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O. I n t r o d u c t i o n  

In [6] we worked out explicit Plancherel formulae for the parabolic subgroups of 

real rank one simple Lie groups. Here  we continue that work by considering a class 

of non-unimodular groups that includes most of the maximal parabolic subgroups 

of the classical groups. In those maximal parabolics P = MAN,  M need not be 

compact. This has two important consequences. First, the compact extension 

procedure of [6, w based on [7, w must be replaced by a procedure based on [8, 

w Second, and more important, the global operator  in our Plancherel formula, 

viewed as an operator  on Z = center (N), becomes non-elliptic, e.g., the wave 

operator.  This causes L1 problems that are not yet completely resolved. Despite 

that, we obtain explicit Plancherel formulae (Theorem 4.9) for virtually all the 

maximal parabolic subgroups of the classical groups. In addition, we describe the 

nature of the global operator  (Theorem 5.11) that occurs in the Plancherel formula 

of any parabolic subgroup of a semisimple Lie group whose nilradical is nonabelian 

and has square integrable representations. 

w contains a discussion of non-unimodular Plancherel formulae in general and 

the domain problem for the global operator  that compensates lack of unimodular- 

ity. In w we describe the maximal parabolic subgroups in a large family of classical 

groups and specify their generic representations. Then in w we define the global 

operators for those parabolic groups and examine their analytic and algebraic 

properties. w consists of the Plancherel formula (using the global operator) for that 

family of parabolics and a discussion of the extent to which analogous formulae 

hold for the other  maximal parabolic subgroups of classical groups. In w we 

introduce another  type of global operator  - -  it exists whenever the nilradical is 
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noncommutative but has square integrable representations. We compare the new 

operators with the old ones and verify that they agree when both are defined. We 

then apply the new operators to obtain Plancherel formulae for several non- 

maximal parabolics. Finally, in w we return to the domain question for certain of 

the global operators. 

We thank C. Fefferman, R. Johnson, A. Kleppner and R. Prosser for helpful 

conversations and correspondence.  

1. T h e  n o n - u n i m o d u l a r  P i a n c h e r e l  f o r m u l a  

As in [6] we emphasize the global (on the group) operator  that appears in the 

Plancherel formula, rather than the infinitesimal (on each representation space) 

operators. In effect, the global operator  carries more information and yields the 

infinitesimal operators directly. In any case, the infinitesimal operators are fairly 

transparent - -  for example, they are multiplication by the modular function when 

the representation is induced from the kernel of the modular function ([14], [3]), or 

multiplication by canonical semi-invariants when the representation has a Kirillov 

model [4]. In our situation the global operator  turns out to be an extremely 

interesting sort of generalized pseudo-differential operator,  and this sheds some 

light (but many questions) on problems of harmonic analysis on the group. 

Here is a global formulation of the non-unimodular Plancherel theorem (see also 

[7, theorem 6.4]). 

1.1 T h e o r e m .  Let G be a locally compact group of type I with right Haar 

measure dg and modular function 6~. Then there exist (i) a positive selfadjoint 
invbrtible operator D on L 2( G ), affiliated with the left ring of G and semi-invariant of 
weight 6~, and (ii) a positive standard Borel measure tx on G, such that 

(1.1a) f lf(g)I2dg = fo tt~r(D�89 
G 

for all f E  Dom(D�89 O D-�89 

R e m a r k s .  (1) Implicit in (1.1a) is that, for fEDom(D�89189 
7r(Dkf) is Hilbert-Schmidt for Ix-almost all [~] ~ (~ and [~]~ll~'(D�89 is in 

L~((~,IX). But Theorem 1.1 makes no assertion about the size of D o m (D �8 9  

D-~L~(G). In the Lie group cases known so far ([13], [6]), CT(G)C D o m (D �8 9  

D-�89 but we will see in w that this is not always the case. 

(2) If (D~, IXl) is another  pair as in Theorem 1.1, then it is equivalent to (D, IX) in 

the following sense. There  is a positive selfadjoint invertible operator  C on L2(G), 
affiliated with both the left and right rings of G, such that D~ = CD. From the 
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affiliation, ~ ( C )  is defined and is a scalar c(Ir)I for/x-almost-all  [Tr] E O. Also,/x~ 

is equivalent to /X with d/x/d/x, = c(~r). 
(3) Since D is affiliated with the left ring, D,~ = 7r(D) is defined for/x-almost-  

all [Tr] ~ G. Those D,, are the infinitesimal operators of the non-unimodular 

Plancherel theorem ([3], [14]; or see [6, theorem 1.1]). For all f E CT(G), 

D~  2. rr(f) is Hilbert-Schmidt for/x-almost-al l  [~-] and 

(1.2) f lf(g)lZdg = f liD1=/:. ~'(Dll~d/x (~"). 
G ,2, 

(4) One needs the global operator  D to understand the canonical trace on the 

left ring of G, and in fact it is the global operator  that passes more naturally to the 

semi-finite non-type-I situation. But the price is the domain problem. (See [7, 

p. 486], [8, pp. 129-130], [3, p. 228], and w below.) However,  the following seems to 

be the case, and we verify it for the groups that appear in this paper: 

1.3 C o n j e c t u r e .  If  G is type I and D is as in Theorem 1.1, then Dora (D �89 n 

D-~LT(G) is dense in L2(G). 

(5) By [7, theorem 6.4] there exists a unitary map Y: L2(G)--* 
f, ,~e~= @ ~,M/X (Tr) that simultaneously decomposes the left and right regular 

representations into irreducible constituents (with multiplicity equal dimension). 

That is half the point of the Plancherel Theorem. The other  half amounts to 

specifying the intertwining operator  Y. By (1.1a) 

( Y f ) ~  = rr(Dlf)= f (D�89 
G 

f E  D o m D ~ n D-�89 

This is one reason why we are interested in Conjecture 1.3. On the other hand, by 

(1.2) one does have 

(Yf) .  = D,,�89 f E C~[(G). 

(6) We now recast the Plancherel formula as an expansion of the Dirac trace. 

This is a much more subtle procedure than in the unimodular case. The point is that 

to evaluate the Dirac trace ~6(q~) for ~0 ~ C*(G)+, one must factor q, into a 

convolution product of left bounded elements of L2(G), and then use the 

corresponding bitrace (see [7, lemma 4.3]). For example in the unimodular 

situation, elements f E A ( G ) n  LI(G) are factored in [9, corol. 4.3] into convolu- 



PLANCHEREL FORMULA 123 

tions of L2 functions;  and in the infinitesimal non-un imodula r  situation, e lements  

f E CT(G)  are fac tored  in [3] into convolut ions  of C~m)(G) functions. In the global 

non-un imodula r  situation, this mat te r  of factorizat ion touches  on domain  ques- 

tions, and so it is more  delicate. 

Let  f*(g) = f(g-~)6(g) ' and write O f  = f*, Af  = f6-k Define D '  = ~~D~"~ -1. (In 

the nota t ion of [7], D �89 = M '-1, D '~ = M-1.) D '  satisfies D '~ = A-~D ~ and D ' A  = 

AD ' .  Then,  setting h = f . f * ,  we calculate 

h ( e ) =  f Ill 2= f Trrr(D~f)Ir(O�89 

= f Tr  rr(D~f)~r(f~Dlf)dtz (rr) 

= f Tr  rr(D�89 * D'~f*)dtx (Tr). 

We use the fact that D (resp. D ' )  is affiliated with the left (resp. right) ring to write 

(1.4) h (e)  = f Tr  1r (D ~D '~h )d/~ (Tr). 

We can replace h by A-lh to get 

(1.5) h (e)  = f Tr  7r (Dh)dtx (~r). 

But these computa t ions  are purely formal.  We now make  precise for  which kinds of 

functions formulas  (1.4) and (1.5) actually hold. 

Here  are some notat ional  convent ions  (see [7, 8]): 

P(G) = cont inuous  posit ive-definite functions on G ;  

L2(G) :e = left bounded  e lements  in L2(G) 

= {f E L2(G):  Ilf * h 112 ~ ell h 115, 'qh ~ L2(G)}; 

9 4 ( G )  = {h ~ L2(G):  A"h ~ L~(G) ~, Vn ~ Z}. 

1 .6  P r o p o s i t i o n .  Assume D o m  D ~ f3 D-~L1(G) f3 L2(G) ~e is dense in L2(G). 
Then 
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(1.6a) h (e)  = f Tr  rr (D  �89 '~h )d/z ( rr ), 

Vh E P(G) n D o m  D ~D'i n D-ID'-~L~(G) n 9it (G); 

(1.6b) h (e)  = f T r  rt (Dh )do (~), 

Vh ~ P(G) n D o m D  n D-1LI(G) n 9it(G). 

P r o o f .  Since D '~ = A-~D�89 -I and A -~ preserves  P(G) and 91t(G ), we see that  

( l .6a)  and (1.6b) are equivalent .  We  shall p rove  the fo rmer .  

Let  h ~ P ( G ) n  D o m  DiD '�89 n D-�89189 O 9it. The  p roof  of [2, t h e o r e m  13.8.6] 

shows that  we may  factor  h = / * f ,  where  / E  P ( G ) n  L2(G) ~e. F u r t h e r m o r e  f is 

cons t ruc ted  as follows. The re  exist non-nega t ive  po lynomia l  funct ions pi which 

vanish at 0 such that  f~ = p, (h) (mult ipl icat ion is g roup  convolu t ion)  and f~ ~ / i n  

L2(G). But  p~ (A"h)  = A"p~ (h).  Thus  [2, t h e o r e m  13.8.6] also appl ies  to A"h to yield 

A"h = f,  *f , ,  / ,  = l imp~(A"h).  

Then  f ,  = A"/;  so f E P(G) n 9 I t (G)  a n d / *  = A f  E Lz(G). 

Put g = f* ,  so that  h = f * g * with f, g, g*  @ P(G) n 9I t (G) .  Now h E Dora  D'�89 

and D ' I  is affiliated with the right ring. Thus  g * ~ D o m  D '�89 and D'~h = f * D'~g * = 

[ * (Dig) *. M o r e o v e r  D'�89 E D o m D  �89 and, since D ~ is affiliated with the left ring, 

f E D o m  D ~ and 

DID,�89 = D~[ * ( D i g )  *. 

By the P lanchere l  fo rmula  (1.1a), 

h(e) = (f * g *)(e) = (f, g) 

= f Tr  r189 (~')  

= f T r  r * (D~g)*)d~  (~')  

= f TrTr(D~D'�89 dl~(rr)" 

Thus  the p roof  is done  once  we establish 
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1.7  L e m m a .  Let h = f , g *  where h ~DomD~D'~AD-~D'-~L,  and 
f, g, g* ~ L2. Then 

7r(D�89 ) = 7r(D~f)cr(D�89 )* 

T o  prove  this we requi re  ano the r  

1 .8  S u b l e m m a .  Let k E D o m D ~ A D - ~ L ~ O L ~ ( G )  ~. 
D o m D  �89 

a.a. ~ G .  

Then for every u E 

7r(D~k * D ~ u )  = ~'(D~k)~(D~u) a.a. ~r E G. 

Indeed ,  how is Ir(D~u) defined? By the densi ty assumpt ion ,  we may  

T h e r e f o r e  

~r(D�89 * D~u) = ~r(D�89 * D~'u)) = lim ~(D~(k * Dguj)) 

= lira ~(D~k * D~u~) 

= lim Ir(D~k)~r(D~u,) 

= ~r(D~k)~(D~u). 

P r o o f  o f  L e m m a  1.7 .  

Plancherel  formula ,  left boundedness  of k, and S u b l e m m a  1.8, we c o m p u t e  

(D'�89 k)  = (f  * O'�89 *, k )  -- (f*(D~g) *, k) 

= (f, k *D~g)  

= f T r  7r(D�89 * D~g))*d~ (~) 

= ( Tr  ~r(D�89 (~) .  
d 

q.e.d. 

Let  k E D o m  D �89 n D-�89 n L2(G) se. Apply ing  the 

P r o o f .  

choose  uj E D o m  D ~ O D-~L, such that  

ui --~ u, D~uj ~ D~u, both  in Lz. 

Then  Ir(D~ui) --~ ~'(D�89 a.a. 7r (actually as H i lbe r t -Schmid t  opera tors ) .  Now since 

k is left bounded  and  D~'uj ~ L1 we have  

k *D~uj--~k *D~u in L~, 

D�89 * D~uj)= D~k * D~uj E L~. 
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The Lemma  follows by the density assumption and the unitarity of Y. q.e.d. 

We may consider (1.6a) and (1.6b) to be alternate forms of the Plancherel 

formula (1.1a). (1.6b) is neater  to work with; but it is the distributions 

h ~ Tr 7r (D ~D'�89 which are AdG-invar ian t ,  3 (g)-eigendistributions on G. (Note 

also that the expression D�89189 equals D ~' * h * D ~ in the notation of [6, (3.3a)].) As 

with (1.1a), there are non-trivial domain questions to be dealt with in both (1.6a) 

and (1.6b). 

We wish to give a name to the operators  of Theorem 1.1. It seems appropriate,  

since such operators  were first considered in [1] and [11], to make  the 

1.9 D e f i n i t i o n .  By a Dixmier-Pukanszky operator on a locally compact  

group G we mean a positive, self-adjoint, invertible opera tor  on L2(G), affiliated 

with the left ring and semi-invariant of weight t~o. 

Then, by combining [13, lemmas 7.1, 7.2] and [7, theorem 6.4], we have the 

following result. 

1 .10 T h e o r e m .  Let G be type I and let D be a Dixmier-Pukanszky operator 
on G. Then in fact D does occur in the Plancherel formula ; i.e., there exists a positive 
standard measure tx on G such that 

f lf(g)12dg = f II rr(D~f)II~dl -~ (~'), Vf E D o m D  ~ 71D-~L1(G). 

Now in deriving the Plancherel formula for a specific group, there are two levels 

at which one can operate.  The first - -  and more detailed - -  procedure is the one 

used in [6]. Specifically, from an explicit knowledge of the irreducibles, one finds 

the equivalence class ~ of Plancherel measure by the group extension technique 

[7]. One then computes  Tr rr(f) formally (usually via [7, theorem 3.2]) and uses the 

accumulated data to guess what opera tor  D will work in formula (1.6b) say. Then 

having guessed D, one goes back, adjusts /z appropriately and proves rigorously 

one of (1.1a), (1.6a) or (1.6b). We carry out tha t  process for the maximal parabolic 

subgroups of the classical groups in w and for minimal parabolic subgroups of 

certain split rank 2 groups in w In the second procedure,  one ignores the 

irreducibles and simply produces a Dixmier-Pukanszky operator .  Then by 

Theorem 1.10 one knows there exists a measure/2 ,  equivalent to/x,  such that the 

Plancherel formula holds with the pair (D,/2). This is less precise than the first 

method since one doesn ' t  identify the R adon -Nikodym derivative dtz/dfi. We shall 

implement  this second procedure in w for an arbitrary parabolic whose nilradical is 

non-abelian and has square integrable representations mod its center. 
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Finally we remark  that the mat te r  of uniqueness  is up in the air. The  quest ion of  

whether  there is a "be s t "  pair  (D , / z )  in any sense is - -  a l though it has been studied 

by several people  - -  complete ly  unresolved.  We  shall say a little more  about  this at 

the end of w 

2 .  T h e  i n d e f i n i t e  u n i t a r y  g r o u p s  

Our  technique for obta ining the Plancherel  formula  can be applied to almost all 

of the maximal  parabol ic  subgroups of classical groups. But in o rder  to avoid 

repeti t ion,  we present  the details only for  the (indefinite) unitary groups.  See w 

for  a summary  of the results on the o ther  classical groups.  

Let  F deno te  one  of the fields R (reals), C (complexes),  or  Q (quaternions).  For  

n => 1, we view F" as a right vector  space. Then  for  u => 1, v_->0, u + v = n, we set 

F " ~ =  F" with hermit ian form 

(2.1) (x, y>= x,y,- E x,y,. 
1 u + l  

The  indefinite unitary groups  are 

U(u,v;F)=the F linear t ransformat ions  

No te  that 

of F "~ that preserve ( . , . ) .  

t 
O(u, v)  F = R 

U(u,v;F)= U(u, v)  F = C  

Sp(u, v)  F = Q 

is always a reduct ive real Lie g roup  of R-rank min (u, v). 

Next  let F s• = the space of s • n matrices over  F. For  A E F "• we deno te  

A * = 'fi, E F"• Then  

U(u,v; F)= {g ~F("+~176 g(~ 0 
0 ) g . = ( ~  - ' o ) } "  

- L  

If n = u + v we have a hermit ian map 

~ :  F,X- • F,• F ,• 

given by 

(2.2) ~g((A1, B1), (A: ,  B2)) = AIA * - B~B *, 
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where  A~ C F s• B~ E F "*~ We write 

F,x<-,~ = F , •  

Next for  A E F TM, put 

= 1 ( A  + A *), Re  A 
.& 
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with hermit ian  m a p  ~ .  

I m A  = I ( A  - A*) .  

(z,,x,)(z2, x2 )=(z ,+z2+~Im~(x , , x2 ) , x ,+x2) ,  z, EImF'• E F  "*t'v~. 

The  g roup  G L ( s ,  F ) •  U(u,  v;  F) acts by au tomorph i sms  on N, .... (F) via 

(2.3) (7, g ) ' ( z , x ) = ( T z y * , 7 x g * ) ,  7 E G L ( s , F ) ,  g E U ( u , v ; F ) ;  

and so we have  a sernidirect p roduc t  

P ..... (F) = N .... .  (F)-  (GL(s ,  F) x U(u,  v ;  F)). 

Note  that  the choice  s = 1, v = 0 gives as a special case the  parabol ic  groups  

cons idered  in [6]. 

2 .4  P r o p o s i t i o n  [15,  17] .  Let p >= q > 1. Then the groups P,:p-s.q-,(F), s = 

1 , . . . ,  q, constitute a complete set of representatives for the conjugacy classes of 
maximal parabolic subgroups of U(p, q;  F), except that P.-J;L, (R) is not maximal in 
O(n, n). 

D e n o t e  e = dimRF. For  7 E GL(s ,  F), let detR7 deno te  the module  (with respect  

to Lebesgue  measure )  for  the act ion of 3~ on F'.  Set G L ' ( s , F ) =  

{Y E GL(s ,  F): d e t ,  = 1}. We  have  det~ 7 = I ~ ( y ) l  where  

f usual real d e t e r m i n a n t  F = R 

(2.5) 0(7 )  = lusual complex  de te rminan t l  2 F = C 

lusual complex  de te rminan t  viewing Q = CZl 2 F = Q. 

N ..... (F) = I m  F "• + F'• 

with g roup  compos i t ion  

Then for  s => 1, u + v = n, u => v => 0, define the simply connec ted  ni lpotent  Lie 

group  
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We now exclude from consideration the situation: F = R and s odd. Then the 

function z ~ t0(z), z E I m F  ~, is a non-trivial real polynomial function on I m F  ~• of 

degree es. In case F ~ R, to is actually non-negative. 

Next denote  the multiplicative group of positive real numbers  by R* and view it 

as the group of positive real scalar matrices in GL(s,F) .  Then G L ( s , F ) ~  

R* x GL'(s ,F) .  The Langlands decomposit ion of P~ .... (F) is as follows: set N = 

N, .... (F), A =R+*, M = G L ' ( s , F ) x U ( u , v ; F ) .  Then P = P ~  .... ( F ) = N A M .  (We 

continue to write N A M  for the same reasons as in [6].) The group multiplication is 

(2.6) (z,, x,, a,~, Vl, g~) (zz, x2, a,~, Yz, g2) = 

(Zl  + 2 , r l~ / lZ2T 1 + �89 gg(x~, rl3/lx2g 1"), Xl + r~y~x2g*, a ..... Y~Y2, g~g2). 

The modular  function is given by 

1 FS • v). (2.7) 6uaM(Z,x, ar, y , g ) =  6NA(Z,x,a,)= r 2q, q = d i m ,  I m F  ' •  

Also, the polynomial t0(z) is M-invariant  and A-homogeneous .  Indeed 

(2.8) O(mar" z ) =  r Z " ~ ( z ) =  r2a~g~to(z). 

The representation theory of the groups P, .... (F) has been completely described 

in [I5]. Since we are interested in the Plancherel formula, we only need consider 

generic representations. Put Z = Cent N, g = Lie algebra of Z, ~* = Hom~, (8, R) and 

k = dim Z, l = dim N / Z .  We identify Z with ~* by the abuse of notation A (z) = 

e '~('~ 3. E ~*. We also identify ~* with ~ (or Z )  via the non-degenerate  bilinear 

form 

(2.9) (z, A) = Re trace zA *, z, A G Im F "• 

(the notation is as in [15, p. 41]). Put 3* = 8" fq GL(s ,  F) = {A ~ 8" : 0(3-) ~ 0}, the 

Zariski open subset of Im F '• consisting of maximal rank matrices. To each A ~ ~o*, 

there exists an irreducible unitary representat ion class [7,] of N, uniquely 

determined by the equation 

r ~ ( z n )  = X ( z ) v ~ ( n ) ,  z ~ z ,  n ~ N.  

Moreover  [y~] r  [y~,] if A / A ' .  These are the generic representat ions of N. The 

generic representations of N A  are obtained by induction 

r h = Ind~ay~, A E ~ .  
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Since 

ar"  ['yx ] = ['Y,-=x ] 

we have certain equivalences. Put 

(2.10) S = { a  ~ * :  [q,(a)l = 1}. 

Then S parametr izes  a generic set of inequivalent  irreducible unitary representa-  

tions of NA.  The action of M commutes  with that of A and is essentially transitive 

on S. In fact, if F = R or  Q, M is transitive on S. If F = C, there are s + 1 orbits; and 

a cross-section for these orbits is the set 

S =  ~/ - L  , : i = 0 , 1 , ' " , s  . 

Fix al ~ S (F = R or  Q), and A, C S (F = C), i = 0, 1,- �9 -, s. Then  the M-stabi l izer  of 

[~7~,] is the same as the M-stabi l izer  of  either [y,,] or  A, itself; it equals 

(2.11) f s 
S p ( ~ , R )  x O ( u , v )  F : R ,  s even 

M1 --- 
SO*(2s)  • Sp(u, v)  F = Q 

M~ = U ( i , s - i ) •  F = C ,  i = 0 , 1 , - " , s .  

Note  that in all cases the stability g roup  is reductive. Wolf  [15, p. 52 ff] has proven 

that ~7~, extends to an ordinary representa t ion "~, of  M,. Then  the generic 

representa t ions  of  N A M  are: 

(2.12) 

p 
7r~ = IndNau~ r/1 @ r, r E/~/,  F =  R , Q ,  

F = C .  

The  Plancherel  formula  we will deduce  for P looks as follows. Let q = k + �89 

k = dim~Z, l = dim~N/Z. Consider  the opera to r  E defined on P by letting it act on 

the direct factor  Z according to 

where ~ is the constant  coefficient differential ope ra to r  on Z which corresponds  

under  Four ie r  t ransform to multiplication by ~ - -  see w for  the precise definition 

of E. Then  
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f Tr  7"r.(E f)dtx~,(z) 

f (1 . )  = 

F = R , Q  

F=C.  
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3. Def in i t ion  a n d  propert i e s  of cer ta in  u n b o u n d e d  o p e r a t o r s  

Now we define the global u n b o u n d e d  opera tors  that will appear  in our  Plancherel  

formulae  for Ps .... (F). When  s = 1, v = 0 they are the fractional powers  of the 

Laplace opera to r  that occurred already in [6]. In general  they will be fractional 

powers of the absolute  value of a non-elliptic constant  coefficient differential 

opera to r  on Z. We develop  the algebraic and analytic propert ies  of  such opera tors  

in this section. 

3a. Definition of the Operators. Consider  a differentiable manifold  V = Z • W 

where Z has a fixed identification with an euclidean vector  space R k. In our  

applications, we will have V = NA or V = N A M  and Z = Cent  N. The  euclidean 

structure on Z defines an opera t ion  of partial Fourier  t ransfer  on V via 

(3.1) ~ ( f ) ( s  f f(z,w)e"Z'r s  w E W. 
II k 

Suppose next that  0(s  is a polynomial  funct ion of s E R k. Then  there  is a unique 

"cons tant  coefficient" differential ope ra to r  | on V which is related to 0 by the 

equat ion 

(3.2) ~((gf)(~,  w) = 0 (~ )~ ( f ) ( s  w). 

We may utilize the Four ier  t ransform then to define positive powers  I @ I', namely 

(3.3) IOl' f(z,w)= ~-~{lO(~)l',~(f)}(z,w), t>=O. 

These opera tors  do not increase the W-pro jec t ion  of the support  of  f, but  they may 

increase the Z-p ro jec t ion .  

Now fix a positive Radon  measure  dw on W. That  de termines  a positive R a d o n  

measure  on V by dv = dzdw, where dz is Lebesgue  measure  on Z. If V is NA or 

NAM, H a a r  measure  is of  this form. Then,  exactly as in [6, prop.  2.6], we have 
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3 .4  P r o p o s i t i o n .  View I0 I', t >= 0, as an operator on L 2( V, dr)  with domain 

CT(V).  Then IO I' is symmetric, and its closure is a positive self-adjoint operator. 

The unbounded operators in the Plancherel formula of N A  and N A M  are 

special cases of the above construction. With k = dimRZ, l = d i m , N / Z  and 

q = k + ~/, we have diffeomorphic splittings 

(3.5) Z = I m F  * •  k, N A  ~ Z x ( R ' x R * ) ,  N A M - - - - - Z x ( R ' x R * x M ) .  

Recall the polynomial function ~b on Z defined in (2.5). The corresponding 

differential opera tor  ~ is specified by (3.2); and the powers I VI '  by (3.3). Then our 

operators  are defined, relative to (3.5), by 

(3.6) D = (2~-)-qlxt'l q/d~ on NA,  

(3.7) E = (2rr)-ql~l  q'a'g* on N A M .  

3b. Density Properties of the Operators. We recall the result of [6, w 

3.8  T h e o r e m .  I f  t >-_ O and f ~ C~m)(V) with m > 2t + k, then 

a ' f  E LI(V, dr). 

We need an analogous L1 property for the one paramete r  family I~ l '  - -  first in 

order to know that rr(D�89 means f~(D~f)(g)Tr(g)dg,  and second to verify 

Conjecture 1.3 in the cases under consideration. Well, the analog of Theorem 3.8 

for I~1'  is simply not true in general. Experience indicates the likelihood of a 

critical value a such that 

I ~ I ' C ~ ( V ) C L , ( V ) ,  t >ct, 

I ~ I ' C T ( V ) ~ L , ( V ) ,  t<=a. 

(We state a specific result in the Appendix w Nevertheless,  we can verify 

Conjecture 1.3. Let ~ ,  = {A E Z :  qJ(h)= 0}, a Zariski-closed subvariety of Z. 

3 .9  D e f i n i t i o n .  Put 6t , (V)  = {f(z, w): f has propert ies (i)-(iv)}, where 

(i) f E  C| 
(ii) :IL C_ W compact  subset such that f(z ,  w ) =  0 if w ~  L ;  

(iii) V polynomial  p (z)  and V constant coefficient differential opera tor  T on Z 

sup Jp(z ) (T[ ) ( z ,  w )t < ~; 
z , w  
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(iv) ::IN neighborhood of (~, such that f f ( f ) (~,  w ) =  0 if ,~ EW. 
Clearly St~(V)CDomI~l' I', Vt _-> O. Moreover we have 

3.10  L e m m a .  St , (V)  is dense in L2(V), and [x t t l ' fEL,(V) ,  Vt_--0, 

Vf  E St,(V). 

P r o o f .  Let St(V) denote the set of functions on V having properties (i)-(iii) of 

Definition 3.9. The partial Fourier transform is a linear isomorphism of St(V) onto 

itself. (It's actually a topological isomorphism if we put seminorms on St(V) 

appropriately.) Now the fact that IxltI 'St~(V)CLI(V) is easy to see from the 

definition of St ,(V) and equation (3.3). Indeed for f E St~(V), we have I ~ ] ' f E  

St(V) C_ L 1(V). 

Next let f (z ,  w) E L2(V). We may approximate f arbitrarily closely in L2 norm by 

a finite linear combination of functions of the form g ( z ) h ( w ) ,  g E Lz(Z),  h E 

L2(W). Furthermore the functions g,(z)h , (w) ,  g, E Se,(Z), h, E C~(W) belong to 

St,(V). So it is enough to prove density in case W is trivial, i.e. V = R k. But this 

follows because the Fourier  transform is a unitary map of L2, and {f ~ St(R*): f = 0 

near (~,} is dense in L2(R*). q.e.d. 

3 .11 C o r o l l a r y .  (1) Dora D'  n D- 'L~(NA ) n L2(NA )~e is dense in L2(NA ), 

Vt _-> 0; 
(2) D o m E '  n E- 'L , (NAM)  n L2(NAM) ~e is dense in L2(NAM), Vt >-_ 0; 
(3) Let V = Z W  be a Lie group with Z a closed normal subgroup and dv = dzdw 

right Haar measure. Then if f E St ,(V),  we have f *vf* ~ St , (V) .  

P r o o f .  Parts (1) and (2) are immediate consequences of equations (3.6) and 

(3.7) and Lemma 3.10. Let us now prove (3). We observe 

ff �9 f*) (v) -- f f(v~-')f*(,~)d,, 

= f f ( v v - ' ) f ( v - ' ) S v ( v - ' ) d v  

Now we expand the integral in Z - W  coordinates. We are slightly hampered by the 

fact that W may not be a group. For any v E V, we write v = zowv, zo E Z, wo E W. 

Then 
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(3.11a) 
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(J:*f*)( zw)= f f(zwC~176176 
Z x W  

f -1  -- = /(zw~w zw~w~o)f(~w)d~do~. 

Consider the four defining properties of 6e,(V). 

(i) f *  f* is clearly C ~. 

(ii) The integrand in (3.11a) vanishes unless ~0 E L and w ~  E L. But then the 

equation z 7~w = w~ooJ -~ guarantees that the values of w for which the integrand is 

non-zero are also restricted to a compact set. That is, f * f* is compactly supported 

mod Z. 

(iii) Let n be a non-negative integer and T a constant coefficient differential 

operator  on Z. We show 

sup t(1 + tt z tt)~T(f , f*) (zw )t < ~. 
z,w 

Indeed the supremum can be estimated: 

sup I,(1 + "Z II)" f Tf(zw~w-lzw~ww~)f(~o)d~dw I 

-<supz;w,~eco, I (l + llz ll)" f Tf(zw~w-lz'~ww~) f(~~ meas(L ) 

-< sup (1 +llzw~ wzw, ll) Tf(zwCw z,~w~)" 
z ;w,~ ~cpt  

�9 (1 + II w~w-'zwo II)"f(ff,o)dr I meas(L) 

- I f I < sup (l+llull)"Tf(uw~) (l+llw~'w z~ll)f(~o)dr meas(L)  
u ; w ,  ~ o E c p t  

w , ~ e c p t  

 cons, an, sup 
w,m Ecpt 
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Note we have used (twice) that jf E 5e,(V) and that, since ~" ~ w~w -1 is a linear 

transformation, [I wr II --< c~ II ~ II where w --~ C~ is continuous. 

(iv) f = f f(zwCw 'z..w..)f(Co )a(z)aCdo dz 

= f [(z ww. )f(~,o );t (z)a (w~-lw -1);t (z ;L)aza~a,o 

= 0  if A is near c~,. q.e.d. 

3 .12  R e m a r k .  The proofs of Lemma 3.10 and Corollary 3.11 (3) work just as 

well with the pair (~O,~) replaced by any polynomial 0 and associated constant 

coefficient differential operator  O. 

3c. Algebra ic  Properties o f  the Operators.  We now extend [6, w with xI t in 

place of A. The technique is similar, so we do not supply full details. Consult [6, w 

for undefined notation and terminology - -  except that for a Lie group V, we write 

1I(9) for its (complexified) universal enveloping algebra. Observe that if V is N A  or 

N A M ,  then the splittings (3.5) determine a cannonical embedding H(~)~  g(9) that 

respects right invariance. 

3 .13  L e m m a .  Le t  V be N A  or N A M  a n d  v iew �9 E H(v). Def ine  ce : V --+ R* 

by a ( z , x , a , , . . . ) =  r. T h e n  if  f E C = ( V ) ,  we  have  

(3.13a) ~ * f  = ~ f ,  

(3.13b) f * ~ = a2"~ 

P r o o f .  We argue as in [6, lemma 2.11, F # R ] .  If ~ is any element of ~ and 

~" = exp ~, then 

and 

d 
(~ * f ) ( z ,  x, a,, m )  = --57, f ( z  - t~, x, ar, m)[,=o 

s  

d 
( f  * ~ ) ( z ,  x, at, m )  = --d-ff(z - r2tm �9 ~, x, ar, m )[,=o 

2 d  
= r -d~f(z  - tm . ~,x, ar, m )l,=o 

= r2((m �9 ~:)* f ) (z ,  x, a,, m). 
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The result follows immediately  f rom the definition of �9 and the fact that tO is 

M-invar iant .  q.e.d. 

Now as in [6, w we use L e m m a  3.13 to define the right and left actions of  

positive powers  of  wit: 

(3.14) I~l '  * f = l ~ l ' f ,  f * l ~ l '  =az'de~*l~['[, t>=O. 

The next result is 

3 . 1 5  L e m m a .  We have 

(3.15a) ( l~ l '  , f ) * = f *  *lxItl ', t >--o. 

P r o o f .  It suffices to prove 

(3.16) I*1 '  * f*  = a-2'ae~*(l*l'f)*, 

for (3.14) and (3.16) combine  to give 

f * * l , l '  = ot 2'ar �9 f * 

= ,~=.do,.,~-2,.o..(l,I,i,f). 

: (I,I, I' , f ) * .  

The proof  of  (3.16) is analogous  to that of [6, prop. 2.14]. Let  ~:ES, ~" = 

exp s c E Z. Then  

d . 
(~ * f* ) ( z , x ,  ar, m )  = -d-if (z - t~,x, ar, m)l,=o 

d -  
= - d ~ f ( -  r-Zm -' "(z - t ~ ) , -  r - ' m - '  .x ,a ,  , ,m- ' ) r  -2a/,=o 

-2 d - m -~ = r  - ~ f ( - r - 2 m - ~ . z  + ' t ~ , - r - l m - ' . x , a ,  -,, m-')r-2q[,=o 

= r-Z(m -1. ( . f )*(z ,  x, ar, m).  

Once  again we invoke M-invar iance  to obtain 

�9 * f*  = a - 2 4 , , , ( , ,  f ) .  = a -2aeg,( , f) . .  

Rewri te  this as 
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a2dr = (~f*)* .  

Now ~ and the opera t ion  of "mult ipl icat ion by a "  commute .  Hence  

a4a~8%it2f = ( ~ 2 f , ) , .  

Moreove r  ~ is self adjoint  and I xltl = x / ~ .  Hence  

,~r [Vlf  = (Ivlf*)*. 

Equat ion  (3.16) follows easily now. q.e.d. 

Finally, since the opera tors  D on N A  and E on N A M  are positive multiples of 

lxItlq/~eg+, we obtain f rom (3.14) and (2.7) 

3 . 1 7  P r o p o s i t i o n .  (1) D is a semi-invariant of weight ~NA On NA.  

(2) E is a semi-invariant of weight ~NAM on N A M .  

(3) (E~* f * E~)[NA = D~* f]NA "012. 

4 .  P l a n c h e r e l  f o r m u l a  f o r  Ps .... ( F )  

As in [6] we first derive the Plancherel  formula  for NA,  and then via an extension 

technique we pass to N A M .  Here  the compac t  extension technique of [6] must be 

replaced by a non-compac t  extension technique.  We cont inue  to exclude the case 

F = R, s odd, but at the end of this section, we commen t  briefly on the case F = R, 

s -- 1 - -  which we can handle - -  and the maximal  parabolics of the o ther  classical 

groups. 

4a. Some Results on Disintegration of Measures. Recall the basic facts on the 

groups  P~ .... (F) and their representa t ions  f rom w Now we normal ize  H a a r  

measures.  Put dz = Lebesgue  measure  on Z = I m  F s• dx = Lebesgue  measure  on 

F s• dar = dr/r where  dr is Lebesgue  measure  on A = R*, and dm a fixed choice 

of H a a r  Measure  on M = GL'(s ,  F) x U(u, v ; F). Then dn = dzdx is H a a r  measure  

on N, dnda, is right invariant on N A  and dnda,dm is right invariant on N A M ,  The  

identification (2.9) gives us Lebesgue  measure  dA on Z, so that 

(4.0) f f f(z)A(z)dzdh = (2r  f ~ C•(Z). 
2 z 

We disintegrate dA under  the action of  A.  Note  that dh is quasi- invariant  with 

modulus  r 2k. The  principal stability g roup  for  the action of A on Z, is trivial. Fix the 
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m e a s u r e  r 2 k d a ,  = r 2k l d r .  This is a quas i - invar ian t  measu re  on A,  also with modu lus  

r 2k. Thus  by [7, t h e o r e m  2.1], t he re  exists  a unique quas i - invar ian t  measure  ~r on 

Z/A  such that  

i 

(4.1) f f (A)dA= f f 
2. 2 /A a 

f(a, - A )r2kdardcr(s 

The  set S def ined  by (2.10) is a Bore l  c ross-sec t ion  for a co-nul l  set in ;Z/A. If we 

restr ict  the  canon ica l  p ro j ec t ion  2 ~ Z / A  to S we get a Bore l  i s o m o r p h i s m  on to  a 

co-null  set. W e  t r ans fe r  o" via this i somorph i sm,  and con t inue  to wr i te  it o-. o" is the  

unique  m e a s u r e  on S sat isfying 

(4.2) 

,2 o s 

4 . 3  L e m m a .  or is M-invariant. 

P r o o f .  This  fol lows ins tant ly  f rom the  facts: M and  A c o m m u t e ,  d)t is 

M - i n v a r i a n t ,  and  the  uniqueness  of or in equa t ion  4.2. 

A s s u m e  m o m e n t a r i l y  F = R or  Q. Then  we have  a Bore l  i s o m o r p h i s m  

MI\M---* S, mMl--+ m . ;tl. 

W e  t rans fe r  or to  M,\M via this i somorph i sm.  Since H a a r  m e a s u r e  on M is a l r eady  

fixed, the re  is a un ique ly  d e t e r m i n e d  H a a r  measu re  on M~ such that  

f f ( m ) d m =  f f f(m~m)dmtdo'(rh). 
M M ~ \ M  M I 

Final ly  (since the  g r o u p  M1 is u n i m o d u l a r  and  type  I), t he re  is a un ique  P lanchere l  

measu re  /xM, on )~/1 such that  

f lf(m,)12dm, = f II~'(f)ll~d~M,(r). 
MI ~tl 

If F = C, put  S, = M �9 hl, i = 0, 1, �9 �9 s ;  t r ans fe r  o- Is, to Mi\M via the  i somorph i sm 

mMi ~ m .  hi;  and  then choose  H a a r  and  P lanchere l  m e a s u r e s  on Mi and  hT/i 

accordingly .  
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4b. The Characters of N. Here  we der ive  an expression for the  charac te r  

Tr  y, (f)  as a Four ier  t r ans form over  Z. For  fixed A E 2,  the funct ional  

f-+ f f(z)a(z)dz,  C:(N)----> C 
z 

is easily checked  to be  an Ad  N- invar ian t ,  3 (n)-eigendistr ibution.  (Note  the cen te r  

3 (n)  of ll(n) equals 11(3 ) in this case.) M o r e o v e r  for T E 1I(3 ) the e igenvalue  is 

2b(A). For  those A which are in genera l  posi t ion (the set 3~), the infinitesimal 

charac te r  uniquely de te rmines  the global  character .  Thus  there  is a n u m b e r  c(A) 

such that 

Tr  "y, (f) = c (a) f f(z )A (z)dz. 
z 

Let  Pf(A) be the Pfafiian polynomia l  on 3" in the sense of [10]. Accord ing  to [10, 

p. 455], the Planchere l  fo rmula  for  N may be  wri t ten 

f(e) = c f Tr  3', (f) JPf(A)ldA. 

It follows f rom the inversion fo rmula  on Z that  

c(a)=c,lef(,~)l-', a ~ , : .  

W e  wish to c o m p u t e  c, and IPf(A)I  explicitly. Tha t  can be done  by evaluat ing 

Pf(A),  then comput ing  the Kos tan t  measu re  and using [12]. It can also be done  

directly. 

4 .4  P r o p o s i t i o n .  For )t E 8g and f @ CT(N),  

(4.4a) T r  3'~ (f)  = (2~-)'a I ~/,(a )]-,,=d~8, f f(z)a (z)dz. 
z 

P r o o f .  Fix )t E 3*- Let  q be  any maximal  totally isotropic subspace  of F *•176 

with respect  to the an t i symmet r ic  fo rm B,(r / ,  ~') = A([r/, ~']) = (A, Im ~ ( r l ,  ~)) - -  

refer  to (2.9). Then  ~ + q is a real polar iza t ion  for  A. Let t ing Y = exp q we know that  

3', = Ind~eA, where  a (z exp r/) = A(z) ,  z E Z, 7/ E q. Let  t be any real c o m p l e m e n t  

for  q in F ̀ • X = expz .  Then  3', can be real ized o n  L2(X), and a s t ra ight forward  

compu ta t i on  reveals  



140 R. L. LIPSMAN AND J. A. WOLF 

( 1 1 ) T~(zyx)h(u)= A z +~Im~(u ,y  + x ) - ~ I m ~ ( y , u  + x) h(u + x), 

Lifting to functions, we get the kernel operator 

h E L2(X). 

7,(f)h(u)= A z +-~Im~(u,y + x - u ) - - ~ I m ~ ( y , x )  h(x) f (z ,y ,x-u)dzdydx.  

The trace is computed by integrating down the diagonal 

T r v , ( y ) = f  ,~(z 1 ) _ l l m ~ ( y , x  + ~ Im ~(x ,  y ))f(z, y, O)dzdydx 

= f A(z)A (Im ~(x ,  y))f(z,  y,O)dzdydx. 

Now the pairing (x, y ) =  Retrace ~(x ,  y) is a non-degenerate bilinear form on X, 

and the inversion formula on X takes the form 

f f h(y)e'~X'Y~dydx = ( 2 ~ ) ' n h ( 0 ) ,  h ~ CT(X). 
x x 

Moreover a straightforward computation shows that 

Therefore 

Re trace [Im ~(x ,  y)A *] = - (Ax, y). 

Tr  r~ (f)  = (2~ ' )"2t*( ,~)I  -~ '*~  f X (z)f(z)dz. 

The proof is completed by the observation that u + v = l/es = / / d e g  ~b. q.e.d. 

R e m a r k s .  (1) The comments made in the first paragraph of the proof of [6, 

iemma 3.1] apply here - -  namely, the formal computation of Try~(f)  is legitimate 

and equation (4.4a) actually holds for sufficiently differentiable, sufficiently rapidly 

decreasing functions on N. 
(2) We do not exclude the possibility that N = Z = ImR "• is abelian, i.e., 

u + v = 0. Proposition 4.4 is still valid (trivially since l = 0). 
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4C. The Plancherel Formula for NA.  We start by evaluating Tr r/A (D'** f *  D~) 

for suitable f. 

4.5 L e m m a .  Let ,~ E 3~ and r/~ = Ind~"y,. Then for any f E  6e,(NA),  
~l,(D�89 f * f* * D ~) is trace class and 

(4.5a) Tr r/a (D �89 * f  *f* * D ~) = (2rr)-k I I~o(r2a)r2k-'dr, 
0 

where h = [ * f*, h,, = h Iz and I~o()t ) = Sz h (z ),~ (z )dz. 

P r o o f .  We first observe that according to Corollary 3.11, f * f* @ ,5t', ( N A )  and 
the expression ~l~(D~*f *f*  * D ~) makes good sense. We shall employ (as we did 
many times in [6]) theorem 3.2 of [7]. This is legitimate since D a = * f * f * * D ~ E  
L1(NA)  f3 P ( N A ) .  Putting ~ = D�89 *f*  * D ~ for convenience, we compute 

A N 

A Z 

= f ce(a)-,(27r)mttp(a)t ,/2d~g,f •o(z)a(aza- ' )dzda 
A Z 

o z 

r 

o 

= f r-'(27r)-k I ~()t )l-'/Zd~g*J tp(r22t )lq/d~g~'l~~ 

f dr = r '+=q(2~-) kl~(~)l~q-"="~=g*&(r2A)r 

(27r)-k j ~b(2t )Jk/d~g*f r2k~o(r2 a ) dr 
r 

(i 
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The last integral is absolutely convergen t  - -  thus the positivity of r/A (~0) guarantees  

that it is t race class. Since a, - ft, = rt,-,A ~ r/,, the left side of  (4.5a) is invariant 

under  the t ransformat ion  A ~ tA, t > 0. We  leave to the reader  the verification that 

the right side is also. q.e.d. 

We are now ready for 

4 . 6  T h e o r e m  (Plancherel  formula  for  N A  ). Let D be the operator on N A  
defined by (3.6). Then for any `f ~ 6P,(NA ) we have 

(4.6a) f [fl~= ; ilrh(D~,f)ll~do.O.). 
N A  S 

P r o o f .  Using L e m m a  4.5, L e m m a  3.15, equat ions  (4.0) and (4.2), we c o m p u t e  

f ll ~,  (D  �89 �9 f)II~do. (A) = f Tr */A ( D  "~ * f * f*  * D �89 (A) 
s s 

f  2 ,-kf 
s 0 

 2o,-kf f 
o S 

f 
= (27r) -k J (f  * f*)~(A )dA 

= (f * f*)o( lz )  

= ( f * f * ) O ~ A )  

= f I f l  ~. q.e.d. 
N A  

Here  is a case where  Proposi t ion 1.6 applies (because of  Coro l la ry  3.11). The  set 

5P, (NA ) is dense in L2(NA ) and is conta ined  in D o m  D ~ n D -�89 ) O 9.1~(NA ). 
Hence  we can write the Plancherel  formula:  

(4.7) h(1Na) = f Tr  rh (D~*  h *D~)do'(A), 
s 

h E P ( N A  ) N ~ , ( N A  ), 
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(4.8) h(l~A) = f Tr~7~(Oh)do'(A), 
$ 

h E P(NA)  f'l 9P,(NA). 

4d. The Plancherel Formula for P. We are now ready for the proof of the 

Plancherel formula on the parabolic group itself. As we said in the introduction, we 

have to replace the compact extension procedure of [6, w by a non-compact 

procedure. Our model for this passage will be [6, w Here  is the main result. 

4 .9  T h e o r e m  (Plancherel formula for NAM).  Let E be the operator on N A M  
defined by (3.7). Then for any f E 5e,(NAM) we have 

f f ! 2 (4.9a) I f r  = Irr.(E~*f)[[2dtzM,(r), r =  R,Q, 

N A M  "r E I ~  l 

(4.9b) f Ifl==~,=o f II~'~(E~*f)II~d~M'(~)'F=C 
N A M  r ~ l ~  i 

P r o o f .  We give an outline of the computation, followed by a justification of 

each of the steps, for (4.9a); the proof of (4.9b) is basically the same. 

Let f ~  5~,(NAM), h = f , f * ,  ~ - h [NA- Then we calculate 

f If[ 2= h(1NA~)= r 
N A M  

(4.10) = f Tr r/, (D ~ * ~ * D ~)do-(h ) 
�9 S 

f 1 _ (4.11) = Tr r/m ,,(D~* ~ *D~)dtr(m) 
M I \ M  

(4.12) f 1 = Tr zr.(E~* h * EOd/xM,(r) 

(4.13) = f ] ]m(E�89 

We must substantiate equations (4.10)-(4.13). 
(4.13) holds because of Lemma (3.15). (4.10) is valid because of (4.7) - -  indeed 
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the funct ion ,p = ( f  * f*)[~a is in the  set P ( N A  )N 5e,(NA ). (Note:  Proposi t ion 1.6 

is critical he re  - -  wi thout  it, the p roof  would  be b locked at this stage.)  Fo rmula  

(4.11) is a trivial consequence  of the  discussion at the end of w Now we come  to 

(4.12) - -  this is the hear t  of the proof .  H e r e  N A  \P is not compac t  so we reason as in 

[8, t h e o r e m  2.3]. 

We  begin by applying the t race fo rmula  of [7] to the represen ta t ion  7r,. Since 

6p I NA~, = '3NAM,, and 6N,~ l~ ------ 1, [7, t h e o r e m  3.2] gives 

Tr  7r. (E~* h *E~)  

= f Tr f (E~*h*E~)(m-'nam,m)(~ll@r)(nam,)d(nam,)do'(tfi). 
M I \ M  N A t M  I 

For  conven ience  we write hi = E~* h * E l, ~1 = D~*~p * D ~. Set 

A.(m)=Tr f h,(m-'nam,m)(O,@r)(nhmOd(nam, ). 
N A IVI I 

This is a non-nega t ive  (possibly oo-valued) Bore l  function of ~- and m. There fo re  by 

Tonel l i ' s  T h e o r e m  

f TrTrT(h0dp~M,(z)= f f A.(m)do'(rh)dtx~,(~') 
I ~  I 1~1 M I \ M  

= / f A,(m)d~,~,(r)do-(m). 
M I \ M  I~ I 

Thus  we are reduced  to proving 

(4.14) T r ~  . . . .  (q~,)= f M(m)dtx~,(r).  

Let {c} deno te  an o r thono rma l  basis for  the space of r/,, and let {~'~-} deno te  an 

o r t h o n o r m a l  basis for  the space of ~'. Then  

N A M I  

i , j  
N A M I  

h,(m 'nam ,m )(( Fl, @ r )(nam O~, @ (~, ~, @ ~ )d(nam,) 

h, (m -1natal m )(~ ,(nam ,)~,, ~, )(r (m ,)~'j, ~'i)d (nam,). 
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Set 

Then 

t),,m (m,) = f 
N A  

h,(m 'nam,m )(vi,(nam,)[~,, ,~i)d(na ). 

But 

f A'(rn)d/'XMl(r)= f ~ f fl'.'~(mO('c(mO~7"g~)dm" 

So 

~_, f Ft,.m(m,)(r(m,)r (;)dm,= Trr(lI,.,.). 
i 

MI 

f A,(m)dgM, O')= f Trr(fh..)do,.,(r). 

Hence we are further reduced to proving 

(4.15) Tr 77., ~,(q~) = :I ~'~, Tr ~-(1~,.,. )dp~M,(r). 
~t 

The right side of equation (4.15) can be computed as follows: 

(4.16) f ~ Trr(O,..~)d/~.,('Q = ~, f Trr(~l,...)d~.,O') 
M~ At 

(4.17) = ~ I)~,,.(1M,) 

= ~, f h'(m-lnam)(rll(na)r162 
N A  

(4.18) = •  
i 

q~l(na)(nl(mnam )~:,,~,)d(n ) f -1 a 
N A  

= Tr ~m.~(~O" 
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In (4.18) we used M- inva r i ance  of the  measure  d(na) and Proposi t ion  3.17(3). 

We  can justify (4.16) and (4.17) s imul taneous ly  by appea l ing  to [8, l e m m a  2.1] (in 

the case of  no mult ipl ier) .  For  that  we must  p rove  that  fL.m is L1, cont inuous  and  

that for  any uni tary  represen ta t ion  ~- of  M~, r(fL,m) is a posi t ive opera tor .  Well,  

continuity of l),,m follows f rom that  of  hi. Integrabi l i ty  holds because  hi is 

compact ly  suppor t ed  mod  N, i.e., lL, m is actually compac t ly  suppor ted .  A n d  the  last 

condit ion can be es tabl ished by relat ing r(~, ,m) to kernels  of posit ive ope ra to r s  

(exactly as in [8, pp. 110-112]; but there  is a more  direct way. Let  z be any uni tary 

represen ta t ion  of M~, ~" a vec tor  in the space  of r. We need  to show (r(~, ,m)s r, s r)  => 

0. But  

(r(ll,.,.)~',~')= f a,..,(m,)(r(m,)~,~)dm, 
M 1  

= f h'(m-lnamlm)(O(naml)~i'~i)(r(m')~'~)d(nam') 
NAMI 

= ((~,@~-)  (h 7)~:, @ ~', ~, @~) ,  

where  hT(nam,)= h,(m-'nam,m). T h e  conclusion follows because  rit@~" is a 

unitary r ep resen ta t ion  of NAM~ and h 7  is posit ive-defini te.  This  comple tes  the  

proof ,  q.e.d. 

4e. Other Maximal Parabolics. T h e o r e m  4.9 appl ies  to all the maximal  

parabol ic  subgroups  Ps;p-s ,q-s(F)CU(p,q;  F) except  for: F =  R and s odd. In 

addit ion,  we have  the  Plancherel  fo rmula  in the case F = R, s = 1. The  parabol ics  in 

that case are 

P = P ,  .... ( R ) = R  " U - ( G L ( 1 , R )  x O ( u , v ) ) ,  u + v _ - > l .  

The  analog of the polynomia l  ~ is ~0()t) = h 12 + h 22 + �9 �9 �9 + h ,2,- A 2.+, . . . . .  )t 2.+o, 

h E R"'~ and the cor responding  differential  ope ra to r  (analog of ~ )  is the wave  

ope ra to r  

�9 �9 2 s  
_ . _  

[] = ax~ Ox~ Ox.+, axe+o" 

The  gener ic  r ep resen ta t ions  of NA are p a r a m e t r i z e d  by S+US -, S'-= 
{A E R'U: ~0(A)=  -+ 1}; the gener ic  r ep resen ta t ions  of  P are  pa r ame t r i zed  (essen- 

tially) by O ( u  - 1, v)  ̂  U O(u,  v - 1) ̂ . T h e  Plancherel  fo rmula  has t he  form:  
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(4.19) 

f i l l  z =  f [[~.(E~*f)ll~d~o,. ,.o,(~) 
P O ( u - l , v )  ^ 

f ! 2 + [I "n', ( E  2 * f)112dtx o, . . . .  , ( r )  
O(u,o 1) ̂  

where E = cJDI �89176 acts on R "~ in the usual way. The method of proof of (4.19) is 

the same as that of Theorem 4.9 - -  the details are actually a little less complicated 

since N is abelian. 

The remaining cases are: F = R, s odd and s _-> 3. There the situation is still 

unsettled. Consider the simplest example 

(4.20) 0(3,  3) D P3;0.o(R) -~ Im R 3• GL(3; R) ---- R 3. GL(3; R). 

This parabolic group has one generic irreducible representation, carries a unique 

Dixmier-Pukanszky operator (up to scalar), and that operator c a n n o t  live on the 

nilradical. We will return to these groups on another occasion. 

The maximal parabolic subgroups of the other classical groups are similar in 

structure to those of the unitary groups. Most of them can be treated by the 

methods used here in w167 and the ones not amenable to such methods resemble 

the example (4.20). 

The "good"  maximal parabolic subgroups of classical groups fall into two 

categories. In the first category, the nilradical is of the form N = Z + X where 

Z = Cent N is a nonzero R-linear subspace of an F "• s => 1, which contains 

invertible matrices, and X is a subspace of an F "• n => 0. There, the module for the 

action of Z on F ~ plays the role of tO, and E is a positive power of the absolute value 

of the corresponding constant coefficient differential operator ~ on Z. Here is the 

list, in the notation of [15]. 

(4.21) 

G P see [15], pages 

GL(2n ; F) L,., (F) 14-15 

U(p,q;  F) P~p_~,q ,(F), except F = R, s odd  26-28 

Sp(n; F) P~;2~.-,(F) 83-85 

O(n;  C) P~ . . . . . . . . . .  (R)c with s even 126-127 

SO*(2n) P* .... 2~ 147-149 

Note that N is abelian in some of these cases. 

The second category of "good"  maximal parabolic subgroups of classical groups 

consists of those resembling P~ .... ( R ) - -  the nilradical is abelian and has an obvious 

semi-invariant not like a determinant. Those are just 
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(4.22) 

G P N see [15], pages  

O(p, q) P,.p 1.q-,(R) R p - ' ' q - '  26-28 
O(n; C) P , . m  1.n ,n I(R)c C n-2 126-127 

In each case, W is the wave opera to r  [53. 

The  Plancherel  formula  for both " g o o d "  classes (4.21) and (4.22) is derived, as 

above for the P~ ..... (F) (with s even in case F = R) and the PI .... (R), using the explicit 

structural informat ion in [15]. 

To avoid mis-impression,  we ment ion the parabolics not covered  by the methods  

of this paper :  

(4.23) 

G P see [15], pages 

G L ( a  + b;  F) La, b(F),a#b 14-15 

O(p, q)  P,;, ,.q ,(R), s odd,  s => 3 26-28 

O ( n ;  C) P, . . . . . . . .  (R)c ,s  odd,  s _->3 126-127 

Here Lo, b(F) has abelian nilradical F ~ • and P,;,,,o(R) and P,;o.0(R)c also have abelian 

nilradical. 

Finally let us note  that an examinat ion of the subgroup NA ~ R 2. R*, which 

occurs in both P,I . I(R) and Pt;z,0(R), s e e m s  to indicate that there is no "bes t "  choice 

of the pair (D , / z )  in T he o re m  1.1. In effect, any Borel cross section S C R 2 -  {0} = 

n * - { 0 }  to the action of R* = A determines  a measure /~ =/~s on (NA)^ by 

f ( h ) d h - - 0  f (fs f(rA )dus(h ))rdr, 

and that in turn determines  an opera to r  D. The section {h: h i +  h~ = 1} leads to 

D = A ,  which is suitable for P1;2,0(R); the section { A : A 2 - A 2 2 =  +-1} leads to 

D = lull, which is suitable for P,;,.i(R). 

5. Pfaf l ian p o l y n o m i a l s  a n d  o p e r a t o r s  

The maximal  parabolic  subgroups of the classical groups,  in which the nilradical 

is noncommuta t ive  but has representa t ions  square integrable modulo  the center,  

are just the ones listed in Table  (4.21) for which the nilradical is noncommuta t ive .  

In those cases the Pfaffian polynomial  of  [10] gives a canonical  e lement  �9 in the 
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enveloping algebra of the center of the nilradical. In Section 5a, we prove that [~1 is 

semi-invariant under the full parabolic, and that an appropriate power [~1' is a 

Dixmier-Pukanszky operator.  In fact, we do this for all parabolic subgroups P C G 

where: (i) G is a reductive real Lie group such that every Ad(x),  x E G, is an inner 

automorphism of 9c; and (ii) if G~ is a simple local factor of G then the nilradical of 

P A G~ is noncommutat ive but has square integrable (rood center) representations. 

In w we return to the groups (4.21) with noncommutative nilradical and show that 

their Dixmier-Pukanszky operators of w167 and 4 agree with the ones defined here 

from the Pfaffian polynomials. Then finally, in w we illustrate the use of the 

Pfaffian operators, describing the explicit Plancherel formula for minimal 

parabolics in simple groups with restricted root system of type A2. 

5a. The Pfaffian as a Dixmier-Pukanszky Operator. We will use, without 

further remarks, the following straightforward facts about extensions of operators 

from a normal subgroup N to a semidirect product P -- N �9 Y. Every operator  T on 

N can be viewed as an operator  ?~ on P by 

(~'f)(xy)=YG)(x), f~(x)=f(xy), xEN, y ~ Y .  

If T is right N-invariant then 1~ is right P-invariant. If T is left N-invariant then (i) 

"/~ is left N-invariant and (ii) ~b is left P-invariant just when T is Y-invariant. If T is 

right N-invariant and Y-semi-invariant, T(f y) = a(y)T(f) where i f (x)  = f (yxy- ' )  

and a :  Y---~ C*, then ~P is P-semi-invariant with module ~ (xy)  = a (y ) .  Let P have 

right Haar measure dxdy and let T be densely defined on L2(N, dx). If T is 

symmetric with positive self adjoint closure on Lz(N, dx), the same holds for 7" on 

L2(P, dxdy). Also invertibility of T guarantees that of T. Finally, by right 

invariance, T is affiliated with the left ring of P. 

Now let G be a reductive real Lie group such that every Ad(x),  x E G, is an inner 

automorphism on 9c. Let P be a parabolic subgroup of G, say with Langlands 

decomposition P = NAM, and suppose that N has square integrable (modulo its 

center Z )  representations [10]. Fix a volume element to on n/~. It defines the 

Pfaffian polynomial on ]* by (i) if $ = n r  0 then Pf---1 and (ii) if n / ~  0 then: 

(5.1) 

f if h E l * ,  ~ E n *  with ~ [ ~ = h ,  and l = d i m  u/3 

then tp(h)= Pf(h)  is given by b~/2= tp(h)to, 

where b, is the 2-form b,(x + ] , y  + 3 ) =  q~[x,y] on n/8. 

See [10, w for the fact that Pf(h) is well defined, and is nonconstant when N is 

noncommutative. 
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The Poincar6-Bi rkhof f -Wi t t  map gives an element  W E 1t(3) -- 3 (n) correspond-  

ing to W = Pf. Its action as a differential opera to r  on N is de te rmined  by 

(5.2) f * f(exp x )e'~'X'dx = Pf(~ [~) f f(exp x )e'~'X'dx, ~ E n*. 

So ~P is a densely defined, symmetric ,  conjugat ion- invar iant ,  invertible opera tor  on 

L2(N). 

5.3  L e m m a .  IPf[ and I*l are M-invariant and A-semi-invariant. 

P r o o f .  Let g be an au tomorph i sm of N. It preserves Z and multiplies the 

volume element  to of  n/~ by a scalar which we denote  a(g). If ~ E n*, then 

Pf (g * ~ ) l~)to ,,2 ),/2 , ,,2 = b , . ~  = ( a ~ ( g ) b ~  = A (g)b~ = Pf(~ [ 3 A ' ( g ) t o ;  

SO 

(5.4) P f (g*h)=a(g)P f (h )  and IP f (g ,A ) l = l ~ (g ) l l P f (X ) l  for A ~ a * .  

That means  

(5.5) g sends �9 to a(g)~  and I ~ l  to l a ( g ) l l ~ [ .  

But x---~la(Ad(x)lN)[ is a h o m o m o r p h i s m  of MA to the positive reals. Our  

assertions follow because M has no nontrivial  positive charac te r  that factors 

through Ad6  [M. q.e.d. 

5 . 6  R e m a r k .  One  can also derive L e m m a  5.3 f rom the fact that  I Pf(A)IdA is 

Plancherel  measure  on /V. 

Now let a : A ~ R* (as in L e m m a  5.5) and /3 : A ~ R* deno te  the respective 

moduli  of A d 6  IA on n/~ and on ~, so 

(5.7) ~, (a )  = a (a)/3 ( a )  for a E A. 

As outl ined at the beginning of the section, we extend [~1 to a semi-invariant  

opera tor  on P = NAM with module  ct = ~5p/3 -1. The  next l emma will enable us to 

deduce that I~1 ~q/t is a D ixmie r -Pukanszky  operator .  

5 . 8  L e m m a .  If G is simple then a(a)= ~p(a) '/2q for all a E A ,  where 
k = d i m Z ,  l = d i m N / Z a n d q  =k+�89 
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P r o o f .  Let  O be  the  pos i t ive  a - roo t  sys tem on g such that  n = Y-~og~, and  let 

vo be  the h ighest  a - root .  W e  first show (this is val id  for  any rea l  pa rabo l i c )  that  

= g~o- Since M acts i r reduc ib ly  on each g~ ([16, p. 296] and  the  a s sumpt ion  that  

every  A d ( g )  is inner  on gc), ~ = ~ s g ~  for  some  subset  S C O. Clea r ly  g~oC ~, i.e., 

v0 E S. If v E O with v < v0 we c la im the re  exists  a s equence  Vo, v~, �9 �9 v, = v in O 

such that  each v, - v~+~ E O. F o r  that ,  let D be  a maximal ly  split  Ca r t an  suba lgeb ra  

of g that  con ta ins  a; let ~ be  a posi t ive  t)c-root sys tem on gc cons i s ten t  with O in the  

sense  

O = { T I o : T E E  and  y ] ~  

let To be  the  max ima l  t )c - root ;  choose  y E ~ with Y I~ = v, and  t ake  a c o r r e spond ing  

sequence  in E. This  is w h e r e  we use s impl ic i ty  of G. If v < v0 in O now,  we have  

v ' E O  with [g~,g~, ]~0,  so v Z S .  Thus  3 =  g~o. 

N o w  we use the  fact that  N has square  in t eg rab le  r ep resen ta t ions .  If n/8 = 0 the  

L e m m a  just  says 1 = 1, so we may assume N nonabe l i an .  C h o o s e  a basis  

{A~, �9 �9 Ak} of 3" with each Pf(A~) ~ 0 and let {z~, .  �9  zk} be the dua l  basis  of 8. Fix 

r E { 1 , . . . , k } .  G iven  v E O, v ~  vo, then  b~ , ( x , y )  = A, [x ,y ]  pairs  g ,  n o n d e g e n e r -  

a te ly  with g~o-~; so if V o J 2 V  we have  bases  {x~ ..... - . . , x  . . . . .  } of g~ and  

{y, ..... - . . , y  . . . . .  } of g,, ~ such that  

(5.9) l~r[Xl ..... yj,~,,] = &j, i.e. [x, ..... Yi,~,,] = ~$,jz, + ~ b,j,,z~. 
s ~ r  

If uo = 2u then g~ = g,,_~ has  a basis {x, ..... yj,,,,} that  satisfies (5.9). Se lec t ing  one  roo t  

f rom each pa i r  v, v , , -  u whe re  u0 / u E O, we have  a basis  {x,,, ; yj, r} of n m o d u l o  ~ of 

size I. If r E a then def ine  a , b , c  by 

[ ~ , x , , , ]  = a,,,x,,, [ ~ ' , y j r ]  = b,.,y~., [ ~ ' , z , ]  = c,z,. 

N o w  

( a i " + b i " ) ( z ' + ~ b " ' s z ' )  5,,r 

E q u a t e  coefficients  of z , :  a~,, + b,,r = c,. Sum over  i :  

t race  (ad(ff)l,/~) = (l /2)c, .  

N o w  sum over  r:  

(5.10) k �9 t race  (ad(~')I-/~) = ( / /2)  �9 t race  (ad (~')18). 
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Because of (5.7) and the notat ion just before  it, (5.10) exponent ia tes  to 

c~(a) k = {8~,(a). ol(a)- '}  I/2 for a E A. 

So a ( a )  2k+' = 8p(a)', i.e., o~(a) = 8p(a)  '/2q as asserted, q.e.d. 

In the general  case, g = go O gl O " " �9 O gp where go is the center  and the o ther  g, 

are simple ideals. The  parabolic p = g0OP~ ~ ) " "  ~)Pp where  p, = rt, + a~ + m, is 

parabolic in g, and N, = exp~ (n~) has square integrable representa t ions  modulo  its 

center  Z~. Here  N = N ~ • 2 1 5  and Z = Z 1 • 2 1 5  Set k~=dimZ~,  l~= 

dimN~/Z~ and q, = k, + �89 Then L e m m a  5.8 says that A, = e x p , ( a , )  acts on n,/~, 

with modulus  6 t/,~:q,, where P, is the parabolic  subgroup with Lie a lgebra  p, in a local 

direct factor  G, of G with Lie algebra g,. So we have 

5 .11  T h e o r e m .  I[ the derived group [G, G] is simple, and if W E  lI(p) 

corresponds to the Pfaffian polynomial on 8*, then I~l  2q/t is a Dixmier-Pukanszky  

operator on P. More generally, if for each simple ideal g, in g, p N g~ = n, + a~ + m~ 

with n , / ~  O, and if ~ ,  E 11(~) is the operator on P determined by the Pfaffian 

polynomial on 8*, then I I l ~  12q,', is a Dixmier-Pukanszky  operator on P. 

R e m a r k s .  (1) The  reader  can check Conjec ture  1.3 for  the opera to r  H I~,  12q''' 

on P that occurs in Theorem 5.11 (using the partial Schwartz space ~ of (3.9) 

corresponding to the Pfaffian qJ(A)= Pf(A)  on 5*). 

(2) T h e o r e m  5.11 applies to many parabolics not listed in (4.21). For  example,  in 

a split A~ or E6, it applies to those of parabolic  rank 2 in which the root  system of M 

is obta ined  by removing  a pair  of simple roots  symmetr ical  in the Dynkin  diagram 

of G. A comple te  classification of the cases to which it applies will appear  in [17]. 

See w below for some interesting special cases. 

5b. Comparison of Operators. In this section P = N A M  is one  of the groups  

P, .... (F) where u + v > 0  and where s => 1 is even in case F = R. In o ther  words, P is 

a maximal parabolic  subgroup of a unitary g roup  U(s + u, s + v ; F) whose nilradical 

is noncommuta t ive  but has square integrable representat ions.  We  will prove that 

the opera tors  D on N A  and E on P = N A M ,  defined in (3.6) and (3.7) and used in 

the Plancherel  formulae  (4.6) and (4.9), are equal to the opera tors  [~ l  2q~t of  

Theo rem 5.11 which are defined (5.2) by the Praffian polynomial  (5.1). 

It suffices to show that the "real  de te rminan t"  function on ~ = I m F  5• given 

by (2.5), 

(5.12) detR(z) = module  of z E 3 on F '  relative to Lebesgue  measure,  

and the Pfaffian polynomial  on ~*, Pf(A)  defined in (5.1), are related under  the 

pairing (2.9) 
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~ ~*, by z ~ h~, where h~ (Zo) = (z, Zo) = Re  trace (zz  ~), 

in the manner  

(5.13) I de t . ( z ) l  "'~ = I Pf(Az )12q/I 

where  e = dim~F, k = dim~Z, 1 = d i m ~ N / Z  and q = k + ~l. 

Let  {x~,-.-, x~} be an R-basis of  F~• n/~. We normalize the vo lume e lement  

on rt/~ used to define the Pfaffian of  an ant isymmetr ic  R-bil inear fo rm b, so that the 

Pfaffian has value equal  to the classical Pfaffian of the matrix (b(x,, xj)). It will also 

be convenient  to use the nondegene ra t e  inner  p roduc t  (x, x0)=  Re trace 

( a a * - b b * )  on F • where x = ( a , b )  and Xo=(ao, bo) with a, a o E F  ~• and 

b, bo ~ F ~• , 

Let  z E ~ and A = A~ E ~*. Now Pf (A)  is the Pfaffian of the matrix. 

(a Ix,, x~]) = (z, [x,, x,]). 

We compu te  

(z, Ix,, xj]) = Re  t race{z  �9 Im ~g(x,, xj)*} 

= 1 Re  trace { - za~a * + zaja * + zb, b * - zbjb *} 

= 1 R e t r a c e {  - (za,)a*j - aj(za,)* + (zb,)b* + bj(zb,)*} 

= - ( z x , ,  x , ) .  

N o w  we have 

SO 

Pf() t)  2 = det ( -  (zx,, xi)) = ( -  1)- 'det  (x ~ zx  on n/~) 

= ( -  1) - '{det . (x  ~ z x )  on F}("+")=('/'s); 

i p f (  A ) 12q,, = {I det•(z ) I("~s)} (~'', = I de t . ( z  ) Jq"' q.e.d. 

Virtually identical considerat ions  apply to the maximal  parabolics  P~;2(.-~)(F)C 

P 2 s ; r l - 2 s  = S p ( n ; F ) ,  l _ - < s < n ,  and * C S O * ( 2 n ) ,  l < s < n ,  listed in (4.21). 

5c. Application to Min ima l  Parabolic Subgroups. Let G be a simple real Lie 

g roup  and P = N A M  a minimal parabolic  subgroup.  One  knows [5] that N has 

representa t ions  square  integrable modu lo  its center  Z if, and only if, the restricted 
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root (a-root) system of g is of type A~or A 2-  In the A~ case, the Plancherel formula 

for P is given in [6], and except when g is of type F4 it is a special case of Theorem 

4.9 and (4.19) above. Here we are going tb use Theorem 5.11 to write an explicit 

Plancherel formula in the A2 case. 

The real simple Lie algebras with restricted root system of type A2 are the 

sI(3; F), where F is real, complex, quaternion or Cayley, as follows. 

(5.14) 

d(3; R): 

d(3; C): 

d(3; Q): 

d(3; Cay): 

3 • 3 real matrices of trace zero 

3 x 3 complex matrices of trace zero 

3 • 3 quaternion matrices of real trace zero 

this just means e~-26), the Lie algebra of 

type E6 with maximal compact of type F4. 

A convenient choice of groups with these Lie algebras is 

(5.15) 

SL(3; R): 

SL(3; C): 

SL(3; Q): 

SL(3; Cay): 

3 x 3 real matrices of determinant 1 

3 • 3 complex matrices of determinant 1 

GL'(3; Q), the real form of SL(6; C) with 

maximal compact subgroup Sp(3) 

this just means the connected simple Lie 

group of type E6 with maximal compact subgroup 

of type F4. 

They have minimal parabolic subgroups P = N A M  as follows: 

} {(i ~ 1 7 6  } N =  1 : x ,y ,  z E F  and A = a2 : a~ E R * , a l a 2 a 3  = 1  

0 0 a3 

with ordinary matrix multiplication. Also 

(5.17a) f 

[(o 1~ o ~ } F = R  or C : M =  m 2  : m i E F ,  I m i l = l ,  m l m 2 m 3 = l  

0 m3 

F = Q :  [(o } M =  m2 : m , ~ F ,  Im, l =  1 
0 m3 



PLANCHEREL FORMULA 155 

again with ordinary matrix multiplication. And 

(ix i)(i  ,m,x  3,m,z) F = Cay: M ~ Spin(8) with A d ( m ) .  1 = 1 0-2( )y 
0 0 

(5.17b) where 0-i: o 0-~: o 0-3: o 

1 

so 0-1, 0-2 are the half spin representations, 0-3 is the vector representation,  and the 

Triality Principle says that A d ( m )  is an automorphism on N. 

Let M1 denote the M-central izer  of 

(i~ 1 E N .  
0 

From (5.17), M1 and a section ~ to the action of M on M / M ~  are given by 

F # Cay: 

(5.18) F = Cay: 

M ~ = { m ~ M : r n l = m 3 }  and X = { m E M : m ~ m 2 = m 3 = l }  

M1 ~ Spin(7) and 0-3(X) consists of the 

multiplications z ---> w z ,  I w I = 1. 

Thus for R, M1 and X are cyclic groups of order  2; for C, M~ and X are circle groups: 

for Q, M~ --- Sp(1) x Sp(1) and X ~ Sp(1); and for Cay, M1 ~ Spin(7) and X is the 

7-sphere Moufang loop. 

Let 

U = 1 : x , z  E F  , 

0 

a normal  subgroup of P. We shall describe the representat ion theory and Plancherel 

data of P via the group extension UC=P. For  ~, ~" ~ F, let y,., ~ 0 be defined by 

~,,.~ 1 = e 

0 

i Rr z~) 

The set {~/,.r ~'# 0} is a single P-orbi t .  The stability group of yo.1 is L = U A 1 M I  

where 
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0) } 
A 1 =  a -2 0 : a > 0  and M~ is given by (5.18). 

0 a 

P The generic representat ions  of P are given by 7r,.~ = IndvA,M,yo.~ • p, X X, t U R, 

X ~ ~lq, where  

p, a-2 = a ". 

0 

We now apply the results of w Write  e = d im.F.  Then  

C e n t N  = Z = 1 : z E F  , 
0 

and k = d i m Z  = e, l = d i m N / Z  = 2e, q = k +�89 = 2e. Therefore  2q/l  = 2. Let  

�9 E 3 ( n )  cor respond  to the PfaflSan polynomial  on ~*. Then  Theo rem 5.11 says that 

E = j ~ t  2=  ~2 is a D ixmie r -Pukanszky  ope ra to r  on P. 

Since this is a differential opera tor ,  there are no domain  problems in this case. Also  

it's easy to see that 

(5.19) (Ef)^(~) = ]ff 12"f(~). 

We  have the following Plancherel  formula.  

5 . 2 0  P r o p o s i t i o n .  There is a (computable) constant c > 0 so that 

/ ( l e ) = c  / ~ Tr~r,.x(Ef)dt, f ~ C T ( e ) .  
J XEK4t 

(5.20a) 

The  p roof  is similar to the a rgumen t  of w167 and 4. W e  remark  only that the g roup  

V =  1 : y E F  .E  
0 

(E given by (5.18)) 

is a cross-section for UA1M~\P. There fo re  we can realize the representa t ions  rr,.x on 

the space L2(V).  It is then possible, using: [7, t heo rem 3.2], Duf lo ' s  factor izat ion 
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theorem for C7 functions, equation (5.19) and the inversion formula on F itself, to 

derive formula (5.20a). The  computat ions are a bit tedious. In fact, formula (5.20a) 

represents a very special case of more general Plancherel formulae that one of us 

has worked out for parabolic subgroups of Chevalley groups. 

6. Appendix 

We present two results as evidence for the existence of the critical value a in w 

The first was shown to us by R. Prosser; the second by C. Fefferman. As a corollary 

of the first, we deduce that E moves test functions to integrable functions for 

"mos t "  parabolic subgroups of the unitary groups; we deduce a negative result 

about the maximal parabolics P1;o.q (R) in O(19 + 1, q + 1) from the second. 

6a. IO I'CT(V)C=L~(V) for t Large. The following result is valid in the setup of w 

i.e., V = Z •  V, etc. But for simplicity we take V = Z = R  k. Let 0(~) be a 

polynomial function of ~ E R k and define [O[' as in (3.3), i.e. 

I o l ' f ( z )  = ~- '{I  0 (~ ) l '~ f f ) )  (z), t _->0. 

6.1 P r o p o s i t i o n .  I| I'CT(R k) C Lt(R k) if t > 2[k/4] + 2. 

P r o o f .  Let /3(~)= IO(~:)I'(l+H~I2) -~ where n > 0  is large enough to insure 

that 13(~)~Lw(Rk),  Vw ~ 1. Now let v be a positive integer satisfying 2v-<t .  

If we set 

3'(~) = (1 + A)~ (~r 

then (since (1 + A)~ 0(~)1' is bounded by a polynomial function) we have 3~(~) E 

Lw(Rk), Vw => 1. In particular 3~(x)~ Lz(Rk). But 

/3(x) = (1 + IIx ll2)-v'y (x) 

is a product of L2 functions - -  and hence is in LI(R k) - -  as long as 4v > k. 

Therefore  

r o 17 = ~- '{f  o I?} = ~ - 1 { 0  + fl ~ 112)"~f} 

= ~ - ' ( t 3 ) .  ~- '{ (1  + II r IDnf} 

= ~ - ' ( t ~ ) .  (1 + A)V. 
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The latter is a convolut ion of two L~ functions;  hence  I O I'[ is integrable,  so long as 

we can find v satisfying 2v _-< t and 4v > k. That  is the case wheneve r  t > 2[k/4]  + 2. 

We can apply this proposi t ion to obtain  an analog of [6, corol lary 2.8] for " m o s t "  

of the parabolic subgroups Ps .... (F) of the unitary groups.  

6 .2  C o r o l l a r y .  Let t >- 0 and let E be the Dixmier-Pukanszky  operator on 

P = P~ .... (F) defined in (3.7) - -  F = R, s odd is excluded as usual. Then for any fixed 

s, we have E 'CT(P)CLI (P)  as long as u + v is sufficiently large. 

6b. II-]I '(Rk)_~LI(R k) if t<-_�89 We consider  the indefinite quadrat ic  

polynomial  

~,o(;t) = x ~ + . . .  + x ~ -  x L l  . . . . .  x~+o, 

and the associated wave opera to r  

�9 . 2 r  
_ . _  

[]= ~x~ ax~ ax~+~ Ox~+o" 

Put cr = cr ~ = {~ ~ R ~ : ~0(~) = 0} and consider  the distr ibution 

r ( x )  = {I r  �9 

K is h o m o g e n e o u s  of degree - k - 2t and is invariant unde r  the action of O(u, v). 

Hence,  away f rom the cone ~, it must be a smooth  funct ion of the form 

A(x)=cl~bo(X)l  -~k-', x f ~ .  

Note  the constant  c may vary f rom c o m p o n e n t  to c o m p o n e n t  in R k - ~ ; but  that  is 

irrelevant to the ensuing argument .  Of  course we have 

1[]1'r = K * r  if C U C T ( R  k). 

We p roduce  a function ,p ~ CT(R k) such that f [ ( K  *tp) (x) ldx  = oo. 

Let ,p ~ C~(R k) have the following propert ies:  

(i) S u p p r  = {x: I lx l l_-  < 1}; 

(ii) ~ ( x ) = l i f  Ilxll--<l; 

(iii) r (x) => 0, Vx ~ R k. 

Then 
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f l(K*,p)(x)ldx >= f (K*q~)(x)dx 
d(x,q~)~2 

d(x,q~ ) -~2 Ilyll~l 

o f s 
d(x,~)e2 IlYll 

=f / 
Ily ~x2 d(x+y,q~)e2 

=>ck f A(x)dx. 

Now it 's a s imple  max-min  exercise to see that  d(x, c~)2= cons tant  x ( r - p )  2, 
2 r = ( x ~ + - . - +  x~) ~, p = ( X . §  x2.§ ~. Thus  we are  done  if we can p rove  that  

the integral  

(6.3) f I qJo(X )1 -~k-'dx 
Ir-pJ~a>0 

is divergent .  In fact 

f 
Ir-pl>-a 

r ~,o(X )]-~k-'dx = c.,o f f 
Ir-ol~,5 

rU-lp o-1 
I r 2_ p2i�89 , drdp 

~ p - 6  

;f,._,v_l c..v O r 2  p21�89 t drdp 
0 

(p--~)/p 

8 0 

1 - - 8 / p  

~ o 

(P~176 pdo.dp pk+2' 1 0 -2 -- 1 

~ ~) 
o" i~k+, d p-2'-l dp. 

Now as p---> ~,  the inner  integral  is a sympto t i c  to 
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1-81p - 8 / p  

0 --1 

Thus  the  en t i re  express ion  is a symp to t i c  to 

8 6 

= I o o  t + 2 - 1 k  _-<1 

l f ini te  t + 2 - 1 k > 1. 

H e n c e  the  in tegra l  (6.3) is d ive rgen t  for  t + 2 -  �89 k =< 1, i.e., t = ~k - 1. 

F e t t e r m a n  c o n j e c t u r e d  that  the  cr i t ical  va lue  fo r  1[31' o n  R k is exact ly  t = �89 - 1. 

P rose r ' s  o b s e r v a t i o n  only hand les  t > 2[k /4]  + 2. A t  p re sen t  we do  not  know how to 

close the  gap.  

R e m a r k .  If we cons ider  the  p a r a b o l i c  g roup  P1;,~ o (R), we know (see w that  

D = c 11-31 kn, k = u + v. T h e r e f o r e  D ~ = c~:l[]l k/4. A c c o r d i n g  to  Fe f f e rman ' s  exam-  

ple,  C7 ~ D o m  D ' n  fq D - l n L ~  if k / 4  =< k / 2  - 1, i.e., if k => 4. O n  the  o the r  hand,  the  

example  says no th ing  abou t  w h e t h e r  C T C D o m D  f3 D-~L1.  If his c on j e c tu r e  

holds,  the  inc lus ion would  fol low. A n d  so we would  l ike  to  c lose  by posing one  

more  

6 . 4  C o n j e c t u r e .  Let  G be type L Then there exists a D i x m i e r - P u k a n s z k y  

operator D on G such that CT(G)_c D o m D  t9 D - ~ ( L I ( G ) ) .  
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