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PROCEEDINGS OF THE 

AMERICAN MATHEMATICAL SOCIETY 

Volume 63, Number 2, April 1977 

ON CALABI'S INHOMOGENEOUS EINSTEIN-KAEHLER 
MANIFOLDS' 

JOSEPH A. WOLF 

ABSTRACT. We use some information on Lie groups to replace a long 
computation of Calabi, proving that certain complete Einstein-Kaehler 
manifolds are not locally homogeneous, and finding their isometry groups. 

E. Calabi [1] constructed a complete Einstein-Kaehler metric on the tube 
domain 

M = {z = x + iy ER' + iRn: IlyIlI r} c C0 

which is invariant under the natural action (v, g): x + iy P-? v + gx + igy of 
the proper euclidean group E(n) = Rn * SO (n). He used a rather complicated 
calculation to show that M is not homogeneous with that metric. We are 
going to replace his calculation by a simple group-theoretic argument and 
obtain a slightly stronger result: 

THEOREM. If n > 2 and ds2 is an E(n)-invariant Kaehler metric on M, then 
(M, ds2) cannot be both complete and locally homogeneous, in particular, cannot 
be homogeneous. 

Here note that Calabi's metric [1] is complete and the flat metric is locally 
homogeneous. 

Finally, we will show that the theorem implies 

COROLLARY. If n > 2 and ds2 is an E(n)-invariant Kaehler metric on M, then 
E(n) is the largest connected group of holomorphic isometries of (M, ds2). 

PROOF OF THEOREM. Let ds2 be an E(n)-invariant Kaehler metric on M and 
T" ?(0) the holomorphic tangent space at 0. The curvature transformation of 
(M, ds2) at 0 is a linear tranformation of A2T1.0(O) that commutes with the 
irreducible action of SO(n) on A2T"0(O), hence is scalar. So (M, ds2) has 
constant holomorphic sectional curvature at 0. 

Suppose that (M, ds2) is complete and locally homogeneous. Then (M, ds2) 
is complete and simply connected with some constant holomorphic sectional 
curvature c, hence holomorphically isometric to a complex projective space 
(c > 0), a complex euclidean space (c = 0), or a complex hyperbolic space 
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(c < 0). The first two possibilities cannot occur because M is noncompact 
and admits nonconstant bounded holomorphic functions such as f(z)= 
11/(z- 2ir). Thus (M, ds2) has holomorphic isometry group SU(l, n)/(sca- 
lars), and so E(n) is contained in that group locally isomorphic to SU(l, n). 
The next two lemmas show that this is impossible. 

LEMMA. Let G be a reductive Lie group. If E is an analytic subgroup of G 
then the solvable radical of [E, E] is a unipotent subgroup of G. In particular, if 
n > 2 and E(n) is a subgroup of G, then the translation subgroup Rn C E(n) is 
unipotent in G. 

PROOF. We may cut G down to its identity component and then divide out 
its center, so we may assume that G is a semisimple linear group. One knows 
[2, Theorem 3.2, p. 128] that a finite dimensional linear representation of a 
Lie algebra carries the radical of the derived algebra to an algebra of 
nilpotent transformations. So the radical of [E, E] is unipotent in G. Q.E.D. 

LEMMA. If n > 2 and G is locally isomorphic to the special unitary group 
SU(1, n) of Lorentz signature, then G has no subgroup isomorphic to E(n). 

PROOF. It is known [3, ?3] that the maximal unipotent subgroups of G are 
isomorphic to the (2n - 1)-dimensional Heisenberg group H2n_- = R + 
Cn- with product (z, w)(z', w') = (z + z' + Im w - w', w + w') where w * w' 
is the usual U(n - 1)-invariant hermitian scalar product on Cn-l . An easy 
calculation with the real symplectic structure underlying Cn-I shows that 
every abelian subgroup of H2n1 is U(n - 1)-conjugate, hence [3, ?3] G-con- 
jugate, to R + Rn -. Again by [3, ?3], the latter has G-normalizer locally 
isomorphic to H2n-I (SO (n - 1) x R), and the latter has no subgroup 
locally isomorphic to SO (n). Q.E.D. 

PROOF OF COROLLARY. Let G be the largest connected group of holomor- 
phic isometries of (M, ds2) and K = { g E G: g(0) = 0). Then z = x + iy E 
M has E(n)-orbit {z' = x' + iy' E Rn + iRn: IIy'Il = IY yj1), which has real 
codimension 1 whenever y # 0. As G(z) and E(n)(z) are complete 
riemannian submanifolds, and the Theorem ensures that G(z) has positive 
real codimension in M, now G (z) = E(n)(z) for y #) 0, and, hence, also for 
the other orbit y = 0. Now that other orbit Rn = G/ K, so K acts on the 
tangent space to M at 0 as a subgroup of U (n) that stabilizes R'. Thus K 
coincides with its subgroup SO (n), and so by dimension G coincides with its 
subgroup E(n). Q.E.D. 
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