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EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD

ROBERT J. BLATTNER1 AND JOSEPH A. WOLF2

Abstract. Any representation ir of SO(2, 4) quantizing the Kepler manifold

has the same lowest highest weight as the representation i<0 in the

Sternberg-Wolf description of the (7(2, 2)-restriction of the metaplectic

representation of Sp(4; R). Hence, modulo covering groups, ir is unitarily

equivalent to v0.

0. Introduction. The Kepler manifold T+(S3) is the cotangent bundle of the

3-sphere, minus the zero section, with the symplectic structure induced by

that of the cotangent bundle. It is a Hamiltonian symplectic homogeneous

space of the conformai group SO(2, 4) (cf. [11]). The action of SO(2, 4) on

T+(S3) has been quantized by various authors ([3], [6], [7], [10], [11]) to give

an irreducible unitary representation tt of SO(2, 4) on L2(S3). However, these

constructions of tt suffer from being either ad hoc or else arrived at by a

limiting procedure. Here, we give an explicit identification of 77 within the

framework of the metaplectic representation.

In this note we show that tt is essentially unitarily equivalent to a certain

representation v0 of the 2-sheeted cover SU(2, 2) of SO(2, 4), described in [9].

It was noted in [12] that the coadjoint orbit of SU(2, 2) which corresponds to

vQ under the moment map [4] is the coadjoint orbit of SO(2, 4) symplectomor-

phic to T+(S3), which of course suggests, but does not prove, that tt = v0.

Here we prove this equivalence by examining restrictions to a maximal

compact subgroup of SU(2, 2). The interpretation of this result in terms of

geometric quantization will be the subject of another paper.

1. The representations 77 and ttx. Rawnsley [8] and Blattner [1] have

discussed two positive polarizations of the symplectic manifold T+(S3) and

their corresponding Hilbert spaces. The first polarization F is just the cotan-

gent fibration, and the associated Hilbert space %F is naturally isomorphic to

L2(S3). The second polarization, G, is obtained as follows: Identify T + (S3)

with

{(<?, x) ER4 X R4:e-e= l,e-x = 0,x^0}. (1)

Send (e, x) to \x\e + ix E C4. The image is

X= {z EC*: z-z =0,z ^0}, (2)
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146 R. J. BLATTNER AND J. A. WOLF

X is then a Kahler manifold with Kahler form

-2-s'2id(\z\~x{z-dz -z-dz)).

This structure defines G. The associated Hilbert space %G consists of

holomorphic functions on X square integrable with respect to the measure

exp(-477|x|)25/2|x|1/2y, (3)

where y is the Liouville measure on X.

There is no positive polarization of T+(S3) stable under SO(2, 4) [11].

However F is SO(l, 4) stable and G is SO(2) X SO(4) stable, and hence

geometric quantization [2] provides unitary representations ttf of SO(l, 4) on

%F and ttg of SO(2) X SO(4) on %c. Moreover, the half form pairing of %F

with %G (see [8]) gives a bounded nonunitary operator T of %F onto %G,

with bounded inverse, which intertwines ttf|SO(4) and 7rc|SO(4).

For our purposes tt will be any irreducible unitary representation of

SO(2, 4) such that ir\SO(X 4) = irF and v7|SO(2)xSO(4) s mG.

As usual, the indefinite unitary group U(2, 2) = (g G C*x4: ghg* = «},

where

72       0

0      -I2

and SU(2, 2) = {g E U(2, 2): det g = 1}. Now A2(C) = C6 has a real form

R6 invariant under {/\2(g): g G SU(2, 2)}. This action of SU(2, 2) on R6

preserves a nondegenerate quadratic form of signature (2, 4). In this way we

get a homomorphism a: SU(2, 2)—>SO(2, 4), where a(g) = /\2(g)\R<; and

this a is in fact a double covering. Letting ttx = tt ° a, we obtain an irreduc-

ible unitary representation of SU(2, 2).

2. The representation v0. Fix a nondegenerate antisymmetric bilinear form

{u, v] on R8. The symplectic group Sp(4; R) is the automorphism group of

(R8, {■,■}). If u,v E R8, then £,„: xv-+{({u, x}v + {v, x}u) belongs to the

Lie algebra §p(4; R). Fix a basispx, . . . , p4, qx, . . . , q4 of R8 with {p¡,p¡) =

{li> 1j} ~ 0 and [Pp <Jk) ~ Sjk- Then êp(4; R) has basis

^a,b        ^PaJ>b' ^>a,b        ^Pa,Qb' ^a,b        ^qa,<lb' ^   '

Let X he Lebesgue measure on C4. We have a Hilbert space

% = if; C4 -» C holomorphic: (|/(z)|2exp(-|z|2) i/X < oo]        (5)

with inner product

</p/2> = ^//.W^expHzlVA.

In  multi-index   notation  z" = z"' ■ • ■ z4',   «!=«,!••• «4!,   where   « =

(«,, . . . , «4), the <p„(z) = z"/Vn~\  form an orthonormal basis of %.

The metaplectic group  Mp(4;  R) is the two-sheeted covering group of
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EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD 147

Sp(4; R). It has a unitary representation p. on DC, called the metaplectic

representation, specified by

MtaJ,) =   - T t9"9* ~ Z"d" ~ Zbd" + Z"Z» ~ Ô"-")'

M&j,) = 2^db ~ z°db + Zbd" ~~ z«z"^

(6)

where oa = 3/3za (see [9]).

Now U(2, 2) is naturally isomorphic to the subgroup of Sp(4; R) with Lie

algebra spanned by the

L.b + £',*> 1 < a < A < 2    or    3 < a < A < 4,

£„-£;,„, (a, A) = (1,2)   or   (3,4),

4,* - £»' 1 < a < 2   and    3 < A < 4,

£.6 + 6*» 1 < a < 2   and   3 < A < 4. (V)

Moreover

¿m(C* - ft.«) = ¿A - ZA>

*(€*»-€*)- -¿(»A + Vi),

*(£.* + O = 9<A - V* (8)
Let MU(2, 2) denote the inverse image of U(2, 2) in Mp(4; R). Then

v = det'/2 ® u|MU(2,2) (9)

is a well-defined unitary representation of U(2, 2). There, it agrees with p as

given in (8), except for the cases a = b in the first line, which become

rfp

IX,

IX.

= \dV[\ X^ia.a + O  - 2 Xb(kt + &)}

= '{í^(^3a+i)-|^A)}- (10)

We know [4, Theorem 4.23] that DC is the direct sum of subspaces

DC¿ = closed linear span of {<p„: nx + n2 — «3 — n4 = d } (11)

and that

¿ = — OO

where ^ represents U(2, 2) irreducibly on 3C¿.

(12)

In this note, we are concerned with v.0lSU(2,2)-
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148 R. J. BLATTNER AND J. A. WOLF

3. Restriction to S(U(2) X U(2)). S(U(2) x U(2)) is a maximal compact

subgroup of SU(2, 2), and consists of matrices g = (q °b) with A, B E U(2)

and (det A)(det B) = 1. Its center Z consists of those g with A = e'9I2 and

B = e~'eI2, while its derived group consists of those g with A, B E SU(2).

The kernel of a; SU(2, 2) -» SO(2, 4) is just {±74}. Moreover, a maps

S(U(2) X U(2)) onto SO(2) X SO(4), Z onto SO(2), and SU(2) X SU(2) onto

SO(4).

Now the natural action of SO(4) on S3 lifts to T+(S3) and so to A". By [8]

and [1], the action of g G SO(4) on %G sends/to z r-»/(g_1 ° z). Hence %G

is a direct sum of subspaces

(%G)k = span of {f\x;/homogeneous polynomial of degree k},    (13)

and

"gIso(4) preserves (%G)k and acts irreducibly on

2 * k

it by the (k + 1) -dimensional representation O ® O ■

Moreover, results of [8] and [1] prove that

0 1|

(14)

(%G)k is the i(k + l)-eigenspace of d-nQ -1 0

0.4.2

02,4

°4,4

(15)

This describes 7r|SO(2)xSO(4) and hence ^ils<u(2)xu(2))-

On the other hand, let h be the Cartan subalgebra of u(2, 2) consisting of

the diagonal matrices seen in (10), and let ey (j = 1, 2, 3, 4) be the linear

functional

IXi

r-> ixj   on fj.

a, a2        a, <*i «3

We use the simple root system o — O — O for u(2, 2) and O © O for

u(2) © u(2), where a, = ey - eJ+x. Then [9, Lemma 5.3] %$ is a direct sum of

subspaces

%rr = span of {(¡p„: «, + «2 = r = n3 + «4) (16)

and

,'o|u(2)xu(2) preserves 3C,>r and acts irreducibly on it

by the representation with highest weight (e, + e2) + r(ex — e4).

Hence

,'olsu(2)xsu(2) acts irreducibly on %rr by the
r r

(r + l)2-dimensional representation O ® O ,
(18)
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EXPLICIT QUANTIZATION OF THE KEPLER MANIFOLD 149

and

%rr is the 2i(r + 1 )-eigenspace of dv0
il2    0

0 -iU (19)

Comparing (14) with (18) and (15) with (19), and remembering that

0 2

da
lil2    0       \

\0       -il2)
-2 0

0,

02,4

04,4
we have

Lemma. 7t,|S(U(2)xU(2)) and p0\s(V(2)xV(2)) are unitarily equivalent.

4. Equivalence of tt, and p0. In the simple root system {a„ a2, a3) of §3,7T,

and v0 have the same lowest highest weight e, + e2. Thus [9, Theorem 5.8]

gives our result:

Theorem. The representations ttx and v0 of SU(2, 2) are unitarily equivalent.
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