THE PLANCHEREL FORMULA FOR PARABOLIC
SUBGROUPS OF THE CLASSICAL GROUPS

By
RONALD L. LIPSMAN' AND JOSEPH A. WOLF"

0. Introduction

In [6] we worked out explicit Plancherel formulae for the parabolic subgroups of
real rank one simple Lie groups. Here we continue that work by considering a class
of non-unimodular groups that includes most of the maximal parabolic subgroups
of the classical groups. In those maximal parabolics P = MAN, M need not be
compact. This has two important consequences. First, the compact extension
procedure of [6, §4], based on [7, §4], must be replaced by a procedure based on [8,
§2]. Second, and more important, the global operator in our Plancherel formula,
viewed as an operator on Z = center (N), becomes non-elliptic, e.g., the wave
operator. This causes L, problems that are not yet completely resolved. Despite
that, we obtain explicit Plancherel formulae (Theorem 4.9) for virtually all the
maximal parabolic subgroups of the classical groups. In addition, we describe the
nature of the global operator (Theorem 5.11) that occurs in the Plancherel formula
of any parabolic subgroup of a semisimple Lie group whose nilradical is nonabelian
and has square integrable representations.

§1 contains a discussion of non-unimodular Plancherel formulae in general and
the domain problem for the global operator that compensates lack of unimodular-
ity. In §2 we describe the maximal parabolic subgroups in a large family of classical
groups and specify their generic representations. Then in §3 we define the global
operators for those parabolic groups and examine their analytic and algebraic
properties. §4 consists of the Plancherel formula (using the global operator) for that
family of parabolics and a discussion of the extent to which analogous formulae
hold for the other maximal parabolic subgroups of classical groups. In §5 we
introduce another type of global operator — it exists whenever the nilradical is
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noncommutative but has square integrable representations. We compare the new
operators with the old ones and verify that they agree when both are defined. We
then apply the new operators to obtain Plancherel formulae for several non-
maximal parabolics. Finally, in §6, we return to the domain question for certain of
the global operators.

We thank C. Fefferman, R. Johnson, A. Kleppner and R. Prosser for helpful
conversations and correspondence.

1. The non-unimodular Plancherel formula

As in [6] we emphasize the global (on the group) operator that appears in the
Plancherel formula, rather than the infinitesimal (on each representation space)
operators. In effect, the global operator carries more information and yields the
infinitesimal operators directly. In any case, the infinitesimal operators are fairly
transparent — for example, they are multiplication by the modular function when
the representation is induced from the kernel of the modular function ([14], [3]), or
multiplication by canonical semi-invariants when the representation has a Kirillov
model [4]. In our situation the global operator turns out to be an extremely
interesting sort of generalized pseudo-differential operator, and this sheds some
light (but many questions) on problems of harmonic analysis on the group.

Here is a global formulation of the non-unimodular Plancherel theorem (see also
[7, theorem 6.4]).

1.1 Theorem. Let G be a locally compact group of type I with right Haar
measure dg and modular function 8s. Then there exist (i) a positive selfadjoint
invertible operator D on L,(G), affiliated with the left ring of G and semi-invariant of
weight 85, and (ii) a positive standard Borel measure u on G, such that

(10 [ 17@Fdg = [ |7(D*Plkdu(m)  for all f € Dom(DHNDIL(G)

Remarks. (1) Implicit in (1.1a) is that, for f& Dom(D?*N D>3L(G),
w(D?f) is Hilbert-Schmidt for p-almost all [7]€ G and [m]» |7 (D)| is in
LG, ). But Theorem 1.1 makes no assertion about the size of Dom (D?) N
DL (G). In the Lie group cases known so far ([13], [6]), C(G)C Dom(D* N
D™:L,(G); but we will see in §6 that this is not always the case.

(2) If (D, u,)is another pair as in Theorem 1.1, then it is equivalent to (D, ) in
the following sense. There is a positive selfadjoint invertible operator C on L,(G),
affiliated with both the left and right rings of G, such that D, = CD. From the
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affiliation, 7(C) is defined and is a scalar ¢ ()] for u-almost-all [7] € G. Also, u,
is equivalent to g with du/dp, = c(m).

(3) Since D is affiliated with the left ring, D, = w(D) is defined for u -almost-
all [#]€ G. Those D, are the infinitesimal operators of the non-unimodular
Plancherel theorem ([3], [14]; or see [6, theorem 1.1]). For all f& C(G),
D - 7 (f) is Hilbert-Schmidt for u-almost-all [7] and

(1.2 [ 17@)Fdg = [ 1D 7 (DB du ().

(4) One needs the global operator D to understand the canonical trace on the
left ring of G, and in fact it is the global operator that passes more naturally to the
semi-finite non-type-I situation. But the price is the domain problem. (See [7,
p. 486], [8, pp. 129-130], [3, p. 228], and §6 below.) However, the following seems to
be the case, and we verify it for the groups that appear in this paper:

1.3 Conjecture. If G istype I and D is as in Theorem 1.1, then Dom (D) N
D7*L(G) is dense in Ly(G).

(5) By [7, theorem 6.4] there exists a unitary map Y:L,(G)—
[nce, @ H#.du (m) that simultaneously decomposes the left and right regular
representations into irreducible constituents (with multiplicity equal dimension).
That is half the point of the Plancherel Theorem. The other half amounts to
specifying the intertwining operator Y. By (1.1a)

(. = 7D} = [ (D} (e)m(e)dg, 1€ DomD!N DIL(G).

This is one reason why we are interested in Conjecture 1.3. On the other hand, by
(1.2) one does have

(Yf). = D.in(f), f€CIG).

(6) We now recast the Plancherel formula as an expansion of the Dirac trace.
This is a much more subtle procedure than in the unimodular case. The point is that
to evaluate the Dirac trace 8s(¢) for ¢ € C*(G)*", one must factor ¢ into a
convolution product of left bounded elements of L,(G), and then use the
corresponding bitrace (see [7, lemma 4.3]). For example in the unimodular
situation, elements f € A(G) N L,(G) are factored in [9, corol. 4.3} into convolu-
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tions of L, functions; and in the infinitesimal non-unimodular situation, elements
f € CZ(G) are factored in [3] into convolutions of C™(G) functions. In the global

non-unimodular situation, this matter of factorization touches on domain ques-
tions, and so it is more delicate.

Let f*(g)= f(g ")8(g) " and write Qf = f*, Af = f672. Define D’'=QDQ". (In
the notation of [7], D*=M'", D*=M"') D' satisfies D= A"'D? and D'A =
AD'’. Then, setting h = f = f* we calculate

he)= [ 117 = [ Tra D)) du ()
- [ Tea(D}Pr @D ()

= f Tr 7 (D¥f = D*f*)du ().

We use the fact that D (resp. D) is affiliated with the left (resp. right) ring to write
(1.4) h(e)= f Tr 7 (D*D"h)du ().

We can replace h by A™'h to get

(1.5) h(e)= f Tr w (Dh)du ().

But these computations are purely formal. We now make precise for which kinds of
functions formulas (1.4) and (1.5) actually hold.
Here are some notational conventions (see [7, 8]):
P(G) = continuous positive-definite functions on G;

L,(G)? = left bounded elements in L,(G)
={fELAG):|fxh|.=clh]., Vh € LAG)};

A(G)=1{h € L(G): A"h € LA(G)?, ¥n € Z}.

1.6 Proposition. Assume Dom D*N DL,(G)N LA(G)* is dense in L(G).
Then
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(1.6a) h(e)= f Tr 7(D*D*h)du (),

Vh € P(G)NDom DD N DD AL(G)N A(G);

(1.6b) he)= f Tr 7 (Dh)du (7),

Vh € P(G)NDom D N D'L(G) N A,(G).

Proof. Since D= A"'D?A™" and A" preserves P(G) and ¥, (G), we see that
(1.6a) and (1.6b) are equivalent. We shall prove the former.

Let h € P(G)NDom D*D"*N D*D'"*L, N U,. The proof of [2, theorem 13.8.6]
shows that we may factor h = f * f, where f € P(G)N L,(G)*. Furthermore f is
constructed as follows. There exist non-negative polynomial functions p; which
vanish at 0 such that f; = p;(h) (multiplication is group convolution) and f, — f in
L,(G).But p;(A"h)= A"p:(h). Thus [2, theorem 13.8.6] also applies to A"h to yield

Ah = f, *f, f. =limp;(A"h).
Then f, = A"f; so f € P(G)NU,(G) and f* = Af € Li(G).
Put g = f*, so that h = f*g* with f, g, g* € P(G)N U,(G). Now h € Dom D",
and D" is affiliated with the right ring. Thus g* € Dom D" and D*h = f* D"ig* =

f* (D?g)*. Moreover D"h € Dom D* and, since D? is affiliated with the left ring,
f € Dom D? and

D:D"h = D¥f x(Dg)*.

By the Plancherel formula (1.1a),
he)=(f+g*)(e)=(f¢8)
=me(D%f)7r(D%g)*du(w)
- f Tr (DY * (D%)*)dp ()
=me(D%D'%h)dp(w).

Thus the proof is done once we establish
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1.7 Lemma. Let h=fxg* where h&Dom D!D*ND*D"L, and
f,8,8*€ L. Then

m(D*D"*h)= 7 (D¥)n(D¥%)* aa wEGC.
To prove this we require another

1.8 Sublemma. Let k EDomD%ﬂD‘%LlﬂLz(G)z. Then for every u €
Dom D*
m(D* *D*u)= w(D*k)m(Du) aa w€G6.

Proof. Indeed, how is w(D%u) defined? By the density assumption, we may
choose u; € Dom D*N DL, such that

1 1 .
U — u, D2y; —» D:u, both in L,.

Then m(D?%y;)— w(D*u) a.a.  (actually as Hilbert—-Schmidt operators). Now since
k is left bounded and D*y; € L, we have
k *D*w;—k*D*  in L,
Dk +D%u;)= D} * D', € L,.
Therefore
m(D*k * D)= m(D*k * D*u)) = lim 7 (D*k * D*u;))
= lim 7 (D*k * D*u;)
= lim w(D* )7 (D*u;)

= 7 (D)7 (D).
g.e.d.

Proof of Lemma 1.7. Let kK €DomD*N DL, N L,(G)% Applying the
Plancherel formula, left boundedness of k, and Sublemma 1.8, we compute

(D*h, k)= (f* Dg* k)= (f *(D¥)* k)
=(f k *Dgg)

= [ Tem(DY)m DYk + Dig))*du ()

=fTrW(D%f)w(D%g)*w(D%k)*du(ﬂ),
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The Lemma follows by the density assumption and the unitarity of Y. g.e.d.

We may consider (1.6a) and (1.6b) to be alternate forms of the Plancherel
formula (1.1a). (1.6b) is neater to work with; but it is the distributions
h — Tr 7w (D*D "h) which are AdG-invariant, 3 (a)-eigendistributions on G. (Note
also that the expression D*D"*h equals D?* h * D?in the notation of [6, (3.3a)].) As
with (1.1a), there are non-trivial domain questions to be dealt with in both (1.6a)
and (1.6b).

We wish to give a name to the operators of Theorem 1.1. It seems appropriate,
since such operators were first considered in [1] and [11], to make the

1.9 Definition. By a Dixmier—Pukanszky operator on a locally compact
group G we mean a positive, self-adjoint, invertible operator on L,(G), affiliated
with the left ring and semi-invariant of weight 8.

Then, by combining [13, lemmas 7.1, 7.2] and [7, theorem 6.4], we have the
following result.

1.10 Theorem. Let G be type I and let D be a Dixmier—Pukanszky operator
on G. Then in fact D does occur in the Plancherel formula ; i.e., there exists a positive
standard measure pn on G such that

[ 1@)Fdg = [ 1m(D}Rdu(m).  vfEDomDINDHL(G).

Now in deriving the Plancherel formula for a specific group, there are two levels
at which one can operate. The first -— and more detailed — procedure is the one
used in [6]. Specifically, from an explicit knowledge of the irreducibles, one finds
the equivalence class u of Plancherel measure by the group extension technique
[7]. One then computes Tr 7 (f) formally (usually via [7, theorem 3.2}) and uses the
accumulated data to guess what operator D will work in formula (1.6b) say. Then
having guessed D, one goes back, adjusts  appropriately and proves rigorously
one of (1.1a), (1.6a) or (1.6b). We carry out that process for the maximal parabolic
subgroups of the classical groups in §4, and for minimal parabolic subgroups of
certain split rank 2 groups in §5c. In the second procedure, one ignores the
irreducibles and simply produces a Dixmier-Pukanszky operator. Then by
Theorem 1.10 one knows there exists a measure (i, equivalent to u, such that the
Plancherel formula holds with the pair (D, z). This is less precise than the first
method since one doesn’t identify the Radon-Nikodym derivative du /dii. We shall
implement this second procedure in §5 for an arbitrary parabolic whose nilradical is
non-abelian and has square integrable representations mod its center.
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Finally we remark that the matter of uniqueness is up in the air. The question of
whether there is a “best” pair (D, i ) in any sense is — although it has been studied
by several people — completely unresolved. We shall say a little more about this at
the end of §4.

2. The indefinite unitary groups

Our technique for obtaining the Plancherel formula can be applied to almost all
of the maximal parabolic subgroups of classical groups. But in order to avoid
repetition, we present the details only for the (indefinite) unitary groups. See §4e
for a summary of the results on the other classical groups.

Let F denote one of the fields R (reals), C (complexes), or Q (quaternions). For
n = 1, we view F" as a right vector space. Then foru =1, v =20, u + v = n, we set
F*“* = F" with hermitian form

u u+v

(2-1) (x, )’) = E Xy — 2 Xy

1 u+l

The indefinite unitary groups are
U(u,v;F)=the F lnear transformations of F*® that preserve (-,-).

Note that

O(u, v) F=R
U(u,v; F)=13 U(u,v) F=C
Sp(u, v) F=Q

is always a reductive real Lie group of R-rank min (u, v).
Next let F**" = the space of s X n matrices over F. For A € F**", we denote
A*='A EF". Then

smefserreng(t O )ea(t 9]
If n =u+ v we have a hermitian map
H:F" X F" — F
given by

(22) %((AbB]), (Az, Bz))=A1A§—BlB;,
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where A, € FF**, B, € F***. We write
Fers) = oxn with hermitian map #.

Next for A € F*™, put
1 1
ReA=5(A+A%, ImA=3(A-A").

Then for s =1, u+v=n, u Zv =0, define the simply connected nilpotent Lie
group
NS:u,v(F) = Im F’x-‘ + st(.m,)

with group composition
(21, 1) (22, X2) = (21 + z + 5 Im H (x4, X2), X1 + X3), z; EImF™ x;, € ™,
The group GL (s, F) X U(u, v; F) acts by automorphisms on N,,,,(F) via
23) (r8)(zx)=(yzy*,vxg*), y€EGL(sF), ge€U(uv;F)
and so we have a semidirect product
P....(F)=N,..F) (GL(s5,F) x U(u, v; F)).

Note that the choice s =1, v =0 gives as a special case the parabolic groups
considered in [6].

2.4 Proposition [15, 17]. Letp = q = 1. Then the groups P,.,_,, (F), s =
1,---,q, constitute a complete set of representatives for the conjugacy classes of
maximal parabolic subgroups of U(p, q;F), except that P,_,., ,(R) is not maximal in
O(n, n).

Denote £ = dimgF. For y € GL(s, F), let detgy denote the module (with respect
to Lebesgue measure) for the action of y on F. Set GL'(s,F)=
{y € GL(s,F): detg = 1}. We have detry =|¢(y)| where

usual real determinant F=R

(2.5) ¥(y)=1{ |usual complex determinant | F=C

|usual complex determinant viewing Q = C*? F=Q.
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We now exclude from consideration the situation: F =R and s odd. Then the
function z = §(z), z € ImF*, is a non-trivial real polynomial function on ImF*™* of
degree es. In case F # R, ¢ is actually non-negative.

Next denote the multiplicative group of positive real numbers by RY and view it
as the group of positive real scalar matrices in GL(s,F). Then GL(s,F)=
R* x GL'(s,F). The Langlands decomposition of P....(F) is as follows: set N =
N...(F), A =R%, M =GL'(s,F)xU(u,v;F). Then P=P,,.(F)= NAM. (We
continue to write NAM for the same reasons as in [6].) The group multiplication is

(26) (zl, X1y Qriy Vs 81)(22, X2, Qryy Y2, gZ)=

(z1+ riyizoy ¥+ 3Im H (x1, 1y1X28 1), X0+ 1y1X28 3, G riry Y172, 8182)-

The modular function is given by

2.7 bnam(z,% G, Y,8) = Snalz, X, a,) = r*, q =dimgImF™ + % dimg F**® ™,

Also, the polynomial ¢(z) is M-invariant and A -homogeneous. Indeed

(2.83) y(ma,-z)=r*y(z) = r’**=*y(z).

The representation theory of the groups P,...(F) has been completely described
in [15]. Since we are interested in the Plancherel formula, we only need consider
generic representations. Put Z = Cent N, 3 = Lie algebra of Z, 3* = Homa (3, R) and
k =dimZ, | =dimN/Z. We identify Z with 3* by the abuse of notation A(z)=
etE) )\ € 3* We also identify 3* with 3 (or Z) via the non-degenerate bilinear

form

(2.9) (z,A) = Re trace zA ¥, z,A €ImF™

(the notation is as in [15, p. 41]). Put 35 =3* N GL(5,F) = {\ €3*: ¢(A) # 0}, the
Zariski open subset of Im F*** consisting of maximal rank matrices. To each A € 3%,
there exists an irreducible unitary representation class [y.] of N, uniquely
determined by the equation

Ya(zn) = A(2)y.(n), 2€Z, neEN.

Moreover [y,] # [y+] if A# A’. These are the generic representations of N. The
generic representations of NA are obtained by induction

m = Ind¥*y,, A €33
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Since

a - [r]=[y=2]
we have certain equivalences. Put
(2.10) S={ress v =1}

Then S parametrizes a generic set of inequivalent irreducible unitary representa-
tions of NA. The action of M commutes with that of A and is essentially transitive
on S. In fact, if F = R or Q, M is transitive on S. If F = C, there are s + 1 orbits; and
a cross-section for these orbits is the set

- — I 0 .
S={\/—1(O _IH>.t—O,1, ,s}.

Fix \,€S (F=RorQ),and A\, €S (F=C),i=0,1,---,s. Then the M-stabilizer of
[n] is the same as the M-stabilizer of either [y,] or A; itself; it equals

Sp(%,R)XO(u,v) F=R, s even

(211) M, =
SO*(2s) % Sp(u, v) F=Q

M, = U(,s-i)yxU(u,v) F=C, i=0,1,--s.

Note that in all cases the stability group is reductive. Wolf [15, p. 52 ff] has proven
that 7, extends to an ordinary representation 7 of M. Then the generic
representations of NAM are:

m, = Indian, 1. @7, TEM, F=RQ,
(2.12)
Wizlnd‘;[AM’ﬁg@T, TEM; F=C.

The Plancherel formula we will deduce for P looks as follows. Let g = k + 31,
k = dimgZ, | = dimgN/Z. Consider the operator E defined on P by letting it act on
the direct factor Z according to

E = Q)| ¥[r=,

where ¥ is the constant coefficient differential operator on Z which corresponds
under Fourier transform to multiplication by ¢ — see §3 for the precise definition
of E. Then
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i f Tt 7, (E¥f) dptas(7) F=R,Q

(2.13) f1,) =4

| 3 [ T E e F-C.

3. Definition and properties of certain unbounded operators

Now we define the global unbounded operators that will appear in our Plancherel
formulae for P, .(F). When s =1, v =0 they are the fractional powers of the
Laplace operator that occurred already in [6]. In general they will be fractional
powers of the absolute value of a non-elliptic constant coefficient differential
operator on Z. We develop the algebraic and analytic properties of such operators
in this section.

3a. Definition of the Operators. Consider a differentiable manifold V =Z x W
where Z has a fixed identification with an euclidean vector space R* In our
applications, we will have V = NA or V = NAM and Z = Cent N. The euclidean
structure on Z defines an operation of partial Fourier transfer on V via

3.1 F(f)Ew)= f f(z,w)e'*9dz, EEZ, weEW.

Suppose next that 8(¢) is a polynomial function of ¢ € R*. Then there is a unique
“constant coefficient” differential operator ® on V which is related to 6 by the

equation
(3.2) FOf)(&w)=0(5)F(NHE w).

We may utilize the Fourier transform then to define positive powers | @', namely
(3-3) [®f(z,w)=F{0(E)F(}zw), =0

These operators do not increase the W-projection of the support of f, but they may
increase the Z-projection.

Now fix a positive Radon measure dw on W. That determines a positive Radon
measure on V by dv = dzdw, where dz is Lebesgue measure on Z. If V is NA or
NAM, Haar measure is of this form. Then, exactly as in [6, prop. 2.6], we have
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3.4 Proposition. View @[, t =0, as an operator on L,(V, dv) with domain
CZ(V). Then |0 is symmetric, and its closure is a positive self-adjoint operator.

The unbounded operators in the Plancherel formula of NA and NAM are
special cases of the above construction. With k =dimgZ, ! =dimeN/Z and
q = k +11, we have diffeomorphic splittings

(35) Z=ImF* =R NA=Zx[R' xR}, NAM=ZX(R'xR¥xM).

Recall the polynomial function ¢ on Z defined in (2.5). The corresponding
differential operator ¥ is specified by (3.2); and the powers | ¥[* by (3.3). Then our
operators are defined, relative to (3.5), by

(3.6) D = Qm) ™| ¥  on NA,
3.7) E =Q27) ¥  on NAM.
3b. Density Properties of the Operators. We recall the result of [6, §2b].

3.8 Theorem. If t=0 and fECTY(V) with m>2t+k, then
Af € Ly(V, dv).

We need an analogous L, property for the one parameter family |¥|* — first in
order to know that m(D*f) means [o(D*f)(g)7(g)dg, and second to verify
Conjecture 1.3 in the cases under consideration. Well, the analog of Theorem 3.8
for [¥[" is simply not true in general. Experience indicates the likelihood of a
critical value a such that

|[w[Cz(V)CL(V), t>a,
|[WI'CHVYZ L(V), (=a

(We state a specific result in the Appendix §6.) Nevertheless, we can verify
Conjecture 1.3. Let 6, ={A € Z: ¢(A) = 0}, a Zariski-closed subvariety of Z.

3.9 Definition. Put ¥, (V)={f(z,w): f has properties (i}-(iv)}, where
@ feci(vy

(i) AL C W compact subset such that f(z,w)=0if wgL;

(iii) V polynomial p(z) and V constant coeflicient differential operator T on Z

sup [p(2)(Tf)(z, w)| < =;
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(iv) 34 neighborhood of %, such that F(f)(£,w)=0if £ EWN.
Clearly %,(V)CDom|¥], ¥Vt = 0. Moreover we have

3.10 Lemma. %,(V) is dense in LyV), and |V[fe L(V), V=0,
VfE £ (V).

Proof. Let (V) denote the set of functions on V having properties (i)-(iii) of
Definition 3.9. The partial Fourier transform is a linear isomorphism of ¥(V) onto
itself. (It’s actually a topological isomorphism if we put seminorms on ¥(V)
appropriately.) Now the fact that |¥|'%,(V)C Li(V) is easy to see from the
definition of %,(V) and equation (3.3). Indeed for f € ¥;(V), we have |¥[fE
F(V)CL(V).

Next let f(z, w) € L,(V). We may approximate f arbitrarily closely in L, norm by
a finite linear combination of functions of the form g(z)h(w), g€ LAZ), h €
L(W). Furthermore the functions g,(z)h(w), g: € $,(Z), h, € C(W) belong to
%,(V). So it is enough to prove density in case W is trivial, i.e. V = R* But this
follows because the Fourier transform is a unitary map of L,, and {f € (R*): f =0
near 4,} is dense in L,(R"). q.e.d.

3.11 Corollary. (1) DomD' N D L(NA)N L,(NA)* is dense in L,(NA),
V=0,

(2) DomE‘ N E~'L{(NAM) N L,(NAM)? is dense in L, (NAM), ¥Vt = 0;

(3) Let V = ZW be a Lie group with Z a closed normal subgroup and dv = dzdw
right Haar measure. Then if f € &,(V), we have f*, f* &€ &, (V).

Proof. Parts (1) and (2) are immediate consequences of equations (3.6) and
(3.7) and Lemma 3.10. Let us now prove (3). We observe

(1) @)= [ 1o (e
- [ £ )76 sy

- [ fonf)an

Now we expand the integral in Z-W coordinates. We are slightly hampered by the
fact that W may not be a group. For any v € V, we write v = z,w,, 2, E Z, w, € W,
Then
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G = | fewie)f(Ew)dido

ZxW

(3.11a)
= f fewiw 'zuu W) f({w)d{dw.

Consider the four defining properties of ¥, (V).
(i) f=*f* is clearly C~.

(ii) The integrand in (3.11a) vanishes unless @ € L and w,, € L. But then the
equation z..w = w,,0 ' guarantees that the values of w for which the integrand is
non-zero are also restricted to a compact set. That is, f * f* is compactly supported

mod Z.

(iii) Let n be a non-negative integer and T a constant coefficient differential

operator on Z. We show
sup [+ ]z T *f*) @w) <eo.

Indeed the supremum can be estimated:

W20 [ T Wi 2w (G|

sup
z,w

= sup meas (L)

Z;w,wEcpt

A+ 121" [ THGwew ™ zeutbon) F G}t

= sup

zZ;w,wEcpt

f A+ zw T wz L) T (zwiw " ZwaWae ) -

(L + ]| wgw 2o ) f ({w)d( | meas (L)

1+ e T ) [ (1 D wew 2 ) F )2

= sup

u;w, wEcpt

=constant - sup

w,w Ecpt

[ s twew 2 Figwyae]

=constant- sup 'f(l+” w{w“”)"f({w)d(’<oo.

w,.wEcpt
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Note we have used (twice) that f € ¥,(V) and that, since { - w{w ™' is a linear
transformation, || wiw || = C. ||| where w — C, is continuous.

(iv) J(f*f*)(zw))t (z)dz = jf(zw{w_'zwwwww)f_({w))t(z)dgdwdz

= [ f@m) oM @A (we w2tz dgde
=0 if A is near %,. q.e.d.

3.12 Remark. The proofs of Lemma 3.10 and Corollary 3.11 (3) work just as
well with the pair (¢, ¥) replaced by any polynomial § and associated constant
coefficient differential operator 0.

3c. Algebraic Properties of the Operators. We now extend [6, §2c], with ¥ in
place of A. The technique is similar, so we do not supply full details. Consult [6, §2c]
for undefined notation and terminology — except that for a Lie group V, we write
U(v) for its (complexified) universal enveloping algebra. Observe that if V is NA or
NAM, then the splittings (3.5) determine a cannonical embedding 11(3) — 11(v) that
respects right invariance.

3.13 Lemma. LetV be NA or NAM and view ¥ &€ ll(v). Define a: V — R*
by a(z,x,a,,---)=r. Thenif f€ C"(V), we have

(3.13a) Y f=Vf
(3.13b) f*¥ = g2 gy,

Proof. We argue as in [6, lemma 2.11, F#R]. If ¢ is any element of 3 and
{ = exp &, then

(€ 1) (2%, @ m) = (2 = 16,5, ) |

and

(F*€) (2%, @ m) = 5z = r'tm - %, 0 m)]

= rzgd,'f(z = tm - £, %, ap m) i

=ri((m - £)*f)(z, x,a, m).
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The result follows immediately from the definition of ¥ and the fact that ¢ is
M-invariant. g.e.d.
Now as in [6, §2c], we use Lemma 3.13 to define the right and left actions of
positive powers of ¥:
(3.14) W[ *f=|W[f, f*|¥]=a™*¥[f, 120
The next result is
3.15 Lemma. We have
(3.15a) (W) *fy=f*=+[¥], t=zo0.
Proof. It suffices to prove
(3.16) [W[ o f* = a (¥ [f)*,

for (3.14) and (3.16) combine to give

f* *’\I',I — a21degda,q,,t *f*
— a21deg¢a~21degw(,q,,1f)*

= (¥ ="

The proof of (3.16) is analogous to that of [6, prop. 2.14]. Let £€3, { =
exp ¢ € Z. Then

d
(¢ >x=]c=l=)(z,x,a,,m)=Z *(z — 1, x, a,,m),,=O
d - -2 -1 -1, -1 )
=Ef(—r m - (z—-t0),—r'm7-x,a,m)r "I,=0

zamTl, - m T xae, mTYr

d -
- P
=r*—f(-r"m
A
=r*m™"- ¢ *f)*(z, x,a,m).
Once again we invoke M-invariance to obtain

v *f* _ a‘z"‘“"’(‘lf *f)* = a'z‘”w(‘l'f)*'

Rewrite this as
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QS = (V).
Now ¥ and the operation of “‘multiplication by @’ commute. Hence
oS = ()
Moreover ¥ is self adjoint and |¥|= V¥ Hence
o W f = (W]f)*.

Equation (3.16) follows easily now. q.e.d.
Finally, since the operators D on NA and E on NAM are positive multiples of
[ W|9¢* we obtain from (3.14) and (2.7)

3.17 Proposition. (1) D is a semi-invariant of weight dna on NA.
(2) E is a semi-invariant of weight 8nam on NAM.
(3) (E*#f*E¥)|na = D*#f|ua * D%

4. Plancherel formula for P, ., (F)

As in [6] we first derive the Plancherel formula for NA, and then via an extension
technique we pass to NAM. Here the compact extension technique of [6] must be
replaced by a non-compact extension technique. We continue to exclude the case
F =R, s odd, but at the end of this section, we comment briefly on the case F = R,
s = 1 — which we can handle — and the maximal parabolics of the other classical

groups.

4a. Some Resulits on Disintegration of Measures. Recall the basic facts on the
groups P...(F) and their representations from §2. Now we normalize Haar
measures. Put dz = Lebesgue measure on Z = ImF*™, dx = Lebesgue measure on
F**®“% da, = dr/r where dr is Lebesgue measure on A = R¥, and dm a fixed choice
of Haar Measure on M = GL'(s,F) X U(u, v; F). Then dn = dzdx is Haar measure
on N, dnda, is right invariant on NA and dnda.dm is right invariant on NAM. The
identification (2.9) gives us Lebesgue measure dA on Z so that

(4.0) f f F(2)\(2)dzdA = Q7)f(1z), f€ CIZ).

2 Z

We disintegrate dA under the action of A. Note that dA is quasi-invariant with
modulus r?*. The principal stability group for the action of A on Z is trivial. Fix the
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measure r**da, = r**'dr. This is a quasi-invariant measure on A, also with modulus
r**. Thus by [7, theorem 2.1], there exists a unique quasi-invariant measure o on
Z[A such that

(4.1 j f(A)da = f j f(a, - A)yr**da,do (X).

Zia A

The set S defined by (2.10) is a Borel cross-section for a co-null set in Z/A. If we
restrict the canonical projection Z — Z/A to S we get a Bore] isomorphism onto a
co-null set. We transfer o via this isomorphism, and continue to write it o. o is the
unique measure on S satisfying

o

(4.2) f f(A)dA = f F(r*A)r* 'da (M)dr.

4.3 Lemma. o is M-invariant.

Proof. This follows instantly from the facts: M and A commute, dA is
M -invariant, and the uniqueness of o in equation 4.2.
Assume momentarily F=R or Q. Then we have a Borel isomorphism

M\M-—>S§, mM,—>m -A,,

We transfer o to M,\M via this isomorphism. Since Haar measure on M is already
fixed, there is a uniquely determined Haar measure on M, such that

ff(m)dm= f ff(mlm)dmldor(rﬁ).

MM M,

Finally (since the group M, is unimodular and type I), there is a unique Plancherel
measure fy, on M, such that

[ 1fmaPdm,= [ 1) Bdusntr).

My

fF=C,putS;=M-A,i=0,1,-- s; transfer o ,s,. to M,\M via the isomorphism
mM, — m - A;; and then choose Haar and Plancherel measures on M, and M,
accordingly.
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4b. The Characters of N. Here we derive an expression for the character
Try,(f) as a Fourier transform over Z. For fixed A € Z, the functional

f—»f f(z)A(z)dz, CI(N)—C

is easily checked to be an Ad N-invariant, 3 (n)-eigendistribution. (Note the center
B(n) of U(n) equals U(3) in this case.) Moreover for T € lI(3) the eigenvalue is
T(A). For those A which are in general position (the set 3%), the infinitesimal
character uniquely determines the global character. Thus there is a number c(A)
such that

Ten(=ch) | S @)z

Let Pf(1) be the Pfaffian polynomial on 3* in the sense of [10]. According to [10,
p. 455}, the Plancherel formula for N may be written

fer=c[ Trn (POl

It follows from the inversion formula on Z that
cM)=alPfM)], ArESF.

We wish to compute ¢, and |Pf(A)| explicitly. That can be done by evaluating
Pf()), then computing the Kostant measure and using [12]. It can also be done
directly.

4.4 Proposition. For A €35 and f € CI(N),

(4.42) Ten () = @m) W)™ [ fn )z

Proof. Fix A €33. Let q be any maximal totally isotropic subspace of F****
with respect to the antisymmetric form B,(n,{)=A((n, ()= A, Im ¥ (n,{)) —
refer to (2.9). Then 3+ g is a real polarization for A. Letting Y = exp g we know that
v, = Ind3yA, where A(z expn) = A(z), z € Z, € q. Let 2 be any real complement
for q in F****, X = expz. Then ¥, can be realized on L,(X), and a straightforward
computation reveals
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1
v (zyx)h(u) = A(z +31m % (u,y +x)—%]m H(y, u + x))h(u +x), € LX)
Lifting to functions, we get the kernel operator
v ()R () = f )\(z +%Im H(uy+x— u)—%lm K0y, x)>h(x)f(z, v, x — u)dzdydx.

The trace is computed by integrating down the diagonal
Try.(f) = f /\(z +%Im %(x, y)—%lm %(y, x)>f(z, y, 0)dzdydx

= f A(Z)A(Am ¥ (x, y))f(z, y,0)dzdydx.

Now the pairing (x, y) = Retrace #(x, y) is a non-degenerate bilinear form on X,
and the inversion formula on X takes the form

f f h(y)e' ™ dydx = 2m)?h(0), h € C=(X).

Moreover a straightforward computation shows that
Retrace[Im #(x,y)A*] = — (Ax, y).

Therefore

Ton() = @m) ¥ [ A(@)f(2)ds.

The proof is completed by the observation that u + v = l/es = l/deg . q.e.d.

Remarks. (1) The comments made in the first paragraph of the proof of {6,
lemma 3.1] apply here — namely, the formal computation of Try.(f) is legitimate
and equation (4.4a) actually holds for sufficiently differentiable, sufficiently rapidly
decreasing functions on N.

(2) We do not exclude the possibility that N =Z =ImR"™ is abelian, i.e.,
u + v = 0. Proposition 4.4 is still valid (trivially since [ = 0).
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4c. The Plancherel Formula for NA. We start by evaluating Tr 0, (D*x f * D%
for suitable f.

4.5 Lemma. Let A €35 and 7. =Ind¥*y,. Then for any f€& ¥,(NA),
(D x f o f* % D3 is trace class and

(4.5a) Tr(D3*f*f** D¥) = 2m)¥| t/f()\)]*"’de“’”f ho(r*A)r®*'dr,

where h = f* f* ho=h|, and ho(A) = [z h(2)A(z)dz.

Proof. We first observe that according to Corollary 3.11, f * f* € ¥,(NA) and
the expression 7, (D?# f * f* * D) makes good sense. We shall employ (as we did
many times in [6]) theorem 3.2 of [7]. This is legitimate since D*#fxf**D*e
L.(NA)N P(NA). Putting ¢ = D} f«f*+ D* for convenience, we compute

Trm(qo)=f 6(a)“Tr[f <p(a“na)yA(n)dn]da

N

= [ at@yr @y el [ oa 200 (2)dzda

A z

- [ @) @my Ay o) | ez (aza")dzda

A P4

0

= [ remymp e [ enerzya®

0 z

o

= [ rreay e e &

(4]

o

=f r"(zﬂ)—*J4;()\))‘”2‘““]¢f(r2/\)l""’eg”§n(r’/\)d7r

0

=J r—uzq(zﬂ,)—kld,(/\)l(q—l/Z)/degwﬁn(rzA)%I

o0

= emy ek [ e,

a
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The last integral is absolutely convergent — thus the positivity of 7. (¢ ) guarantees
that it is trace class. Since a, - . = 7,2, = 7,, the left side of (4.5a) is invariant
under the transformation A — A, t > 0. We leave to the reader the verification that

the right side is also. q.e.d.
We are now ready for

4.6 Theorem (Plancherel formula for NA). Let D be the operator on NA
defined by (3.6). Then for any f € $,(NA) we have

(4.6a) [ 172 = [In. @ p)Edo2).

NA

Proof. Using Lemma 4.5, Lemma 3.15, equations (4.0) and (4.2), we compute

[ Im @ Edo () = [ TrnuDiefsf* DYao(r)
= [ @myt [ e rea ) drdo )
= (271')4"[ f (f* fo(r* ) r* 'do(A)dr

= @m™ [ (i)

=(f*f*(12)
=(f*f*)(Ina)

= f [fI7. q.e.d.

Here is a case where Proposition 1.6 applies (because of Corollary 3.11). The set
% (NA)is dense in L,(NA) and is contained in Dom D* N D 2L,(NA)N %A, (NA).
Hence we can write the Plancherel formula:

(4.7) k(lNA)=jTrm(D5*k «DHdo(r), h€PNA)NFL(NA),
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(48)  h(lwa)= f Tr 0. (Dh)do(A), h € P(NA)N %,(NA).

4d. The Plancherel Formula for P. We are now ready for the proof of the
Plancherel formula on the parabolic group itself. As we said in the introduction, we
have to replace the compact extension procedure of [6, §4] by a non-compact
procedure. Our model for this passage will be [6, §2]. Here is the main result.

4.9 Theorem (Plancherel formula for NAM). Let E be the operatoron NAM
defined by (3.7). Then for any f € ¥, (NAM) we have

@.92) [ 1= [ Im (B pldun),  F-R.Q,
(4.90) [ 17F=3 [ ImiEtplidun ) F=c.

Proof. We give an outline of the computation, followed by a justification of
each of the steps, for (4.9a); the proof of (4.9b) is basically the same.
Let fe $,(NAM), h=f*f* ¢ =h 'm. Then we calculate

[ 1P = h ) = o)

NAM

(4.10) =fTrm(D%*<p * D¥da(A)
. s N
(4.11) = Tt Qs D % @ * DY do (i)
MM
(4.12) = f Tr m,(E** h * ENdpa(7)
My
(4.13) =

[ 1S i (o).

We must substantiate equations (4.10)-(4.13).
(4.13) holds because of Lemma (3.15). (4.10) is valid because of (4.7) — indeed
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the function ¢ = (f * f*)lNA is in the set P(NA)N &, (NA). (Note: Proposition 1.6
is critical here — without it, the proof would be blocked at this stage.) Formula
(4.11) is a trivial consequence of the discussion at the end of §4a. Now we come to
(4.12) — this is the heart of the proof. Here NA\P is not compact so we reason as in
[8, theorem 2.3].

We begin by applying the trace formula of [7] to the representation . Since
8 |nam, = Snam,, and Swam |m =1, [7, theorem 3.2] gives

Trm, (Eixh * E})

= f Tr j (Efxh *x E®(m 'nam,m)(#, Q 7) (nam,)d (nam,)do ().

M\M NAM;

For convenience we write h, = Efsh * E} ¢, = D%+ ¢ x D%, Set

A.(m)=Tr f hy(m 'nam,m) (7, Q 7) (nam,)d(nam,).

NAM,

This is a non-negative (possibly »-valued) Borel function of + and m. Therefore by
Tonelli’s Theorem

j Trar, () dpa, (1) = f J A.(m)do (i )dpm(T)

N,y Ny MM
- | f A, (m)dpan(7)dor (1),
MM Ml

Thus we are reduced to proving

(4.14) T o (@1) = f A (m)dpns, (7).

My

Let {&} denote an orthonormal basis for the space of 7,, and let {7} denote an
orthonormal basis for the space of 7. Then

Am)=3 [ i namm X @) (nam )& ® 7, £ @ 7)d (nam)

ij
NAM,

=2 f hi(m ™ nam.m Y5 (nam )&, €)(r(m)¢5, £7)d (nam,).

NAM,



PLANCHEREL FORMULA

Set
Q) = [ him mamm )i (nam )¢, 6)d (na).
Then
[ A= [ S [ Quntmrtmizs ciram.
But
S [ funtmxemig ¢ dm = Trr(@n),
So

f A (m ) dpana(7) = f S Tr (@ )duan (7).

Hence we are further reduced to proving

.15) Tema(e)= [ 3 Ter(@um)dun(o)

The right side of equation (4.15) can be computed as follows:

(4.16) f > Ter(Qn)dum(t) =3 ]' Tr 7(Qum Jdpan(T)
@.17) =2 Qunlln)
- f ho(m ~nam Xni(na)é, &)d(na)

(4.18) =2 f ¢r(na)m(mnam )¢, &)d(na)

=Tr nm.n(@1)

145
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In (4.18) we used M-invariance of the measure d(na) and Proposition 3.17(3).
We can justify (4.16) and (4.17) simultaneously by appealing to [8, lemma 2.1] (in
the case of no multiplier). For that we must prove that €., is L,, continuous and
that for any unitary representation 7 of M;, 7{({;,,) is a positive operator. Well,
continuity of (,, follows from that of h,. Integrability holds because h, is
compactly supported mod N, i.e., £, is actually compactly supported. And the last
condition can be established by relating 7({};,.) to kernels of positive operators
(exactly as in {8, pp. 110-112]; but there is a more direct way. Let 7 be any unitary
representation of M, { a vector in the space of 7. We need to show (r(2;.){, () 2
0. But

(T Q). 0) j Qo (m)r (m ), O,

il

f hu(m ™~ nam.m )7 (nam )&, £)(r(m.)¢, {d (nam.)

NAM,

={(MT)hT)EREERD,

where hT(nam,)= h,(m 'nam,m). The conclusion follows because 7§, @ 7 is a
unitary representation of NAM, and h7 is positive-definite. This completes the
proof. g.e.d.

de. Other Maximal Parabolics. Theorem 4.9 applies to all the maximal
parabolic subgroups P, ., (F)CU(p,q; F) except for: F=R and s odd. In
addition, we have the Plancherel formula in the case F = R, s = 1. The parabolics in
that case are

P=P, .. (R)=R* -(GL(LLR)XO(s,v)), u+v=1

The analog of the polynomial ¢ is ¢o(A) = AT+ A5+ +AZ-A2,~ - — AL,
A ER*’; and the corresponding differential operator (analog of ¥) is the wave
operator
a’ a* 3 3’
= - ... = +— .4 .
0= ™ Tt et e,

The generic representations of NA are parametrized by S'US™, §%=
{A €R"": (1) = = 1}; the generic representations of P are parametrized (essen-
tially) by O(u — 1,v)" U O(i, v — 1)". The Plancherel formula has the form:
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Jire= [ 1w (B DlEdu o)

O(u—1,v)"

(4.19)
+ [ I ) B o)

O(uo—1)"

where E = ¢|0}*“** acts on R** in the usual way. The method of proof of (4.19) is
the same as that of Theorem 4.9 — the details are actually a little less complicated
since N is abelian.

The remaining cases are: F=R, s odd and s = 3. There the situation is still
unsettled. Consider the simplest example

(4.20) 0(3,3) D Psoo(R) = ImR™*- GL(3; R)= R*- GL(3; R).

This parabolic group has one generic irreducible representation, carries a unique
Dixmier-Pukanszky operator (up to scalar), and that operator cannot live on the
nilradical. We will return to these groups on another occasion.

The maximal parabolic subgroups of the other classical groups are similar in
structure to those of the unitary groups. Most of them can be treated by the
methods used here in §§2-4, and the ones not amenable to such methods resemble
the example (4.20).

The *““‘good” maximal parabolic subgroups of classical groups fall into two
categories. In the first category, the nilradical is of the form N =2 + X where
Z =Cent N is a nonzero R-linear subspace of an F'*°, s =1, which contains
invertible matrices, and X is a subspace of an F**", n = 0. There, the module for the
action of Z on F* plays the role of ¢, and E is a positive power of the absolute value
of the corresponding constant coefficient differential operator ¥ on Z. Here is the
list, in the notation of [15].

4.21)

G 4 see [15], pages
GL(2n; F) L,.(F) 14-15
U(p.q; F) P, ,_..s(F), except F=R, s odd 26-28
Sp(n; F) P; 5n-s)(F) 83-85
O(n; C) P nsn-m-s(R)c with s even 126-127
SO*(2n) P%, .2 147-149

Note that N is abelian in some of these cases.

The second category of “good”” maximal parabolic subgroups of classical groups
consists of those resembling P;,..(R) — the nilradical is abelian and has an obvious
semi-invariant not like a determinant. Those are just
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4.22)
G P N see [15], pages
O(p’ ‘I) Pl,p—],qq(R) Rp_l‘qV‘ 26_28
O(n;C)  Prminmi(R) o 126127

In each case, ¥ is the wave operator [].

The Plancherel formula for both “‘good” classes (4.21) and (4.22) is derived, as
above for the P, (F) (with s even in case F = R) and the P,..(R), using the explicit
structural information in [15].

To avoid mis-impression, we mention the parabolics not covered by the methods
of this paper:

(4.23)

G p see [15], pages
GL(a + b; F) L.,(F),a#b 14-15
O(.p’ q) Ps;p*s,qfx(R), N Odd, S ; 3 26_28
O(n; C) Po—sn-m-<(R)c,s odd, s=3 126-127

Here L., (F) has abelian nilradical F**°, and P, o(R) and P, ., 4(R)c also have abelian
nilradical.

Finally let us note that an examination of the subgroup NA =R’- R}, which
occurs in both P,,; (R) and P, ,0(R), seems to indicate that there is no “best” choice
of the pair (D, n) in Theorem 1.1. In effect, any Borel cross section S C R*— {0} =
n* — {0} to the action of R¥ = A determines a measure u = us on (NA)" by

£

J;f()‘)d/\ :j (f f(r)\)dus()t)>rdr,

and that in turn determines an operator D. The section {A: A1+ A3 = 1} leads to
D = A, which is suitable for Pi,4(R); the section {A: A7—A}= =1} leads to
D =[], which is suitable for Py, (R).

5. Pfaffian polynomials and operators

The maximal parabolic subgroups of the classical groups, in which the nilradical
is noncommutative but has representations square integrable modulo the center,
are just the ones listed in Table (4.21) for which the nilradical is noncommutative.
In those cases the Pfaffian polynomial of [10] gives a canonical element ¥ in the
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enveloping algebra of the center of the nilradical. In Section 5a, we prove that | ¥ is
semi-invariant under the full parabolic, and that an appropriate power |¥| is a
Dixmier-Pukanszky operator. In fact, we do this for all parabolic subgroups P C G
where: (i) G is a reductive real Lie group such that every Ad(x), x € G, is an inner
automorphism of g¢; and (ii) if G: is a simple local factor of G then the nilradical of
P N G is noncommutative but has square integrable (mod center) representations.
In §5b we return to the groups (4.21) with noncommutative nilradical and show that
their Dixmier-Pukanszky operators of §§3 and 4 agree with the ones defined here
from the Pfaffian polynomials. Then finally, in §5c, we illustrate the use of the
Pfaffian operators, describing the explicit Plancherel formula for minimal
parabolics in simple groups with restricted root system of type A..

5a. The Pfaffian as a Dixmier—Pukanszky Operator. We will use, without
further remarks, the following straightforward facts about extensions of operators
from a normal subgroup N to a semidirect product P = N - Y. Every operator T on
N can be viewed as an operator T on P by

(TH(xy)=T(f)(x), f,(x)=f(xy), x€N, y€eY.

If T is right N-invariant then T is right P-invariant. If T is left N-invariant then (i)
T is left N-invariant and (ii) T is left P-invariant just when T is Y-invariant. If T is
right N-invariant and Y -semi-invariant, T(f*) = a(y)T(f) where f*(x) = f(yxy ™)
and @: Y — C*, then T is P-semi-invariant with module @(xy) = a(y). Let P have
right Haar measure dxdy and let T be densely defined on L,(N,dx). If T is
symmetric with positive self adjoint closure on L(N, dx ), the same holds for T on
Lo(P,dxdy). Also invertibility of T guarantees that of T. Finally, by right
invariance, T is affiliated with the left ring of P.

Now let G be a reductive real Lie group such that every Ad(x), x € G, is an inner
automorphism on gc. Let P be a parabolic subgroup of G, say with Langlands
decomposition P = NAM, and suppose that N has square integrable (modulo its
center Z) representations [10]. Fix a volume element w on n/3. It defines the
Pfaffian polynomial on 3* by (i) if 3= n# 0 then Pf=1 and (ii) if n/3 # 0 then:

if A €3% ¢ €n* with ¢ |3=A, and [ = dim n/3
5.1 then y(A)= Pf(A) is given by b’ = ¢y(N)ow,

where b, is the 2-form b,(x +3,y +3) = ¢[x, y] on n/3.

See [10, §3] for the fact that Pf(A) is well defined, and is nonconstant when N is

noncommutative.
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The Poincaré-Birkhoff-Witt map gives an element ¥ € 1I(3) = 8 (n) correspond-
ing to ¥ = Pf. Its action as a differential operator on N is determined by

(5.2 f Yf(exp x)e*Wdx = Pf(e Ia)f fexp x)e“dx, ¢ Ent.

So ¥ is a densely defined, symmetric, conjugation-invariant, invertible operator on
LAN).

5.3 Lemma. |Pf| and |¥| are M-invariant and A -semi-invariant.

Proof. Let g be an automorphism of N. It preserves Z and multiplies the
volume element w of n/3 by a scalar which we denote a(g). If ¢ € n*, then

Pf(g *¢)])w = b2, = (A*(g)b. )™ = A'(g)b* = Pf(e |)A'(8)w;
SO

(5.4) Pf(g *A) = a(g)Pf(A) and |Pf(g*A)|=|a()| PF(A)| for A €3
That means
(5.5) g sends ¥ to a(g)¥ and |¥| to [a(g)l|¥]

But x —»|a(Ad(x)|~)| is a homomorphism of MA to the positive reals. Our
assertions follow because M has no nontrivial positive character that factors
through Ado . q.e.d.

5.6 Remark. One can also derive Lemma 5.3 from the fact that | Pf(A)|dA is
Plancherel measure on N.

Now let a: A — R¥ (as in Lemma 5.5) and B: A — RZ denote the respective
moduli of Ads IA on n/3 and on 3, so

5.7 5,(a) = a(a)B(a) for a € A.

As outlined at the beginning of the section, we extend |¥| to a semi-invariant
operator on P = NAM with module o = §,8™". The next lemma will enable us to
deduce that |¥[*" is a Dixmier-Pukanszky operator.

5.8 Lemma. If G is simple then a(a)= 8-(a)" for all a € A, where
k=dimZ, I =dimN/Z and q = k +3l. '
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Proof. Let Q be the positive a-root system on g such that n= Z,c,g., and let
vo be the highest a-root. We first show (this is valid for any real parabolic) that
3= g.- Since M acts irreducibly on each g, ([16, p. 296] and the assumption that
every Ad(g) is inner on gc¢), 3= 2,es4g. for some subset § C Q. Clearly g,,C 3, i.e.,
v € S. If v € Q with v < v, we claim there exists a sequence vy, v, - -, v, = v in Q
such that each v, — v..; € Q. For that, let b be a maximally split Cartan subalgebra
of g that contains a; let % be a positive hc-root system on gc consistent with Q in the
sense

Q={ylay€X and 7y |[.#0}

let y, be the maximal h-root; choose y € %, with v |. = v, and take a corresponding

sequence in 3. This is where we use simplicity of G. If » < v, in Q now, we have
v' € Q with [g,,8.]#0, so v& S. Thus 3 = g.,.

Now we use the fact that N has square integrable representations. If n/3 = 0 the
Lemma just says 1=1, so we may assume N nonabelian. Choose a basis
{A1, -+, A} of 3* with each Pf(A;) # 0 and let {z,, - - -, z. } be the dual basis of 3. Fix
re{l,---, k}. Given v € Q, v# v, then b, (x,y) = A[x, y] pairs g. nondegener-
ately with g,-.; so if v,#2v we have bases {xi,, ", Xm..} Of g, and
{¥imrr " s Ymonr} Of @u, such that

(59) A, [x,;,,‘,, y,;,,,,] = 5,-,-, i.e. [Xi,u,r, y,-,v,,] = Si,'zr + 2 bijrszs-

sHAr

If vo = 2v» then g, = g.,-. has a basis {x;,,, y;...} that satisfies (5.9). Selecting one root
from each pair v, v, ~ v where v, # v € Q, we have a basis {x.,; y;,} of n modulo 3 of
size I. If { € a then define a, b, ¢ by

[é’, xi,r] = QiyXir [év, y]‘,r] = bj,r)’j.r, [{7 Zr] = CZ,.

Now

(ai,v + bi,r) <Zr + 2 biirszs> = [{7 [xi‘r, y:’,r]] =C2, + E biirscszs-
s#Er s#Fr
Equate coefficients of z,: a;, + b, = ¢,. Sum over i:
trace (ad({)ln,a) = (1/2)c..
Now sum over r:

(5.10) k - trace (ad(¢)]w;) = (1/2) - trace (ad () ],).



152 R. L. LIPSMAN AND J. A. WOLF

Because of (5.7) and the notation just before it, (5.10) exponentiates to
a(a) ={8(a)-a(a)'}? for a € A.

Soa(a)**' = 8p(a),ie., a(a)=8r(a)" asasserted. : q.e.d.

In the general case, g = go P g: B - - - & g, where g, is the center and the other g,
are simple ideals. The parabolic p=g,@Dp. P ---Pp, where p, =n, +a, + m, is
parabolic in g; and N; = expg (1) has square integrable representations modulo its
center Z. Here N=N;X---XN, and Z=2Z,X---XZ, Set k,=dimZ, | =
dimN;/Z; and q; = k: +1l. Then Lemma 5.8 says that A, = exps(a;) acts on n, /3
with modulus 8 %%, where P, is the parabolic subgroup with Lie algebra p, in a local
direct factor G; of G with Lie algebra g.. So we have

5.11 Theorem. If the derived group [G,G] is simple, and if ¥ &€ l(p)
corresponds to the Pfaffian polynomial on 3*, then |¥[*" is a Dixmier—Pukanszky
operator on P. More generally, if for each simple ideal g; in g, pNg.=n +a, +m,
with n,/3:#0, and if ¥, €11(3:) is the operator on P determined by the Pfaffian

i |*%"% is @ Dixmier—Pukanszky operator on P.

polynomial on 3*, then |V

Remarks. (1) The reader can check Conjecture 1.3 for the operator IT| ¥, [*%/
on P that occurs in Theorem 5.11 (using the partial Schwartz space ¥, of (3.9)
corresponding to the Pfaffian ¢/(A)= Pf(A) on 3*).

(2) Theorem 5.11 applies to many parabolics not listed in (4.21). For example, in
asplit A, or E,, it applies to those of parabolic rank 2 in which the root system of M
is obtained by removing a pair of simple roots symmetrical in the Dynkin diagram
of G. A complete classification of the cases to which it applies will appear in [17].
See §5c below for some interesting special cases.

5b. Comparison of Operators. In this section P = NAM is one of the groups
P;..(F)where u + v >0 and where s = 1 is even in case F = R. In other words, P is
a maximal parabolic subgroup of a unitary group U(s + &, s + v; F) whose nilradical
is noncommutative but has square integrable representations. We will prove that
the operators D on NA and E on P = NAM, defined in (3.6) and (3.7) and used in
the Plancherel formulae (4.6) and (4.9), are equal to the operators |¥ [ of
Theorem 5.11 which are defined (5.2) by the Praffian polynomial (5.1).

It suffices to show that the “‘real determinant” function on 3= ImF*™, given
by (2.5),

(5.12) dets(z) = module of z € 3 on F' relative to Lebesgue measure,

and the Pfaffian polynomial on 3*, Pf(A) defined in (5.1), are related under the
pairing (2.9)
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3=3% by z A, where A.(20) = (2, z0) = Retrace (22 §),
in the manner
¢13) |deta(z)[*'* = | Pf(A.)[*"

where ¢ = dimgF, k = dimgZ, 1 = dimgN/Z and q = k +il

Let {x,, -, x;} be an R-basis of F**** = n/3. We normalize the volume element
on /3 used to define the Pfaffian of an antisymmetric R-bilinear form b, so that the
Pfaffian has value equal to the classical Pfaffian of the matrix (b(x,, x;)). It will also
be convenient to use the nondegenerate inner product (x,x,)= Re trace
(aat~bb?%) on F**“ where x =(a,b) and x,=(ao, b,) with a,a,€F** and
b, by E F".

Let z€3and A = A, €3*. Now Pf(A) is the Pfaffian of the matrix.

()‘ [xiv xi]) = (Zv [xl" xi])'

We compute

(z,[x, x;]) = Retrace{z - Im % (x, x,)*}

= —;—Re trace{ — za,a* + za,a* + zbb* ~ zbb ¥}

- % Retrace{— (za)a* — a,(za,)* + (zb,)b* + b, (zb))*)

= —(zx, x;).
Now we have

Pf(A) =det(—(2x, x,))=(—1)"'det(x > zx on n/3)
=(—1)"{deta(x » 2x) on F*}ur=e,
$O

| PF(A)P" = {[deta(z) |2} = | deta(z)[*'* q.e.d.

Virtually identical considerations apply to the maximal parabolics P, —.)(F)C
Sp(n; F), 1=s5<n, and P3%...,, CSO*(2n), 1 =5 < n, listed in (4.21).

S5c. Application to Minimal Parabolic Subgroups. Let G be a simple real Lie
group and P = NAM a minimal parabolic subgroup. One knows [5] that N has
representations square integrable modulo its center Z if, and only if, the restricted
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root (a-root) system of g is of type A; or A.. In the A, case, the Plancherel formula
for P is given in [6], and except when g is of type F, it is a special case of Theorem
4.9 and (4.19) above. Here we are going to use Theorem 5.11 to write an explicit
Plancherel formula in the A, case.

The real simple Lie algebras with restricted root system of type A, are the
si(3; F), where F is real, complex, quaternion or Cayley, as follows.

[ sI(3; R): 3 X 3 real matrices of trace zero
sI(3; C): 3 X 3 complex matrices of trace zero
(5.14) 1 sl(3; Q): 3 X 3 quaternion matrices of real trace zero

s[(3; Cay): this just means eg—s, the Lie algebra of

L type Es with maximal compact of type F..
A convenient choice of groups with these Lie algebras is

[ SL(3; R): 3 % 3 real matrices of determinant 1
SL(3; C): 3 x 3 complex matrices of determinant 1
SL(3; Q): GL'(3; Q), the real form of SL(6; C) with

(5.15) 9 maximal compact subgroup Sp(3)

SL(3; Cay): this just means the connected simple Lie

group of type E, with maximal compact subgroup

of type F..

They have minimal parabolic subgroups P = NAM as follows:

(5.16)

1 x =z a 0 0O
N=410 1 y)l:x,y,z€F} and A=4{{0 a. 0): a; ERY,a,a:a;=1
0 01 0 0 a,

with ordinary matrix multiplication. Also

[ m, O 0
F=RorC:M= 0 m, 0>:m.»€F,Im.-|=1,m1m2m3=1

0 0 ms

5.17a) 1

( a) m, O 0

F=Q: M={[0 m, 0):%61‘1""’":1}
0 0 m,
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again with ordinary matrix multiplication. And

1 x z 1 crl(m )x os(m)z
F = Cay: M = Spin(8) with Ad(m)- (0 1 y) (O o.(m )y)
0 0 1 0

1
1
(5.17b) where o: o—< o o—< o5 D__<
1

so o, 0, are the half spin representations, o; is the vector representation, and the
Triality Principle says that Ad(m) is an automorphism on N.
Let M; denote the M -centralizer of

1 0 1
(O 1 O)EN
0 01

From (5.17), M, and a section % to the action of M on M/M, are given by

F#Cay: Mi={mE€M:mi=m,;} and S={mEM: mm,=m,=1}
(5.18) 3 F=Cay: M,=Spin(7) and o:(2) consists of the

multiplications z — wz, |w|=1.

Thus for R, M, and % are cyclic groups of order 2; for C, M, and X are circle groups:
for Q, M; = Sp(1) x Sp(1) and X = Sp(1); and for Cay, M, = Spin(7) and % is the

7-sphere Moufang loop.
1 x z
U=4]0 1 0): x,z €EFy,
0 0 1

Let
a normal subgroup of P. We shall describe the represenfation theory and Plancherel
data of P via the group extension UCP.For §,{ €F, let y,; € U be defined by

1 x z o
Yes 01 O) = g'Ret+=D)
0 0 1

The set {y.,: {# 0} is a single P-orbit. The stability group of y.: is L = UA;M,
where
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a 0 0
A=410 a7 0): a >O} and M, is given by (5.18).
0 0 a

The generic representations of P are given by m,, = IndUamYo1 X e X x, t ER,

X € M,, where
a 0 0
p|0 a”? 0)=a“.
6 0 a

We now apply the results of §5a. Write ¢ = dimgF. Then

1 0 =z
CentN=Z=4]0 1 0):zEF,
0 01

and k =dimZ =¢, | =dimN/Z =2¢, q = k +31 = 2¢. Therefore 2q/l = 2. Let
¥ € 3(n) correspond to the Pfaffian polynomial on 3*. Then Theorem 5.11 says that

E = |¥[ =¥ is a Dixmier-Pukanszky operator on P.

Since this is a differential operator, there are no domain problems in this case. Also
it’s easy to see that

(5.19) (Ef Q) =1¢Ff@).
We have the following Plancherel formula.

5.20 Proposition. There is a (computable) constant ¢ >0 so that

xEM,

—oo

(5.20a) fe)=c f > Trm,(Ef)d, f&CXP).

The proof is similar to the argument of §§3 and 4. We remark only that the group

1 00
V= (0 1 y): yE F} -3 (= given by (5.18))
0 01

is a cross-section for UAM;\P. Therefore we can realize the representations =,, on
the space L(V). It is then possible, using: [7, theorem 3.2], Duflo’s factorization
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theorem for C7 functions, equation (5.19) and the inversion formula on F itself, to
derive formula (5.20a). The computations are a bit tedious. In fact, formula (5.20a)
represents a very special case of more general Plancherel formulae that one of us
has worked out for parabolic subgroups of Chevalley groups.

6. Appendix

We present two results as evidence for the existence of the critical value « in §3b.
The first was shown to us by R. Prosser; the second by C. Fefferman. As a corollary
of the first, we deduce that E moves test functions to integrable functions for
“most” parabolic subgroups of the unitary groups; we deduce a negative result
about the maximal parabolics Py, ,(R) in O(p + 1,4 + 1) from the second.

6a. |®|'CI(V)CL(V) fort Large. The following result is valid in the setup of §3,
i.e., V=2ZxV, etc. But for simplicity we take V =Z =R* Let 6(¢) be a
polynomial function of ¢ € R* and define |@| as in (3.3), i.e.

[B]f(z)= F 8O F() (), t=0.
6.1 Proposition. |[®|'C7(R*)C L(R*) if t >2[k/4]+2.

Proof. Let B(&)=10(&)'(1+| &)™ where n >0 is large enough to insure
that B(¢)€ L.(R*), Vw = 1. Now let v be a positive integer satisfying 2v = 1t.
If we set

v(§)=(1+A)B(§),

then (since (1+ A)°[0(£)|' is bounded by a polynomial function) we have y(§) €
L.(R*), Vw = 1. In particular ¥(x) € L.(R*). But

Blx)=(+[x )7 (x)

is a product of L, functions — and hence is in L,(R*) — as long as 4v >k.
Therefore

|8ff = F {6} = F {1+ £ IP)yBf}
=FB)+F A+ P
=F'(B)*(1 +A)f.
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The latter is a convolution of two L, functions; hence |®|'f is integrable, so long as
we can find v satisfying 2v = ¢t and 4v > k. That is the case whenever ¢ >2[k /4] + 2.

We can apply this proposition to obtain an analog of [6, corollary 2.8] for “most”
of the parabolic subgroups P;...(F) of the unitary groups.

6.2 Corollary. Lett=0 and let E be the Dixmier—-Pukanszky operator on
P =P, .(F) defined in (3.7) — F = R, s odd is excluded as usual. Then for any fixed
s, we have E'CI(P)CLy(P) as long as u + v is sufficiently large.

6b. |O'(R)ZL:(R*) if t=3k—1. We consider the indefinite quadratic
polynomial

l[lo()\)= Af"' i Ai_ i+1_ e A|24+u,
and the associated wave operator

3’ 3’ 9? 9?
e s .
ax3 axi axia X%,y

Put € = 6, ={¢ € R": Y0(¢) = 0} and consider the distribution

K(x) = {l¢o(£)['}"(x).

K is homogeneous of degree — k — 2t and is invariant under the action of O(u, v).
Hence, away from the cone %, it must be a smooth function of the form

Ax)=c|dolx)| >, xZ €.

Note the constant ¢ may vary from component to component in R* — €; but that is
irrelevant to the ensuing argument. Of course we have

[O'¢ =K *¢ if ¢ € CI(R*).

We produce a function ¢ € CZ(R*) such that [|(K * ¢ )(x)|dx = .
Let ¢ € CZ(R*) have the following properties:

(i) Suppe ={x:|x|=1}
() e()=1i | x|=5;

(iii) ¢(x)=0, Vx ER".
Then
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v

[ ®ro)wax

d(x,€)z2

[ 1K+ 0)0)lax

A(x — y)dydx

d(x,€)z2 [fyli=1

Iv

f f A(x — y)dydx

d(x,6)=2 |yl=}

A (x)dxdy

[}
—

lylis} dex+y,€)z2

Z ¢ J A(x)dx.

d(x,€)=3

Now it’s a simple max-min exercise to see that d(x, €)= constant X (r — p)?,
r=@i+--+x, p=(x2.+- -+ x2,. )k Thus we are done if we can prove that
the integral

©3) [ e
fr—plz8>0
is divergent. In fact

f |@o(x )] ~dx = c.wf f —'—“—ILF:—H-drdp

[r-plz8 r-plz8

© p—8

u 1 v—1
-—cu.,f -—ﬁmdrdp

= (p—8)lp

o u—-1_uv-1
Cuvvf f pk+2r| o — ll;k«n PdO'dP
5 0

3 1-8/p

u—1
=c“'”J ( f r&%’ﬂ;k—ﬂ'd(r)p_z'_'dp.
& [

Now as p — «, the inner integral is asymptotic to
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1-8/p —8/p

J do j ds de+e—1
kv = Tt P -

lo—1* s

o -1

Thus the entire expression is asymptotic to

o

f p;kﬂ—lp—z:-idp — j p;k—:-zdp
5

3

1
P— =
% t+2 2k_—l

finite t+2-%k>1.

Hence the integral (6.3) is divergent for t +2~3k =1, i.e, t =3k — 1.

Fefferman conjectured that the critical value for |J|° on R* is exactly t =31k — 1.
Proser’s observation only handles ¢t > 2[k /4] + 2. At present we do not know how to
close the gap.

Remark. If we consider the parabolic group Pi;. . (R), we know (see §4¢) that
D = c¢|0J*?, k = u + v. Therefore D*= ¢*|(J|*"*. According to Fefferman’s exam-
ple, C:ZDom D" N DL,ifk/4=k/2—1,i.e., if k Z 4. On the other hand, the
example says nothing about whether CZCDomD N D™'L,. If his conjecture
holds, the inclusion would follow. And so we would like to close by posing one

more

6.4 Conjecture. Let G be type I. Then there exists a Dixmier—Pukanszky
operator D on G such that C3(G)C Dom D N D '(L(G)).
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