
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 238, April 1978

HERMITIAN LIE ALGEBRAS
AND METAPLECTIC REPRESENTATIONS. I

BY

SHLOMO STERNBERG1 AND JOSEPH A. WOLF2

Abstract. A notion of "hermitian Lie algebra" is introduced which relates

ordinary and graded Lie algebra structures. In the case of real-symplectic

and arbitrary-signature-unitary Lie algebras, it leads to an analysis of the

minimal dimensional coadjoint orbits, and then to the metaplectic represen-

tations and their restrictions to unitary groups of arbitrary signature and

parabolic subgroups of these unitary groups.

1. Introduction. We are going to study examples of the following "hermitian

Lie algebra" structure: I is a real Lie algebra, represented by linear transfor-

mations of a complex vector space V, and H: V X V -* Ic is an I-equivariant

hermitian form. Here "hermitian" means that H(u, v) is linear in u and

conjugate-linear in v with

H(v, u) = H (u, v) ,       ~ = conjugation of Ic over I,

and "equivariant" means that

[£, H(u, v)] = H(£u, v) + H(u, £v)   for | E I and u, v E V

where [, ] is extended as usual from I to Ic.

2 Im H: V X V-* I is antisymmetric and R-bilinear, so one tries to use it

to make I + V into a Lie algebra by: the usual bracket I X I —♦ I, the

representation I X V-> V (i.e., [|, »] = |w = -[«, £]), and V X V-* I given

by

[u,v] = 2 Im H(u,v) = rx{H(u, v) - H(v,u)}   for«,u G V.

This defines a Lie algebra if and only if the Jacobi identity holds, and that is

the case just when it holds for any three elements of V:

(1.1) _[w, v],w] +[[v, w], u] +[[w, u],v]= 0 for   u,v,wEV.

In other words, (1.1) gives a Lie algebra structure on I + F just when

{H(u,v)w +H(v,w)u + H(w,u)v)

- {H(v, u)w + H(w, v)u + H(u, w)v] = 0.
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2 SHLOMO STERNBERG AND J. A. WOLF

Similarly 2 Re H: V X V -^ I is symmetric and R-bilinear, so one tries to

use it to make I + V into a Z2-graded Lie algebra g = g+ + g_,g+ = I and

g_ = V, by the usual bracket I X I -> I, the representation I X V -* V, and

V X F->Igivenby

(1.3)        [u, v]G=2Re H(u, v) = H(u, v) + H(v, u)   foru,vEV.

See [4] for the definition and basic properties of graded Lie algebras. The

graded version of Jacobi's identity says that left multiplication is a derivation:

[x, [y.*]o]o-[[x*y]a.*]o+ (-l)"-***»^y, [x,z]c]G.

Again, (1.3) defines a graded Lie algebra if and only if the graded Jacobi

identity holds, that is, the case just when it holds for any three elements of V,

and the latter is equivalent to

{H(u, v)w + H(v, w)u + H(w, u)v)

+ {H(v, u)w + H(w, v)u + H(u, w)v} = 0.

Notice that we obtian both a Lie algebra and a graded Lie algebra, i.e., that

both Jacobi identities are satisfied, just when

(1.5) H(u, v)w + H(v, w)u + H(w, u)v = 0   for u, v, w E V.

In order to indicate a source of hermitian forms H, and to be able to

describe what we do in this paper, we define a basic class of hermitian Lie

algebras in which both Jacobi identities hold. These are the unitary algebras

{u(k, I) © u(l)} © &-'   and    {(u(k, /)/u(l)) © u(l)} © CkJ

where C*'' is complex (k + /)-space with hermitian scalar product

k k + l

(Z, W) =   - *2zjWj+   2 ZjWj,
1 k+l

and where

u(k, I) = {£: Cw-+ Chinear: <£z, w) + (z, &) - 0}

is the Lie algebra of its unitary group.

u(k, I) has complexification gl(& + /; Q, the Lie algebra of all complex

(k + l) X (k + I) matrices. Let * denote adjoint relative to < , ), that is,

<&, w) = <z, |*w>. Then u(Â:, /) = {£ E 0I(Â: + /; Q: £* = -£}, and { " =

-£* is complex conjugation of Ql(k + /; Q over u(k, I). Now

(1.6) H0: CkJ X Ck-' -» 8I(* + /; C)   by H0 (u, v)w = i(w, v)u

is hermitian and u(k, /)-equivariant, for

(H0(u,v)w,z) = i(w, v)(u, z) = i(w, v)(z, u) = -(w,H0(v,u)z)

and, for £ E u(k, I),
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HERMITIAN LIE ALGEBRAS 3

[fc H0(u, v)]w = i{(w, v)& - <£w, v)u) = H0(£u, v)w + H0(u, &)w.

As to the Jacobi identities, note

H0(u, v)w + H0(v, w)u + H0(w, u)v = i{(w, v}u + («, w)v + (v, u)w).

The trick here is to give u(l)c = gl(l; Q the conjugate of its usual complex

structure, so that

(1.7) //pC^'xC^gl^C)   by Hx (u,v) = i(v,u)

is also hermitian. This done,

(1.8) H: C*-' x Ck>' -* u(k, /)c© u(l)c   by H - H0 © Hx

is hermitian and u(k, /)-equivariant, and satisfies (1.5), i.e., satisfies both

Jacobi identities. Thus we have both ordinary and graded Lie algebra

structures on our unitary algebras [u(k, I) © u(l)} + Ck'1.

Now let u(k, I) © u(l) act on C*-' by (£, c)u = |(«) + cu. In effect, this

action is the projection

(1.9) U(k, I) © u(l) -> (u(k, l)/u(l)) © u(l) m u(k, I).

It gives us ordinary and graded Lie algebra structures on quotient unitary

algebras u(k, I) + CkJ. In this latter formulation, the hermitian Lie algebra

structure is obscured, for H seems not to be hermitian. Here note that

u(2, 2) + C2,2 is the spin-conformal algebra of Wess and Zumino (cf. [4]),

which is of some interest in recent physical literature.

In §2 we give the general construction of unitary algebras. Then we show

how a hermitian Lie algebra is associated to every homogeneous bounded

domain. Here the domain {m x m complex matrices Z: / — Z*Z » 0} gives

a unitary algebra. Finally we associate a hermitian Lie algebra to the

nilradical in a certain class of parabolic subgroups of classical Lie groups.

In §3 we return to the unitary algebras described above, and show that the

H0(u, u) give the lowest dimensional nonzero coadjoint orbits for u(k, I). Our

method generalizes a technique introduced by Carey and Hannabuss [3] for

u(2, 2). We work out the transitivity properties of a certain maximal parabolic

subgroup on these orbits. In the u(2, 2) case, that parabolic is the Poincaré

group with scale, and the Poincaré group has the same transitivity, so these

orbits correspond to the zero mass six dimensional orbits in the dual of the

Poincaré algebra. We then discuss the relation between these orbits and these

of the symplectic algebra êp(k + /; R). For this purpose we use a graded Lie

algebra associated to the symplectic algebra which is known as orthosym-

plectic algebra O Sp(k + /, 1).

In §4 we use the graded Lie algebra associated to give a new and very

simple construction of the metaplectic representation of the 2-sheeted

covering group Mp(m; R) of the real symplectic group Sp(m; R). If k + / =
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4 SHLOMO STERNBERG AND J. A. WOLF

m, then the imaginary part Im< , ) of the scalar product on C**' embeds

U(k, I) into Sp(w; R). Restricted to the inverse image of U(k, I) in Mp(m;

R), the metaplectic representation decomposes as a multiplicity-free discrete

sum of representations which remain irreducible on every maximal parabolic

subgroup. Mack and Todorov [16] obtained one case of this for U(2, 2).

Kazhdan [13] also reduced the metaplectic representation for U(k, k).

In §5 we discuss the representations of the 2-sheeted covering group of

U(k, I), which come from the metaplectic representation of §4, in terms of

holomorphic or antiholomorphic discrete series representations.

In the continuation of this paper we plan to relate the metaplectic repre-

sentation p of Mp(/?j; R) and its U(k, /)-reduction, v = 2dez vd> to the

reduction described in §3 for the orbit picture by the method of geometric

quantization.

We thank M. Cahen and M. Parker for pointing out a serious error in the

preliminary version of §2. Parker's counterexample appears just after (2.16)

below. We would like to thank D. Kazhdan for several suggestions, including

a description of his results on the metaplectic representation. We thank M.

Vergne for helpful conversations and mention that she and Jacobsen devel-

oped an analytic continuation method for constructing the representations of

U(2, 2) that we discuss in §§4 and 5; their method has the advantage of

explicitly exhibiting the relation of these representations to the corresponding

relativistic wave equations. And finally we thank I. Segal for drawing our

attention to Carey and Hannabuss [3],

2. Examples. In this section we construct three classes of examples of

hermitian Lie algebras. The first, the class of "unitary algebras," satisfies (1.5)

and thus provides hermitian-related Lie algebras and graded Lie algebras; the

unitary algebras mentioned in the Introduction are special cases. The second

class consists of an algebra for every bounded homogeneous domain, and it

overlaps the first class as regards the classical bounded symmetric domains

Dkj = {k X I complex matrices Z: I — Z*Z » 0}.

The third class corresponds to the nilradicals of the maximal parabolic

subgroups of certain classical Lie groups.

2A. Unitary algebras. Fix nonnegative integers a + b = c and k + I = m,

and let CkJ © C'b denote complex (m + c)-space with the hermitian scalar

product

k m m + a m + c

(2.1) (z, w) = - 2 ZjWj+ 2  ZjWj- 2   ZjWj+    2     2jWj.
i k+\   " m+\   " m+a+l

Let u(k, I; a, b) denote the Lie algebra of the unitary group of C*'' © C'b. It

consists of all linear transformations £ such that <£z, w> + <z, £w> = 0. In
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matrices, it consists of all

'12 '12

A*
A\2

— 7*•^11

7*^-12

»22

7*

— z*■^22

'21 -22

7* 5„     5 12

/

522

}/

}a

}b

with Aß = - Ajj and Bß = - BM. To simplify this denote

\u2X   uj  -\ Uf2    -ut2

Then

(A      Z\

\Z#    B)

)m A = A*, i.e., A Eu(k,l)

(2.2)     u(k, I; a,b) = \
}c B = B*,i.e.,B Eu(a,b)

Now u(k, I; a, b) evidently is of the form I + V where

1 = {(o   b):Ae u(*' Z)'b e u(a'è)} s u(*'7) ® u(ö'Ä)'

= ((z*   o/:
Z is m X c   « C*-' ® C0,6

,Z*     0.

and the Lie algebra I acts on the complex vector space V by

0 AZ-ZB'

(o   b)\z*   o)J    ((AZ-ZBy

2.3. Proposition. Ic = {(£ °B): A is m X m, B is c X c). Give Ic the complex

structure that is linear in A and conjugate linear in B. Then the map H:

V X V->lc defined by

H (z, w) = izw,   i.e.

(2-4) „// 0     Z\(  0      W\\ = ¡iZW*        0    \
\\z#   or\w#    0)J    {   0      iZ*Wj

is hermitian, is l-equivalent, and defines both Lie algebra and graded Lie

algebra structures because it satisfies (1.5). Further, the Lie algebra structure is

the original one on \x(k, I; a, b).

Proof. The statement on Ic is standard, and the complex structure there is

specified so that H(z, w) is linear in z, conjugate linear in w. An elementary
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6 SHLOMO STERNBERG AND J. A. WOLF

calculation shows (iZW#)# = iWZ*, and this proves H hermitian. I-equi-

variance is seen by direct calculation, using

i[A,ZW#] = i{(AZ- ZB)W* - Z(W*A - BW*)}

= i{(AZ- ZB)W* + Z(AW- WB)#)   lor A =A*,B = B#

and its counterpart

i[B,Z*W] = i{(AZ- ZB)*W+Z*(AW- WB)}

IotA = A*,B = B*

To check (1.5) we calculate

[H(z,w),u] = i
')'(t/#     o)

ZW#        0

i   0      z#w
(2.5)

0 zw#u - uz*w
Z#WU* - U*ZW* 0

so

where

[H(z,w),u] +[H(w,u),z] +[H(u,z),w] = (^    J),

\t=zw*u- UZ*W+ WU*Z-ZW*U + UZ*W- WU*Z = 0.
I

And finally 2 Im H(z, w) = [z, w] directly from (2.4).   Q.E.D.

The unitary algebras mentioned in the Introduction are the case a = 1 and

b = 0. For there V is identified with C*'' and (2.5) specializes to

H(z, w): u h+ i{ZW*U - UZ*W) = i(u, w)z - i{w, z)u.

Here note the necessity of mapping to u(k, l)c © u(l)c to ensure that H be

hermitian, even though that algebra acts on Ck-' as u(k, l)c.

When k = / our graded Lie algebra structure has a more refined

graduation. Split C*'* = Wx + W_,, sum of two complementary ^-dimen-

sional isotropic subspaces, and use bases of W±, that are dual to each other.

So we have a basis of Ck,k in which its hermitian scalar product has matrix

(°, 0). In that basis,

u(k,k)= {(^    _EM^:MiskXkandE,FEu(k)\,

which gives the vector space direct sum splitting u(k, k) = g_2 + g0 + g2,

where
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HERMITIAN LIE ALGEBRAS 7

.-.-{(•   ¡¡)=" 6«(*)},  »-{(*   _«,.): J#l.*x*},

(2.6)

--{(s ft"«4
Similarly F, which maps C-b to C*,k, splits as g_, + g, where

(2.7) g_, = {zEV: z: C'6-* W_, } and g, = [z E V: z: C-b-±Wx }.

Now we have a vector space direct sum decomposition

(2.8) u(k, k; a, b) = 2 g,   with g,. = 0 for |/| > 2

such that [g,., g,.] c Qi+J, in general, H: g, X gy -> (g/+,)c for /, jf odd. So the

graded Lie algebra product also satisfies [g„ Qj]G C gI+7, refining the Z2-

grading to a Z-grading.

2B. Bounded homogeneous domains. We now show how every bounded

homogeneous domain in complex euclidean space gives a Z-graded algebra of

the type of (2.8).

Recall the structure of bounded homogeneous domains and their

automorphism algebras from Pjateckii-Shapiro [20], Murakami [18] and

Takeuchi [30]. Start with 0: a nonempty convex cone in R" that does not

contain a line and F: a hermitian map C" XC"^>C such that each

F(w, w)GÍ¡ with F(w, w) = 0 only for w — 0. These data define a Siegel

domain of Type II:

(2.9) D = {(z, w) G C © Cm: Im z - F(w, w) E fl}.

D is called a tube domain or Siegel domain of Type I if m = 0, i.e., if D is the

tube R" + /ñ over ñ. In general the rwfe part of Z> is given by w = 0. Z> is

called homogeneous if

G(D) — {complex analytic diffeomorphisms of D },

which is a Lie group, acts transitively on D. If D is homogeneous then

A(D) = {g£ G (Z) ): g is affine on CffiC"}

is already transitive. Now the point of all this is that every bounded homo-

geneous domain (in complex euclidean space) is analytically equivalent to a

Siegel domain of Type II.

Fix a Siegel domain D as.in (2.9). Then its affine automorphism group

A(D) has Lie algebra

(2.10) û(D) = g0 + g,+g2

where

(i) g0 consists of the linear vector fields Az -d/dz + Bw -d/dw that preserve

ñ and F, i.e., A : C -> C is real-linear and each exp(M)S2 = fi, B: C" -> C"
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8 HERMITIAN LIE ALGEBRAS

is complex-linear, and AF(u, v) = F(Bu, v) + F(u, Bv) for all u, v E C";

(ii) g, consists of the infinitesimal affine vector fields 2iF(w, b) -9/dz

+ b -d/dw, b E C"; and
(iii) g2 consists of the infinitesimal real translation a-d/dz,a ER".

If D is homogeneous, then its anlaytic automorphism group G(D) has Lie

algebra

(2.11) g(Z>) = g_2 + g-, + a(D) = g_2 + g_, + g0 + g, + g2,

where, writing prs to denote a polynomial of degree r in z and s in w,

(iv) g_, consists of all | = /?,, -d/dz + {/?, 0 + p02) -d/dw such that [& g2]

C g, and [£, g,] c g0; and

(v) g_2 consists of all 17 = p20-d/dz + pxx -d/dw such that [17, Qx] C 8_i

and  such  that,  if t E g2  then  [£, t] = Az -d/dz + Bw-d/dw E g0 with

Im Trace ($ °B) = 0.

Fix 0 G g0 corresponding to A = 0 and B = — il,

(2.12) 9=-iw-d/dw

and identify g, with Cm under

(2.13) C"Bb^^ = iF(w,b)-j-z+\b.^

The map ad(0): q(D) -» q(D) preserves each g„ so it maps |¿ to some |¿., and

[0, b -d/dw] = ib -3/3w shows b' = ib. By direct calculation

9,Pu-
_9_
9z ~9xx'Tz 9,p 10

_3_
3w = <Pio' 6w

^,^02' _3_
dw _ = -'Po2'-dw->

so ad(0)2 £= -£for£Eg_,. And 0 commutes with every vector field of the

form p(z) -d/dz + B(z)w-d/dw, in particular, with every element g_2 + g0

+ g2. In summary, using (2.13),

2.14. Lemma. ad(0) is trivial on geven = g_2 + g0 + g2, is multiplication by i

on g,, and has square — 1 on g_,.

Now we use ad(0) as complex structure on Qodd = g_i + 8i- This is

consistent with (2.13).

2.15. Theorem. Define H: godd X godd -^ (geven)c by H(& n) - [[0, Q, n] +

/[£, tj]. Then H is a Qevm-equivariant hermitian form whose imaginary part is the

Lie algebra bracket, and H|aiXfli = — F in the identification (2.13).

Proof. If £, tj E godd, then [{, tj] E geven, so [[£, 77], 0] = 0 and thus [[0, fl,

"O] m [[9, n], |] by the Jacobi identity on q(D). It follows that H(-q, Q~ =

H(£, r¡). Also, since ad(0) is the complex structure on g^,
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SHLOMO STERNBERG AND J. A. WOLF 9

//(ad(0)£, i,) - [ad(0)2|, i,] + i[ad(0)fc ij] = iH(£, r,)

shows H (i, tj) to be C-linear in £. We have proved H to be hermitian, and

geven-equivariance follows by Jacobi and [0, geven] = 0.

Finally, if u, v G C" and £,» 4 G gi are tae elements corresponding as in

(2.13),

[C« - \iF{u,e)- £ - \iF(v,u)-^ = -lmF(u,v)- -|.

So the hermitian forms H and - F on g, X g, have the same imaginary part,

and thus are the same.   Q.E.D.

Looking back to (1.5), and applying ordinary Jacobi identity to the

[Im H(£, r¡), f ], we see that H gives us a graded Lie algebra structure if and

only if

[[[^].4f]+[[[M],f],{]+[[[»,f].{].n]-o

for C, ij, í G Qrtd.

Monique Parker observed that (2.16) can never hold when 0 = [ad(0)£, £]

for some | G g^, for then

[[[M],í],í]-[M]*o.

She further noted, in view of this, that êl(2; R) carries a hermitian Lie algebra

structure

Ispannedbyö = I(_°i    ¿),   FsCunder(^     *y)<r>x + iy,

H:VX V-*lcbyH(£,ri) -[[9,Í],i¡] + /[|,ij],

for which the graded Jacobi Identity (1.4) fails.

Despite this, (2.16) holds trivially when |, r\, f G g„ and so we do have a

graded Lie algebra structure on the infinitesimal affine automorphism algebra

a(£) = g0 + 0i + g2-

2C. Nilradicals of parabolic subalgebras. Let F denote one of the fields R

(real), C (complex) or Q (quaternion). Given k, I > 0 let Fk'1 denote the right

vector space F*+/ with hermitian scalar product <z, w) = — ~2kZjWj +

2/ct'i Zj Wj. U(k, I; F) denotes the unitary group of F*'' and u(k, I; F) is its

Lie algebra.

We recall some information from [38, §§2 and 3] concerning the structure

of parabolic subgroups. A subspace E c F*,; is totally isotropic if <£, E} = 0.

The maximal parabolic subgroups of U(k, I; F) are the

PE = {gEU(k,l;F):gE = E],

E totally isotropic nonzero. Here there are min(A:, /) conjugacy classes as
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10 HERMITIAN LIE ALGEBRAS

s = dim E runs from 1 to min(k, I). Denote

nE: hie algebra of the unipotent radical of PE.

Then n£ is isomorphic to the algebra nj; *-*,/-,(F) defined below.

¥aXb denotes the real vector space of a X b matrices over F. If A E¥aXb

then A* e F*Xo denotes its conjugate (over R) transpose. F1*^") denotes

pxr e px, ^jj the map H. pxft«) x px(w) _, px* by

(2.17) H((Z', Z"), (W, W")) = \{Z'W* - Z"W"*).

Split FXf = Re FXî © Im FsXs under the projections

ReZ)=j(Z) + D*)   and   ImD = \(D - D*).

Then, by definition,

nj;/(„(F) = Im FíXí + FíX('-u)

with [(D, Z), (E, W)] = (Im H(Z, W), 0).

Now H is F-hermitian here, the double Jacobi identity (1.5) is trivially

satisfied, and so nE acquires a good "hermitian Lie algebra structure" over F.

3. Minimal orbits. In this section we study the 2(m — l)-dimensional orbits

of U(k, I), k + I = m, on the dual of its Lie algebra. We describe them in

terms of the map HQ of (1.6). This description leads to an easy analysis of the

transitivity properties of parabolic subgroups. It also starts us on the identifi-

cation of the associated unitary representations.

Identify the Lie algebra u(k, I) with its real dual space u(k, I)* by

(3.1) £<-»/£   where/¿(tj) - trace (£n).

Of course, if £, tj E êu(k, I), then their inner product under the Cartan-

Killing form is 2m • trace(£r)). The identification (3.1) is equivariant for

adjoint and coadjoint representations, and so preserves orbit structure. We

then examine the analogous construction for the symplectic group Sp(m; R)

and relate the two.

3.2. Lemma. Let A be a nonscalar m X m complex matrix and Z(A) its

centralizer in GL(m; Q. Then dim^Zi/!) < m2 - 2m + 2 with equality if and

only ifA = B + XI with XECandB of rank 1.

Proof. Split C" = 2 V}, sum of the generalized eigenspaces of A. Each V} is

Z(/l)-stable, so dim^Z^) < Siding I^.)2, which is < (m — l)2 + 1 unless (i)

there is just one Vj or (ii) there are just two Vj, and one of them has

dimension 1.

We need the elementary fact: if £ is a matrix in Jordan normal form, and if

£' is obtained from E by changing an off-diagonal 1 to 0, then dimcZ(E) <

dimcZ(E').
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SHLOMO STERNBERG AND J. A. WOLF 11

In case (i) above, A = B + XI where X E C and B is nilpotent. By the

elementary fact just mentioned, the dimension of Z(A) = Z(B) is maximized

when B has rank 1. That maximum is m2 - 2m + 2.

In case (ii) above, A = (B + XI) + N where X G C, B is semisimple and

rank I, N is nilpotent and BN = NB. Then AT annihilates the nonzero

eigenspace of B and preserves the zero eigenspace, so Z(A) = Z(B) n

Z(N). By the elementary fact above, the dimension is maximized when

N = 0, and that maximum is m2 - 2m + 2.   Q.E.D.

If | G u(&, /), viewed as an m X m complex matrix where m = k + I, then

the complex dimension of the GL(m; Q-centralizer of £ is equal to the real

dimension of the U(k, /)-centralizer. For that GL(w; Q-centralizer is a

complex Lie group stable under complex conjugation of GL(m; Ç) over

U(k, I). In view of the correspondence (3.1), now Lemma 3.2 specializes to

3.3. Lemma. The nontrivial coadjoint orbits Ad*(U(k, l))-fç have (real)

dimension > 2m — 2, with equality if and only if¡- = i-0 + Xl where X EC and

|0 has rank 1 as m X m matrix.

If m > 1 and (k, 1) =£ (1,1), then £0 G u(k, I) and X E /R in Lemma 3.3.
For m — I > min(&, /), so the kernel of £0 contains a nonisotropic vector v,

H(v) = Xv forces X G /R and thus XI G u(k, I), and then £0 = £ — XI G

u(&, /). And, of course, if (k, I) = (1, 1) then all nontrivial coadjoint orbits

have dimension 2m - 2 = 2.

Now observe the connection with the map H0 of (1.6):

3.4. Lemma. The rank 1 elements of u(k, I) are the i^. w \-> i(w, u}u,

0¥= u E C*-', and the -£,.

Proof. £„ = H0(u, u), which belongs to u(k, I) because H0 is hermitian.

And evidently £, has rank 1. Conversely let £ G u(k, I) have rank 1 and let v

span its range. If w±v then <£h>, x} = -<w, £*:> = 0 for all x E C*'', so £

annihilates üx. Now £(jc) = c<x, ü>u for some O^cEC, and <£x, x> G /R

forces c G /R, so c = ± z>2 with r real. Thus £ = ±£ro.   Q.E.D.

Define £/(&, /)-equivariant maps

(3.5a)    2A: Cw ̂  u(k, /)*   by ß* (M)(|) = /«£«, «> + X trace©).

Since !£„: w h> i(w, «>£(«) has trace /<£«, u), (3.5a) is equivalent to

(3.5b)   Qx (u) = f^ + iX trace   where £„ = H0 (u, u): w h» i(w, u)u.

Now we can state our orbit structure theorem.

3.6. Theorem. Suppose m > 1 and (k, I) i^ (1,1). Then the nontrivial

coadjoint orbits of U(k, I) on u(k, /)*, of minimal dimension 2m — 2, are the

<9±i,,,x = ±Qx({» e C*-': u * 0, ||«||2 = /•}) - 0±lrO © (±/A trace)
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for r,X real. Orbits 0s>rA = <3&.yxjust when (S, r, X) = (&', r', X'), 0±Ir>1 is

an elliptic semisimple orbit for r¥=0 and 0±ijO>o « o nilpotent orbit. The

stability groups on these orbits are given by g E U(k, I) fixes ±Qx(u) if and

only ifg(u) = au with \a\ = 1.

Proof. According to the comment just after (3.5a), Q0(u) = f^ and ßx(")

= Q0(u) + iX trace. Lemma 3.4 now shows that the coadjoint orbits of

minimal dimension 2m — 2 are those of the ± Q\(u), 0¥= u E Ck'1. A

nonzero orbit U(k, I) • v is specified by ||t?||2, so equivariance tells us that the

coadjoint orbits of minimal dimension 2m - 2 are just the 0±\<r¿.

Suppose 0SriA = Og',^'. Then we have nonzero u, v E C*'7 with ||«||2 = r,

\\vf = r' and &QK(u) = &'Qy(v). Since m > 1 and (k, I) * (1, 1), the
comment after Lemma 3.3 gives S£u = &%. Now S<w, u}u = &'(w, ü)ü

for all wECH Thus u = tv where 0^/eC, and |r|2S<w, o>t? =

&(w, u)u = &'(w, t?> gives |/|2 = 1 and S — S'. Now S = &' and r = /•',

so

&(r + Xm) = &Qx(u)(-iI) = S'ßv(t>)(-«7) = &'(r' + X'm)

implies \ = X'.
If u is isotropic, then ± Q0(u) = ±£„ has square zero, so the orbit 0± 1>0>0 is

nilpotent. If u is not isotropic, then

trace(è?) = i(iu(u, «>, w) = - (u, u)2< 0,

so ±£, are elliptic semisimple elements of u(k, I), and it follows that every

± Qx(u) is elliptic semisimple.

Finally, g E U(k, I) sends ± Qx(u) to ± Qx(gu). We saw that SQx(u) =
&'Qx(v) implies S = &', X = X' and u = au with |a|2 = 1. In particular, g

fixes ± <2x(«)just wheng(w) = au with \a\2 = 1.   Q.E.D.
The situation is slightly different for U(\, 1), but there it is immediate from

standard results on SL(2; R) s SU(1, 1): The nontrivial coadjoint orbits of

U(\, 1) on u(l, 1)* all have minimal dimension 2, and they are (i) the elliptic

orbits

0±1^-±ßx({«eC,'':||u||2-r})

where X, r E R and r > 0, (ii) the essentially parabolic orbits

e±W* = ±ßx({" 6 C1-1: m *= Oand\\u\f = 0}),

wAere A E R, a«ri (iii) i/ie essentially hyperbolic orbits

{/{: | E Su(l, 1) and det(|) = /•} ® (iX trace)

wAere X, r E R o/k/ r < 0.

The maximal parabolic subgroups of t/(A:, /) are the
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(3.7a) PE = {gEU(k,l):gE = E),

E nonzero totally isotropic subspace of CH

The maximal unimodular subgroup of PE is

(3.7b) P'E = {gE U(k, I): gE = Eand |det(g|£)| - 1}.

These groups are near to transitive on the coadjoint orbits 0±i,rjA- In fact,

setting Sr = {« G C*,;: u i= 0 and ||«||2 = /•},

3.8. Proposition. The coadjoint U(k,l)-orbit 0±.>rjÀ = ± Qx(Sr) breaks

into three PE-orbits, each in the closure of the next nonempty one:

(ï)±Qx(SrnE),
(ii)±Qx((SrnEx)\(SrnE)),and

(iii)±Qx(sr\(srnE1-)),
which are nonempty except for (i) when r^O, (ii) when r < 0 and dim E = k,

(ii) when r > 0 and dim E = I, (ii) when r = 0 and dim E = min(A:, /). In

particular, if E is a maximal totally isotropic subspace of C*'7, then 0±i,r>x

breaks into two PE-orbits:

ifr * 0: ± Qx(Sr nE±)and± Qx(Sr \ (Sr n Ex));
ifr = 0:± QX(S0 n E) and ± QX(S0 \ (S0 n E)),

and further, ± Qx(Sr n £ x) is empty when r < 0 ûkî/ A: < /, û/k/ wAe« r > 0

and k > I, in particular, when r ¥= 0 and k = I.

PE is transitive on all of these orbits except for (i) and (iii) in the case where

dim E = 1.

Proof. The corresponding facts for the action of PE and P'E on 5r come

from Witt's Theorem. Apply ± ßA.   Q.E.D.

Let us complete the results of Proposition 3.8 with respect to U(l, 1) and

the essentially hyperbolic orbits. Here dim E = 1 necessarily, and PE has two

orbits on {/c: £ G Su(l, 1), det (£) = /•} ® (iX trace), r < 0, given by £ G pE

and £ £ p£, the first sitting in the closure of the second. To see this, view

§u(l, 1) as R1'2 under the Killing form, note that the Killing form corresponds

to a negative multiple of det, and observe that Ad(i/(1, 1)) goes over to

SO(l, 2).

U(k, I) acts, as a subgroup of GL(m; Q, on the projective space Pm-1(Q

associated to C*1'. Its orbits are: an open orbit consisting of the negative

definite lines, a closed orbit consisting of the isotropic Unes, and an open

orbit consisting of the positive definite lines. If r =£ 0 then ± Qx(u) h» «C is a

G-equivariant bijection of O+i^ onto the negative (if r < 0) or positive (if

r > 0) orbit in i""_1(Q. This puts a (/-invariant complex structure on the

minimal nontrivial elliptic coadjoint orbit 0±i>riA. If s - \r\x/2 > 0 then

±Qx(se\) represents 0±lr>A (r < 0) and ±Qx(sem) represents 0±IriA (r > 0),

so we also have indefinite hermitian symmetric space descriptions
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0±i,-*x « U(k, l)/U(\) x U(k - 1, /),

(3"9) 6±IÄ « Í/(A:, /)/l/(*. / - 1) X 1/(1).

These provide the same complex structures.

Define &j E u(k, I)*, by ê.(D = ^ y'th diagonal entry of £. So a simple

root system of u(k, ¡)c, relative to the diagonal Cartan subalgebra, is given by

the restriction of the 5j, — Sj+X, 1 < j < m — 1. Now notice

(3.10)

if r < 0: ßx(s<?,) = ilrS, + A 2 %)      where* =|r|1/2,

úr>0:Qx(sem)-i(r&m+\f&j\    where* =|r|1/2.

If r < 0, now exp (± iQx(sex)) is a well-defined character on U(l) X U(k —

1, /) if and only if the coefficients of £, and of 2™ S,- are integers, i.e., X + r

and X are integers. Same situation for r > 0. So we have the integrability

condition:

3.11. Lemma. Let v E C*-' with \\v\\2 = r^0, and let U(k, l)v denote the

isotropy subgroup of U(k, I) at ± Qx(v) E 0±i,rjA. Then ±iQx(v) integrates to

a well-defined unitary character on U(k, l)v if, and only if, both r and X are

integers.

Assume the integrality condition of Lemma 3.11 for the minimal coadjoint

orbit 0±i>r,x- Associated to the character on the isotropy subgroup, we have a

G-homogeneous hermitian complex line bundle L-» 0±lr^. Using the com-

plex structure, which simply is a choice of totally complex polarization, the

method of [40, Lemma 7.1.4] gives us the structure of G-homogeneous

holomorphic line bundle on L-> ®±x¡r¿. Of course, the natural symplectic

form on 0+1,,^ is the curvature of that bundle. This prequantizes B±x>r^ for

r^0.

By contrast, the essentially-nilpotent orbits 0±i,r>x are not amenable to

prequantization. In fact,

3.12. Lemma. If m > 1 and (k, I) ¥= (1, 1), then 0±XM does not admit a

polarization.

Proof. Let q c u(k, l)c be a complex polarization for 0±ljO^- Then q is a

complex polarization for 0±liO>o = Ad*(U(k, /))• (±Q0(ex + em)). Following

Ozeki and Wakimoto [19], q is a parabolic subalgebra of u(k, l)c. Since fet+em

is nilpotent, a result of Rothschild and Wolf [27] says that the functionals in

0±IOO annihilate q, and then a result of Wolf [41] says q = toc for some

parabolic subalgebra to of u(k, I). Now to is contained in a maximal parabolic
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subalgebra of u(k, /). According to (3.7) that maximal one has form to£ = {£

E u(k, I): £E c E) where E c C*'' is a totally isotropic subspace of some

dimension s, 1 < s < [m/2]. Also [38, Theorem 2.10], dim to£ = »i2 - 2ms

+ 3s2. Now to has codimension > 2ms - 3s2 in u(k, /). Since it polarizes an

orbit of dimension 2(m - 1), to has codimension exactly m - 1. Now m — 1

> 2ms - 3*2 with 1 < s < [m/2]. The only solution is s = \, m = 2. That is

just the excluded case (k, I) = (1, 1).   Q.E.D.

We now examine the relation between the minimal orbits of u(k, I) and the

graded Lie algebra structure of u(k, I) + C*'' on the one hand, and similar

constructions for the symplectic algebras ep(k + I, R) on the other. Let V be

R2" with symplectic form { , }, let Sp(F) be the group of all real linear

transformations which preserve { , } and let §to( V) denote the Lie algebra of

Sp(F). We define a symmetric linear map V ® V-> àp(V) sending u ® v ->

[u, v]G where

(3.13) 2[u, v]Gw = {u, w}v + {v, w}u.

For £ E §to( V) and u E V we define

[&u]g~ -[".£]g=&>

while for £ and tj E êto(F) we set [£, tj]c equal to the usual commutator

bracket: [£, tj]c = [|, tj]. As pointed out in [4], this makes 3p(V) + V into a

Z2 graded Lie algebra, where èp(V) is the even part and Vis the odd part. In

fact, this is a real form of one of the infinite simple algebras in the

Kac-Kaplansky classification. (Over the complex numbers, this family of

algebras has the distinguishing property that, among all finite dimensional

graded Lie algebras, it is the only one with nontrivial odd part such that all

finite dimensional representations are completely reducible; cf. [5] for this

result.) We can consider the quadratic map of V-*èp(V) associated with the

symmetric map [ , ]G, i.e. the map t? -»[«, v]G. We also have the map <E>:

ê)p(V)-*è!p(V)* given by

*(£>?= ltrR£rj

where trR denotes the usual trace of a real linear transformation of V. The

subscript R emphasizes that we are computing the trace over the real

numbers. In the situation that we have been considering previously in this

section, V also has the structure of a complex vector space, and we can

consider complex linear transformations, and the corresponding trace over

the complex numbers which we temporarily denote by trc. For a complex

linear transformation, £, the relation between these two traces is clearly given

by

ItrR£ = Re(trcf).

(We shall have use of the relation between the two traces in describing the
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relations between the minimal orbits of the unitary and the symplectic

algebras.) We shall denote the composite map v \-> $([«, v]G) of V-> §>p(V)*

by R. A direct computation shows that

R(v)ri = ¿{v,Tiv}.

The map R clearly commutes with the action of Sp(F)> i-e- R(av) = aR(v),

where aR(v) denotes the image of R(v) under the element a G Sp(V) acting

by the coadjoint representation. Now Sp(F) acts transitively on V — {0}, and

hence R must map V - {0}, onto an orbit of Sp(F) in êp(V)*. The orbits in

êp(V)* have an induced symplectic structure, and so, of course, does V —

{0}. We claim

3.14. Proposition. The map R is a symplectic diffeomorphism of V — {0}

onto a minimal positive dimensional orbit in äp(V)*. There exists precisely one

other orbit of dimension 2«, which is the image ofV— {0} under —R. All other

nonzero orbits have strictly greater dimension.

Proof. It is known (cf. [10]) that each of the simple complex algebras other

than §I(n) has exactly one coadjoint Orbit of minimal positive dimension. In

the complex space êp(V)* ® C this orbit is the orbit of the element R(v),

v ¥= 0, under the complex symplectic group. It is easy to see that the

intersection of this orbit with the real subspace has two components, one

consisting of the vectors R (v) and the other consisting of the vectors — R (v),

v 7e 0. Now V — {0} is a symplectic homogeneous space for the group èp( V),

and hence there exists some symplectic diffeomorphism, S, of V — {0} onto

one of these two orbits which is equivariant with respect to the action of

Sp(F). Now multiplication by ±1 commutes with the action of Sp(F) on

êp( V)*. Hence S~lR maps V - (0} onto itself and commutes with the action

of Sp(F). An elementary argument shows that this implies that S-1i? must be

multiplication by a nonzero scalar. This implies that the symplectic form

induced by R is some constant multiple of the original symplectic form, and

all that is left for the proof of the proposition is to establish that this constant

equals one. To evaluate the constant, we need only compare the two sym-

plectic forms at one point. Let to denote the symplectic form on the orbit, let £

and 7) be elements of êp(V) and let £„ and t/0 be the corresponding tangent

vectors at v. Then, by definition,

^H»%)" -<©» [£>*.]>•
Let us choose £ G èp(V) such that £e = e and £/= — / and 17 such that

■qe = f and tj/ = 0. Then [£, ij]0 = -2/. If f is any element of §>p(V), let ¡0

denote the value of the image vector field of £ at the point v E V. The

equivariance of the map R implies that

dRÇ0 = ?*(„)•
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Now, taking v = e,

i, = e,   tj„ =/   and   [£, n]„« -2/.

Thus

(R*u)0(e,f) = o>(dRe, dRf) = œ(dR^, dRr,v) = ~(R(v), [fc tj]>

»-I{[£,]0,0}«_I{-2/,e}«l,

proving the proposition.

Now assume that V = CkJ as above. We have an injection i: u(k, I) -»

êp(V) and a dual projection tt: §b(F)* -» u(k, I)*. We have

//'oí«' v)w = iï?<w, t?> = iv{iv, w) + v{v, w)

so

(3.15) iH0(v, v) = \ [v, v]G+ \ [it?, it?]c.

Thus

(tt^)H0 (o. o)(0 = 5 {», &} + i {w, &v} = «-<€o, o>   for £ E u(*, /)

since Re<£w, ti> = 0 for any £ E u(k, I). We thus have

(3.16) TT<&iHQ (v, v) = ttR (v, v) + ttR (it?, it?) = ß0 (t?).

4. Reduction of the metaplectic representation. In this section, we use a

graded Lie algebra construction to obtain explicit realizations of the meta-

plectic representations p of the 2-sheeted cover Mp(m; R) of the symplectic

group Sp(m; R). In these realizations, we restrict p to the unitary groups

U(k, l),k + I = m, proving

(i) the space of p is the discrete direct sum of the isotypic subspaces for the

circle group that is the center of U(k, I),

(ii) the representation v of U(k, I) on such a subspace is irreducible,

(iii) v remains irreducible when restricted to certain parabolic subgroups

and their maximal unimodular subgroups.

This extends results of Bargmann [2], Itzykson [9], and Mack and Todorov

[16]. It is related to work of Gross and Kunze [7] and Gelbart [6].

Fix an integer m > 0 and let V denote R2m together with a nondegenerate

antisymmetric bilinear form {u, v). This gives us the Heisenberg group

Hm = H(V),

H(V)=V + R   with (u, s)(v, t) = (u + v, s + t + \ {u, t?}),

the real symplectic group Sp(m; R) = Sp(F)>

Sp(F) = Aut(F) = { g E GL(2m; R): { gu, gv) = {«, t?}, all u, v E R2m},

and the semidirect product obtained by viewing Sp(F) as all automorphisms

of H ( V) that act trivially on R,
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Sp( V) • H ( V)   with ( g, u, s)(h, v, t)

= (gh,h~l(u) + v,s + t + ±{h-lu,v}).

Their respective Lie algebras are

í)m = W)=V + R   with [(«, s), (v, t)] = (0, {«, v}),

êp(m; R) = äp(V) = {£ G gl(2m; R): {£«, v) + [u, £u} - 0, all u, v),

èp(V) + Í)(V)   with [(£, u, s), (t,, ü, 0] = ([£, tí], £« - T)M, {«, «}).

Sp(w; R) = Sp(F) admits a unique two-sheeted covering group Mp(w;

R) = Mp(F), called the metaplectic group, and so we also have the semidirect

product Mp(F)- H(V).

The equivalence classes [77] of irreducible unitary representations m of

H(V) fall into two classes. First, there are the unitary characters

X,: (u, s) [-> eifM   where/ G V*,

which are trivial on the center R of H(V). Then, for 0 ¥= t E R, one has a

class [m,] with nontrivial central character,

m,(u, s) = e"smt(u, 0).

The m, are infinite dimensional, and evidently [mt] is stable under the action

(of conjugation) of Sp( V). One tries to extend m, to a unitary representation m,

of Sp(V)-H(V) on the same Hilbert space: given g G Sp(F), («, j) H»

w,(g(«, i)g_l) is equivalent to m,, so there is a unitary operator £,(g)> unique

up to scalar multiple, such that m,(g(u, s)g~l) = m,(g)m,(u, s)ml(g)~i for all

(«, s) E H(V). One knows [29] that the m,(g) cannot be normalized to give a

representation of Sp(F)* H(V), but that they can be normalized to give a

representation-denote it by 7r,-of Mo(V)-H(V). Now define (cf. [37]) the

metaplectic representation p, of Mp(F) by p, = w,|M^K). The unitary equiva-

lence class [ p,] depends only on t.
1

4.1. Lemma. Metaplectic representation classes [pt] = [pt] if and only if

tt' > 0, and [/*_,] is the dual (contragredient) of [ p,].

Proof. The multiplicative group R+ has an action a by automorphisms on

Mp(V)- H(V): ab(g, u, s) = (g, bu, b2s). Here mt » ab\H{V) = mbh and

M/ ° aôlsp(K) = M/» so ab gives an equivalence of p, and ju.^,. If tt' > 0, then

/' = b2t for some ¿> > 0, so [ p,] = [ p,].

We see m* = m_, from a glance at central characters. Since m* restricts to

77* on H( V) and ju.* on Sp( V), now [ p*] = [ p_t].

In Theorem 4.23 below, we calculate that dpx sends a certain Jm0 E êp(V)

to an operator with discrete spectrum [i(d + m/2): 0 < d E Z}. Now

dp-](Jm,o) = dp*(Jm() has discrete spectrum { — i(d + /w/2): 0 < ¿/ G Z},

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SHLOMO STERNBERG AND J. A. WOLF 19

which is different, so [p-X]¥= [px]. If tt' < 0, say t > 0 > t', now [p,] = [px]

*[P-i] = [p<l   Q-E.D.
Lemma 4.1 tells us that there are exactly two metaplectic representation

classes, [ju] = [/x,] and its dual [p*] = [ju._,].

We recall the Z2-graded Lie algebra that will give us an elementary explicit

construction of the metaplectic representations. We saw, in §3, that

(4.2) « ® c |-> èu.v   where 2&(8(w) = {«, w}v + {v, w}u

maps V ® V to §b( V), and in fact is a vector space isomorphism from the

symmetric tensors onto §b(F). We defined a multiplication [ , ]c on the

vector space §b( V) + F by

if fc tj E Sto(K) then [fc tj]g = [£, tj] - £tj - tj£,

(4.3) ■ if|Eêb(F)andwE F then [£«]c- -[«, ¿]G = £(«),

if u, u E F then [u,v]G = £M1).

Define DC to be the space of all holomorphic /: Cm -> C such that /|/(z)|2

exp(- |z|2) dX(z) < oo where |z|2 = 2™|z,|2 and X is Lebesgue measure on Cm.

Then DC is a Hubert space with inner product

(4-4) (/, g) = TT-mff(z)J(z)cxp(-\z\2) dX(z).

Given n = («,,..., nm) integral, denote «!= II«a! and z" = z"1 • • • z%» as

usual. Then the functions

(4.5) <pn(z) = z"/Vnl,       « = («„..., nm) with 0 < na E Z,

form a complete orthonormal set in X.

Since

^ (^xp(-|z|2)) = J£ gexp(-|z|2) -/.^iexp(-|z¡2)

for/, g E DC, integration by parts says (3/3za)* = za, multiplication by za.

Fix a basis {px,...,pm; qx,...,qm) of F with {pa, qb] = 8ab. The

Bargmann-Fock realization of [ttx] as a representation of H(V) on X is

given, on the Lie algebra level, by

*,: (0,1)^/,   (A, 0) h^ JL (za - j- ),
(4.6) V2   V Zal

Define a map Ton the graded Lie algebra %p(V) + F by
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(47) ̂vn*«-£)' ̂ vn^t)-
£u>uk {r(«)r(«)+r(o)r(«)}.

Notice that T(u) = /V/72 d7r,(w, 0) for every u G V. We need this for the

proof of Theorem 4.10 below.

4.8. Lemma. T is a graded Lie algebra representation.

Proof. First, T[u, v]G = r£„0 = [Tu, Tv]G for w, t> in the odd part V of

êp(V) + V. Now we claim that it suffices to prove 7\£(k)) = [7/(£), T(u)] for

£ G êi>(K) and u E V. For then 7/[£, u]G = [r£, r«]c directly, and, since

êp( V) acts effectively on V,

[[ n, TV]G, Tu]G = [ n, [ T-n, Tu] ] - [TV, [ Tt Tu]]

-[re TV(u)] -[T-n, n(u)] = n(r¡(u)) - 7r,(£(u))

= T([t,V](u))=[T[Z,r,]G,Tu]G

shows r([£, r,]c) = [7/£, TV]G for £, n G êp(V).

To verify T(£(«)) = [T£, 7w], we write out the last part of (4.7) in terms of

our basis of V. Setting uv = r(£„)0) this says

( PJ>»= r(w= - 2 \~dzjrb -z°-dTb ~z"^ra +z°z» - 8<*)'

(^ = nu)4(3Ä+^i+^^+^+5-)-
Now

r~- -r  i      1 ,/T[    32 3 3 , 3   1[/V* Tfc] - 2 VI   [ 1^ "Z" 3^ "Z*3i: + Z«Z* - 5<*'Z< + I£ J

-o«r(0)-r(W/>c)),

r -—"  -r  -\      i . / i 32 3,3 3
[^,7>c] = -y- ^_-Za_+Zi_ -ZaZ6,Zc-_

= -8bcT(pa)=T(^qh(pc)),   etc.

gives the required verification.   Q.E.D.
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4.10. Theorem. The metaplectic representation class [p] is given, on the Lie

algebra level, by dp = T\iV(ir) as in (4.9).

Proof. Following (4.9) and Lemma 4.8, T\spffr) is a Lie algebra

homomorphism whose image consists of operators on DC that are essentially

skew adjoint from the dense domain DC0 = {finite linear combinations of the

z"). If £ E sx>(V) and u E V then, on DC0, with c = (iVi/2 )"',

[n, dTTx(u, s)] -[n, cT(u) - is] = c[n, Tu] - cT(i(u))

= dTTl(ÏU,0)=[dp(Ç),dTTx(u,s)].

As 77i is irreducible and DC0 is a domain of essential skew adjointness for the

image of dp, now T\^V) — dp is a linear map sp(F)-»C, and so T(%) =

dp(ií) on DC0 for every £ E [sp(F), sp(F)] = sp(F)- Closing the operators, the

assertion follows.   Q.E.D.

We use Theorem 4.10 and the explicit formulas (4.9) to see

(4.11)
*&* + k.J - '"(*. jrb +z» ~ka +8ab}

3 a

Mk*-**+) = *> fr--2* Tzb

(4.12)
32*(i.* + $»*) = 3T9T ~z«z*-

Fix a decomposition k + I = m, k and / nonnegative integers, and define a

closed subspace of DC for every integer d:

k k + l

(4.13)  DQ: closed span of the <p„(z) = zn/Vñ\  with 2 na- 2 «¿,= d.
i *+i

Then we have

4.14. Lemma. Let %' be a closed subspace of % stable under the operators

(4.11) for a < b < k and for k < a < b, and stable under the operators (4.12)

for a < k < b. Then DC' is the closed span of some of the spaces %d o/(4.13).

Proof. Taking a = b in (4.11), DC0 n DC' is stable under the za(3/3za):

z" h» naz", so DC' is the closed span of some monomials q>„(z) = z"/Vñí.

Now fix ip„Ê5C'n DC¿ and let <p„. E 3Crf. By hypothesis and (4.12), DC' is
stable under all 32/3za3z0 and all zazb for a < k < b. Set r = 2* m,. — 2* n'c.

If r > 0 we apply r of these 32/3za3z6 to <p„, and if r < 0 we apply |r| of

these zaz¿ to <p„, sending <j?„ to <p„» E DC' n DC,, with 2? h" = ^i K- T^us we
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may assume 2* nc = 2* n'c, and so also 2™+x nc = 2™+1 n'c. By hypothesis

and (4.11) with a < b < A:, we may apply za(3/3z6) and zb(d/dza) repeatedly

to <p„ sending it to <p„» with n" = n'c for c < k. Now we may assume nc = n'c

for c < k, and by the same argument we may also assume nc = n'c for c > k.

Q.E.D.
In a trivial way, Lemma 4.14 gives us the standard

4.15. Corollary. The metaplectic representation p is the direct sum p+ ©

p~ of two irreducible representations, where the corresponding subspaces of %

are %+ : closed span of the z" with \n\ = 2 na even and %~ : closed span of the

z" with |«| odd.

Proof. The spaces %±, defined in the statement, are closed and mutually

orthogonal by (4.5) and invariant by (4.9) and Theorem 4.10. Taking a = bin

(4.11), every closed invariant subspace is spanned by monomials z". Now let

z" and z"' belong to the same %±, that is \n\ = \n'\ mod 2. Using (4.12), we

apply operators zazb to z" if \n\ < \n'\, to zn' ii \n\ > \n'\, and so may assume

|«| = \n'\. Now the assertion follows from the case k = 0 of Lemma 4.14.

Q.E.D.
Our fixed k + I = m gives V - (R2m, { , }) the structure of C*-' with

complex structure

(4.16)
Pj h ?j h —Pb   for k + I < b < k + I,

and hermitian scalar product

(4.17) (u, v) = [u, JkJ(v)} + i{u, v]    for u, v E V.

Notice that

i4-18) ̂ -i{|(i,A+u)-||(u+u)}e^(n-

We obtain U(k, I) as the Sp( F)-centralizer of Jkl, and so

(4.19) u(k, I) = {£ G èp(V): [£, /w] - 0).

Now let us be explicit about (4.19):

4.20. Lemma. u(k, I) has basis consisting of the ^ñ + £& ?6 (a < b < k and

k<a<b), the £^ - ^% (a<k< b), the £p^~ ^ (a < b < k and

k<a<b), and the ̂  + ^ (a < k < b).

Proof. One verifies directly that Jkl commutes with each of the m2 linearly

independent elements of êp(V) listed in the lemma. As dim u(k, I) = m2, this

proves the assertion.   Q.E.D.

We are going to reduce the metaplectic representation p to
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(4.21) MU(k, I): inverse image of U(k, I) by Mp(m; R) -> Sp(w; R).

A glance at compact Cartan subgroups shows that the "meta-unitary" groups

MU(ä:, /) are connected, so p\MU^ky¡) does not factor through U(k, I) since p

does not factor through Sp(m; R). Nevertheless one knows [39, Proposition

4.16] that ttx extends to a representation of U(k, I) ■ H(V) on DC. From this,

(4.22) v = detj/2 ® ( p\MuW)) factors through U(k, I),

and we will speak of v as a unitary representation of U(k, I).

4.23. Theorem. The space %d <?/(4.13) is the i(d + (k - l)/2) eigenspace of

dp(Jkl) and the i(d + k) eigenspace of dv(Jkj). It is invariant under

p(MU(k, I)) and v(U(k, I)), which are irreducible on it. In particular, v =

~2dezvd, discrete direct sum, where vd is the irreducible unitary representation of

U(k, I) on %d.

Proof. As in (4.18), a complex diagonal matrix

IX i

in u(k, I) corresponds to

.      k .     k+l

1 *    k + \

and the case a = b of (4.11) shows that its i/ja-image is

*       /       t t \      k+l

?4*^+2-)-â4'i+20
Now, by (4.22), the ¿fr-image is

k       i      „ \      *+/

In particular,

and

?4^+l)-,?,4t)

dv^=i[îzajrygzbjrb+k]

dp{Jk,,) = dv(JkJ) - im/2.

This gives the eigenspace assertions. Stability is immediate, and irreducibility

follows from Lemmas 4.14 and 4.20.   Q.E.D.

The duals p* and v* are representations on the conjugate Hilbert space DC,
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so Theorem 4.23 gives us

4.23.* Theorem. %d is the - i(d + (k - l)/2) eigenspace of dp*(Jkj) and

the —i(d + k) eigenspace of dv*(Jk¡), and v* represents U(k, I) on %d by the

irreducible representation v*.

At this point we pause to record the action of dv:

dv(£) is equal to dp(£) in (4.11) and (4.12), except for

(4.24) *&* + kJ = 2/(za(3/3za) + 1)   for a < k,

= 2iza(d/dza)   îork<a.

Recall the correspondence (3.7) between nonzero totally isotropic sub-

spaces E c C*'' and maximal parabolic subgroups PE c U(k, I). We now are

going to show that vd and v* remain irreducible on restriction to P£-and even

to its maximal unimodular subgroup P'E when dinicii > 1. The idea is to

adapt Kobayashi's reproducing kernel argument [14] to the "nearly transi-

tive" situation provided by Proposition 3.8. The kernels are given by the

elementary

4.25. Lemma. Let %' be a closed subspace of%.If{$a}a&A is a complete

orthonormal set in %', then ~ZaeA$a(z)tya{$) converges absolutely, uniformly on

compact sets, to a function K'(z, f ) on Cm X Cm that is independent of choice of

{\¡/a)a£A. K'(z, f ) is holomorphic in z and antiholomorphic in f, and if f G %

then

(4.26) f'(z) = ^-mfcK'(z, n/(n«p(-|?|2) dX(n

is its orthogonal projection to %'.

Proof. If %' = % we recall that the <pn(z) = z"/Vn\ form a complete

orthonormal set, and we calculate

_       (*,r,) •••(*-*,.)
2KWft(f)|-2J-¡p-
n n "•

.      — ."i .      - ."2 .       - ."m

„       zl?l „       Z2Í2 _      \zmim\
= y -—— y -—— • • • y -——

n,>0      n\-        n2>Q      "2- nm>0       nm-

= eM'Uh&l • • • e\*m*m\ = eM~'l + —•" M-l.

Thus 2„ <p„(z)<p„(Ç) converges absolutely, uniformly on compacta, to a

function K(z, I) that is holomorphic in z and antiholomorphic in f. If

{^ß}ßeB is another complete orthonormal set, we expand ^ = 2„ aßjltpn to
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see that ^ß^B^ß^^ß^) converges absolutely, uniformly on compacta, to

K(z, $). Finally, if/ £ DC then

»-/*(* n/(Oexp(-1?|2) dXd) = 2 (/. <P„ W) = /(4

In the general case, increase {^j,,^ to a complete orthonormal set

2 |*.(*)OT)| < 2 \M2)Mñ\
a£A ßeB

gives the required convergence, and everything else follows as in the case

DC' = DC.   Q.E.D.
Now we come to

4.27. Theorem. Let PE be the maximal parabolic subgroup of U(k, I)

corresponding to a nonzero totally isotropic subspace E C C*'', and let P'E denote

its maximal unimodular subgroup. Then vd\P and vd\P¡¡ are irreducible, and if

dim^ > 1 then, further, vd\P¿ and vd\P.£ are irreducible.

Proof. Let B be a closed subgroup of U(k, I) and suppose that %d = %d

© DCj', orthogonal direct sum of closed i'a-(5)-invariant subspaces. Then the

corresponding kernel functions of Lemma 4.25 satisfy Kd(z, f ) = Kd(z, f ) +

Kd(z, Q, and all three are invariant under the action vd ® v¡ of B on

DCrf 8 %d.
Now suppose that, for r real, B has a dense open orbit on Sr = {u E C*1':

u =£ 0 and ||t/||2 = /•}. For z in that dense open orbit, Kd(z, z) is a constant

multiple of Kd(z, z). Since the kernels are real analytic, we now have a real

analytic function c: R->[0, 1] such that Kd(z,z) = c(\\z\\2)Kd(z, z) for all

z E Cm. We conclude that Kd(z, z) is invariant under (vd ® v*f)(U(k, I)).

As Kd(z, f ) is holomorphic in z and antiholomorphic in £, it is determined

by its restriction Kd(z, z) to the diagonal of Cm X C", and thus also is

(vd ® v$)(U(k, /))-invariant. Now the range %'d of the corresponding opera-

tor (4.26) is vd(U(k, /))-invariant. As vd is irreducible we conclude that DC¿ is

0 or %d. This proves irreducibility of vd\B, and thus also of (i^)* = v*\B.

In Proposition 3.8, we noted that the transitivity required of B always is

satisfied by PE, and is satisfied by P'E when dim^ > 1.   Q.E.D.

4.28. Remarks. As is clear from the proof of Theorem 4.27, we have

irreducibility of vd\B and v%\B whenever B enjoys the appropriate "nearly

transitive" conditions on the Sr or the corresponding coadjoint orbits.

If k = I = 1, then P'E is commutative, so vd\P, and vd\P. are reducible. This

suggests that vd\P.E and v*\Pi may reduce whenever dimc¿ = 1, in particular,

whenever min(A:, /) = 1. That is also suggested by the lack of near transitivity

in these cases.
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In the case k = I = 2 when we take P'E to be the Poincaré group (cf. [4])

these representations are exactly the representations corresponding to relati-

vistic elementary particles of mass zero and varying spins.

More generally, if B acts essentially transitively on Sr then the open orbit

on Sr corresponds to an open subset of an orbit in u(k, /)* which is a

symplectic homogeneous space for B and, in fact, corresponds to an orbit of

B acting on B* where B is the Lie algebra of B. If B is a semidirect product of

a linear group L with a vector group Rs, then the orbits of B on B* have a

simple description in terms of the Mackey-Wigner "little group" construction.

In particular, an orbit, 911, of 5 acting on B* is fibered over an orbit, 0, of L

acting on (Rs)* and, for each such orbit, corresponds to an orbit of La acting

on I*, where La is the isotropy subgroup of a point a E 0 and Ia is its Lie

algebra. Let us call the corresponding orbit in I* the "little orbit". According

to Mackey's theorem [17], every irreducible unitary representation of B is

induced from a representation (p, xj of some La • R*, where p is an irre-

ducible representation of La and Xa 1S tne character on Rs given by the

infinitesimal character a, extended to La • Rs as in [39]. According to

Rawnsley [24], some invariant polarizations on 91L come from polarizations

on the little orbit invariant under La. Furthermore, in case the little orbit has

an invariant polarization which then gives rise to a unitary representation of

La, then the Mackey induced representation is obtained by quantizing relative

to the associated polarization of 911. One would expect that in this way the

labelling of the irreducible representation, vd\B, is completely determined by

the orbit description of §3. We shall return to this point in Part II.

In general, let m be an irreducible unitary representation of a Lie group G

and H a closed subgroup of G such that m\H is of type I. If m is associated to

a coadjoint orbit 0 C g* by the Kostant-Kirillov orbit method, then the

transitivity properties of H on © should be reflected in the decomposition of

ttI^ into irreducible representations. This is supported by work of Pukánszky

[21], [22] and Vergne [33] on exponential solvable groups, and by Kobayashi's

reproducing kernel arguments [14], [15] interpreted as applying to the case of

a totally complex polarization; and the use of Proposition 3.8 in our proof of

Theorem 4.27 is a striking example. That example takes an interesting form

when we consider the algebraic reducibility properties of a parabolic subal-

gebra pE c u(k, I) and its subalgebra p'E on the dense subspace

% = {polynomials in %d) = { U(k) X U(l)-finite vectors in %d)

of vectors finite under the maximal compact subgroup, and we describe this

situation in an Appendix at the end of this paper. In that Appendix we shall

see that the lower dimensional orbits of PE and P'E are reflected in the

existence of invariant subspaces of 'jQ under dv(pE) or dv(p'E). These

subspaces are all of finite codimension and are dense in %d, and so do not
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have any effect on the unitary irreducibility.

5. Structure of the representations. In this section we look at the relation

between the representations vd and v* of U(k, I), and the associated bounded

symmetric domain of k X I matrices. First, we analyze the restriction of vd to

the maximal compact subgroup U(k) X U(l), and use that information to

prove that vd and vd are discrete series representations only in restricted

circumstances. Then we recall the extended holomorphic discrete series of

Wallach, Rossi and Vergne, and discuss it in terms of lowest highest weight.

As a result, we show that v% belongs to this extended holomorphic discrete

series in the cases where one expects it to occur on a holomorphic line

bundle, but an example shows that this is not the case in general.

We start by examining the restriction of vd from U(k, I) to the maximal

compact subgroup U(k) X U(l). Denote

k i

(5.1) %rs: span of the <j?„(z) = z"/Vhl with r = 2 na and í = 2 nk+b.
i i

So DC, = 2,_í=rf DCr>i. Set

*.-5fc*+€**)   tori <a<k,8k+b

= -í(Cw^ + ^J   forl <b<l,

and denote

t: Cartan subalgebra of u(k, I) spanned by the ó).

The correspondence with matrices is

IX i
m

<-»2  XjSj,
1'V

and so we have a simple root system

(5.2) q!_ . . .   ^5'    where ̂ = tj _ g.+ ]j A 2 xc «5C J = ixj.

Here ak is the noncompact simple root, and the compact simple root system is

o- • • •  -o © o- • • •    -o.

5.3. Lemma. The spaces %rs (r - s = d) are stable under vd(U(k) X [/(/)),

and vd(U(k) X U(l)) acts irreducibly on %r>s by the representation of highest

weight k + /-£, - SEm if kl > 0, k + re, if I = 0, - sem if k = 0, where k = e,

+ •••+%•
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Proof, dv^ Xj8y) = i{2? xa(za(d/dza) + 1) - 2&Í xb(zb(d/dzb))}

multiplies %(z) = z"/Vn~l by /{2* xa(na + 1) - 2^t'i xbnb)- Invariance is

clear as in Lemma 4.20, and the method of Lemma 4.14 proves that U(k) X

U(l) is irreducible on %r<s. So now U(k) X U(l) acts on %rjJ by the

irreducible representation with weight system

(k k+l k k+i 1
2(«« + !K - 2  W 2 »a = r and 2  «*-*}•
i *+i i /fc+i J

The highest weight is the one to which no root a,,j ¥= k, can be added to give

another weight, and that is rex — sem + k.   Q.E.D.

Now we start to locate the series of vd:

5.4. Theorem. The representation vd belongs to the discrete series of U(k, I)

if and only ifkl = 0, k = 1 andd > I, orI = 1 and —d>k.

Proof. Suppose that vd is a discrete series representation of U(k, I). Then,

for some X G it* with <A, a) =£ 0 for every root a, vd is equivalent to the

discrete series representation 7rA. Let 2+ and 2£ denote the positive root

systems for U(k, 1) and U(k) X U(l) described just before Lemma 5.3.

Define new positive root systems

A+ = {roots a: (X, a> > 0}   and   A¿ = [a G A+: a compact}.

Let WK denote the Weyl group for U(k) X U(l). Then 7rA specifies X only

modulo the action of WK, and some w G WK carries A¿ to 2j£, so we may

suppose A¿ = 2¿. Now Lemma 5.3 applies to îta|u(k)xu(iy

W. Schmidt [28, Theorem 1.3] characterized tta as the unique irreducible

unitary representation m of U(k,l), such that 7r|i/(*)x£/(/)(a) contains the

irreducible representation of U(k) X U(l) with highest weight

X - 2p£ + px   where 2p£ =   2  « and 2px =   2   A
<*eA£ ßeA*

and (b) does not contain any irreducible representation of U(k) X U(l) with

highest weight of the form X — 2p£ + px — A, where A is a nontrivial sum

from A+. Using tta « vd, Lemma 5.3, and a, + • • • + am_x = ex — em, we

conclude that

X = k + dex + 2p£ - px   if i/ > 0, X = k + ffem + 2p£ - px   if d < 0,

and that a, + • • • +am.,£A+. Here note that A¿ = 2¿ implies 2p% =

lk(k + 1 - 2j)Sj + 2k++\(i +1-2U- k))Bj.

Suppose ak E A4'. Then A+ = 2+. In the normalization ||e,||2 = 1 we

compute

<A, ak) = d8kA - m + 2   if d > 0, - -d8k+hm -m + 2iîd<0.

Then <A, aÄ> > 0 gives us:
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either k = 1 and d > m — \ = I, or 1=1 and —d > m — 1 = k.

Conversely, if those conditions hold then 2+ is the positive root system

defined by X = k + (dex or dem) + 2p\ - px and vd is the discrete series

representation irx as seen by its U(k) X U(l) restriction.

Now suppose ak E A+. Define a < k and c > 0 by the conditions -(aa

+ • • • + ak+c) E A+, -(aa_, + • • • + ak+c) E A+, -(«„ + ••• +

ak+c+x) E A+. Then the set A+ \ A£ of positive noncompact roots is

-(aa + • • • + ak+c); -(aa+, + • • • + ak+c), -(aa + • • • + a*+c_,);

• • • ;-ak; (aa_, + • • • + ak+c), (aa + - • • + ak+c+x);

■ • • ;(a, + • • • + am_,).

Thus the A+-simple roots are

compact   simple:   ax, . . . , aa_2;   aa, . . . , ak_x;   ak_x, . . . , ak+c;

ak + c+2> • • • « am-\>

noncompact  simple:   — (aa + • • • + ak+c),   aa_, + • • • + ak+c,

aa+ '— + ak+e+i,

where impossible indices mean that the root does not occur. Now compute

(2pk, -(«0 + • • • + ak+c)) = <2pK, -ea + ek+c+l)

= k + I - 2(k + c - a + 1),

<2p¿, aa_, + • • • + ak+c) = (2pK, ea_x - ek+c+l)

= -(k + l) + 2(k + c- a+ 2),

<2p¿, aa + • • • + ak+c+x) = (2pK, ea - ek+c+2)

= -(k + I) + 2(k + c - a + 2).

Write re, - sem for the lowest highest weight dex or dem. Using <p\ simple

root) = 1, now

(i) <A,  -(aa + • • • + ak+c)) = - 8aXr - 8C+Xls + m - 2(k + c - a +

2),

(ii) <A, <v.i + • • • + ak+c) = 8a_xlr + 8c+l¡,s - m + 2(k + c - a + 2),

(iii) <A, aa + • • • + ak+c+xy = 8aXr + 8c+2Js - m + 2(k + c - a + 2).

Of course, here the second equation occurs only if a > 1, and the third only if

c < / - 1; and a, + • • • + am_, E A+ says that either a > 1 or c < I - 1

or both.

If a > 2 the right-hand sides of (i) and (ii) both are positive with sum zero;

so 1 < a < 2. If c < / — 2 the right-hand sides of (i) and (iii) are positive

with sum zero; so/ — 2<c</—1. Now there are three cases: (a, c) = (2, /

-2),(2,/-l)or(l,/-2).
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If (a, c) = (2,1 - 2), then k + c-a + l = m-4, and (i), (ii) and (iii)

say: - m + 4 > 0, s + m - 4> 0, r + m - 4>0. Since r = 0 or s = 0, this

is impossible.

If (a, c) = (2, / - 1) or (1, / - 2), then k + c - a + 2 = m - 1, and (i)

says m + s < 2 or m + r < 2, in particular m < 2. Then m = 1 and W = 0,

which was excluded.   Q.E.D.

In general, vd and v* will be "close" to the discrete series, but for this we

need some machinery.

Our group U(k, I) acts by automorphisms on the bounded symmetric

domain

^ = %,i = {kxl complex matrices Z: I - Z*Z > > 0}

as linear fractional transformations

U(k,l)B¡^    £):ZK (AZ + B)(CZ + D)~x.

Similarly, the universal covering group p: G-» U(k, I) acts by g: Z h»

p(g)(Z). The respective isotropy subgroups at 0 are

U(k)xU(l)cU(k,l)   and   K = p~x{U(k) X U(l)} C G.

Since the actions are transitive, this gives coset space representations

U(k, l)/U(k) X U(l) = í = G/K.

Here the holomorphic tangent space to ¿D at 0 corresponds to the sum of the

positive noncompact root spaces of the positive root system 2+ of (5.2).

Let Ty denote the irreducible unitary representation of K whose highest

weight relative to 2¿ is y. There is an associated (7-homogeneous hermitian

holomorphic vector bundle Ey -> ^, and it gives us a Hubert space

(5.5a) 3C(EY): ¿2 holomorphic sections of Ey -» <$.

One knows [8] that

(5.5b) %(Ey) * 0** <y + p, a, + • • • + am_,> < 0.

The natural action of G on %(Ey) is an irreducible unitary representation,

specifically the relative discrete series representation 7ry+p. The repre-

sentations so obtained for G form the holomorphic relative discrete series, and

their duals form the antiholomorphic relative discrete series. The ones that

factor through U(k, /)-for the ry that factor through U(k) X U(l)-iorm the

holomorphic and antiholomorphic discrete series of U(k, I).

Suppose that A+ is any positive root system of u(fc, /)c relative to its

diagonal Cartan subalgebra, and that 7r is any irreducible unitary represen-

tation of G. We will say that m\K has lowest highest weight y relative to A+ if

m\K has a subrepresentation ry of highest weight y relative to A¿, but m\K does

not have a subrepresentation ry_A where A is a nontrivial sum from A+. The
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proof of Theorem 5.4 was based on W. Schmid's characterization of discrete

series representations by lowest highest weight. Now let us see how this

applies to vd, r*, and holomorphic and antiholomorphic discrete series. We

denote positive root systems by

2+ = 2¿ u 2G/A.: defined by the simple root system (5.2),

2+ = 2¿ u -^g/k- witri simple system

\a.k_x, . . ., a,, — 27   oij, ak+x,. . ., am_,}.

Then we have, by an elementary calculation with roots and weights,

5.6. Proposition. The representation vd has lowest highest weight relative to

2+; ii is (recall k = ex + • • • + ek)

(5.7a) yd = dex + k   if d > 0, = dem + k   if d < 0.

Similarly, v* has lowest highest weight relative to 2+, given by

(5.7b) ydt=-dek-K   ifd>0, = -dek+x-K   ifd<0.

On the other hand, if Ey -» fy satisfies (5.5b), then the corresponding

holomorphic relative discrete_series representation TTy+f) (p for 2+) has lowest

highest weight y relative to 2+, and the corresponding antiholomorphic discrete

series representation

Wy + P = ""-(Y + P) = V-2(P-P*r) + P' V = (Tr)*'

has lowest highest weight y* relative to 2+.

In applying Proposition 5.6 and a certain extension of it, we will need a

technical result.

5.8. Theorem. Let tt and it' be irreducible unitary representations of G. IfiT\K

and tt'\k have the same lowest highest weight relative to 2+, or have the same

lowest highest weight relative to 2+, then they are unitarily equivalent.

Remark. As the proof will show, Theorem 5.8 holds whenever G is a

reductive Lie group. Ad(g): gc-»gc is an inner automorphism of gc for

every g E G, and K is the AdG '-image of a maximal compact subgroup of

the adjoint group. Further, here the sum A from the definition of lowest

highest weight need only consist of any noncompact root in 2+ or 2+.

An immediate consequence of Proposition 5.6 and Theorem 5.8, which one

expects from the proof of Theorem 5.4, is

5.9. Corollary. The discrete series representations vd of U(\, I), d > I, and

of U(k, 1), d < — k, belong to the antiholomorphic discrete series.

The proof of Theorem 5.8 uses the "factor of automorphy" that trivializes

the holomorphic bundles Ey -> <3). After proving Theorem 5.8, we will use

this factor of automorphy to describe an extension of the holomorphic and
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antiholomorphic discrete series, and then will turn to the corresponding

extension of Corollary 5.9.

U(k, I) has complexification GL(m; Q, m = k + /. In gl(m; C), let p+

and p_ denote the respective sums of the positive and negative noncompact

root spaces for 2+. Thus

exp(t>+) - P+ = I ( Jn    B): BiskX I complex 1,

exp(i)_) = P_ = I( {,    ° j: C is / X k complex 1.

There is a well-defined map

k: U(k, I) -* { U(k) X U(l)}c= GL(k; C) X GL(l; C)

by:     gEP+-K(g)-P_.

Under the coverings/,: G-> U(k, I) map: Kc^> GL(k; Q X GL(l; Q it
lifts to a map

¡<:G->KC   such that/7(g) G P+ •/>(*(#)) ' p--

Let Ey denote the representation space of Ty, and extend Ty to a holomorphic

representation of Kc on Ey. The factor of automorphy is

(5.10) $y:G^GL(£y)   defined by $y(g) = ry(/c(g)).

Its main properties are given by

5.11. Lemma (Tirao [31]). $y is the unique continuously differentiable

function O: G -» GL(.Ey) îuc/z /Aa/ (i) $(1) = /, identity transformation of Ey,

(ii) $(kx gk2) = ry(kx) • $(g) • Ty(A:2) /or g G G W *,. G K, (iii) £($) = 0 for
a//£Gp.

Now we can prove

5.12. Lemma. Let m be an irreducible unitary representation of G, say on %,

such that m\K has an irreducible subrepresentation ry relative to 2£, but does not

have a subrepresentation ry_a for any noncompact root a G 2+. Then m\K

contains ry with multiplicity 1, and dm(p_) annihilates the ry-isotypic subspace

E c %. Further, if pE: % -*E denotes orthogonal projection, and $y: G->

GL(£) as in (5.10), then $y(g) =pE- m(g)\E and Oy(g"') = %(g)* for all

g EG.

Proof. If dm(p_) ■ E ^ 0, let a be minimal among the noncompact positive

roots such that dm(£)•£■ ¥= 0 where £ G Qq". Fix £ and let ß be maximal

among the weights of ry such that E contains a ^-weight vector w with

dm(Q • w 7& 0. Fix w. If a E 2¿ and ijEgJ then
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dir[ri, I] • w = 0   by minimality of a and a — a < a,

and
dTr(£) • ¿Är(Tj) • w = 0   by maximality of ß and ß + a > ß,

so
í/tt(tj) • í/7t(£) • Vf = í&rfij, £] • w + ¿fer(S) • î/ît(tj) • w = 0.

In other words, dir(^ - w is a highest weight vector for a representation,

necessarily Ty_a, in tt\k. That contradicts the hypothesis on Ty. We conclude

that</'¡T(b_)-.E = 0.

Since gc = b+ + fc + b_, its universal enveloping algebra has

factorization U(qc) = U(p+)- U(t¿)- £/(b_). Now, if £" is any 7r(Â>

invariant subspace of E,

% = dTT(U(Qc)) ■ E' - dTT(U(p+))• £'.

If S E U(p+) is a monomial of positive degree then dir(K) • E' cannot

contain a y-weight vector. We conclude E' = E. Now tt\k contains ry with

multiplicity 1.

Define $: G-*GL(E) by $(g) = pE"t(g)\E. Then $ is real analytic,

0(1) = /, and for g E G and k¡ E K one has

*(*i Sk2) = /»£ • *r(*i) •»(*)• »(M*

- »(*i)'Ä-»(í)U-»(*a)|*-,V(*i)*•(*)• TT<*a)-

Further, if ¿ e b_, then ¿($)(g) = Pe ' <g) ' M0\e = 0, so |($) = 0. Now
$ = <&y by Lemma 5.11. We can write this as

^(^-/V^lí-ÍAr •»(*)•/»*}!*   forgEG.

Since ir is unitary now the adjoint is given on E by

%(gy=pE-<gy -pE=pE-ir{g-x)-pE = Hs~x)-

That completes the proof of Lemma 5.12.   Q.E.D.

Now let us go back and prove Theorem 5.8. Suppose that tt\k and it'\K

have the same lowest highest weight, say y, relative to 2+. Let % and DC' be

their respective representation spaces, E c DC and E' c DC' the Ty-isotypic

subspaces, /: E -> E' a #-equivariant isometry, v E E and t?' = f(v) highest

weight vectors of length 1. For finite sums we compute
2

Il s ^^HL=2 cM*(zj~x8)v> v}%

= 2 %' {%{gf lg¡)v> v)     °y Lemma 5.12 for tt

■SVyW^'ftK"^   undcrf: E^E'

= 2 c¡Cj (?r'( g/~ 'g,.)!?', i?')       by Lemma 5.12 for tt'

-\\2cs(gi)»{%,
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In other words, ~2cim(gi)v h» 2c,7r'(g,)t>' is an isometry from the dense

subspace {finite linear combinations of the m(g)v, g G G} of % onto the

corresponding dense subspace of %'. Clearly G-equivariant, it extends by

continuity to a unitary equivalence of m with m'.

We have proved Theorem 5.8 for representations with the same lowest

highest weight relative to 2+. Now suppose that m and m' are irreducible with

the same lowest highest weight y relative to 2+. Then 7r* and m'* have the

same lowest highest weight y*, ry. = (ry)*, relative to 2+, so they are

equivalent, and it follows that m and m' are equivalent. This completes the

proof of Theorem 5.8.   Q.E.D.

The total space of Ey^>G/K= <% is Ey = G X^, consisting of all

classes [g, v] = {(gk, ry(k)~xv) G G X Ey: k E K), with projection [g, v]

h» g(0) G ^.  An explicit holomorphic trivialization is given by

(5.13) Ey b[ g, v] «. (Z, %(g)v) E *D X Ey,       Z = g(0).

See Tirao [31] for a proof. As usual we identify a section s: g(0) (-> [g, ç>(g)]

with the function (p: G -» £y, which satisfies <p(gk) = ry(A:)_1 • <p(g). In view

of Lemma 5.11, the section goes over to a well-defined function

f:<$-+Ey   by/(Z) = $y(g)-«p(g),       Z = g(0),

and / is holomorphic if and only if the section is holomorphic. Furthermore,

the section s has global square norm

M2-jL>(*)t d(sK) = /     ||*y(g)-'-/(g(0))|£ «/(**)

so X(E ) is carried to the Hubert space

%(<% ; Ey ) = j /: ßD -+ £y holomorphic:

4j»^)"-/(fW))trf(fr)<4

The nontriviality condition (5.5b) for %(Ey) is also the nontriviality

condition for %(ty ; Ey), and one knows [8], [31] that it is equivalent to the

condition that %(6¡) ; Ey) contain the constant functions fv: Z h» v, v G Ey.

The section corresponding to/„ is %: g h» $y(g)~l • v, and [8], [31]

mw^mlxvrc- dim£v-Kr+p)f Vu*
where c > 0 depends only on normalizations of Haar measure and

Given <p G 3C(Ey), its projection to the lowest highest iT-weight space is <pu,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SHLOMO STERNBERG AND J. A. WOLF 35

u = <p(l). So the above formula gives us

(5.15) (<p,cpv)%{E) = c- dimEy-\¿(y + p)\~\<p(l),v)E^.

Write tt for the action of G on DC(Ey): [Tr(x)<p](g) = (x~ lg). Choose a highest

weight vector t?y E Ey, ||i? || = 1, and define

(5.16) ^y:G^C   by^y(g) = (i?y,$y(g)-1-t;y)£;

Set c' = c- dim Ey • |w(y + p)|_1 for the moment. Then (5.15) gives us

<»(*)%,. %y>WEy) = <^r' '(S"1)^)»^) - C'<Vv> b(g_l)9u,](l)>£T

= c'<t?y, «^(g))^ = c'<t?y, 4>y(g)"'t?y>£Y = c\(g).

Now

(5.17) <"(*)V^>oc(iy = c' dim£v-Kv + P)!"1'^^-

(5.17) is the starting point for Rossi and Vergne in their extension [25] of

the holomorphic discrete series. Denote

(5.18) £(Ey): finite linear combinations of the 77(g)ç>v g E G.

It is dense in DC(Ey) because tt is irreducible, and (5.17) says that the norm on

£(Ey) is given by

(5.19) |2^(g>J2m) - c- dim*, •|«(Y + P)r,2^<M%-,&>

Now they drop the c ■ dim Ey ■ |w(y + p)|_I factor:

5.20 Lemma. (Rossi and Vergne [25]). Do not assume the nontriviality

condition (5.5b); instead make the weaker assumption that ipy (of (5.16)) is of

positive type: 2^=1 cJci^y(g~xgl) > 0 whenever {cx, . . . , c„} c C and

{gx,...,g„}cGwithn>0. Thent(Ey) (of (5.18)) is a pre-Hilbert space

with <2a,7r(x,)(pv 2¿/u-(v>)<p > = *2.bJa$(yJ~xx¡). Its completion DC'(Ey) is a

Hilbert space of holomorphic sections of Ey on which the natural action of G is

an irreducible unitary representation tt'. If (5.5b) holds, then DC'(Ey) = DC(Ey)

and tt' is the corresponding relative holomorphic discrete series representation.

Proof. Using (5.16), <7r(g)(j?„r, (p^^ = ^y(g) = <t?y, $y(g)-'t?y>£, =

<4>y(g  xyxvy, v^ = (Mg^Kl), t?y>£i. Now, by linearity,

(5.21) <<p, Vllr>e(Et) = <<p(l), t?y>£y   for every <p E £(Ey).

If ||<p||e(E ) = 0 then, taking left translates, (5.21) says <p has all values ±t?, so

<p = 0 by irreducibility of ry. Now £(Ey) is a pre-Hilbert space. Also from

(5.21), q> h»(p(g) is continuous on £(Ey), hence also on DC'(Ey), and so

DC'(Ey) consists of holomorphic sections of Ey. The remaining details are

routine.   Q.E.D.
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The unitary representations m' of G on %'(Ey), of Lemma 5.20, constitute

the extension ("analytic continuation") of the holomorphic discrete series due

to Wallach ([34], [35], [36]) and Rossi and Vergne [25], [26].

5.22. Lemma. Let m' be an extended holomorphic relative discrete series

representation of G on %'(Ey). Then m'\K has lowest highest weight y relative to

2+.

Proof. m\K acts on E'y = [<pv: v E Ey) c 3C'(Ey) by ry, and if £ G p+ then

dm'(C)- Ey = 0 directly from the definitions of 4>y and <p0(g) = $y(g)-,ü.

Q.E.D.
Recall from Proposition 5.6 that yj* has lowest highest weight y * = — dek

— k if d > 0,   = - dek+x — k if d < 0, relative to 2+, where <c = e,

+•••+£,.

5.23. Theorem, v* is an extended holomorphic discrete series representation

of U(k, I) if and only if the function \py, of (5.16) is of positive type, and in that

case v* is the representation of U(k, I) on %'(Ey»).

In particular, in all the line bundle cases (d = 0, or d > 0 and k = 1, or

d < 0 and I = 1) v* is an extended holomorphic discrete series representation of

U(k, I).

Proof. If v* is equivalent to an extended holomorphic discrete series

representation, say on %'(Ey), then y = y * by Lemma 5.22, so \py, is of

positive type. If i//y. is of positive type and m' denotes the representation of

U(k, I) on %'(Ey), then v¡ is equivalent to m' by Lemma 5.22 and Theorem

5.8.
If d = 0 then y* = - k = -(e, + • • • + ek), so <y*, a, + • • • + am_,>

= -1. It follows [26, Theorem 4.7] that \j/y. is of positive type.

If k = 1 and d > 0, then y* = -(d + l)e„ and a result of Wallach [34],

[35] announced in [36, §4] ensures that ^y. is of positive type. If / = 1 and

d < 0 we tensor v% by dett1, replacing y* by (d — l)em, and again use

Wallach's result.   Q.E.D.
Let us look at the case d > 0 in U(2, 1). Here y* = (ex + e¿ — de2, so

(y*t ax) = d and <y*, a2> = 1 - d. Then Wallach's [36, Theorem 4.1] shows

that v¡ does not belong to the extended holomorphic discrete series.

Finally let us note that vd and v* always are realized on some spaces of

sections of a holomorphic vector bundle over <5D. For if m is an irreducible

unitary representation of G, say on %, and y is its lowest highest weight as in

Theorem 5.19, then

% 3f H> <P/,      <Pf G-»Ey   by tpj(g) - /vKcT1)/

intertwines m with the action of G on some space of sections of Ey -> ^.
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Appendix: Algebraic reducibility of vd on a parabolic. Recall DC¿ =

{polynomials in %d] = {U(k) X £/(/)-finite vectors in %d), dense subspace

of %d consisting of all vectors finite under the maximal compact subgroup.

Let £ be a maximal totally isotropic subspace of C**'. We may assume

0 < k < / and that E is the real span of [pa + pk+a}i<a<k U {Jkj(Pa +

Pk+a) = - la + ak+a}i<a<k- Write «o for ¿0. By direct calculation, every

£Eêb(F)onthelist

(A.l)

S(Paab - Pb<la) + (Pk+aQk+b ~ Pk + blk+a)' I  < a < b < k,
(PaPb + 1aqtí) - (pk+aPk + b + 1k+aak+b\ 1 < a < b < k,

{Palk + b + Pk + bQa) + (Pk+aQb + k - Pk+bak+a)> Ka<k,l<b<k,

(PaPk + b - laQk + b) + {Pk+JPk+b + (¡k+alk + b), \ < a < k, \ < b < k,

{Paa2k + c + Plk + cla) + {Pk+aQlk+c ~ Plk+cQk+a)'

Ka<k,l <c< I- k,

{PaPlk+c - 1aa2k + c) + {Pk+aP2k+c + ak+aa2k+c)>

Ka<k,Kc<l-k,

P2k+ca2k+d ~P2k+da2k + c> l<C<d<l-k,

?2k + cP2k+d + a2k+ca2k+d' l<C<d<l-k,

satisfies £(/>, + pk+J) E E for 1 < j < k. If £ is Usted in (A.1), then Lemma

4.20 shows £ E u(k, I), so also £(Jkj(pj + pk+J)) E E, whence £ E b£. Since

(A.l) is a list of 3ft2 + 2k(l — k) + (I — k)2 linearly independent elements of
pE, and since [38, Theorem 2.10] pE has dimension 3k2 + 2k(l — k) + (I —

k)2, now (A.1) is a basis of pE. The maximal unimodular subgroup P'E is [38,

Theorem 2.10] PE = {gEPE: \det(g\E)\ = 1} so p'E = {£ E pE: trace(£|£) E
i'R}. Now

b¿ = {£ E pE: sum of the coefficients of the(A.2) lS .

Paok+a+Pk+aqaiszcTo}.

Combine (4.11), (4.12) and (A.2). The result is that dv(pE)c has basis (over
C) consisting of all

x'JTb    Z^3z,+a+^'     3za3z,+ft    Zk+°<izk+b>

<A-3> Zk+\Z°-lk+~} ^^c'^^kTc9

( -J-\ _J_
Z2k+cVa     k*+J* Z2ft+C3z2,+/

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



38 hermitian lie algebras

for 1 < a, b < k and 1 < c, d < / — k. The subalgebra dv(p'E)c consists of

all linear combination of these, for which the sum of the coefficients of the

32/3za3z/t+a - zk+a(d/dzk+a) equals the sum of the coefficients of the

**+*(*«-9/foft+J.
The operators in (A.3) are not quite right for the algebraic part of the proof

of Lemma 4.14, where we worked with the monomials z". So we modify the

monomials:

A.4. Lemma. For each multi-index n there is a unique polynomial \pn E % of

the form \pn(z) = z" + (lower terms)3 such that

(i) za(3/3za) - zk+a(d/dzk+a) + 1 multiplies \p„ by na - nk+a + 1 (1 < a

<k),

(ii)32/3za3z/t+a - zk+a(d/dzk+a) multiplies $„ by -nk+a(l < a < k),

(hi) z2k+c(d/dz2k+c) multiplies ty„ by «it+c (1 < c < / - k).

Proof. Fix « and denote da = na — nk+a for 1 < a < k.

Suppose first that k = 1 and m = 2k. Using (i), the desired polynomial

must have form

Uz) - z" + 2 W*äi''-'.
r>l

Writing b0 = 1, (ii) just says

-(»i - dx )br =-(nx-dx- r)br + (nx-r+ l)(nx - dx - r + \)b,_x

for 1 < r < min(«i, n, - dx). This recursively defines the br, and in fact gives

us

u*) = 2 f(-i)ntt n («. -/x»i -rf. -7)Ur'-^V'-r.
r>0 i r*      0 J

Next suppose that A: > 1 and m = 2A:. The case k = 1 provides a

polynomial

A,(2„ 2*+i) = 2i%V' + (lower terms)

that satisfies (i) and (ii) for a = 1. Induction on k gives us a polynomial

Yn(Z2> • • • » Zk> Zk + 2> • • • ' Z2Ar)

= z22 ' ' ' zkkzk+22 ' ' ' z2Í~dk   + (lower terms)

that satisfies (i) and (ii) for 2 < a < &. Now

>MZ) = Ä (Zl' Zk+\) • ln(Z2> ■••>zk> Zk + a> • • • ' Z2k)

is the unique polynomial of the required form that satisfies (i) and (ii).

Now consider the general case. As just seen, there is a unique polynomial

3Here we say that a multi-index n' < n if nj < n¡ for ally and n¡ < nj for at least one./.
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«„(¿i, • • •, hk) = z"' • ■ ■ z2Ík + 0ower terms)

that satisfies (i) and (ii). Now

fcW-oyX-i,....-»)'-^----*
is the unique polynomial of the required form that satisfies (i), (ii) and (iii).

Q.E.D.
Let T be a subspace of ciOd. If 0 =£f G T, then there is at least one

expansion f(z) = az" + "2n,an.zn', a^O, where the sum runs over multi-

indices «' such that nj < nj for at least one / Lemma A.4 gives another

expansion/(z) = aip„(z) + ÍLHb¿$J¿) with the same conditions on the «'.If

T is dp(pE)-inv&ûanî, then it is stable under the operators (i), (ii) and (iii) of

Lemma A.4, and we conclude \pn E T. If T is only ¿¿»(py-invariant, it is

stable under all the operators (i) and (iii) and the difference of any two

operators (ii), and so we have some yp„ + 2cn^n» G T where the sum runs

over multi-indices n" with

K - "k+a "»a- nk+a   lor l< a < k, n2\+c = n2k+c   for 1 < c < / - k,

nk+a ~ nk+b = nk+a ~ nk+b   lor I < a < b < k, nf < nj   for some indexy.

In view of the first three of these relations, the fourth becomes nf < nj for

I < j < 2k, and thus we have some

r

where n — re denotes (nx - r, n2 — r,..., n2k - r, n2k+x,..., nm) and the

sum runs from r = 1 to r = max{«„ ..., n2k). If 2sa = 2ra, then the

sentence just after (A.3) tells us that dv(p'E)c contains

P    -V    (      92      _        J_l,V/i 3     \
rs,t Zj Sa\   a-  a- Z* + a  a. I ^  'alZaZA: + a        Z* + a  a. I

a = l      \   OZa0ZA + a 0ZA + a /        a=l      V 0Z* + a /

=.?,{Sa+g( "dk^ ~z*+« ¿: )+.?, ta[ZaZk+a ~ ^kkTa )•

That operator sends

/' " & +  2 ^A-« =  2 CA-re
r>\ r>0

to

PsAfl = 2 c, 2 (*, + oX-"*^ + O*,-«
r>0    j=\

k k gy

+ Z tjZjZi+jf - 2/ {/"öTäT      •
7=1 7=1      a2j0Zk+j

II k > 1, and if /I is the difference of the dv-imnges of the two operators (ii)
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of Lemma A.4 for indices a, b, then A multiplies the first term by nk+b —

nk+a, multiplies tjZjZk+Jf' by (nk+b + 8bJ) - (nk+a + Sa¡,), and multiplies

tj(d2f'/dzjdzk+j) by (nk+b - 8bJ) - (nk+a - 8aJ). Since Tis ^(b^-invariant,

now

2 cr 2 (Sj + tj)(-nk+J + r)^_„ E T.
r>0    y=l

Choosing Sj = tj = 8JX, we conclude \p„ E T.

In both the #V(b£)-invariant case and the i/j»(b£)-invariant case, we actually

obtained \p„ from/= az" + ^n,arizn' as the image of/ by dv(z) for some

element S of the complex universal enveloping algebra %(b£) or %(to£).

Iterating this,

A.5. Lemma. Let T be a subspace of D<5 that is di>(p'E)-invariant if k > 1,

dv(pE)-invariant ifk = 1. 77ze« et?ery element of T is of the form 2/>„»//„, ̂„ as

in Lemma A.4; if bn=£0 then \¡/n = di>(£)(2bn\pn) E T /or a« appropriate

element S i/i %(b£) i/& > 1, in %(b£) i/fc = 1.

In order to discuss the action of the universal enveloping algebra on a

polynomial \p„, we denote

DC?,, = spanUfl: 2"„ = rand 2 «6 = 4 C DC?_,.
I        i k+i )

Evidently DC?,, has finite dimensionf-*-;-')^-1).

A.6. Lemma. Let tog* denote b£ if k > 1, to£ if k = 1. // $n E DC^ then
dv^Qp^))• \p„ contains DÇ+/J+/ for every integer t > 0. In particular,

dp(%(pEr)) • \pn has finite codimension in DC?_i} bounded by

min(r,j) min(r,i) . .  . .

Proof. If an element of dv(p]P)c carries \f>„ to a polynomial with leading

term z"', then Lemmas A.4 and A.5 tell us \¡/„. E ^(^(b^)) • $„.

Now write tj for (0,..., 0, 1, 0,..., 0) with 1 in the /-place and run

through (A.3) as follows:

e\" ~ ^kTa ) giVCS ̂n+t°+£^       (Ka< k,\<c< I),

Va ~ ^t+~a ) ®VGS *n+e°+c*+>       (i<a,b<k,a^ b),

A2a - ^L )+ ( i ~Zk+a) ú:gives ^^ (1 < û < *>

s2¿ +

"ófc+A
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Iterating, we obtain every fa E %r_s such that nj > ty for every j. In

particular, we obtain some element fa, G 3C?+,iJ+, for every t > 0. Further-

more, with any such fa.:

tA:-zk+a -¿— gives *,+%+.-%+.   (\<a,b<k,a* b),
ozaazk+b azk+b

and so

zb 4r - zk+a j~~ + Sab gives fa+eb-ea   (l< a, b < k, a ^ b).
oza azk+b

Also,

z2*+c-q^— gives fa-+C2k+c-e2k+d      .(Kc,d<l- k),

32 3
k.&2*+«       Zk+a*Z2k+c   glVeS^'+*«—

(1< a < k, 1 < c < I - k),

Z2k+c[za - -Q~-a J  gives irV-%+.+«a+e (l< O < k, K C < I - k).

Thus one i/v G 3Ç+/>J+, gives every «/v G 3t?+lií+,.   Q.E.D.
Now we combine our three lemmas to prove the algebraic analog of

Theorem 4.27:

A.7. Theorem. Let T be a nonzero subspace of "jQ that is stable under

dv(P'E) ifk > 1, under dv(pE) ifk = 1. Then CY has finite codimension in 9{y.

Proof. Let 0^/eT. Then Lemma A.5 gives us some fa G T of the

form dv(Z)-f, S E ^(p^). Lemma A.6 says that dv(%(pE)))-fa has finite

codimension in *}(%. As dv(6li(pE))) -fa C'Y, the theorem is proved.   Q.E.D.
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