — p). If we write

p<j, in block form matrices

a    x     z'

0     b    y

.0    0     c.

where a and c are p X p, b is (m — 2p) X (m — 2p), x and y are p X (m — 2p),

and z isp X p, then pj, is given by x,_y, z and the polynomial is a power of det(z).

Compare [12, §10.3].

3f. Reformulation for real parabolics. We return to the situation of §2. G is a real

reductive Lie group and P is a parabolic subgroup with Langlands decomposition

NAM. Express its complexified Lie algebra pc = p* as in Theorem 3.13. Then P

has modular function 8P where 8P: /'-»R* is a quasi-character with differential

S^lp. As before, w0 is the element of the complex Weyl group that sends A+ to its

negative. Theorem 3.13 carries over to

3.14. Theorem. The parabolic P is good if and only if í> = -w0(<I>). In that case

there are two possibilities as follows.

(i) j 8$ is in the weight lattice A, we have an expression 8$ = SfleS nßß where B is

the set of strongly orthogonal roots from the cascade construction and the nß are

integers > 0, and there is a P-semi- invariant polynomial of weight 8P and degree

n = SÄ nß on n*.

(ii) jSq G A, 25* = 2fleB nßß with nß integers > 0, and there is a P-semi-

invariant polynomial of weight 8P and degree n = 2B nß on n*.

Consider the case where G is an indefinite unitary group U(k, I) or SU(k, I), and

let P be the stabilizer of an isotropic subspace of dimension p in the corresponding

hermitian vector space C*'. Now gc is gI(w;Q or §l(m;C) where m = k + I,

1 < p < min(A:, /), and pc is the parabolic p* of the example at the end of §3e. So
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P is good, and we are in case (i) or case (ii) of Theorem 3.14 as m — p is even or

odd. Compare [12, §10.2]. One knows [11, §2] that n has underlying real vector

space structure (p X p skew hermitian matrices) + (p X (m — 2p) complex

matrices) where (unless m = 2p) the first summand is the center of n, and the

polynomial is a power of (z, x) h» det(V^T z).

Finally, the correspondence from 8$ to the semi-invariant polynomial <j> on n* is

not transparent. If G = SL(2« + 1 ; R) (resp. SL(2n + 2; R)) and P is the Borel

subgroup with TV consisting of all strictly upper triangular matrices

1 *

0 1.

then 5* = 2(ßx + • • • + ßn) (resp. 2(/3, + • • • + ßn) + ßn+l), corresponding to

cf> = d2d2 • • ■ d2 (resp. (d2 ■ ■ ■ d2)dn+l). Here we view cf> in S(n), and dj is the

determinant of the j X j upper right-hand corner block submatrix. This particular

formula for </> was known as a consequence of results [13] of Dixmier.

3g. Remark on the tube domains. Consider a hermitian symmetric space G/ K of

noncompact type, and the complex flag manifold realization Gc/ P of its compact

dual symmetric space. If G/K is irreducible, i.e. if Gc is simple, then for a Carian

subalgebra I c f of g there is a system A+ of positive Ic-roots on gc such that

p = p* where

the system ^ of simple roots has just one noncompact root,

<J> consists of all the compact roots in ^.

One knows [12, Theorem 9.15] that there is a nonzero p^-semi-invariant polynomial

on (p*)* if and only if the domain G/K is a tube domain, i.e. a tube over a

self-dual cone. In that case the semi-invariant is of the appropriate weight kSq,.

Now, from Theorem 3.13,

3.15. Proposition. 77ie noncompact type symmetric space G/K is a tube domain

if, and only if, the corresponding set (one for each simple factor of Gc) of noncompact

simple roots is -w0 stable.

Thus, for example, marking the simple root as a, we immediately recover the

well-known fact that G/K = SO*(2m)/U(m):

„o ^

o-o—  . . .  -o^.

is of tube type if and only if m is even.

4. Examples. In this section we consider good parabolic subgroups />* = NAM

and consider the questions of whether the operator D can be taken to be

differential and whether the isotropy subgroups of MA on TV are reductive.

Examples show that one cannot decide these matters in an easy direct way from

the root structure except under rather restrictive conditions.
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4a. Differentially of D. If 5 5* belongs to the weight lattice A then we construct a

differential operator D on N, semi-invariant of weight 8P. If one wants it positive

he must take \D\, which need not be differential. If \8$ & A we construct an

operator E of weight 5/, and then D = \E\l/2 is not differential. In any case the

operator is constructed from a bilinear invariant bp of the representation t„ where

v = \8$ if 15* G A and v = 5* if \8$ £ A. There are two possibilities for b„: It is

symmetric or antisymmetric. Kostant suggested that we check whether symmetry

of bp corresponds to 5 5* G A. We now see that those conditions are independent.

If G = F4B then the minimal parabolic subgroup P = NAM has TV st Im G +

G where G is the Cayley division algebra and (z, x)(z', x') = (z + z' + Im xx',

x + x'). The operator is A"/2 where A is Laplacian on Im G, i.e. |5* G A. But bs

is symmetric.

If G = Sp(2; R) then the Borel subgroup P has {-89 G A, for half the sum of the

positive roots always lies in the weight lattice, but there bs^2 is antisymmetric.

If G = SL(/i; R) then the Borel subgroup P has 5 5* G A and bs /2 is symmetric.

If G = Sp(l, 1) then the minimal parabolic subgroup P has 5 5* £ A and here

bs  is antisymmetric.

4b. Square-integrable nilradical. Suppose that P = NAM is a good parabolic

subgroup such that TV has square-integrable representations, i.e. representations

with coefficients that are square-integrable on TV modulo its center. Going through

[12] one sees that the generic isotropy subgroups of MA on TV are always symmetric

subgroups of MA. In particular, they are reductive. Here note [12, §8] that TV is

(abelian or) 2-step nilpotent.

4c. Minimal parabolics. Suppose that P = NAM is a minimal parabolic sub-

group. Then M is compact, so the isotropy subgroups of MA on TV are reductive

(and thus P is good), even though N generally does not (see [3]) have square-

integrable representations.

4d. Good parabolics with 2-step nilradical and nonreductive isotropy. Let G be the

indefinite real orthogonal group 0(s + u, s + v) and let P = NAM be the stabi-

lizer of a totally isotropic i-dimensional subspace, where s > 1, í is odd and

u + v > 0. Then P is the group ^.„„(R) of [11]. It has structure n = ImRlXs +

R,x(w) and MA = GL(s; R) X 0(u, v) where the first summand of n denotes

antisymmetric s X s real matrices, and the second summand consists of all 5 X

(u, v) real matrices x = (x,, x2) ins X u,s X v blocks, with

[(z, x), (z', x')] = (*, • 'x\ - x\ ■ 'x, - x2 • 'x2 + x2 • 'x2, 0).

Here MA acts by Ad(y, g): (z, x) h> (yz • 'y, yx • g). TV is 2-step nilpotent but does

not have square-integrable representations, and we are going to check that the

generic isotropy subgroups of MA on TV are not reductive.

Identify n to n* under (z, x) i-»/ZiJC where

fz x(z', x') = trace(zz') + trace(x, • 'x', — x2 • 'x2).

Then Ad*(TV) -fzx = {fz,x+zx.: x' G R*«"'")}, which has a distinguished element

fzx„ with zx" = 0, and the generic classes in TV are those corresponding to the/ZJt
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where z has maximal possible matrix rank, s — 1. tyf denotes the Pfaffian on

antisymmetric matrices; tyf2 = det. If we write out x in columns as (x',..., xu+c)

then

«u-iHi *0')f-j;,K*, ;')}2
is a polynomial on n* that is P-semi-invariant of type det(y)2 where y is the

G\j(s; R)-factor. Here 8P = det(y)(i" ,X«+o)/2j so the Dixmier-Pukanszky operator is

the Fourier transform of |^|<*->X«+«>/4

Let [77-] G TV correspond to the functional fzx G n* given by

0       • • •      0

0

and   x =

0

such that 'b G R"'° has ||'6||2 *= 0 and / = (_? ¿). Then ^(fzx) = ||'6||2 * 0, and the

MA = GL(s; R) X 0(u, v) stabilizer of Ad*(TV) • fzx consists of all (y, g) such that

y = (Í    °e)    With Y G Sp^(i " 1);R^' C G RlX(i-l)

and e = ±1 with g • 'b = e'b.

It has unipotent radical given by y = (^°), g = I, isomorphic to Ri_l. Thus the

generic isotropy subgroups of MA on TV are not reductive.

4e. Good parabolics with 2-step non-square-integrable nilradical and reductive

isotropy. Let G = 0(n, n), n even, and let P = NAM be the parabolic subgroup

that stabilizes an isotropic flag (1-dim isotropic subspace) c (/i-dim isotropic

subspace) inside R"'". Take the usual basis in which the inner product has matrix

(q _f) in n X n blocks. Then P has Lie algebra

0     0        0

R,^t Ggl(«- 1;R)m + a =

n =

A

0
0

0
-'A

x

0

0
0

0

z

y

0
0

0

0
-a

: 'x, 'z G R"-1^ G Im rO-Dx(»-D

The  composition   in  n   is  [(z,y, x), (z',y\ x')] = (xy' — x'y, 0, 0),   and  MA =

GL(1; R) X GL(n - 1; R) acts on n by Ad(a, A\z,y, x) = (az'A, Ay'A, axA~l).

Identify n to n* under (z, y, x) h> fzyx where fz¡y¡x(z', y', x') = z ■ z' -

traceCy/) + x • x\. Then Ad*(TV) • f '- U,y+yy- 'r1*«""^' = Rz}. The

generic classes in TV are those where (yz "„) is nonsingular, and the P-semi-invariant

of type 8,, on rt* is just
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Thus the Dixmier-Pukanszky operator is the polynomial differential operator that

is the Fourier transform of \p, and is positive.

Let [w] G TV correspond tofzyx G n* given by z = (0, . . . , 0, b) with b ^ 0,

J

y

0

with/
-(? -</)•

and b2 > 0,   and   the   MA = GL(1;R) X

consists of all (a, A) with A = (q   °/a)

2);R)X GL(1;R). Thus

x = (0, . . . , 0).   Then   >K/W) =

GL(« - 1;R) stabilizer of Ad*(TV) • fzyx

and A' G Sp(|(« — 2);R). It is isomorphic to Sp^n

the generic isotropy subgroups of MA on TV are reductive.

4f. The other good parabolics with 2-step nilradical. The comments of 4b, 4d and

4e apply to good parabolic subgroups P = NAM in a simple group G, such that TV

is abelian or 2-step nilpotent. It is in fact easy to classify all good P — P9 such that

(i) TV is abelian or 2-step nilpotent,

(ii) TV does not have square-integrable representations, and

(iii) P is good, i.e. -w0(4>) = Í».

First, there are the parabolics P c G considered in 4d and 4e, and their complexi-

fications Pc c Gc. The parabolics Ps{ ,(R) c 0(s + 1, s + 1), s > 1, s odd, com-

plexify and then intersect to give another such parabolic in SO*(2s + 2), the real

form of 0(2s + 2, Q with maximal compact subgroup U(s + 1). These are the

only cases inside classical groups.

Inside exceptional groups one only has P in the (split) ElyA given by P = P$

where <& = {<£„ . . . , <j>6) in

h
-o-

/
?

o--

¿1      ¿ h '5
•o

and its complexification Pc in the complex E-,. In this group P = NAM, n = a + r

where the center 5 has dimension 7 and the complement r has dimension 35.

M = (MA)0 = GL'(7;R) = SL(7, R) X {±/}, where {±1} is the center of G =

E1A and acts trivially, and SL(7; R) acts

on a = (R7)* by   0-0-0-0-0-0

on r = A3(R7) by  o-

The multiplication in n is \(z, x), (z', x')\ = (2x A x', 0) where x f\x' G A6(R7)

which is identified to (R7)*. In this notation, TV = a + r with (z, x)(z', x') = (z + z'

+ x A x', x + x'), and the coadjoint action of TV on n* = a* + r* is

Ad*(z, x)-1 • a, 0 - a, £ + ? a x)

where ? A x G A4(R7) which is identified to A3(R7)* = r*.
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Define a polynomial ^ on n* as follows. Let (f, £) G n* = a* + r* = R7 +

A3(R7)*. Now | is a 3-form on R7, so the contraction f _i £ is a 2-form on R7 that

annihilates f. If f ^ 0 write {f _i £} for the 2-form induced on R7/f R = R6, and

define «Kf, £) = <3>/{f _, £}■ If ? = 0 then #f, |) = 0. The polynomial 4> is well

defined and A/-invariant because, for £ ^ 0, the SL(7; R)-stabilizer of f acts with

determinant 1 on R7/f R, and it is TV-invariant because f _j (£ + f A x) = f __i £.

/I = {a/: a > 0} acts on n by (z, x) h> (a2z, ax), on n* by (f, £) h> (¿r2f, a~'£),

so the modular function 8P(aI) = a49. Also ai sends ^ to afy, so |i//|7 Fourier

transforms to the Dixmier-Pukanszky operator on P.

Let [77-] G TV correspond to (f, £) = (e„ ef A «* A ef) G n* where {e,} is the

standard basis of R7 and {ef} is the dual basis of (R7)*. Then \p(Ç, £) = 1, and

Ad*(TV) • (f, 0 = {(e„ ef A e¿* A e* + 2 ?;/*** A e* A e*)} where summation

is over 1 < i <j < k < 7 and c/^ G R. The GL(7; R)-stabilizer of this generic

coadjoint orbit of TV consists of all

1 * *

0 A 0
0     *      B

withdet(^) = 1 = det B,

where the diagonal blocks are 1 X 1, 2 X 2, 4 X 4 and the *'s give the unipotent

radical. Thus the generic isotropy subgroups of MA on TV are not reductive.

4g. Summary. The examples in 4a show that differentiality of the Dixmier-

Pukanszky operator D for a good parabolic P9, i.e. the condition \8<¡, G A, is

independent of whether the bilinear invariant is symmetric or antisymmetric.

The examples of 4b-4e, addressing the question of whether the generic isotropy

groups of MA on TV are reductive for good parabolics P = NAM, give

from 4c: no bound on the degree of nilpotency of TV can prevent the generic

isotropy subgroups from being reductive;

from 4b: if TV has square-integrable representations then TV is (abelian or) 2-step

nilpotent and the generic isotropy groups are reductive;

from 4d: in some cases where TV is 2-step nilpotent the generic isotropy groups

are not reductive;

from 4e: in some cases where TV is 2-step nilpotent but does not have square-

integrable representations, the generic isotropy groups are reductive.

Finally, the results of [12], 4d, 4e and 4f combine to give a complete discussion of

the Plancherel formulae for good parabolics P = NAM in which TV is (abelian or)

2-step nilpotent.

5. The domain problem. Recall the derivation of the Plancherel formula for a

good parabolic P that is carried out in §2d. It is assumed implicitly in that

computation that h G Dom D. But since we also took tr(Dh) to mean the

operator-valued integral fP tr(g)Dh(g) dg (when invoking [5, Theorem 3.2]), it is

also necessary to have Dh G LX(P). So we would like to know whether the space

Dom D n D~XLX(P) is substantial-e.g. whether it is dense in L2(P). This question

has arisen in every previous work on the Plancherel formula for specific nonuni-

modular groups, namely in [4], [7], [6], [12], [8], [5]. A thorough treatment of the
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circle of ideas surrounding this question may be found in [7, especially §1]. The

discussion there reveals that the property which is both desirable and reasonable to

expect is the following:

(5.1) Dom D' n D'L¡(P) n L2(pf is dense in L2(P),   V/ > 0;

where L2(P)^ denotes the left bounded elements in L2(P).

In all previous cases (i.e. in the articles just cited), condition (5.1) has been

verified. However, there are nonunimodular groups for which (5.1) fails. Phil Green

has given such an example, a certain restricted direct product of /J-adic groups. It

seems quite likely that property (5.1) cannot fail for a Lie group, but we have not

been able to prove (5.1) for an arbitrary good parabolic. On the other hand, we do

have some partial results in that direction, and we conclude the paper by sketching

them.

(i) We have seen in Theorem 2.2 that, for a good parabolic, the canonical

Dixmier-Pukanszky operator "lives" on the nilradical. Thus we may replace the

parabolic P by its nilradical TV in equation (5.1).

(ii) Suppose that the nilradical n is abelian. Then the results of [7, §3] apply. If/0

is the semi-invariant polynomial corresponding to the canonical semi-invariant T

given by Theorem 2.2, then the space S^TV) = [h G §>(TV) = Schwartz functions

on TV; (log h)'= 0 near/0_1(0)} is a dense subspace of L2(N) which is contained in

Dom D' n D~'LX(N) n L^Nf for any t > 0.

(iii) Here is the observation which guarantees (5.1) in a large number of cases.

Consider the condition

(l. _s There is an abelian subalgebra a Ç n such that the canonical

semi-invariant T lies in the enveloping algebra 11(3) of 3.

If (5.2) is satisfied, then matters reduce to the abelian case described in (ii).

Indeed, let Z = exp a. We can find a complementary submanifold V such that

TV = Z X V (as manifolds, not groups). Since T lives on Z, once again the results

of [7, §3] apply. If f0 G S(¿*) is the invariant polynomial corresponding to T, then

the space Sj (Z X V), as defined in [7, 3.9], will be dense in L2 and contained in

the intersections described in (5.1).

(iv) Condition (5.2) is always satisfied for groups G of type An and C„. Let G be

SL(«, C) or Sp(«, Q and B a minimal parabolic (i.e. a Borel) subgroup. One knows

the structure of the nilradical n^, of B very well, and condition (5.2) is satisfied. In

fact, in these cases there is an abelian ideal 3 Ç r^ such that 3(rio) Q ^(3).

Condition (5.2) is actually satisfied for any parabolic subgroup P of G. The reason

is the following. It is no loss of generality to assume that P D B, so that the

nilradical n of p is contained in tTq. It does not follow that 3(n) £ 3(0o)- But me

canonical semi-invariant of P must actually be in U(n)^. The latter is contained in

3(l!o)- Furthermore, since a, riß and n are all sums of root spaces, it is easy to see

that the semi-invariant for P must lie in U(a n n); so once again we are in the

abelian case.

(v) Unfortunately, condition (5.2) fails for the groups of 4d, 4e, and 4f, and

others, such as the nilradical of a Borel subgroup of the exceptional group G2. Thus
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we are led to the following interesting problem. Let TV be a simply connected

nilpotent Lie group, T G 3(n) nonzero, and / > 0. Consider the operator on L2(N)

given by D = | T\'. Can we find a partial Schwartz space that is dense in L2(TV) and

contained in Dom D n D~XL^(N) n L2(N)t'> The natural candidate seems to be

the following:

&AN) = {n G &(N) " Schwartz functions on TV; (log h)'= 0 near/r^O)},

where/0 is as usual the polynomial on n* corresponding to T. Sr(TV) is dense in

L2(TV) and contained in Dom D n L2(TV)e. For h G Sr(TV), one has Dh G

C°°(N), but we have not been able to verify the integrability of Dh.
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