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Representations of Reductive and Parabolic Groups
Joseph A. Wolf

§1. Introduction.

\‘u .
This article attempts to sketch the background for the theory of repre-
sentations of linear groups, and to indicate by example of a new Fourier in-

version formula that the representation theory of affine groups is very dif-

ferent.

The natural context of linear groups is that of reductive Lie groups, and
the corresponding setting for affine groups is that of parabolic subgroups.

Neither can be effectively studied without the other.
I'11 recall the finite dimensional representation theory of reductive

-3
C
Then the role of 'large compact subgroups and distri-

tary representation theory.

That includes
bution character is discussed, leading to the nondegenerate (tempered) series
Finally, for contrast I show

groups, to establish terminology, and then sketch some parts of general uni-
and analytic vectors and in-

finitesimal characters.

In the reductive case, most rep-
In

and the Plancherel formula for reductive groups.
the Plancherel formula for the affine group.
resentations of physical interest are absent from the Plancherel formula:.
the affine case, the Plancherel formula uses Just one representation instead

of a many-parameter family, and that is a physically interesting representa-

tion.
§2. Finite Dimensional Representations of Reductive Groups
Recall that a Lie algebra i} has adjoint representation £ e ad(g)
and has Cartan-Killing form

ad(g)n = [£, n]

given by
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~is

(z, n) = trace(ad(z)ad(n)) . The algebra g is semisimple if (i*,&t )

Examples:

algebra is simple if it is noncommutative and has no proper ideal.
the Lie algebra , g](n; R) of the special linear group SL(n,R) , which is
real matrices of determinant 1, or the Lie algebra ,‘3‘0(2, 4) of

all n Xn
the conformal group S0(2, k4) .
A real or complex Lie algebra g is reductive if it has a faithful (ker-
nel = 0) completely reducible (every invariant subspace has an invarjant com-
plement) finite dimensional representation. Equivalent: ? = 59 ;71
® ... er where 5 is the center (all ¢ € g with [g, g] = 0) and
the ?i are simple ideals. Examples: semi-simple Lie algebras (the case
3 =0 ), and the Lie algebra yf(n; R) of the general linear group

GL(n, R) .
A Lie group is called simple, semisimple or reductive if its Lie algebra

Example: any compact Lie group is reductive.

has that property.

A reductive subalgebra in a reductive Lie algebra ? is a subalgebra
é such that ad?'é’ is completely reducible. A maximal commutative reduc-

tive subalgebra is a Cartan subalgebra (CSA). In the real case, é, is Car-
If g is a semisimple Lie algebra

tan in ?, iff gm is Cartan in yw
of matrices, then its CSA are just the maxima among its subalgebras diagonal-

If G is a reductive Lie group and 5 is a CSA in its Lie algebra gL N

izable over (

then the corresponding Cartan subgroup (CSG) is the centralizer,
{g €G: Ad(g)t = £ for all & Ej} .

H =
It has Lie algebra ﬁ . Example: the CSG in a compact connected Lie group

are just the maximal tori.
Fix a reductive complex Lie algebra g , a CSA j in g , and a



completely reducible finite dimensional representation r: ? hd }ﬂv ).
”
Then V" has a basis {v,, ..., vq} of simultaneous eigenvectors,
"(ﬁ)'v‘j = J\J(ﬁ)vJ where AJ: 4 + C linear .
These )‘J are the weights of m . Example: the nonzero weights of ad? are
the roots oré -roots of ? . Decompose ? = 3 ® g.' where } is the
1
center and ? = [g, 3] is the semisimple part. Then 4 = } +é'
1 .
where is a CSA in ?' . The roots annihilate > Span the linear
*
dual (4') » and sit in a real form j];; of (é')' .

Write A for the set ofj' -roots of g . If a €A then (o =0) de-

*
fines a hyperplane in *
yperp g the real span of 4, a.nde\UGEA(u=0)
is a disjoint union of convex open cones cut out by these hyperplanes. These
cones are called Weyl chambers. If & is one of them, then
+
A ={a€bd: a>0 on C}

is a positive root system. Its main properties are (i) 4= 8" U (-a: & € 2"}
: B

. . sa) s +
disjoint, (ii) if o, B €A and o + BE€A then a+ g€ A+ . Now the
roots are partially ordered by
a>B if a- B8 >0 on C
The minimal positive roots are called simple roots. Let V¥ = {4}1, cees Uyl
be the simple root syst T i i *
ystem, hen Y is a basis of 53 . More precisely, if
a€ A then a= anwj where the ny ere integers, all =0 if o€ A" ,
all S0 if -a€ a' .
If = is irreducible, then its weight system A" also is partially or-
dered,
’ .
A>2 diff A-2 >0 on & (definition)
. 2
iff x-x =7 anJ , O <nJEZ (theorem) .

eére 1s a unique maximal weight Voo and Vo determines m up to equiv-

m

alence. For-example, every weight sits in a chain of weights {v_ - } y_ 1}
m i

k=0 k

Linear and Affine Groups

where the ‘l’i € ¥ . We carry the Cartan-Killing form over to é'* by dual-
k
ity. Then it is positive definite on ; . Extend it in any way to * so
that 3,' 1 }'* . Then a linear functional v € 4* is the highest weight
of an irreducible representation if and only if the 2(v, ¢)/{y, ¢) are inte-
gers >0 , for all ¢ in the simple root system V¥ .
If oal is a reductive real Lie algebra we apply the above considerations
to y .
C
If G 1is a connected reductive Lie group, or at least is connected mod-
ulo its center, we apply the notions of weight and highest weight from its Lie
algebra 7 .
Let w: G GL(V,) be a finite dimensional representation. Its charac-
ter is
0, G>C by Gﬂ(x) = trace m(x) .

If £€L () then m(f) = J f(x)(x)ax is an operator on V. , and
G

trace m(f) = J f£(x) trace m(x)dx = Oﬂ(f)
G
where G" is viewed as a distribution. Later we will need this interpreta-

tion of "character."

When G 1is a compact connected Lie group, H the CSG for a CSA j Cg .
and T irreducible with highest weight V , the Weyl character formula gives
e'n' explicitly, as a distribution, as follows. First, it is a locally Ll
function, real-analytic on the regular set G' . Here G' consists of all
x € G with minimal centralizer, i.e. such that {& Gg: Ad(x)E = €} is a
CSA. It is dense and open. Second, en( gx 8-1) = Sﬂ(x) , so 6 is speci-

fied on H NG’ . There it is invariant under the Weyl group W = {Ad(w)I}:

wE€q, Ad(w)j =5' } . Third, on H NG' the character is




ZWEW det(w)e(\H-p )(we)

0 _(exp €) =
m Zwew det (w)eP (VE)
~ ¥ det(w) (vee) ()
= (const) (ea(\j/z__e-a(v)m)
aen

Here p denotes half the sum of the positive roots. If f: G- C is a rea-
sonable function, e.g. c” s that leads to a Fourier Inversion formula
f(x) = «di
(x) zé Gﬂv(rxf) dim(w ) .
Here r f is the right translate g ® f( gx) . G is the set of (equiva-
lence classes of) irreducible representations of G ; it is parameterized by

highest weights. v as described above. The "Plancherel measure" here is

X _ {a,v+p)
aintr) =TT S22

times counting measure. The combination dim(ﬂv)e is often called the "nor-
m
v

malized character". We will see analogs for noncompact groups.

§3. General Theory of Unitary Representations

Let 7 be a ﬁnitary representation of a locally compact group G on a
Hilbert space H . This means that = is a homomorphism from G to the uni-
tary group of H that satisfies these equivalent continuity conditions

(i) themap GxH>H , ( gs> V)b n( g)v , is continuous;
(ii) if veH then G>H , by g alg)v , is continuous;

(iii) if u, v EH then the "matrix coefficient" f : G - C
k]

> Dby
£, v( g) =f{u, 7(g)v) , is continuous.
k]
Here ( , ) is the scalar product in H , taken linear in the first variable

and conjugate linear in the second.

The representation T is called irreducible or topologically irreducible

if its representation space M has no nontrivial closed 7 (G)-invariant
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subspace. In that case one has a version of Schur's Lemma: if a bounded oper-
ator on H commutes with every n(g ) , g € G, then it is scalar. Conse-

quence: if Z 1is the center of G then “IZ specifies a homomorphism

g :Z2~>2¢C

m

n

{cEC: |c]| =1}

called the central character of =w .

The representation m of G defines a #-representation of Ll(G) on

H vy =(f) = I f(x)m(x)dx . Evidently Bn(£)l < lfll . So we have a family
G

of continuous seminorms ||f|l1T = In(£)l on Ll(G) , as 7 varies over the
(equivalence classes of) unitary representations of G . The completion of
Ll(G) with respect to this family is called the C*—algebra of G , denoted
c*(e) . Note that 1 extends by continuity from Ll(G) to a #-representa-
tion of C*(G) . If a closed subspace of H is invariant by one of G ,
Ll(G) or C*(G) , it is invarianf under the others also.

When G 1is a Lie group we also have associated representations dn of
the Lie algebra ? and the universal enveloping algebra g‘= U(gw) .
They are more important than the representations of Ll(G) and C*(G) when
it comes to concrete matters. We look at that now.

Now let G be a Lie group. We suppose that the topology is not bizarre:
that it is countable at infinity. Retain 7 and H .

A vector v € H is Qifferentiable ( =C" ) if ge nlg)v isa C.

00
map G-+ H , i.e. if every coefficient f G>C, u€EH, isa C

u,v’

. ©
function. Write Hm for the space of C vectors in H . It is a dense

subspace: if vEH and € C;(G) c Ll(G) then w(f)vE€H_; so

ﬂ(C;(G))'H C H_ . The differentisble representation 7_ of G , associated

to T, is w_(g) = "(g)|H . Its virtue is that it lifts to é;:
-]

T (E)v = an(E)v = S wlexp(t)V)|,_, for vEH, .




9’ ='l((§¢) is the associative algebra generated by 3(1: . For this,
view jﬂ: as the left-invariant vector fields on G , 1.e. the first order
left-invariant differential operators that annihilate constants. Then g
consists of all left-invariant differential operators, and its center (Q
=g (30:) consists of those that are both left- and right-invariant, the
"Casimir operators” of G . T_ 1lifts to 91 as an associative algebra
homomorphism. Thus 9, acts on H by densely defined (on H_) operators.

Suppose that every Ad(g) , g €G , gives an inner automorphism of
3(? . Then every Ad(g) acts trivially on 3 » and so every 7 _(g) com-
mutes with every nm (D) , D € 3 « A tricky variation on Schur's Lemma: if
m 1s irreducible then T, represents 3 by scal&rs on H,, . Consequence:
then wmls specifies an associative algebra homomorphism Xyt 3 *C called

the infinitesimal character of 7 . It is very important because of an im-

plicit role in geometric quantization, but more because of the differential

i = €H
equations Df XW(D)fu,v for wu, v w s DE 3 .

sV
The differentiable representation distorts the reducibility picture of the
original representation. For example let G =R , actingon H = L2(1R) by
translations
[n(xo)v](x) = v(x + xo) .
Then H_ 1is the Schwartz space

n
S={v €C”(R) : every Q_: ELZCR)} .
dx

If I is an open interval then {v €8S; le = 0} is ww(g)—inva.ria.nt, but
not 7 (G)-invariant, and its closure is not m(G)-invariant.

This difficulty is avoided by means of analytic vectors: v €H is ana-
Iytic if g 7(g)v is an analytic map G+ H , equivalently if fu,v: G+ H
is real-analytic for all w€H . The analytic vectors form a 7(G)-stable

subspace Hw C Hu which is WQ(? J-invariant. Write T for the

10
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representations of G , ? and g on Hw . Given v € Hm there is a
neighborhood 0 of 0 in ? such that

«
1
EE€E0= XO o Ww(i)mv converges to "w(exp T)v
m:

Consequence: every ﬂw(?)—stable subspace has m(G)-stable closure; in partic-
ular, if w7 is irreducible every nonzero ﬂw(g )-stable subspace of Hw is
dense in H . To use this we need the rather deep existence theorem of Nelson:
Hw is dense in H .

Now let K be a compact subgroup of G . As usual, f( denotes the set
of unitary equivalence classes of irreducible representations of G . If
K € f( has normalized character

TK(k) = (dim X)trace (k)
then WIK(r_K) is orthogonal projection of H onto the maximal subspace H(k)
on which K acts by a multiple of x . H(x) is called the k-isotypic sub-
space of H, and H is the Hilbert space direct sum of the H(k) . More
precisely, if v € H_ then ZK‘GK ﬂ(?K)v converges absolutely to v . Now
denote
Hy(k). = H, NH(x) and H_= ZKERH(»(K) (finite sums)

then HK CHw C H'm CH . Fact: HK is dense in H . Important consequences:

(1) if aim H(k) <= then H(x) CH_ , (i1) H  is wm(éZ)—invariant.

K

§4. The Role of Larg

Now let us specialize to the case where G is a reductive group that
satisfies some technical conditions whose importance will appear soon:
(1) G/C-o is finite, where 6° is the identity component
(ii) if g € G then Ad(g) is an inner automorphism of ?G s
(iii) the analytic subgroup for [g, y] has finite center.

A group that satisfies these is said to be in "class H. " Here (i) and (iii)

11




say that the identity component Z0 of the center sits nicely in G

G/Z0 almost a linear semisimple group, and (ii) ensures that every w € §

, Wwith

has an infinitesimal character.

Let K be a maximal compact subgroup of G . A very deep result of
Harish-Chandra says: if 7€ ¢ and « € K then mult(k, le) < dim « . This
result has two fundamental consequences.

The first consequence is the existence of the global character:

(i) if re C;(G) then w(f) is of trace class,

(11) €3(G) 3 £# trace n(f) is a distribution on G .

The distribution Gw(f) = trace n(f) 1is the global (distribution) character

of T . Aclass m€ ¢ » in fact any K-finite unitary representation class

T, is specified by ©_ . Furthermore, O_ can be analyzed through its

m
properties of

invariance: O (feAd(g)) = o.(f), al1 r, g ;

eigendistribution: Do = x (D)o, , all D € 5.
Here Xy is the infinitesimal character. For example, it is not too diffi-
cult to see from t}:tis that 01T is real-analytic on the regular set G’
= {g € G: the fixed point set of Ad(g) is a CSA in g } . Much more deli-
cate is the fact that ©, 1is a locally integrable function on G , so On(f)
can be evaluated by integrating f against the analytic function 01r on the

regular set ¢’ .

The second consequence of K-finiteness is the utility of HK as a

(g, K)-module characterizing 7 . It is called the Harish-Chandra module and
is the basic object in the relatively new infinitesimal approach to semisimple
representation théory. The class 7 is specified by any irreducible submod-
ule of HK for the centralizer 5‘1( » 1n particular by the Harish-Chandra

module structure of HK .

12
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G is a reductive Lie group of the class H described above. Thus, any
irreducible m €G has infinitesimal and global characters Xq and en N
and we have the corresponding Harish-Chandra module HK for H = H" . Write
6 for the Cartan involution of G with fixed point set K .

If is a 6-invariant CSA in ©1 , 1its b-eigenspace decomposition
g = ¥+or with E= 4032 and oz= {Eeé: 8E = -£}

extends to a decomposition of the CSG
H=TXA with T=HNK and A = exp(eor) .

The centralizer of T in G splits as M X A where M= 6(M) and M is a

reductive Lie group of class H . Also, T is a compact CSG in M , and so

a certain type of representation, of the

R . N cy
discrete series Mdisc M

is present. We will describe the discrete series and then indicate how every

.

class in G comes out of these various Mdisc

. 0
We describe ﬁd' in three stages: for the identity component M ,
isc

for
M+ = {m € M: Ad(m) 1is inner on T} ,

and then for M itself.

+
Choose a positive Em-root system A{ for me and denote

~ .
I\; = {1 € E; e’ ana (A, ) >0 for all QEAZ}.

+ 0 . .
Harish-Chandra's famous result: if A € AE then M~ has a unique discrete

series representation, say 1'!A , whose distribution character is given on
M N0 by
-a 2 Mwe)
¥ (exp E) =]] (ea(E)/z-e &)/ Yo Y semlw)e £
n +
by a €A wEW
¢ 0
’ 0 0 _ s
where W 1is the Weyl group W(M°, T) . Further, n, =y inm M° Just
0

(o]
when A €W(A) . This exhausts the discrete series of M° . If M° is

13




"
N =

compact and »p Z + @ then nA is the representation of highest

“y

weight A - p.Z . In any case, it has the same infinitesimal character as

that finite dimensional representation.

+

. 0
As defined above, M' = ZM(M )MO where we write Zu(*) for the central-

izer of * inside # . Note ZM(MO) ﬂMo =2 o » center of M° . Note also
M

~

that the discrete series class n, € (MO)disc has central character

A-p.

Now it is easy to check that

(M+)

T . + 0y~
dise {x®n)‘ : )‘EA( and xEZM(M )
with xIZ =},
M0
It is slightly less routine to verify

M., = = . ty"
4isc {nX,A Indem(x an). X ®n, € (M )disc} .

That requires the class H condition that every Ad(m), m €M, is inner on

7710: .
- Y

Now decompose 7 (In+or) + ZAQ ? where A, C @*\ (0} is the-

set of O7 -roots of g . In the case where ﬁ is maximally split, Aoz is
the "real root system" ( = "restricted root system") of g Choose a positive

+
A -
system q @S usual, let 77 = XY - ?Y and N = exp(77) , and consider

the cuspidal parabolic subalgebra of ? and subgroup of G given by
’39 =M+ OZ+72 and P = MAN .

. . +
Different choices of Aoz lead to associated parabolics that are not neces-

sarily conjugate. Nevertheless, the representation classes

Rl
m = v
X,A,0 = Idpagny  ®e™2Y)

14
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+ ~ *
With A€ N, mnd x€ 2, () restricting to t, andwith V€ O , are
+
independent of choice of A{ . They thus depend only on the G-conjugacy
class of H . Almost all are irreducible, and in any case their irreducible

constituents form a nondegenerate series that I call the H-series, but which

has no general standard name except in the cases
H compact : the discrete series of G

T a CSG in K : the fundamental series of G N

ot maximal : the principal series of G .
In any case, the discrete series is the basic object here.

G has only finitely many conjugacy classes of CSG. Choose 6-stable rep-
resentations Hl, ceny HP of these classes. If 1<i <p consider the Hi-

series

éi = {irred. constituents of the

{m >

. .
PA€Ny L xSz, ),
; .

v Ea*y
i A *

XA,V
and their union, which is the reduced dual
brea = Yicip &
in the sense that it is the support of Plancherel measure for a certain topol-
ogy on G . More precisely, there are meromorphic functions on the (Qi)dt
regular on O7, which combine with the deg(x) and the formal degree
ITT . O @] of n, to give us measures dui(x, A, v) on éi , such
o€
Ei

that G has a Plancherel formula

£(x) = f j o (r_f)dy. (x, A, v)
=1 4. W o
Gi X»Nsv

where r f is the right translate g® f(xg) as before. Here the distribu-

V-1
“tion character e" ,comes out of \Pn s trace x and e v’ and
XsAsV A

f: G+ ¢ is any smooth rapidly decreasing (Schwartz class) function. As to

15




the latter, it can be shown that the reduced dual éred coincides with the

set of

tempered representations: {r € G: ©, is tempered}
where tempered distribution is defined in terms of an appropriate Schwartz
space on G . This notion is, in fact, basic to Harish Chandra's construction

of the discrete series representations ny -

An admissible representation is a pre-Hilbert K-finite (2; » K)-module.
Harish-Chandra modules of K-finite, in particular irreducible, unitary repre-
sentations of G , appear to be the main case. But in fact one can discuss
growth rate of coefficients of admissible representations, and this leads to a
number of relatively recent developments. One of them is a classification up
to infinitesimal equivalence of irreducible bounded representations of G on
& Banach space. Unfortunately there still is a unitarization problem there.
See Duflo's complete description for Sp(2; ¢) and gijaéki's for SL(3; R)
and closely associated groups. Another is a better understanding of Lp and
Sobolev norm behavior of unitary representations, which in turn is instrument-

al in the Atiyah-Schmid constraction of the discrete series.

We write A(p) for the affine group R%GL(n, R) on euclidean n-space.

It has multiplication (x, A)(x', A') = (x + A, AA')  and matrix representa-

tion (x, A) © (i 2) where x is nx1 and A is nxn .

0
a)
ial unitary character on the subgroup a =1, say

A(1) has right invariant measure d(i = a ldaxda . Choose a nontriv-

1 0, _ ix
xl(x l) e
then A(1) has just one "generie" representation,
n, = Ind

1 (subgroupa=1)ta(1)*1 *

A formal calculation: if f: A(1) » ¢ is C™ and compactly supported then

16
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10, _ 33 99
f(y b) = cetrace nl(ax(r(y )
for a certain constant ¢ . That is the Fourier inversion formula for A(1).

Note that :?— compensated non-unimodularity.
X

Explicit inversion formulae are known for many parabolic subgroups of re-

ductive groups, but not for the A(n) , n> 1.

i 10 i duct of the two
A(2) has right invariant measure d(x A) that is produ
-1 . :
entries of dx and the four entries of dA*A . Choose a nontrivial unitary
i =1 in A(2) . It has sta-
character, say Xy » on the translation group A A

bilizer in the linear group x =0 ,
L ={A€GL(2; R): A fixes X} =A(1) .

0, (l 0)

i 1 = . The
Notice that X, extends to (translations)*L by ?2§x A) A 1

Bargman-Mackey little group method says that A(2) has just one generic rep-

resentation,

= X, ®n,)
My = Ind(y ans1ations) Laa(2) X2 ® M1

where ny acts through L = A(1) .

ivi i on the
Proceed recursively: choose a nontrivial unitary character xn+l

translation subgroup of A(n + 1) , note that

n

L={A€GL(n+ 1;R): A fixes x .} A(n) ,
- . s t
X i °L by ignoring L and note tha
extend X ., to X ., € [(translations)-L] vy ign ,
Aln + 1) has just one generic representation,

M1 = Ind(translations)'L+é(n+1

)(Xn+l ® nn)
where n_ acts through L & A(n) .
’ i §(1, %) = det A' . General the-
The group A(n) has modular function < A
. s s £
ory provides an unbounded positive selfadjoint operator semi-invariant of type

i lets us carry that
8§ on the representation space of n, . Uniqueness of n,
o s . s . tor D
operator back to an invertible positive selfadjoint semi-invariant operato

on L2(A(n)) . Then we get a Fourier inversion formula
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f(g) = trace nn(D(r(g)f))

as in the case n=1. 1In fact, for n > 1 the operator D remains myste-
rious, as we now explain.

The Lie algebra of A(n) is ¢z (n) = ((g 3)} where x is n x 1 and
@ is nxn . Its real linear dual space is ¢r(n)* = {(8 5)} where &£
is 1*n and o is nxn, and there the coadjoint action of A(n) is
s -1
X 2); (O 2)'* ° —fA -1
0  xEA T+AgA
From this, for n > 1 there is no noncénstant real analytic function on

cx(n)* semi-invariant of type a power of det(A) . So we cannot hope to find
D as a pseudo-differential operator on A(n) .
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