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Annals of Mathematics, 109 (1979), 545-567 

Completeness of Poincare series for 
automorphic cohomology 

By JOSEPH A. WOLF* 

1. Introduction 

Nearly a century ago, Poincare introduced a construction for auto- 
morphic forms by summing over a discontinuous group. Poincare studied 
the unit disc case of what usually now is formulated as 

D: a bounded symmetric domain in C"; 
K: the canonical line bundle (of (n, 0)-forms) over D; and 
F: a discontinuous group of analytic automorphisms of D. 

In this formulation, he considered holomorphic sections q of powers Km--->D, 
such as (dz'A ... Adz")m, and formed the Poincare theta series 

0(9) = Erer 7*(9 = Erer 9 . 

Km carries a natural F-invariant hermitian metric. If m > 2 then Km -> D 
has L1 holomorphic sections, for example (dz' A ... A dz4)m. If p is L1, the 
series 0(9) is absolutely convergent, uniformly on compact sets, to a 
F-invariant holomorphic section of Km -> D. The F-invariant holomorphic 
sections of Km -> D are the ]-automorphic forms of weight m on D. Their 
role is pervasive. See Borel [5] for a systematic discussion. 

Consider D = {Z e CPXP: Z tZ and I - ZZ* > 0}, the bounded sym- 
metric domain of p x p matrices equivalent to the Siegel half space of degree 
p. The latter is the space of normalized Riemann matrices of degree p. 
Thus, for appropriate choice of 1, the equivalence classes of period matrices 
of Riemann surfaces of genus p sit in ]7D. 

In Griffiths' study ([6], [7]) of periods of integrals on algebraic manifolds, 
the period matrix domains D belong to a well-understood [16] class of homo- 
geneous complex manifolds, of which the bounded symmetric domains are 
a small part. We refer to these more general domains as flag domains; see 
Section 2 for the definition. Except, essentially, in the symmetric case, one 
cannot expect a holomorphic vector bundle E -> D over a flag domain to have 
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546 JOSEPH A. WOLF 

nontrivial holomorphic sections ([16], [11], [12]). In particular there are no 
automorphic forms in the classical sense. Instead, one must look to 
cohomology of degree s = dim, Y where Y is a maximal compact subvariety 
of D. Thus the substitute for automorphic forms is the automorphic 
cohomology, either in sheaf form: 

HA(D; (E)) = I-invariant classes in HS(D; 0(E))} 
in the Dolbeault form: 

Hr'8(D; E) {IF-invariant classes in H0'8(D; E)} 
or in the Kodaira-Hodge sense of harmonic forms: 

C0'S(D/T'; E) = IF-invariant forms in XYC0(D; E)} . 

Here one is quickly forced to assume that the bundle E -> D is nondegene- 
rate as defined in Section 2 below. A holomorphic line bundle usually is 
degenerate. 

Suppose 1 < p < oo, and let Hp(D; 0(E)) (resp. Hp'8(D; E)) denote the 
subspace of Hs(D; 0(E)) (resp. of H0'8(D; E)) consisting of the classes with 
a Dolbeault representative q such that z -+ I I(z) I| is in Lp(D). Wells and I 
proved [15] that if E -> D is nondegenerate then the Poincare series 

O3[q] = bTe y C*[9] , [p] e H?'8(D; E) 

converge in the Frechet topology of H0'8(D; E). We also showed that if, 
further, E -> D is L,-nonsingular as defined in Section 2 below, then 
H?'8(D; E) is an infinite dimensional Hilbert space in which H?'8(D; E) n 
H?'8(D; E) is dense, so there are lots of these convergent Poincare series. 
But we had no result on the kernel nor on the image of the Poincare series 
operator 0: H2'8(D; E) -> H,'8(D; E), and in fact we did not exhibit a non- 
classical Poincare series 0[p] # 0. In this paper I show that the image of 0 
is as large as could be expected. 

We start by studying harmonic forms. Let XCOA8(D; E) (resp. 
XC0'S(D/I'; E)) denote the space of harmonic E-valued (0, s)-forms on D that 
are Lp(D) (resp. F-invariant and Lp(D/F)). The main results, found in 
Section 7, are 

PROPOSITIONS 7.2 AND 7.4. Let E -> D be nondegenerate and L,-non- 
singular. If q e YC?'8(D; E), then the Poincare series 0(p) = LE y* con- 
verges absolutely, uniformly on cornpacta, to an element of XYoCs(D/F; E). 
The resulting linear map 

h: ae , a(D; E) fo a t(Dti; E) 
has I 101 I < 1, is suriective, and has for adjoint the inclusion XcOM3(D1lr; E)c- 

This content downloaded from 169.229.32.136 on Sat, 31 Aug 2013 14:53:08 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


COMPLETENESS OF POINCARE SERIES 547 

X7C0'8(D; E). 

THEOREM 7.9. Let E -> D be nondegenerate and L,-nonsingular, and 
let 1 < p < oo. Then the Poincare' series operator 0 is defined on a certain 
subset of JCop8(D; E) and maps that set onto Cp'8(D/F; E). 

The reader will now have guessed that we follow the rough outline of 
the Banach space approach, originated by Bers ([3], [4]) and Ahlfors ([1], [2]), 
described in Kra's book [10], for the case of the unit disc in C. Our main 
problem is that of defining an appropriate harmonic projector. In the unit 
disc case there is an explicit formula for the reproducing kernel, and we 
just compute. Here, we use information on integrable discrete series re- 
presentations to obtain LP a priori estimates on a reproducing kernel form, 
and then use Banach space methods such as the Riesz-Thorin theorem to 
define projections from various spaces of LP forms to the corresponding 
spaces of harmonic LP forms. Once we have the projections, we establish 
the appropriate extension (Theorem 6.2) of Bers' result on the Petersson 
scalar product, and then our L1 results (Propositions 7.2 and 7.4) are straight- 
forward. The general LP result (Theorem 7.9) requires some caution be- 
cause 0 does not converge on all of XiCps(D; E) when p > 1 and F is infinite. 

Having established that any harmonic form * e XJ s(D/r; E) is repre- 
sented by a Poincare series, we turn to the corresponding question for 
cohomolgy. This depends on Theorem 4.5, where we show that certain 
complete orthonormal sets {1p} c JC?' (D; E) have the property that every 
CJS(D: E) is their Lp-closed span, and we use that to show that the natural 
map of a form to its Dolbeault class gives XOC s(D; E) Hp?'(D; E). We de- 
fine Poincare series operators 0 from (an appropriate subset of) Hpo'8(D; E) to 

Hpl,'(D; E): r-invariant Lp cohomology on D 

and to 

Hp0s(D/r; E): L, cohomology on D/r 

by 0(c) = [0(+)] where + e XCos(D; E) is the harmonic representative of c, 
provided that 0(Q) is defined as in Section 7. The main results, found in 
Section 8, are 

THEOREM 8.6. Let E -> D be nondegenerate and L,-nonsingular, and 
let 1 < p ! oa. Then the Poincare series operator maps a certain subset of 
Hp S(D; E) onto Hpo,'r(D; E). 

THEOREM 8.8. Let E -> D be nondegenerate and L,-nonsingular, let 
1 ? p < Ca, and suppose that 0 is not contained in the continuous spectrum 
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548 JOSEPH A. WOLF 

of the laplacian on the space of F-invariant L2(D/J') E-valued (0, s)-forms. 
Then the Poincare series operator maps a certain subset of Hp08(D; E) onto 
Hp',s(D1/r; E). 

These theorems come down to the question of whether a class [k] e 
Hp,':(D; E) (resp. [*] e Hp?s(D/r; E)) has a harmonic representative, i.e., 
whether -H* is cohomologous to zero on D (resp. on Dlr). Here we use 
Frechet space methods, based on a sharpening (8.3) of the LP estimates for 
the reproducing kernel form. Those improved estimates depend on facts 
about integrable discrete series representations. 

I am indebted to David Kazhdan for several conversations and sugges- 
tions on this work. Without those, I probably would not have managed to 
define the harmonic projectors that are basic to the considerations of this 
paper. 

2. Homogeneous vector bundles over flag domains 

We recall the basic facts on the complex manifolds D and the holo- 
morphic vector bundles E -> D which form the setting for automorphic 
cohomology. 

A complex flag manifold is a compact complex homogeneous space 
X = GCIP where G, is a connected complex semisimple Lie group and P is a 
parabolic subgroup. Examples: the hermitian symmetric spaces of compact 
type. 

A flag domain is an open orbit D = G(x) c X = GC/P where X is a 
complex flag manifold, G is the identity component G' of a real form of GC, 
and the isotropy subgroup of G at x is compact. Then that isotropy sub- 
group V [16] is the identity component of a compact real form of the reduc- 
tive part of the conjugate {g e G,: gx = x} of P, V contains a compact 
Cartan subgroup H of G, and V is the centralizer in G of the torus Z(V)0. 
Examples: the bounded symmetric domains and the period domains for 
compact Kahler manifolds. 

Fix a flag domain G/ V G(x0) = D c X = GC/P and an irreducible uni- 
tary representation p of V, say with representation space E,. Then we 
have the associated homogeneous hermitian Cm complex vector bundle 
E,= GXPE# ->D. It is defined by the equivalence relation (gv, z)-(g, p(v)z) 
on G x EW, and the sections over an open set U c D are represented by the 
functions 

f: U = {g G G: gx G U} - E, with f(gv) = p(v)-1f(g). 
Furthermore [17], E, -> D has a unique structure of a holomorphic vector 
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COMPLETENESS OF POINCARt SERIES 549 

bundle. Identify the Lie algebra gc of Gc with the corresponding algebra 
of complex vector fields on X, so the isotropy subalgebra 

PXO: Lie algebra of Po = {g e Gc: gxo-x0} 
consists of all e e g, whose value at x0 is an antiholomorphic tangent vector 
there. Then a section over U c D, represented as above by f: U-> Ef, is 
holomorphic just when i(f) = 0 for every e in the nilradical of p-*O. 

Let T -> D denote the holomorphic tangent bundle with a G-invariant 
hermitian metric. Then we have the Frechet spaces 

Av q(D; E): Cm sections of E ?& Av(T*) ?& Aq(T)* > D 

of smooth E-valued (p, q)-forms on D. Similarly, using pointwise norms 
from the hermitian metrics on E and T and the G-invariant measure on D 
derived from the metric on T, we have the Banach spaces 

Lp q(D; E): Lr sections of E ? AN(T*) ?& Aq(T*) > D 

for 1 < r < cA. 
As usual, the (0, 1)-component of exterior differentiation is a well- 

defined Frechet-continuous operator 8: AP q(D; E) -> AP?q+l(D; E), and we 
have the Dolbeault cohomology spaces 

HPpq(D; E) = {a) C AP q(D; E): aa) = O}/0APlq-'(D; E) . 

In the cases studied in this paper, a has closed range, so HP q(D; E) inherits 
the structure of Frechet space from AP q(D; E). In any case, for 1 _ r <o 
we have 

Hrpq(D; E) {[)] e HP q(D; E): L C IPq(D; E)} 

the Dolbeault classes represented by Lr-forms. 
Let 

#: E (? AP(T*) (? Aq(T*) E* ? A&n-P(T*) ? Tflq(T*) 

denote the Hodge-Kodaira orthocomplementation operator. Here E* > D is 
the bundle dual to E -> D, n - dimcD, and # is conjugate linear on fibres. 
The global pairing between LP (D; E) and LP, (D; E), 1/r + 1/r'=1, is 

(2.1) <P', k>D = <, =>,dx- PA 
D D 

where A is exterior product followed by contraction of E with E*. In 
particular this defines the Hilbert space structure on LP q(D; E). 

a has formal adjoint * - a #, and this defines the Kodaira-Hodge- 
La place operator 
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550 JOSEPH A. WOLF 

D - (a + 5*)2 = as* + a5* 
on each AP (D; E). It is a second order, elliptic, G-invariant operator, and 
we also view it as a densely defined operator on each L4"(D; E). We will 
need the spaces of Lr E-valued harmonic (p, q)-forms on D, given by 

(2.2) XpJCr(D; E) -{c ? LP q(D; E): LCco = 0} 
where FI7o = 0 is understood in the sense of distributions, 

<(l, LI1>D = 0 for all compactly supported * C AP q(D; E) 

Ellipticity gives @JCSp(D; E) c {la AP q(D; E); Lug' 0} where Lbo 0 0 is 
understood with Lg as differential operator. Since g is elliptic and formal- 
ly self-adjoint, it is not difficult to see that WCp q(D; E) is a closed subspace 
of L4,(D; E). 

,fC2 (D; E) inherits a Hilbert space structure from LP q(D; E). The 
natural action of G on Xp7 q(D;E) is a unitary representation. We will need 
some detailed information about those unitary representations. For this, we 
must be specific about the bundles E and the corresponding representations. 

Replace P by its conjugate {g ? G: gx, = x0}, so the isotropy subgroup 
of G at x. e D is V =G n P. We have a compact Cartan subgroup H of G, 
and a maximal compact subgroup K, such that H c V c K. Further, we 
have a positive b,,-root system Al on g, and a subset $D of the simple roots, 
such that p =P + Pn, where 

PIA = Zzz \<?gC-a is the nilradical of P 

and 
Pr - + <<:> gC -1 + g- is a reductive complement. 

Here <.D> consists of all positive roots that are linear combinations of 
elements of (D. 

Let 0 denote the Cartan involution of G with fixed point set K, and 
g = f + e the Cartan decomposition into eigenspaces of 0. So 

tc~ c+ L~kgc and gcrS c 
where Ak consists of the "compact roots" and A, of the "noncompact roots." 
Write A+ for Ak n A+ and A+ for A, n A+, and A+ for the positive root system 
<(D> of P. = ?c. Further define 

P = PG =- 2 A+ ' Pk = i+IS and Pv = - + 
2 2 Ak 2 AV 

For convenience we replace G, by its simply connected covering group. 
Then PG exponentiates to a character on H. 
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Let Ir be the simple root system of (g,, A+). Then X e Lt* is integral if 
the 2<X, *>/K,,>,C ,are integers, where <,> comes from the Killing 
form. As Gc is simply connected, X is integral just when el: exp(e) -el"), 

e C , is a well-defined character on the torus group H. Example: 
2KPG, < >/*> , A> = 1 for all , C T. 

If , is an irreducible representation of V then plII is a finite sum of 
characters el; the X C id* are integral and are called the weights of A. There 
is a unique highest weight relative to a lexicographic order on id* for which 
A+ consists of positive elements. That highest weight does not depend on 
the order, and it determines , up to equivalence. Denote 

(Pll irreducible representation of V with highest weight X 

(2.3) El: representation space of , 
El -> D: associated hermitian holomorphic bundle. 

Thus, for example, the canonical line bundle over D is Afl(T*) E2(PV-PG). 

A bundle El -> D is called nondegenerate if, whenever , el , fl1 are 
distinct noncompact positive 13c-roots of gc, 

(4<X + Pa + 1+ .+,l1, a> > o for all a G <K> =A+,K 

(<24 + PK + l1+ * +f,18> <0 for all kyGAk\<$> 

In that case, we have [15, ? 3.2] the Schmid Identity Theorem: 

If c C HO S(D; E2), s = dimc Y = dimcK/ V, and 
(2.5) if c restricts to the zero cohomnology class on every 

fiber g Y of D -> G/K, then c = 0. 

Among its consequences: 
( Ho?q(D; E2) = 0 for' q L s, and H?s(D; E2) is oo-dimensional 

) Frechet space on which the representation of G is continuous. 

A homogeneous line bundle over D can be nondegenerate only under rather 
special conditions [15, Prop. 3.2.7]. 

Let A denote the set of integral linear forms on fIc and A' its regular 
set, 

A.' ={x\CGA: <x, a> # O for all a C A+} . 

If X C A' we denote 

q(X) la i oe A+: <, a> < ?} I + I {/ C A+: <a, -/> > ?} I 

From [17, Theorem 7.2.3] and the work of Schmid [13] on the Langlands 
Conjecture, 
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552 JOSEPH A. WOLF 

(i) if X + p V A' then every XC?2q(D; El) = 0; 
(2.7) (ii) if X + p e A' and q = q(% + p) then XJC q(D; En) = 0; 

(iii) if X + p e A' then G acts irreducibly on jfoj q'(+p)(D; En) by the 
discrete series representation class [wz+p]. 

We will say that El -> D is L,-nonsingular if 

(2.8) X + p e A' and I + p. -/> > >1 EacA+ I <a, -/>I for all y CAS 
2 

According to Trombi-Varadarajan [14], and Hecht and Schmid ([8], [9]), 
given that X + p e A' the other condition for Ll-nonsingularity is necessary 
and sufficient for [r,,+p] to have all K-finite matrix coefficients in L1(G). 

In this paper, we are concerned with nondegenerate (2.4) L,-nonsingular 
(2.8) homogeneous holomorphic vector bundles El -> D such that the dimen- 
sion q(X + p), in which square integrable cohomology occurs, is the complex 
dimension s = dim, Y of the maximal compact subvariety Y = K(xo) _ K/V. 

Finally we recall the main results of [15]. The first [15, Theorem 4.1.6] 
says: Let El -> D be nondegenerate (2.4), let F be a discrete subgroup of G, 
and let c C H,0'8(D, El). Then the Poincare series 6(c) E Y*(C) converges, 
in the Frechet topology of H0'8(D; El), to a I-invariant class. The second 
[15, Theorem 4.3.9] says: If E--> D is nondegenerate (2.4), then the natural 
map fJC?8(D; El) -- H0'8(D; ED) is a topological injection with image 
H208(D; El). And the third [15, Theorem 4.3.8] tells us: If Elm -> D is 
Ll-nonsingular (2.8) and q = q(X + p), then JC? q(D; ED) - Ho?q(D; En) maps 
every K-finite element of JCl q(D; En) into HI? (D; El). 

Thus, for El-- D nondegenerate (2.4) and Ll-nonsingular (2.8) with 
s = q(x + p), HI'8(D; El) is very large-dense in the infinite dimensional 
Hilbert space H2?8(D; En) on which G acts by [7,+p]-and the Poincare series 
operator 0 maps it to the space Hr'8(D; ED) of F-invariant classes in 
H0'8(D; ED). As described in the introduction, we are going to show that, 
in suitable senses, 0 maps onto all spaces XJCps(D/F; En) of L,(D/F) harmonic 
forms, onto all spaces Hpo?,'(D; El) of F-invariant Lp(D/F) classes in H0'8(D; El), 
and onto certain spaces H8s(D/F; E2) of Lp cohomology classes on D/F. 

3. The reproducing kernel form 

Surjectivity of the Poincare series operator will depend on properties 
of a harmonic projector that derives from a reproducing kernel for 
XJC?'8(D; El). In this section we study that kernel and its L, properties. 

Consider a homogeneous holomorphic vector bundle E -> D. Given A, 
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C LP (D; E) we have the exterior tensor product (90?t#*)(z, C) = (z)(&#*(C) 
and the corresponding integral operator 

(TD v))(z) = q9(z) 0) #*(C) A )7(0) - =K *>DcP(Z) 
C e D 

on L",q(D; E). If {Jqi} is a complete orthonormal set in fCp q(D; E), now 
JCp q(D; E) has reproducing kernel 

(3.1) KD(Z, C) = KDEpq(Z, C) = Pi(Z) 0 #Pi(C) 

which converges absolutely because point evaluation norms q F- 1(x) II are 
continuous on XCp q(D; E). The kernel KD is independent of choice of {qij}, 
hence G-invariant in the sense KD(gz, gC) = KD(Z, C). It is hermitian in 

that #KD(z, C) = KD(?, z). And since F is a self-adjoint elliptic operator, 
KD(z, C) is weakly harmonic and thus harmonic in each variable. 

THEOREM 3.2. Let E2 -> D be nondegenerate (2.4) and L1-nonsingular 
(2.8) with q(X + p) = s. Then the kernel form 

KD(Z, C) = KDE2,0,.(Z, C) 

is LP in each variable for 1 ? p ? co, and the norms 

||KD(Z9*)llp II1 D ,) IIP 
independent of (z, C) for 1 ? p ? A. 

Proof. Fix z C D. We are first going to show that KD(z, C) is L, in C. 
For that, we may translate by an element of G and assume z = x0, base 
point at which V is the isotropy subgroup of G. So our maximal compact 
subvariety Y= K(z). 

U2 = H0'8(Y; E1,j) is a finite dimensional K-module. It specifies a 
homogeneous complex vector bundle US -A GIK, whose sections are the 
functions f: G -> U2 with f(gk) k*f(g). Thus we have the "direct image 
map"~ 

C: H'? 3(D; En) F (U) 

from cohomology to sections of U2, given by :(c)(g) = (g*c)lK. The Identity 
Theorem (2.5) says that 4 is injective. We know [15, Theorem 4.3.9] that 
the map XJC?'8(D; En) --> fC08(D; En), which sends a harmonic form to its Dol- 
beault class, is infective. Conclusion: the space 

Q ={q e UfC?8s(D; En): q9Iy = O} 
is a closed K-invariant subspace of finite codimension in fC?'8(D; En). 

We now have complete orthonormal sets {9, *, 9m} in Q' and 
{(m+9 9m?+29 ... } in Q, consisting of K-finite forms, and we use those to 

This content downloaded from 169.229.32.136 on Sat, 31 Aug 2013 14:53:08 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


554 JOSEPH A. WOLF 

expand 

KD(ZS C) 0 = T(i(Z) (X f#TiM4 = E'1 <pi(Z) (&) #itM(4 
Each qvi e L1'8(D; En) by [15, Theorem 4.3.8]. So, for our fixed z, KD(z, *) is 
a finite sum of L1 forms, thus is L1. 

We need the fact that the forms (pi are LP for 1 ? p ! Ao. Since they 
are L1 and continuous, it suffices to prove that they are bounded. For that, 
consider the direct integral decomposition 

L2(G) _ Be XJC~dw 

where G consists of the equivalence classes of irreducible unitary repre- 
sentations of G, XJC, is the representation space for wz C [w] e G, SC X0 TfC is 
the Hilbert space completion of the span of the coefficients 

f.u X' g X <U, 7r(g)v>, Y vY C ex, 

with < fox> <u, w> <v, x>, and dw is Plancherel measure. Write IfC- 
for the space of vectors u e XJC, whose K-type decomposition u- V G K U 
satisfies I c'nAu I2 < A, for all integers n > 0, where cr is the value of z 
on the K-component of the Casimir operator of G. Also write X-CC for the 
space of K-finite vectors in ,CU. In the course of his proof [13] of the Lang- 
lands Conjecture, Schmid shows 

XYC?'S(D; Ei) Q('Jr,~+ 0 (5JC1?)w As(T*) 0 E2 
where forms are viewed as AS(T*) (g E2-valued functions on G. See [15, p. 
443]. Now each 

qi e XOjJ s(D; E)cSq QXC- )w As(T8*) ?E2 
Thus (in is a finite sum of terms f, (? w where u C X7 2+P v G C;+Py fu is 
the coefficient function on G, and w e As(T*) ? E2. Express v v,. 
Then 

l W)()= ?<U. +p(g)V>W < |U W || V < GO 

Here we have the last inequality because [13, p. 379] 11 II ?1 < c(n)(1 + c,)-A 
for all integers n > 0 and because c, is polynomial in the highest weight of 
z-. This completes the proof that vi is bounded, and thus completes the 
proof that each qvi is LP for 1 <p < oo. 

Now the function C4 11 KD(z, ) II is bounded by a finite linear combina- 
tion q Ii(z) ll.Ii(.)II of Lp functions, 1 ? p ? Ao. So KD(z,.) is LP. 

The kernel KD, all the bundle metrics, and integration on D, are 
G-invariant. Thus the norm I I KD(z, *) I Ip is finite and independent of z e D, 
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for 1 < p ? co. 

Finally, #KD(z, Q KDQ(, z) says f K(z, C) jj i K(C, z) 11, and this com- 
pletes the proof of the theorem. q.e.d. 

4. The harmonic projector on D 

Retain the notation and setup of Section 3. In particular E2 -> D is 
nondegenerate (2.4) and L,-nonsingular (2.8) with q(% + p) = s. Define a 
a constant b = b(D, %) > 0 by 

(4.1) b = IIKD(z,.)lIl = IKD(., C) l, zY CD. 

THEOREM 4.2. Let 1 ? p ? oa. If * C L4s(D; En), then its "harmonic 
projection" 

(4.3a) H*(z) S KD(z, C) A A(4) 
D 

converges absolutely to an LP harmonic E2-valued (0, s) -form on D. Fur- 
thermore, 

(4.3b) H: LI's(D; ED) > 5C?'s(D; En) 

has norm II HI ? b and if * ir CXI 8(D; En) then H* - 

Proof. Convergence and the bound on H are clear for p -0; there, 

Kr DD(z, A(4 ?E_ ||KD(z. C) A |*(C) II dC 

< II]KD(z. C) 1 1*l(C)lld 1 b ll 
~~rcD ~~~~ ~ 

If * is continuous and compactly supported, it is Loo, so H* converges ab- 
solutely as just seen, and 

IIH'1Ir 1 D KD(z .) A *(4) dz 

< \ \||KD(z, C) I I I I A(4) I I d~dz 
D D 

=bX 11(C) || dC = b 11*11, 
D 

Extending H to LP's(D; En) by continuity for 1 _ p < co, we see that Riesz- 
Thorin gives us convergence of (4.3a) and the bound IIHIH ? b on 

H: L? s'(D; En) > L?s(D; En) 

We check that HA is harmonic. If qv is a CC E2-valued (0, s)-form on 
D, then 

<H*,D 9>D= i {( KD(z. C) A *() }A 9(z) 
z eD CeD 
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= X [ KD(Z, 0) A A(4 A F- # T(Z) (a # =# ) 

= s E KD(Z, C) A *A) A #p(z) (parts) DXD 
0 because KD(Z, C) is harmonic in z. 

So H* is weakly harmonic, and thus harmonic. 
Next, we verify that the harmonic projector satisfies 

If + L48(D; En) and 9 e L~q8(D; E2) with 1/p + 1/q = 1 
(4.4) 

,then <H*r, >D K <*e H'>D 

If one of 9, * is continuous and compactly supported, and the other either 
is continuous and compactly supported or is essentially bounded, then Hcp 
and HA converge absolutely and we calculate 

<H*, 9>D X {[ KD(z, C) A *(4)} A #/9(Z) 
z eD C~eD 

zeD YeD- 1 9i(Z) i) #'Pi(C) A A() A #9(Z) 

E=l <K9i, 9>D<K* 9i>D E=1 <Kit *>D<K9 9i>D 

- <HP, *>D - <*A HcP>D 

Here we use the fact that the K-finite vi in KD are L, for 1 ? r ? cAo. As 
H is Lp and Lq bounded, now (4.4) follows whenever * and 9 both are limits 
of Cc forms, or one is such a limit and the other is essentially bounded. 
The first case proves (4.4) for 1 < p < Ao, and the second case proves it for 
p = 1 and for p Ao. 

Finally let Lo'8(D; E2) be harmonic. Then it is weakly harmonic: 
K, D9>D= 0 for every CQ E2-valued (0, s)-form 9 on D. That space of CQ 
forms is of course inside L?'8(D; En), and the Kodaira-Hodge decomposition 
expresses the latter as the orthogonal direct sum of its subspaces 

fC?28(D; En): kernel of F and image of H 

cl{aL?28-l(D; E2) + a*L2s +l(D; En)}: kernel of H and closure of {L119: 9 is CC} i 
Conclusion: <r, (1 - H)9>D= 0 for every Cc form 9. Here 9 is Lq where 
1/p + 1/q = 1, so (1-H)9 also is Lq, and (4.4) gives us <*-HA, 9>D = 0 
That proves H* = A. q.e.d. 

We record a rather interesting consequence of Theorem 4.2. 
THEOREM 4.5. Let E2 -- D be nondegenerate (2.4) and L1-nonsingular 

(2.8) with q(% + p) = $ (=dimc Y). Let {9q} be a complete orthonorimal set 
in XC0,8(D; En) with each ( K-finite. Let 1 ? p co. Then 

(1) X7C?'8(D; El) is the L -closed span of {9(p} and 
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(2 ) the natural map of a form to its Dolbeault class is an injection 
XCOp8(D; E2) c-* H0'8(D; En) with image Hp'8(D; En). 

Proof. The (pi were proved in Section 3 to be Lp, so each qvi e fX78(D; En). 
If * e XJCO'8(D; En) then Theorem 4.2 expresses it as the Lp limit of finite 
linear combinations of the qvi. That proves (1), and it also shows that the 
restriction WplK of the Banach space representation of G on XC0,8(D; En) is 
independent of p. We know [15, Theorem 4.3.9] that XJC '(D; En) -- H0'8(D; En) 
is injective for p = 2. Now for general p it is injective on K-finite vectors, 
and thus by G-equivariance is injective. 

JCOp8(D; En) - H0'8(D; En) evidently has image in H0'8(D; En). Conversely, 
suppose that a class c e Hpo'8(D; En) is represented by an Lp form A. By 
Theorem 4.2, H* is another a-closed Lp form; and of course [H*] is in the 
image of XCO,8(D; En) -> H0'8(D; En). To prove c is in that image, we will 
show c = [H*], i.e., [-H*] =0. In view of the Identity Theorem (2.5), 
it suffices to show that if g e G then (* - HI)1I, is cohomologous to zero on 
the compact subvariety g Y. To do that we expand KD(z, 4) = 
where {q' , ..., q'} span the orthocomplement of 

9 eC XC8(D; En): 9p1gY = 0} . 

Then 

t =1 P<* Ti>DPTi 19Y (HJ) 19Y 

is the harmonic E21lg-valued (0, s)-form on g Y in the Dolbeault class of rlgy. 
That shows ( -H*)lgy to be cohomologous to zero. q.e.d. 

5. The harmonic projector on D/F 

Retain the notation and setup of Sections 3 and 4. So El -> D is non- 
degenerate and L1-nonsingular with q(% + p) = s. We are going to adapt 
the harmonic projection of Theorem 4.2 to forms invariant by the action of 
a discrete subgroup F c G. 

Fix a discrete subgroup F c G and let Q be a fundamental domain for 
the action of F on D. Then we have Lebesgue spaces and harmonic sub- 
spaces 

L08(D/F; En) and XJCO8(D/F; En) . 
Here the LP consist of all measurable F-invariant El-valued (0, s)-forms r 
on D such that IlIl*(.)II is in Lp(Q), and the Xp consist of the harmonic ones. 
As before, L'p8(D/F; En) is a Banach space, XCI,8(D/F; En) is a closed subspace, 
and for i/p + 1/q = 1 the pairing between LI,8(D/F; En) and L0'8(D/F; En) is 
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(5.1) <T, *>D11P = ?F A # 

Now LOO8(D/F; E2) consists of the F-invariant elements of L',s(D; E2). 
If A LI 8(D/F; En), we have H* c XC'8(D; E2) as in Theorem 4.2, and for 
y IF and z c D, 

H*(-/z) KD(Yz, C) A A(4) = KD(z, -Y'C) A A(4) 
CeD CCD 

X D KD(z, a-') A A(Y-'4) = KD(z, C) A A H#(z) C C;D CCD 

Now Theorem 4.2 gives us 

LEMMA 5.2. Defined by (4.3a), the harmonic projection H sends 

Loos(D/F; E2) to nX0'8(D/F; E2) with norm IIHII ? b and with HA = on 

7c0'(D/; E2). 

The corresponding L, statement is 

LEMMA 5.3. If G c L?s(D/r; En), then HA/r is well-defined in the dis- 
tribution sense, 

H: LOs(D/F; En) - O -C?s(D/IF; E2) with norm I I H I < b 

and if ,k c SOJ s(D/F; E2) then HA = A. 

Proof. Let A denote the space of all Cw F-invariant E-valued (0, s)- 
forms on D with support compact modulo F, and let B = {q c A; max 
l19(z)ll = 1}. If * is a measurable F-invariant Ervalued (0, s)-form on D, 
then * e L? s(D/F; E2) just when supIeBI <DI 9> ID/V is finite, and in that case 

D/,I = supIP e BI <A, 9>Dr ID. 
We have H well-defined and of norm < b on A c Los(D/F; E2). Thus H 

is well-defined on LOS(D/F; E2) in the distribution sense, 

<HA, 9>D/= <A, H9>Dr~,r for all q A. 
Further, HA is F-invariant, and H has norm < b, by duality from Loo. The 
HA are weakly harmonic by construction and thus harmonic. Finally, if 

e XOcJ'(D/F; E2) then HA =r as in the last paragraph of the proof of 
Theorem 4.2. q.e.d. 

If * is a Ca E-valued (0, s)-form on D that is F-invariant and has sup- 
port compact modulo F, then HA is defined both by integration (4.3a) and 
in the sense of distributions as in Lemma 5.3, using LP for any p < Ao. In- 
tegration by parts shows that the results are the same. Now we can com- 
bine Lemmas 5.2 and 5.3 with the Riesz-Thorin Theorem as follows. 

THEOREM 5.4. Let 1 < p < oo. If * c LO8(D/r; E2), then its harmonic 
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projection HA is well-defined, by integration (4.3a) against the kernel 
form in case p = co, by LP limits from Cc(D/F) forms in case p < oo. 
Furthermore: 

(5.5) H: LIps(D/F; En) XI Th?(D/L; EA) with norm IIHI ? b . 

(5.6) If * c XC'8(D/L'; EA) then H= 
fIf * C LOs(D/F; EA) and q C L's(D/F; EA) with 
(1/p + 1/q = 1, then <HA, 9>D/r = <*, Hi>D.r- 

Here (5.6) follows from Lemma 4.4; and (5.7) is clear from integration 
by parts or the distribution definition of H if one of A, p is Cc(D/F), and 
then follows by the Riesz-Thorin limit procedure. 

6. Analogue of the Petersson scalar product 

Retain the notation and setup of Sections 3, 4, and 5. If 1/p + 1/q 1 
then the pairing (5.1) restricts to a pairing 

(6.1) CI s(D/lr; EA) x IC s(D/lr; EA) - C by <9, ?D/v 9 A =. 

The classical Petersson scalar product is the case where D is the unit disc 
and E2 -> D is a power KtM -> D (m > 2) of the canonical line bundle. We are 
going to apply Theorem 5.4 to obtain the following result, which is due to 
L. Bers ([3]; or see [10, p. 89]) in the classical case. 

THEOREM 6.2. For 1 < p < oo and 1/p + 1/q = 1, the pairing (6.1) 
establishes a conjugate-linear isomorphism between X7q-s(DIF; EA) and the 
dual space of X7oJ8(D/L'; En). If X c o7Cs-(Dlr; EA) corresponds to the linear 
functional l, then 

(6.3) b' * | | |D/rq < 11 1 l< l* ID/r q 

where b is given by (4.1). 
Proof. Evidently (6.1) establishes a conjugate-linear map of XJqCs'(D/r; EA) 

into the dual space of XfCos(D/F; EA). We first prove it surjective. 
Let 1 be a continuous linear functional on C?,s(DIf; EA). By the Hahn- 

Banach Theorem it extends to LI'8(D/F; EA), and there the Lp, Lq version of 
the Riesz Representation Theorem represents it as integration against a 
form r =Al c Lqs (D/L'; EA): 

1(9) = <9, ?D/r =X9 A #- 

Using Theorem 5.4, we have 

1(s) = daze *>/r' = <H(Y *>/r' = <(Y. H'P>D/r' . 
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so 1 corresponds to H e X JC s(DIF; Em) under (6.1). 
We now check that our map of XJq 8(D/F; En) onto the dual of XClps(D/r; En) 

is infective. If * C JClq s(D; En) maps to the zero functional, then 

K?, +>~D/r 0 for c ~JC or8(D/F; En) 
On the other hand, if cp C L~'8(D/F; En) with Hp = 0, then 

<9P, *>D/r= <9P H*>D/r - <H(P, V>D/r-= 0 

Combining these, we have <9, Ar>D/v 0 for all 9 c P8(D/F; En), which 
forces * = 0. The isomorphism is established. 

Let * e JC~q 8(D/r; En) correspond to the functional 1. Then II1 I < HIflID/,q 
by the Holder Inequality. On the other hand, using the full strength of 
Theorem 5.4, we have 

I D1r, q = suP I IFX Ip~ I <? =1 >DlrI 

SUpRl fpl | KR, H*>D/r | (5.6) 

-SU11pi Sllp=1 st<HPI, *>Dlr | (5.7) 

SU sul 1gfl PAl <H(PI *>1 (5.5) 

=b-supil,,_,,ip=, |<H(P, *>Dlrl | b ||11- 

That completes the proof of (6.3). q.e.d. 

We record some consequences of Theorem 6.2. 

COROLLARY 6.4. Let 9 c LO48(D/F; El), 1 < p < ao and i/p + 1/q = 1. 

Then Hp = 0 if and only if <9, *>D/r 0 for all e c JCo'8(D/F; El). 

COROLLARY 6.5. Let * e L0q8(D/F; El), 1 < q ? ao and i/p + 1/q = 1. 

Then * c XCo'8(Dl'; El) if and only if <9, *>D/I <H?, frD/r for all 9 e 

LO8(D/F; E2). 

7. The Poincare series operator on harmonic forms 

Retain the notation and setup of Sections 3 through 6. Thus El -* D is 
nondegenerate and L1-nonsingular with q(X + p) = s. If p is a harmonic 
Ea-valued (0, s)-form on D, then we define the Poincare series relative to 
F by 

(7.1) d9()=Er( )^ 

whenever the right side converges absolutely to a harmonic form. For 
example, if q e X? 8(D; El) then 
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which says, more formally, the following: 

PROPOSITION 7.2. If 'p ? XCs(D; El), then its Poincare series 8(9) 
i y*') converges absolutely, and uniformly on compact subsets of D, to 

an element of C'8$(D/F; El). The resulting linear map 

(7.3) 0: XiC?S(D; En) -+ fC? s(D/F; En) has norm 1811 < 1 
In fact, the above calculation shows that 8: q - r -i* converges, 

for 9 C LO s(D; El), to an element 8(g) e L?s(DIF; En), and that 6: L1'8(D; El)-> 
L?'S(D/F; En) has norm < 1. Further, if e C LIs(Dlf; En) then 

<8(gp)) ?D/v-Er|Q y* ' /\P #A = Y 
A #Y+ 

tQ ~~~D 
Thus 8: Li?s(D; En) -> LIs(D/F; En) has adjoint 8*: L',s(D/F; En) > L?s(D; En), 
which is a continuous injection to a closed subspace, so here 8 is surjective. 
The case p - 1 of Theorem 6.2 shows that the same considerations hold for 
the map (7.3) on L, harmonic forms; that says 

PROPOSITION 7.4. The Poincare series map 8: XJC s(D; En) --> XfC?s(D/F; En) 
is a continuous surjective linear map, and its adjoint is the inclusion 

X*: de9(D11'; En) --- Xl"(D; En). 

In fact one can do better. While 8 need not converge on all of XJCs(D; En), 
it certainly converges on the subspace XiJC?s(D; En) n fC?'s(D;E,). So 6-H 
converges on 

(7.)X p is an E2-valued F-invariant C? } 
7 T: (0, s)-form on D with support compact mod IF 

where X is the indicator function of the fundamental domain Q. 

PROPOSITION 7.6. Let 1 ? p < ao. If ' C SkQ then OH(r7) converges ab- 
solutely, and uniformly on compact -subsets of D, to an element of 
JCoS(DIE; En), and 

|| H(2) ID/rp<b - IIIIP 

So 8H extends to a continuous linear map 

8H: (L -closure of SJQ) > XI~7 S(DJ/; En) of norm b . 

This extension is surjective: if R C XjoS(Dlr; En) then X?' is in the 

Lp-closure of SkJQ and 8H(Xq') =9 . 

Proof. First suppose that 9 C L2's(D/F; En). Then Xq C L?'8(D; El), so 
H(Xq) C fCK s(D; El) as in Lemma 5.3, and thus 8(H(XR)) C XJoCS(D/r; En) as in 
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Proposition 7.2. In particular, if 7? e ,Q then 8(H(r7)) converges absolutely, 
uniformly on compacta, to an L, harmonic form. Now let ' c fC UX (D/'; En) 
and calculate 

<He, *>D/r = <i' *>Dlr by (5.6) and (5.7) 
and 

<OH(XeP), I>D/r = <H(Xep), I>D = <Xq, Z I>D = <K, ?>D/r 

Using Theorem 6.2 with p = 1, we conclude 
(7.7) OH(Xq) = Hq for all p c LI, '(D/L; EA) 
In particular, if r - X c J, then 

II 0H0t7) I IDF,r 2 I i] H(ZP) I IDI F, V- IH I , tID/,rv < i lrp= b II T II b1)11 
That completes the proof of the first equation. 

148(D/F; E2) is isometric to Lo7 (Q; Ell Q) under cp -> Xg). Now suppose 
p < Ao. Then (a is dense in LI 8(Q; Ell,), which of course contains 
X% C0"9(D/F; E;). If cp c XCOp(D/F; EA), now X9 is in the Lp-closure of Sk, and 

OH(X9) = Hp = p by continuity and (7.7). q.e.d. 
The case p = oo is slightly different: 

PROPOSITION 7.8. If i c H(X-Lo"s(D/F; EA)), then 0(ij) converges absolutely 
to an element of X0Co8(D/F; EA). The map 

8: H(X-L0"9(D/F; En)) > XC~o,(D/L'; EA) 
is surjective: if 9 C XCO 3(D/F; EA) then O(H(X9)) 

Proof. Let ZX = X - L0Oo5(D/F; EA) and glance back at the proof of 
the p - case of Theorem 4.2. It gives 

ETE tie tK(z, C)I|(Y+()IdC < b elf ilk 
C D 

so H(O(*)) is absolutely convergent. Since d(+) = O(X) = 9, now O(H(4)) 
H(O(*)) is absolutely convergent to H(p). q.e.d. 

We summarize for 1 ? p < cAo: 

THEOREM 7.9. Let 1 ? p ? cao. Then the Poincare' series operator is 
defined on 

p 1: all of XiCo'(D; EA) as in Proposition 7.2; 
1 < p < O: H(X-LP?S(D/F; EA)) as in Proposition 7.6; 
p =O : H(X-L?'S(D/F; EA)) as in Proposition 7.8; 

and maps that space onto XJOC'(Dlr; EA). In fact, if 9 e XcO,8(D/F; EA) then 
|| H(Xp) IIp ' b 1 GIIp and OH(XZp) = 9. 
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We record some consequences, the second of which uses Theorem 4.5. 

COROLLARY 7.10. O-H(X*) is a bounded linear projection of 
Xy 5(D; EA) onto XOC5(D/L'; EA). 

COROLLARY 7.11. Let {qf} be a complete orthonormal set in JCI8(D; EA) 
with each q(i K-finite. If 1 ? p ? co then XJCp'8(D/L'; EA) is the Lp-closed span 
of {0H(Xq%)}. 

8. The Poincare series operator on cohomology 

Retain the notation and setup of Sections 3-7. We are going to carry 
the surjectivity result of Theorem 7.9 over to Dolbeault and sheaf cohomo- 
logy. Here there is an initial problem as to how to define 0, and there is 
the question of whether 6 should map to cohomology of Dlr or to F-invari- 
ant cohomology on D. So we first discuss these matters. 

We first must decide just how to define the Poincare series 8(c) of a 
Dolbeault class c C H0'8(D; E?). If c e CH1's(D; E ) then [15, Theorem 4.1.6] 
8(c) = J: y*(c) converges in the Frechet topology of H'8s(D; EA) to a F-in- 
variant class. Further, from the proof, if * C L" s(D; En) represents c, then 
0(8) = r y** represents 6(c). If c c Hp'8s(D; EA), 1 < p < Ao, this argu- 
ment breaks down because 8 is defined from continuity considerations on 
8 -H. In view of this, we use Theorem 4.5 to obtain a harmonic representa- 
tive * C XIC s(D; EA) for c, and we define: 

(8.1) 8(c) is the Dolbeault class of 0(#) 

whenever 0() is defined as in Section 7. 
We can view 8 as mapping either to F-invariant cohomology on D, 

H, 8s(D; En) = ce H', (D; EA): *(c) = c for v C F} 
or to cohomology on D/F, 

HO~s(D/F; En) - {a-closed F-invariant forms in A0's(D; En)} 
{a,9: i E A's-'(D; EA) is F-invariant} 

If 1 < p ? DO , those cohomologies have LP subspaces 

Hp? r(D; EA) J{[] c HO?S(D; EA): e C L' s(D/F; En)} 
and 

Hp s(D/F; EA) - {[*] C H0's(D/F; EA): e C LOj(D/f; En)} 
Evidently Hp?,'(D; EA) is a quotient of Hpos(D/F; EA). From (8.1), the image 
of 6 will consist of classes with harmonic representatives. In general this 
means that we will take 8 as mapping to the Hp?,'(D; EA). But there are a 
few cases, detailed at the end of this section, where one can prove surjec- 
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tivity to Hp?s(DIr; En). 

PROPOSITION 8.2. Every class [*] e H?,r(D; En) has harmonic repre- 
sentative. In other words, the natural map CO s(D/r; El) - H?,(D; El) is 
suriective. 

Proof. eLl'(D/r; En) is a-closed, so the same holds for HI, and it 
suffices to prove * - H* cohomologous to zero over D. 

If p = then H*(z) = KD(Z, C) A *(Q), so the Identity Theorem 
argument at the end of the proof of Theorem 4.5 shows *-Iir cohomo- 
logous to zero. 

Now let p < oc. Then HA is defined by continuity and Riesz-Thorin: if 
{1*j is a sequence of Co F-invariant E-valued (0, s)-forms on D, each with 
support compact mod r, and if {'f} - in L',-(D/r; El), then HA is the limit 

in L48(D/r; El) of the Hik= KD(- C) A *i(i). 
Exhaust D/F by an increasing sequence of compact sets and smooth the 

corresponding truncations of a. That gives a sequence {'fij c A0'8(D; El) of 
F-invariant forms with supports compact mod r, such that if F is compact 
mod r then *ilF 

= *IF for i sufficiently large. Now {+} both in 
LO,5(D/r; En) and in the Frechet space A0'8(D; El). 

In order to prove that {HA?} -* HA in the Frechet topology of A0'8(D; El), 
we will need some estimates that can be summarized as follows. Let a 
belong to the universal enveloping algebra of gc. Then 

(8.3) s-> I|I F'KDGZ( ) || is an L1 function on D and 
{II|zKD(zr)I|l is continuous in z. 

Once (8.3) is proved, 

I IF.(H~j- Hi)(z)| = E KD(Z, C) A (ij(4) - 

?< II EzKD(Z1 ) jIf 11 rj -i IfIP 
which converges uniformly to zero on compact sets as i, j -> c*. It then fol- 
lows, if E is a C?? differential operator on E2 (D A5(T*) -> D, that E(H~i - Hr)j 
converges uniformly to zero on compact sets, so {H~i} converges in the 
Frechet space A0'8(D; En). As {JHA} --> Hgr in Lp norm, now {H~ie} -> HA in 
the Frechet topology. 

If g e G then ilagY e A0'8(g Y; En) has harmonic component H~ilgy, as in 
the argument of Theorem 4.5. Taking limits, Pgy e A0'8(g Y; En) has har- 
monic component Hl/gy, so (* - H/)Igy is cohomologous to zero on g Y. Now 
as in the argument of Theorem 4.5, the Identity Theorem says that * - H- 

is cohomologous to zero on D. That is the assertion of Proposition 8.2, 
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which thus is proved pending verification of (8.3). 

We turn to the proof of (8.3). Let Ud denote the set of all elements of 
degee ? d in the universal enveloping algebra of gm. Let K be a maximal 
compact subgroup of G and decompose 

JC? 08(D; En) = 2 KJC( ) 

into K-isotypic subspaces. This is just the K-decomposition of the discrete 
series class [ic2,J. Thus, if S is a finite subset of K, there is another finite 
subset F = F(S, d, X + p) such that 
(8.4) fif qd e C (r), Ee Ud, and =(v) has nonzero 

(projection on XaS iC(a), then r C F. 

Now fix z e D and let K be the maximal compact subgroup of G that 
contains the isotropy subgroup at z. As in the proof of Theorem 3.2, we 
have a finite subset S c K such that 

if CK, q e C(K) and 9(z) > O then r C S . 

Fix an integer d > 0, let F be a finite subset of K that satisfies (8.4), and 
choose a complete orthonormal set {q92, ... } in XC?'8(D; E2) such that 

(i) if j <m e = E . dim XC(K), then (Fpj C C(r) for some r e F and 
(ii) if j > m then (pj ;e C(r) for some r e K-F. 

If = e Ud now 

(8.5) ZEKD(Z C) = E Z(pj)(Z) (? D 9) = -1(T)(Z) (i i(C) 

First, this shows that C l -Z> KD(Z, C) is an L1 function on D, as required for 
(8.3). Second, (8.5) shows that II E2KD(z .,) II, is continuous in the coefficients 
of = relative to a basis of Ud. If g e G then 

| (Ad (g)E)2TD(z,*) |D | = |I |gAI2 D(9Z1 ') III 

So now II=gZKD(gz, .)II is continuous in g. That shows II 1zKD(z,) LI to be 
continuous in z, and thus completes the proof of (8.3). q.e.d. 

Proposition 8.2 combines with Theorem 7.9 to give us 

THEOREM 8.6. Let 1 ? p ? cc. Then the Poincare series operator 6 
of (8.1) is defined on 

p = 1: all of H,'8(D; En) 
p > 1: {[ir] C Hp, '(D; E2): A e H(Z.L? '(D/L'; E2))}, 

and maps that space onto Hp?,r(D; En). 

Thus every F-invariant Lp(D/f) cohomology class for E2 > D is repre- 
sented as an Lp(D) Poincare series, with no restriction on 1. 
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Representation of cohomology on D/F by Poincare series is less certain. 
The problem is that we use the Identity Theorem to show */e - H* , 
starting with F-invariant *, but not necessarily obtaining '? invariant 
under F. However, if D/F is compact, then the Green's operator 
9: (1 - H)L'8(D/F; E2) --- L?'2(D/F; E2) sends C- forms to C- forms, giving 
us /-HAI- 8(=*ge) when 0 = 0. This argument extends a little bit past 
the compact case: 

THEOREM 8.8. Let 1 ? p < o and suppose that 0 is not contained in 
the continuous spectrum of D on L'8s(D/F; En). Then every class bid C 

Hp',8(D/F; E2) has a harmonic representative, and so is of the form 0(c) for 
some c e Hp's(D; En). 

Proof. The argument of Proposition 8.2 gives a sequence { c}c 
A0'8(D; En) of F-invariant forms with supports compact modulo F, such that 

ir} --> and {Hiri} -> Hgr in the Frechet topology. 
Since D is uniformly elliptic and its continuous spectrum on Ls s(D/F; En) 

omits 0, the Green's operator 

9(E19) = (1 - H)q' 

is defined on all of (1 - H)L?'8(D/F; E2) and there sends Co forms to C?? 
forms. Thus the constituents of the Kodaira-Hodge decompositions 

-i = 8(a*08rj) + 8*(ag9rj) + Hjrs 

all are Coo forms in L?'8(D/f; E2). Since {airs} - 0, Frechet, the 

(Wij = yi + H~ij IpYi = a j*9 
satisfy 

{4X} > G and {Haj} = {HiH} > Hi/c. 

By its usual construction, 9 is continuous from the Hilbert space F-invariant 
forms, with derivatives of order ? m square integrable modulo F, to the 
corresponding space of m + 2. It follows that {9*ir} is Frechet convergent. 
That gives Frechet convergence {'} -> e A0's-1(D; E2). Now 

i - Hi = lim {Ii - Hi} lim {827i = 827 - 

As ' is F-invariant by construction, we conclude that *- I/ is cohomo- 
logous to zero on D/F. 

The representation [ 0] =([H(X*/)]) now follows from Theorem 7.9. 
q.e.d. 
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