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Poincare series and automorphic 
cohomology on flag domains 
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1. Introduction 

Let D be a bounded symmetric domain and K D its canonical line 
bundle. If r is a discontinuous group of analytic automorphisms of D, then 
the F-invariant holomorphic sections of K-m D are naturally identified (by 
a holomorphic trivialization of the bundle) with the automorphic forms of 
weight m on D; here one imposes a growth condition at oo if dimD 1. 
Denote the space of holomorphic sections by HO(D; O(Km)) and the subspace 
of F-invariant sections by HA(D; O(Km)). If g C HO(D; O(Km)) is absolutely 
integrable relative to the natural Hermitian metric on Km, and if m > nO > 0, 
then the Poincare series 

a(9) = rer *9 

converges absolutely and uniformly on compact subsets of D to an auto- 
morphic form of weight in. See Borel ([6], [8]) for a discussion of these 
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398 R. 0. WELLS, JR. AND J. A. WOLF 

matters. This classical construction, initiated by Poincare [27] for the unit 
disc in C, is the primary source of automorphic forms on D and automorphic 
functions on the quotient space F\D, leading to quasi-projective embeddings 
and analytic space compactifications of F\D in a natural way (cf. [5]). 

In Griffiths' study ([15], [16]) of periods of integrals on algebraic mani- 
folds, he looked at a class of open homogeneous complex manifolds (period 
matrix domains) that are not bounded symmetric domains and in fact [45] 
carry no nonconstant holomorphic functions. Results of Schmid ([28]) show 
that if D is one of these period matrix domains and E - D is a "nondegene- 
rate" homogeneous holomorphic vector bundle, then the cohomology 
Hq(D; d(E)) vanishes for q # s = dim, Y > 0, where Y is a maximal compact 
subvariety of D, and that Hs (D; ((E)) is an infinite dimensional Frechet 
space. In particular there are no automorphic forms in the classical sense 
on D. In view of this, Griffiths investigated the space Hr(D; 0(E)) of 
F-invariant classes in Hs (D; M(E)), calling that the space of automorphic 
cohormology classes ([15], [16], [14]). While the geometric role of automorphic 
cohomology is still unclear, its natural presence on the domains arising in 
algebraic geometry makes it a primary object of interest. 

Let E D be nondegenerate over a period matrix domain. Griffiths [15] 
conjectured a geometric representation for Hr(D; /9(E)) as the space of 
holomorphic F-invariant sections of an associated vector bundle E - M on 
the space of all compact (linearly deformed) subvarieties of complex dimen- 
sion s in D. More precisely, he conjectured that M with its natural complex 
structure is a Stein manifold, that the disjoint union SYD of the varieties 
parameterized by M sits in a diagram 

(1.1) MV< SD >D 

with fi and z holomorphic, surjective, and of maximal rank, and that 
w87*Q(E) is locally free (w* Sth direct image) and thus corresponds to a 
holomorphic vector bundle E M. These conjectures are the period matrix 
domain cases of our results in Section 2 below, especially Theorem 2.5.6. 
Griffiths further conjectured, and we prove as Theorem 3.4.7 below, that 
the induced map on cohomology 

(1.2) a: Hs(D; C(E)) > HO(M; 0((E)) 

is a F-equivariant topological injection of Frechet spaces, so that it induces 
a topological injection 

(1.3) a: Hr(D; 6(E)) - Hr(M; ((E)) e 

The map a transfers a Poincare series on D, 
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AUTOMORPHIC COHOMOLOGY 399 

(1.4) 0(c) = e, ry*(c) ,c e HS(D; 0(E)) 

to a Poincare series on M that only involves sections, 

(1.5) 0(a (c)) - EJ' 7 *(aq(c)) e 

As Griffiths illustrated [15], (1.5) converges when c is absolutely integrable 
(i.e., I I c is L1) with respect to the natural hermitian metrics on D and E. 
In Theorem 4.1.7 below, we prove this convergence of (1.5), and it ensures 
convergence of (1.4) by the Equivariant Representation Theorem (1.2). 

In order to yield automorphic cohomology, our convergence result 
(Theorem 4.1.6) for Poincare series 0(c) -Se, Y*(c) requires nonzero L, 
classes c e H8 (D; 0(E)). Griffiths [15] asserted that such L, classes could be 
constructed by the methods of Schmid's thesis [28] when E N D is a high 
power of the canonical line bundle. But the situation is somewhat more 
delicate; the correct setting for L, cohomology is discussed below. Originally 
we had combined some results and techniques of Harish-Chandra, of Schmid 
[28], and of Trombi and Varadarajan [36], carrying out a program outlined 
by Schmid in a letter to us, constructing nontrivial L, cohomology classes 
for a specific large family of nondegenerate vector bundles E >D. The 
final result is Theorem 4.3.12; here we follow a shorter route, suggested by 
the referee, using more recent results of Schmid. 

Some of the results in this paper were announced in [40] and [43]. 
We now turn to a section by section description. 
Chapter 2 establishes our basic geometric setting. In Sections 2.1 and 

2.2 we recall the definitions and basic facts concerning the complex flag 
manifolds X and the flag domains D ci X. Here X is a compact complex 
homogeneous space GC/P where G, is a complex Lie group and P is a complex 
parabolic subgroup, and D is an open orbit of a noncompact real form G of 
G,. The class of flag domains includes the bounded symmetric domains (such 
as the Poincare half plane and Siegel's generalized half planes) and also the 
period matrix domains of Griffiths [15] that arise in algebraic geometry. In 
Section 2.3 we discuss the maximal compact complex submanifolds of D and 
the fibration D - G/K over the symmetric space associated to G; there are 
nonconstant holomorphic functions on D only when GIK is Hermitian and 
D GIK is holomorphic. Then in Section 2.4 we introduce a deformation 
space QJD M whose fibres are the maximal compact linear subvarieties of 
D and put a complex structure on 'YD so that w is holomorphic and of maximal 
rank. Section 2.5 then is devoted to showing that M is a Stein manifold, 
thus verifying Griffiths' conjecture cited above. Here our principal tools 
are Schmid's exhaustion function for D ([28], [14]), the Andreotti-Norguet 
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400 R. 0. WELLS, JR. AND J. A. WOLF 

solution to the generalized Levi problem for strictly q-convex manifolds ([2], 
[3]), and the theorem of Docquier-Grauert [11]. 

Chapter 3 sets up our vector bundles and establishes the information 
we need on cohomology without bounds. In Section 3.1 we collect the basic 
facts on homogeneous holomorphic vector bundles, including the Bott-Borel- 
Weil Theorem [101. The notion of a nondegenerate bundle E N-D is developed 
in Section 3.2. Its defining condition (3.2.1) is just what one needs to con- 
clude from the Bott-Borel-Weil Theorem that Hq ( Y; (9(E 0 AN)) = 0, for 
0 ? q < s and all 1, where Y is our maximal compact subvariety of D, 
s = dim, Y, and N Y is the holomorphic normal bundle of Y in D. Our 
modification of Schmid's Identity Theorem [28] appears as Theorem 3.2.2, 
and Theorem 3.2.3 is an associated vanishing theorem. Their proofs, which 
are in Section 3.3, are minor variations on Schmid's proofs. These theorems 
state that if E - D is nondegenerate 

(i) then Hq(D, O(E)) -0 for q # s and 
(ii) if c e H' (D, (9(E)) vanishes on every fibre of Do G/K then c = 0. 

The proof is a finite recursion, considering representatives of the class that 
vanish to successively higher order along the fibres. This technique is used 
repeatedly in Chapter 4 where growth of cohomology classes (square inte- 
grable, absolutely integrable, etc.) is taken into account. In Section 3.4 we 
use the Identity Theorem, the Leray spectral sequence, and the fact that 
the parameter space M is Stein, to obtain the Equivariant Representation 
Theorem (Theorem 3.4.7). It says that H'(D; (9(E)) - H?(M; C(E)) is a 
G-equivariant topological injection of Frechet spaces whenever E is a non- 
degenerate homogeneous vector bundle over a flag domain, thus establishing 
Griffiths' conjecture on this matter. 

Chapter 4 gives the convergence and nontriviality of the Poincare series 
(1.4) when E D is nondegenerate and satisfies certain simple nonsingularity 
conditions. 

First, in Section 4.1 we establish convergence for the Poincare series 
d(c) = er y*(c) whenever E N D is nondegenerate and c e H' (D; (9(E)) is 
L1. This is an application of the Equivariant Representation Theorem, and 
is a modification of Griffiths' considerations in [15]. 

Second, in Sections 4.2 and 4.3 we establish the conditions for existence 
of nonzero L1 classes in H8 (D; (9(E)). Square integrable cohomology, the 
recent solution of the Langlands Conjecture by Schmid [32], and the work 
of Trombi-Varadarajan [36] and Hecht-Schmid [24] on integrable discrete 
series representations, are collected in Section 4.2. This allows us to specify 
the nondegenerate bundles E N D on whose square integrable cohomology 
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AUTOMORPHIC COHOMOLOGY 401 

spaces IJC0'(D; E) the action on G is an integrable discrete series represen- 
tation. Then we consider the natural map JCq(D; E) - Hq (D; 9(E)) from 
square integrable cohomology through Dolbeault cohomology to ordinary 
sheaf cohomology. A close look at the mechanism of Schmid's proof of the 
Langlands Conjecture gives us (Theorem 4.3.8): when G acts on JCo q(D; E) 
by an integrable discrete series representation, the K-finite elements of 
KJCoq(D; E) map to L, classes in Hq(D; 9(E)). Of course this is useful only 
when fCo q(D; E) - Hq (D; 9(E)) is nonzero. We then use some methods of 
Harish-Chandra ([19], [20]) to work out an L2 version of the recursion pro- 
cedure (? 3.3) in the proof of the Identity Theorem, and use it to show 
(Theorem 4.3.9): if END is nondegenerate and q s then JCq(D; E) 
Hq (D; 9(E)) is injective. Combining these we have (Theorem 4.3.12): if E-D 
is nondegenerate and such that G acts on hC0'8(D; E) by an integrable discrete 
series representation wr, then H8 (D; (9(E)) has an infinite dimensional subspace 
H, (D; (9(E)) on which G acts by wr, and the K-finite classes in H, (D; (9(E)) 
(which form a dense subspace) are absolutely integrable. This provides the 
L, cohomology classes that can be summed in the Poincare series (1.4). 

Finally we mention some open problems. 
1. Is Hr (D; C(E)) finite dimensional, say, when F is arithmetic? 
2. Which Poincare series 0(c) are nonzero? What is the dimension of 

the space of Poincare series arising from a given bundle E - D? How does 
that space compare with the full automorphic cohomology space Hi (D; 0(E))? 

3. How does one obtain quasi-projective embeddings from automorphic 
cohomology? Are the holomorphic arc components of the boundary orbits 
[44] the correct counterparts to the boundary components [46] as used by 
Bailey and Borel [5]? 

It is a pleasure to express our thanks to Wilfried Schmid, Gregory 
Eskin and the referee. W. Schmid gave us permission to use the proof of 
the Identity Theorem (3.3.2) from his unpublished thesis [28], and he sug- 
gested our original program of using a certain direct image map to prove 
Theorem 4.3.8 for E - D nondegenerate and q = s. That program required 
some L, a priori estimates, concerning which one of us had several helpful 
conversations with G. Eskin. In the present version of this paper we follow 
a different program for Theorem 4.3.8, suggested by the referee and based 
on results of Schmid that were not available at first writing. 

Finally we thank Wanna King of Rice University for her careful job 
of typing the manuscript. 
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2. Homogeneous complex manifolds 

2.1. Complex flag manifolds 

In this section we define the compact homogeneous complex manifolds 

X= GcIP= GIV 

which are the natural ambient spaces for our open homogeneous complex 
manifolds 

D = G(x,)cX, D_ G/V 

of primary interest. Briefly, Gc is a connected complex semisimple group 
and P is a parabolic subgroup, so X = GC/P is a complex flag manifold. GX 
is a compact real form of Gc and V = G. n P is the centralizer of a torus 
subgroup. In the applications, G will be a noncompact real form of Gc with 
G n P =V, and D will be an open G-orbit on X. An example: X is complex 
projective space 

P(C) = SL(n + 1, C)/P = SU(n + 1)/U(n) 

where P {g e SL(n + 1, C): g has form (a b det A = a-'}, and D is the 
unit ball in C' given by 

B"(C) = SU(1, n)/U(n) . 

But in our applications D will have nontrivial compact subvarieties. 
Let gc be a complex semisimple Lie algebra. Its maximal solvable sub- 

algebras are the Borel subalgebras 
(2.1.1) b = tc + ae a+ gC 

where tc is a Cartan subalgebra, A+ is a positive root system, and g" denotes 
the complex root space for a root a. Evidently any two Borel subalgebras 
are conjugate. The subalgebras of gc that contain Borel subalgebras are 
called parabolic subalgebras. The ones containing b (2.1.1) are the 

(2.1.2) P = + pe<>c 

where D is any set of simple roots and <(D> consists of all positive roots 
E niwi with qi e (D. Note b = Jp where 0 is the empty set, gc = Jp where 
T is the entire simple root system. Further Jp, = Jp + Jpb, the sum of a nil- 
potent ideal and a reductive complement given by 

(2.1.3) J~t =)tc + gpe<b> g + gc- and P = aE.+ gca . 

For example b r = c and bn =aeA g For a general reference on this 
topic, see Humphreys [25]. 
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AUTOMORPHIC COHOMOLOGY 403 

If r = rank gq, so that I T r, then in (2.1.2) there are 2? choices of (D. 
Every parabolic subalgebra of g, is conjugate to just one of the 2? algebras 
t of (2.1.2). 

Let G, be a connected complex semisimple Lie group and g, its Lie 
algebra. A Lie subgroup of G, is called Borel (resp. parabolic) if its Lie 
algebra is a Borel (resp. parabolic) subalgebra of &. Using the Levi-White- 
head decomposition and simple transitivity of the Weyl group on the set of 
positive root systems, one finds that 

(2.1.4) P. = {g C Gc, Ad(g)lP = pi} is the analytic subgroup for pb . 

It follows that parabolic subgroups are closed in Gc, are connected, are self- 
normalizing, and are conjugate each to just one of the 2? groups P, of (2.1.4). 

The basic facts about parabolic subgroups, essentially proved by Tits 
[35], are summarized as 

2.1.3. PROPOSITION. Let P be a complex Lie subgroup of Gc with only 
finitely many topological components. Then the following are equivalent: 

(i) P is a parabolic subgroup of Gc; 
(ii) X = GC/P is compact; 
(iii) X is a compact simply-connected homogeneous Kdhler manifold; 
(iv) X is a homogeneous complex projective algebraic variety; 
(v) X is a closed Gc-orbit in a projective representation. 

We will refer to the spaces X = GC/P as complex flag manifolds. The 
complex flag manifolds X = GC/P here are the Kdhler C-spaces of Wang [38]. 
In effect, if Gu is the compact real form of G, whose Lie algebra gu has 

0 n L, as a Cartan subalgebra, then Gu is transitive on X= GC/PI by 
dimension and compactness, so 

X= G2, V where V = Gu n P. is the centralizer of a torus (Borel [7], Tits [35]) . 

These complex flag manifolds include the Hermitian symmetric spaces, such 
as the complex projective spaces, complex Grassmanians and complex 
quadrics. They include the classical flag manifolds 

G,/(Borel) = Gu/(maximal torus) 

But the important fact for us is that they include the Zariski closures of the 
universal coverings of certain period matrix domains. 

2.1.6. Example. Here is the example that comes up in the study of 
variation of Hodge structure (Griffiths [15], [16]; see Griffiths-Schmid [14], 
Wells [41, Example V.5.8]). Let r, s > 0 integers and consider the Grass- 
manian 
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404 R. 0. WELLS, JR. AND J. A. WOLF 

G(r, 2r + s; C) = {r-planes through 0 in C2+8}. 

Let b(o,.) be the bilinear form on C2r+s with matrix 

(2olo.7) Q (~ 

It defines a quadric in G(r, 2r + s; C) consisting of the b-isotropic r-planes, 

X = {S e G(r, 2r + s; C): b(S, S) = 0} . 

This is a complex flag manifold of the special orthogonal group of b, 

X = GC/P where G, = SO(2r, s; C) = {g e SL(2r + s; C): tgQg = Q}. 

It has compact presentation 
X = G,/ V = SO(2r + s)/ U(r) x SO(s) . 

2.2. Flag domains 

Fix a complex flag manifold X = GC/P as in Section 2.1. In this section 
we discuss open orbits 

D = G(xo) c X, D-G/V 

where G is a real form of G, whose stability subgroup V at x0 is compact. 
An open orbit of this form will be called a flag domain. 

Let g be a real form of gc and define 

(2.2.1) G: analytic subgroup of G, for g. 

Then G is a closed subgroup of G,; in fact it is the topological identity com- 
ponent of the real algebraic group 

GR= {g e Gc: Ad(g)g = g} 

General considerations (Wolf [44, ? 2]) tell us that G has open orbits on X 
and that every stability subgroup 

G n P. where P. = {geGc: g(x) = x} 

contains a Cartan subgroup of G. We assume from now on that 

(2.2.2) G has a compact Cartan subgroup. 

The maximal compact subgroups of G all are conjugate. If K is one of them, 
then (2.2.2) is equivalent to the condition 

(2.2.3) rank K = rank G, i.e., K contains a Cartan subgroup of G . 

Fix a maximal compact subgroup K c G and 

(2.2.4) ( cf c g where t is a Cartan subalgebra of g . 

Then the tc-root system of gc decomposes as a disjoint union 
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AUTOMORPHIC COHOMOLOGY 405 

A =AKU AS where fc t + E, K C 

This corresponds to the Cartan decomposition 

g = f + 3 where A3 = CeAs "C 

and specifies a particular compact real form g = f + io of gco We denote 

(2.2.5) Gu: analytic subgroup of Gc for gu . 

It is a compact real form of Gc and K = G n Guo 
Fix a positive root system A+ for gq. Then P has a unique conjugate 

g0Pg`1, go C Gc, with Lie algebra to given as in Section 2.1. We replace P 
by that conjugate so sp = sp, and we denote 

xO = 1 P C GC/P, a "base point" of X. 

Then X has the compact presentation 

X= GUIV, 

where V = GU n P is the centralizer of a torus in Gu. Note that V has Lie 
algebra 

b~qu 0 - tj + un( o + g) 

which is a real form of Sp = . Similarly 

gO V - t) + fie n(ol + gi) 
another real form of lp, because complex conjugation over g sends every 
root to its negative. Now, by dimension, 

(2.2.6) D = G(x) -GIG n P is open in X GUIV 

and 

(2.2.7) G n P is a real form of Vc 

Here of course G n P is compact if and only if G n P = V, which is the case 
if and only if A) c AK. 

In Example 2.1.6 above we have a specific compact homogeneous complex 
manifold Xdefined by the quadratic form Q in (2.1.7). Let 

(2.2.8) D = {S C G(r, 2r + s; C): b(S, S) = O b(S, S) > 0}, 

which is an open subset of X. Then D is the open orbit of So where 

S, E G(r, 2r + s; C) is the span of the columns of the (2r + s) matrix (iir)t 

under the action of G c G,, where G = SO(2r, s). In fact, D has two com- 
ponents corresponding to the components of G. Moreover, 

D = SO(2r, s)/ U(r) x SO(s) 

This content downloaded from 169.229.32.136 on Sun, 25 Aug 2013 15:28:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


406 R. 0. WELLS, JR. AND J. A. WOLF 

and there is a natural fibration 

(2.2.9) D = SO(2r, s)/ U(r) x SO(s) - SO(2r, s)/SO(2r) x SO(s) 

which is nontrivial for r> 1. This fibering has compact fibers isomorphic to 
SO(2r)/ U(r) which turn out to be complex submanifolds of D with respect 
to the complex structure on D when D is considered as an open subset of 
X= GC/P. This is discussed for the general case in the next section. This 
particular domain D arises in algebraic geometry as a period matrix domain, 
the two defining relations in (2.2.8) being generalizations due to Hodge of 
Riemann's classical period relation (see the survey by Griffiths [16] and 
Wells [41, Chap. 5]). 

The domain D itself is a generalization of the classical upper half plane, 
which classifies periods of holomorphic 1-forms on an elliptic curve and the 
Siegel upper half space of rank r, which classifies periods of holomorphic 1 
forms on an algebraic curve (Riemann surface) of genus r. In particular, 
D is the classifying space for periods of holomorphic 2-forms on a compact 
Kiihler surface of complex dimension 2. 

2.3 Compact linear subvarieties 

Retain the setup of Section 2.2 and define 
(2.3.1) Y -K(x) c G(x) = D c X 
and 
(2.3.2) L= -gGG:gY - Y}. 
We check that Y is a (maximal) compact subvariety of D and L is a complex 
Lie subgroup of Gc, and then work out the structure of L. In the next 
section we will use this to study the G,-deformation space {g C G,: g YciD}/L 
of Y in D. 

2.3.3. PROPOSITION. Yis a complex submanifold of X, and is a complex 
flag manifold KC/KC n P where KC is the complex analytic subgroup of G, 
for ft. L is a complex Lie subgroup of G, given by 

(2.3.4) L -- KE where E =kG Pkk-' f--lnk.KC kPk-' 

and E is a closed normal complex subgroup of L. 

Proof. The first assertion is clear: tf n P is the parabolic subalgebra 
~~C + ? ~~-' ? ( 

tC, + L<b ag(qC + 9C)+Sl<b c 

of fcy, so KC n P is the corresponding parabolic subgroup, and evidently K is 
transitive on the flag manifold KC(x0) = KC/KC n P, which thus must be Y. 

L is closed in Gc because Y is closed in X. Now it has a Lie algebra I. 
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Since Y is complex, so is I: if y C Y and d C I then t is in the holomorphic 
tangent space, and thus also is (i$)Y. Thus L is a complex Lie subgroup of 
Gc. 

Kc L by construction of Y and L. As L is complex now, Kc c L. E is 
the kernel of the action of L on Y, hence is a closed complex normal sub- 
group. Now compute 

L -- ge Gc:gY = Y}c:g Gc:gYcz Y} 
= {g Gc:gK c KcP} f= nk KKcPk-' 

= nkc K KCkPk-t = KcE c L. Q.E.D. 
We now assume that the Lie group G is simple, i.e., that g has no proper 

ideal. For a local direct product splitting of G would give the same for Gc 
and P and would give a global direct product splitting of X and D. Also 
without loss of generality we suppose that G acts on X as a noncompact 
group, which in view of simplicity just says 

G # K, i.e., L # Gcj i.e., Y 71 X, i.e., D # X . 
These assumptions made, there are two cases, distinguished by the Cartan 
decomposition q = f + A: 

(I) non-Hermitian: AdG(K) is absolutely irreducible on A; 
(II) Hermitian: Ac = -p+ + &_ with AdG(K) irreducible on A+. 

In the Hermitian case, G/K has just two invariant complex structures, 
induced from its Borel embedding gK F- gKcS? as an open G-orbit on the 
complex flag manifold GC/KcSS? where S+ = exp(OA). 

2.3.5. PROPOSITION. In the non-Hermitian case, L is a finite extension 
of Kc, so in particular I = fce 

In the Hermitian case, each of the following conditions implies the 
next, and if G n P is compact then all four are equivalent. 

1. D - G/K by g(xo) F- gK is well defined (i.e., G n Pci K), and is 
holomorphic for one of the two invariant complex structures on G/K. 

2. L = KcS+ for a choice of sign ?r. 
3. I # f, i.e., I -fc + AA for a choice of sign Jr- 
4. One of the P n (fc + A ) contains a Borel subalgebra of qc. 
If f tc then I is the Ic + AA whose intersection with p contains a Borel 

subalgebra of ,c. 
Proof: In the non-Hermitian case, ft is a maximal subalgebra of q. As 
c + g then I = fc. Now the identity component L -Kc. As L is a stabilizer, 

it is algebraic over R inside Gc, so L/L' is finite, and L is a finite extension 
of Kc. 
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We go to the Hermitian case. Given (1), the holomorphic map D-)G/K 
is proper; in fact Y is the inverse image of a point; so KCS, C L ; Gc, which 
forces (2). Evidently (2) implies (3). In general Y = L/L n P shows that 
L n P contains the solvable radical of L and maps to a parabolic subgroup 
of the quotient. Given (3), L is parabolic in Gc, and now L n P is parabolic in 
GC, i.e., P n (i = rc + A+) contains a Borel subalgebra of gc, which is (4). That 
also proves the remark following (4). Finally, given (4) we have the obvious 
Gc-equivariant holomorphic maps 

Gc/P 
GC/P n KGSS / 

GC/KCS+, 

and we can fill in GC/P Gc/KcS+ just when Pc KcS+, which is when G n P 
is compact. So (4) implies (1) when G n P is compact. Q.E.D. 

2.3.6. COROLLARY. If Gn Pis compact, i.e., ifG n P =V, then D- G/K 
by g(x,) F-* gK is well defined, and either I = fc and D .-> GIK is not (anti)- 
holomorphic or I # fc and D - GIK is (anti)-holomorphic. 

L is given globally as follows. If 1 # fc then L is the KcS+ such that 
0 n (rc + ?+) contains a Borel subalgebra of gc. If l = fc then the identity 

component LI = Kc, so Kc is normal in L, and L cNGc(Kc) the Gc-normalizer 
of Kc. By Proposition 2.3.3 every component of L is represented by an 
element of E = n kPk-' cP; and if p e P normalizes KC then 

p(Y) = pKC(xo) = Kcp(xo) = Kc(xI) = Y 

so p e L; now L = Kc .Np(Kc). Here we can replace P by P7 because L0 
contains every unipotent element of Np(Kc), and we can replace KC by K in 
the normalizer because compact real forms are conjugate, so finally 
L = Kc.Npr(K). 

The fibering given in (2.2.9) is an example of the case where I = fc and 
hence an example of a nonholomorphic fibering. The fact that I = fc for this 
special case is verified by simple matrix algebra in Wells [39, Theorem 3.3]. 

2.4. Linear deformation spaces 

Retain the setup of Sections 2.2 and 2.3. We are going to define and 
examine the Gc-deformation space of Y inside D. In the next section we 
will assume G n P compact and prove that the base of the deformation space 
is a Stein manifold. 

If Z is a subset of X we set Gc{Z} = {g e Gc: g Y c Z}. Evidently 
Gc{Z}.L = Gc{Z}. Also, if Z is open in X then Gc{Z} is open in Gc. 

Fix a subset Z c X with Gc{Z} = {g C Gc: g Y c Z} not empty, and fix a 
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closed complex subgroup L'C G, with Kc c L'c L. These data specify the 
G,-deformation space of Y inside Z with respect to L', denoted 

w: CZ,L' ) MZ, 

as follows. Mz is the set of all G,-translates of Y inside Z; that is, 
(2.4.1) Mz = G,{Z}/L, subset of GC!L . 

CY,,L' is the disjoint union of those G,-translates g Ye Mz where we only 
identify g Y to g' Y when g' e gL'; that is, 

(2.4.2) CJZ,L' = GC{Z}/L' n P. 
Now of course the projection is 

(2.4.3) w: CYZ,Lf - M, by w(g(L' n P)) = gL. 

Observe that the inclusion Z c X induces inclusions 9Z,L' C LX,L' and 
M, Z CM Y. If we denote 

(2.4.4) T: JZ,LJ -> Z by z(g(L' n P)) = gP = g(xo) 
then these inclusions induce a commutative diagram 

IJZL' 
- GcJZ}/L' n P CJtX, L'= Gc/L' n P 

7/~~~ 

(2.4.5) Z X = Gc/P 

MZ Gc{Z}/L - MX = Gc!L 
whose horizontal maps are inclusions. As L, P and L' all are closed complex 
subgroups of Gc, the coset realizations of (2.4.5) specify complex structures 
on CX,L' and MX such that Z: YX,L' X and w: oXL' MX are holomorphic 
fibre bundles. When Z is open in X, and Gc{Z} is open in Gc, the horizontal 
maps of (2.4.5) are inclusions of open subsets. Thus we have the lemma. 

2.4.6. LEMMA. Let Z be open in X. Let CYZ,L', Z and Mz carry the 
complex structures as open subsets of CYX,L', X and M,. Then 

(i) w: CYZ,L' Mz is a holomorphic fibre bundle, and 
(ii) Z: YZ,L' > Z has image open in Z and is a holomorphic fibre bundle 

over that image. 

One of our principal objectives is to show that the parameter space MD 
is a Stein manifold under the assumption that G n P =V (that is, G n P is 
compact). When D - GIK is holomorphic we do this by proving MD = GIK, 
which is known to be Stein. When D - GIK is not holomorphic, we show 
that MX is an affine algebraic variety, thus Stein, and then in Section 2.5 
we show that MD is an open Stein submanifold of MX. 
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We now assume G simple with G # K, so the dichotomy of Section 2.3 
holds. Incidently, were G = K, MD would be reduced to a point and so 
would trivially be a Stein manifold. 

Suppose that I # f,, i.e., that p: D GIK is holomorphic for one of the 
two choices of invariant complex structure on the bounded domain GIK. If 
Z c D is a connected compact subvariety, then p(Z) is reduced to a point 
by the maximum modulus principle, so Zcp-'(gK) = g Y for some g C G. If 
further dimZ = dim, Y then Z -p-'(gK) = g Y. In other words, 

2.4.7. PROPOSITION. If I # fc then QYD,L MD coincides with D GIK, 
in particular MD is a Stein manifold. 

Now suppose I = fc, i.e., that p: Do GIK is not holomorphic. Then 
M, = Gc/L is the quotient of a connected semisimple group /C by a reductive 
algebraic subgroup. In effect, L is algebraic by its definition as Gc-stabilizer 
of an algebraic subvariety of X, and now L is reductive because its topological 
identity component Kc is reductive. It follows (see [9, ? 3]) that M, is an 
affine variety and a Stein manifold. We record 

2.4.8. LEMMA. If I = ft then M, is a homogeneous affine algebraic 
variety, in particular is a Stein manifold. 

We will prove that MD, which is an open subset of MX, is itself a Stein 
manifold, by proving holomorphic convexity for MD in Mx. That is the 
subject of Section 2.5 below. In Wells [391 a specific representation of MD 

(for the special case of D given by (2.2.8)) is computed for the case r = 2, 
s -- 1, and the fact that MD is Stein in this case is verified directly. 

2.5. A Stein parameter space 

In this section we will establish that MD is holomorphically convex. In 
preparation for this we need the following important lemma which shows 
how compact sets in D and MD are related. From now on, G n P is compact, 
i.e., GnP= v. 

2.5.1. LEMMA. Suppose Z is a relatively compact subset of D, then M, 
is a relatively compact subset of MD. 

Proof. We may assume that (i) Gc is simple and that Y S X = GC!P 
and (ii) M, is noncompact (cf. Lemma 2.4.6). Up to finite cover, we can 
assume that M, = GC/Kc since L is a finite extension of Kc. We now rephrase 
the statement of the lemma in group-theoretic terms using compactness of 
GnP: 
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if S is a relatively compact subset of G, 
(2.5.2) if x0 = 1 .PeX = GC/P, then MS(x0 is a 

relatively compact subset of Gc/Kc 

We may take S to be in the form SK (a larger set), so 

S(XO)- {g e G,: gKcP c SKP(= SKcP)}/Kc 

Thus the assertion of the lemma is equivalent to 

(if S = SK is a relatively compact subset of G, then 

(2.5.3) 9 {g C Gc: gKcP c SKcP} 

is relatively compact modulo Kc (in Gc/Kc) 

Passing to closures, we see that (2.5.3) will follow from: 

if S is a compact subset of G, then 
(2.5.4) {g C Gc: gKcPczSKcP} 

is compact modulo Kc (in Gc/Kc) 

We recall from Section 2.3, E= nfkKC lkPk-', and we observe that Gc{S}, 
which is by definition = {g C Gc: gKcP ci SKCP}, has the property that: 

(2.5.5) Gc{S} = SKCE = SEKC and kE = Ek for all k e Kc. 

That is, g e Gc{S} if kc e Kc and p e P, then gkp e SKCP, 
if k e Kc and p e P, then g e SKcPp'k-1, 
if k e K, then g e SKckPk-', 
g e SKCE. 

This verifies (2.5.5). We know that L = KcE is a finite extension of Kc 
(in fact we reduced to the case L = Kc in this proof). Using the represen- 
tation of Gc{S} as given in (2.5.5) we see that 

GcISIIKc= SKcE/Kc= SEKC/KC, 

and this last representation is the orbit of a finite set in GC/Kc under a 
compact set S, which is therefore compact. Q.E.D. 

Our main result in this section is the following theorem. 

2.5.6. THEOREM. Assume that G n P= V, i.e., that G n P is compact. 
Then MD is an open Stein submanifold of Gc/L. 

The rest of this section will be devoted to proving this theorem. 
Letting M = MD, CJX =q YXL, and CYD = CJDL we rewrite diagram (2.4.5). 
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Y > X = GC/P 

I I 
(2.5.7) X< CD D GIV 

1r 27 
Gc/L = MX < M . 

Here the unmarked arrows in the diagram are open inclusions, and Z and w 
are appropriately restricted from cYx to the open subset S. 

Let KX be the canonical bundle of X, and let KD = KXlD. Then there is 
a natural G-invariant metric hG on KD and a natural G.-invariant metric hGU 

on Kx. Letting 

(2.5.8) 9 - hG 
hG 

we see that cp is a Co function defined on D. In fact cp is a strongly q-pseudo- 
convex exhaustion function for D (Schmid [28], Griffiths-Schmid [14]), which 
we formulate in the following theorem. 

2.5.9. THEOREM (Schmid). Let q = dimcY = (1/2)dimR K/V, then the 
function q given in (2.5.8) has the following properties: 

(a) c e C-(D) and is an exhaustion function forD, i.e., {x e D: (x)<c} 
is relatively compact in D for all c e R. 

(b) At each point x e D, the complex Hessian (Levi form) L(q) = iawT 
has n - q positive eigenvalues and q negative eigenvalues. 

(c) There is a G-invariant splitting of the tangent bundle T(D) = 
TV(D) e T,(D), where TV(D) are vertical fibres (tangential to the fibres of 
D -- G/K) and TVx(D) _ Tx( Yx) where Yg(,x) = g Y, and Th(D) is a G-invari- 
ant subbundle of T(D) which is transversal to the fibres of D. 

(d) L(q) T,(D) is negative definite and L(q)ITh(D) is positive definite. 

We will use the cp given by the above theorem to construct a continuous 
exhaustion function for M. First let qd = zAd, and define, for g e Gc{D}, 

(2.5.10) 9M(gY) = Supgy ((gY) = SuPkeK9KJ(g.1k(Ln P)). 
2.5.11. LEMMA. 9M is a continuous function on M. 

Proof. Let A: Gc{D} -* R be the continuous (in fact Co) function given 
by A(g) q(gP). Clearly we have 

Ps(g.(Ln P)) = A(g), 
9M(g Y) = SUpk6 K(g *k) . 
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Thus it suffices to take A = G,{D} equipped with any metric and verify the 
following proposition, the proof of which is a simple exercise in uniform 
continuity and is omitted. 

2.5.12. LEMMA. Let A and B be metric spaces, A locally compact, and 

B compact. Suppose 72: A x B R is continuous, then r: A R given by 
ry(a) = SUpbeB 72(a, b) is continuous. 

We now proceed to use the exhaustion function p to show that M = MD 

is Stein. First we consider the relatively compact subdomains of D defined 
by 

De = {x e D: 9(x) < c}. 

Let MC = w(z--(D)). By Lemma 2.5.1, we see that MC is relatively compact 
in M. Our first objective is to show that M, is Stein, and then later we will 
use this to conclude that M is Stein. 

We shall be constructing holomorphic functions on M, to show that M, 
is Stein. Our basic principle will be to integrate cohomology classes over 
the fibre to obtain holomorphic functions. We will discuss this principle now 
with regard to the domains D and M, but it applies with no change to D, 
and M,. Let e be a Dolbeault cohomology class represented by the 8-closed 
(q, q)-form * on D, then z** is a 8-closed (q, q)-form on '-ND, and we may 
consider T** as a (q, q)-current on qJD. Since w is a proper holomorphic 
mapping, the push forward wc*-** = f is a 8-closed current of type (0, 0) on 
M. Thus, by the regularity theorems for currents, we see that f is a holo- 
morphic function on M. Moreover, if X e M, then 

P)= 
Z'y 

* = * 

is simply integration over the fibre. Since V does not depend on the re- 

presentative differential form used, by Stokes' theorem, we write simply 

P X) = , Hq(Dy QD)X M. 
Y2 

For references to the recent literature on the interaction of currents and 
complex analysis see the survey paper by Harvey [22] (cf. also Wells [42], 
for more details with regard to the specific discussion here). 

We shall need the following deep result due to Andreotti and Norguet 
[2, Prop. 7]. Recall that a function p is called strongly q-pseudoconvex on 
a complex manifold if p is real-valued, C2, and iD8q has at least n - q eigen- 
values >0 at each point. 

2.5.13. THEOREM (Andreotti-Norguet). Let p be a strongly q-pseudo- 
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convex function on a complex manifold Z, and let B = {x e Z: R(x) < 01. 
Suppose that at x e aB, dqx # 0, and iawp9Tz(aB) has n - q - 1 positive eigen- 
values and q negative eigenvalues. Let {p}peN be a sequence of compact 
subvarieties of Z, each of pure dimension q, and having x as a limit point. 
Suppose there exists an Hermitian metric for which sup,,,N vol(z) < + oo. 
Then there exists a ~ e Hq(B, Qq) such that 

SUPL, e N z +o 

The following lemma describes the behavior of the Levi form of 9 
restricted to aDc near limit points of compact subvarieties. 

2.5.14. LEMMA. Let x, e aD, be a limit point of q-dimensional compact 
submanifolds of Dc, and suppose d9(x,) # 0. Then the Levi form L(9) = ia 
restricted to TX0(aDJ) has n - q - 1 positive eigenvalues and q negative 
eigenvalues. 

Proof. Since L(q) is nondegenerate on Txo(D), and L(q) has n - q 
positive eigenvalues and q negative eigenvalues, it follows that L(q)T(xo(D) 

has either n - q - 1 positive eigenvalues and q negative eigenvalues or n - q 
positive eigenvalues and q - 1 negative eigenvalues. We will assume the 
latter situation in conjunction with the hypothesis of the lemma to derive a 
contradiction. 

Thus assume that L(9)Txo (0aD,) has n - q positive eigenvalues and q - 1 
negative eigenvalues. The following construction is due to Andreotti-Norguet 
[2, I, pp. 225-226]. Choose coordinates (z1 **, zn) defined in U3 x0, so that 
(0, **, 0) = x0 and 

q(z) = (0) + Re z1- E=1 aj I zj I2 + q+1 aj I zj I2 + O(I z 13) 

where aj>O, j = 1, *--, n. Here our assumption that L(g)l TX(OD') has q- 1 
negative eigenvalues is used in making Re z1 the normal coordinate to aDC. 
Let 

- (Z1 .. 
* Zq), 72 = (Zq+j **.* Z), I Z1 1+ * + I Zq I= 

1 r 12= I Zq+1 12+ ._._ + I Z, 12 

and thus Iz12 = I 2 + 1r 2. Let E =i{ = o}n U, and find an s > O so that 

PIE(Z) - (0) = q-1 aj Zj 2 + O( Z 13) > 0 

for 0 < 17712 < S2. Letting D'= Dn U, we set 
P = {Z G U: I12 < U 7 112 <,S2} 

for a small and fixed, and 
P= {Ze U: I 2<<q2, l1712 = e2} 
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(part of the boundary of P). It follows that 

Pc U, P(Un (D - D'). 
Let Q ={z E P: 72 O} and let w: P Q be the natural projection w(?, A) = A. 
Note that E n D' 0, and from this it follows that the image of w restricted 
to any subset of D' n P cannot contain the origin in Q. Now let K be any 
compact subset of D, and let S = K n P, then it follows that wrL3 is a proper 
mapping into Q. Indeed, if w(S) = S., consider 

7-1(So n = , fl)n S, ,< a 
and suppose this set is not compact in S. Then there must be a point in this 
inverse image with coordinates (d, A) where 1 2 =2 since 1 2 < 2 < 2. 

But then (r, () e P and Pn D' Pn Dc 0. Thus wr s is proper. 
Suppose now that I c D, is a compact subvariety of dimension I and 

0 n Pa 0. Then | ^I is proper and holomorphic. It follows from the 
Remmert proper mapping theorem (Gunning and Rossi [17]) that w(l n P) is 
a closed subvariety of Q of dimension I (the fact that dimension wr(I n P) is 
I is due to the fact that the fibres of w l, have to be compact complex sub- 
varieties of P, and since P is Stein, these fibres are zero dimensional). By 
the hypothesis of the lemma there is a sequence {E} of compact subvarieties 
of DC of dimension q which have x0 as a limit point. Choose a I in this 
sequence whose intersection with P is non-empty. Then, by the above con- 
struction, u(y. n P) will be a closed q-dimensional subvariety of Q which 
does not contain the origin. But Q is a ball of dimension q, and the only 
closed q-dimensional subvariety of Q is Q itself which does contain the 
origin. Thus we have a contradiction. Q.E.D. 

We can now prove the principal lemma in this section. 
2.5.15. LEMMA. Suppose c is such that dcp # 0, for all x G aDD, then 

M, is Stein. 

ProoQf. Since M, is an open subset of the Stein manifold MX - GC/L 
(Lemma 2.4.8), it suffices to verify that M, is holomorphically convex. Re- 
calling that M, is relatively compact in M (Lemma 2.5.1), we see that it 
suffices to find, for any discrete sequence {\ } of points in M, which converge 
to a boundary point \, e aM,, a holomorphic function f e O(Mj) such that 

sup, I (X>) I = + CK . 

Let I =Q7 j, and let us observe that, since X, > Xo e aM6, it follows from 
Lemma 2.5.1 that the compact subvarieties {E} have a limit point x0 e ADO. 
By Lemma 2.5.14 we have that L(q)lTxo(aD') has n - q -1 positive eigen- 
values and q negative eigenvalues. Moreover, the domain D, is strongly 
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q-pseudoconvex. Since X is projective algebraic (Proposition 2.1.5) it is 
equipped with a Kahler form co, and we see that the volume of the fibres in 
%L is a constant. That is, for X e Mx, we let 

vol(Y,) = q= 0 A AW. 
Y2 Y2 q-factors 

Then letting v(X) = vol( Ye), we see that v = IZ.* ), and thus dv = d(7r* *(wOq))= 
r*T*(d(Wq)) = 0, since do = 0, by the Kaihler property. Thus v is a constant 
on the connected manifold Mx = GC/L. 

Thus we have verified all of the hypotheses of Theorem 2.5.13, and can 
then conclude that there exists a Dolbeault cohomology class e of bidegree 
(q, q) on DC satisfying 

SupL6 e N + ? 

Now f = wrvzd is a holomorphic function with 

SUpAeNt f(dv) i = + ?? 

and the lemma is proved. Q.E.D. 

To finish the proof of Theorem 2.5.6, we note that the family of open 
submanifolds [M. c Mic eR satisfies the following conditions of Docquier- 
Grauert [11]: 

i) MC is Stein for a dense subset of R (Lemma 2.5.14 and Sard's lemma 
showing that aD, is smooth for almost all c); 

ii) UceRMC = 
iii) M" cM02 if c1 < C2; 
iv) U- c MC is the union of the connected components of M,,, co < ; 
v) Moo is the union of the connected components of the interior of 

nO<,<-OMc, -0 <co< O. 
By the main theorem in Docquier-Grauert [11], it then follows that M itself 
is Stein, and this concludes the proof of Theorem 2.5.6. Q.E.D. 

3. Homogeneous vector bundles 

3.1. Homogeneous holomorphic vector bundles 

In Chapter 2 we discussed in some detail the geometry of the flag 
domains D = G/ V contained in a complex flag manifold X = GC!P, where 
G, is a complex semisimple Lie group and P is a parabolic subgroup. In this 
chapter we turn our attention to homogeneous holomorphic vector bundles 
E - D. They are the holomorphic vector bundles on D with the property 
that the action of G on D lifts to an action on the total space, by holomorphic 
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bundle maps. Examples of homogeneous vector bundles on D are the holo- 
morphic tangent bundle TD, and the canonical bundle Kc AdimcDT*, and 
these are described in more detail below in terms of the homogeneous struc- 
ture of D. In general for a homogeneous space of the form S = G/Q, where 
G is a Lie group and Q a closed subgroup, we associate to each continuous 
representation p of Q on a complex vector space E,,, the homogeneous Coo 
complex vector bundle Et G x PE,- S defined by the equivalence relation 
(g, z)-(g q, j(q).z) in GxE E (cf. Bott [10]). 

Using the notation of Chapter 2 we now describe in detail the basic 
properties of homogeneous holomorphic vector bundles E - D, where 
D = G(x,) is a flag domain in a complex flag manifold X = GC/P. If necessary, 
replace P by a conjugate so that x0 = 1. P e Gc/P = X. 

3.1.1. LEMMA. Let p be a continuous representation of the isotropy 
group G n P {g C G: g(x,) = x0} on a complex vector space E.. Let 

E~u= Gx,,E," -G/GnP= D 

denote the associated homogeneous complex vector bundle. Suppose that D 
carries a G-invariant Radon measure, that is [44, Thm. 6.3] that 
P = (G n P)c* P,, where P" is its nitradical. Then E, D is a G-homogeneous 
holomorphic vector bundle in such a way that the holomorphic sections 
over an open set U c D are represented by the functions 

f: U = {g e G: g(x,) C U}-> E 
such that f(gp) =p(p)-'f(g) for g ? G and p e GnP, and e(f) 0 fore t, 

where every ~ e gc is viewed as a left invariant complex vector field on G. 

Note. The hypothesis holds whenever G has a compact Cartan subgroup, 
in particular when G n P is compact. See [34] for the corresponding result 
where G is replaced by an arbitrary extension and the equations for sections 
are used to define the complex structure on E,. 

Proof. Since G n P is connected, pe extends uniquely to a holomorphic 
representation ptc' of P on E, such that pt'(Pn) 1. Let EM G, x ,,E, 
GC/P X denote the corresponding G,-homogeneous holomorphic vector 
bundle. Note that E, is the underlying real structure of E' D and that E'D has 
local holomorphic sections as described, and observe that these sections speci- 
fy the complex structure on E ID. Now give E, the structure of E' D. Q.E.D. 

We fix the notation 

(3.1.2) TD - D is the holomorphic tangent bundle 

so that AP(T*) (D Aq(T*) D is the bundle of (p, q)-forms on D. If E D is 
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a holomorphic vector bundle we denote 

(3.1.3) &,(D; E): C- sections of E ? AP(T*) ? A q(T) - D . 

The elements of &P q(D; E) are called (p, q)-forms on D with values in E. 
The (0, 1)-component of exterior differentiation is well defined there and gives 
us the first order operator 

(3.1.4) a: &P q(D; E) - pq +(D; E) . 

A form o e &P q(D; E) iscalled -closedif &w = 0, called -exact if e C 86P q-1(D; E). 
Since a2 = 0, exact forms are closed and one has the Dolbeault cohomology 
spaces 

(3.1.5) HP q(D; E) = {( e &P q(D; E): a5o = 0}/ajP q-l(D; E) . 

Uniform convergence of derivatives on compact sets defines a Frechet space 
structure on each &P q(D; E). Evidently a is continuous. If E -+ D is homo- 
geneous under G, then G acts naturally on UP q(D; E), and the action 

G x Pq q(D; E) ? &VP q(D; E) 

is continuous. If a has closed range, then HP q(D; E) inherits a Frechet 
structure, and, in the homogeneous case, theactionG x HP q(D; E) oHP q(D; E) 
is continuous. 

All this applies equally well to the maximal compact subvariety 
Y K(x,) cD. By a theorem of Serre we know that a always has closed 
range, so the HP q(Y, E) all are Frechet spaces (cf. Wells [41]). 

If A-ND is a sheaf, then Hq(D; 5) denotes the sheaf cohomology groups. 
The case of interest is 

(3.1.6) 6(E) D , 

the sheaf of germs of holomorphic sections of E D, where E D is a 
holomorphic vector bundle. Dolbeault's theorem says that 

(3.1.7) Hq(D; /9(E)) is naturally isomorphic to Ho"(D; E) . 

Now let us be more specific. We assume that 

(3.1.8) G n P is compact; that is G n P = V 

and we have a compact Cartan subgroup H of G and a maximal compact 
subgroup K of G such that 

(3.1.9) H c V c K . 

Further, we have a positive En-root system A+ on gc, and a subset ( of the 
simple roots, such that 

P = tf + to 
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with 

(3.1.10) r = bc = c <> g + gc- and n =g-1 

where <KD> = la e A+: a is a linear combination from D}. 
The root system A decomposes into the set AK of compact roots and the 

set A, of noncompact roots. If 0 is the Cartan involution of G with fixed 
point set K, so that q =f + 8 is the Cartan decomposition into eigenspaces 
of 0, then 

fc + Ezi qC and oc = S g C 

We write A' for AK n A+ and A+ for As n a+. Gn P Vc K says $cA+, so 
<K>, which in effect is A+, is a subset of A+. Let us fix the notation 

(3.1.11) P PG 2 EVA+fS PK = E f+l and pv = 'Do> is. 
2 2 AK 2 

Let T denote the simple root system for (gc, A+), and enumerate 

(3.1.12) (= {q1, ***, 9 .}C{91, * q(} P. 

Given X E ?J, and letting <,> be the Killing form on gc, we denote 

(3.1.13) ~~~~ni(X) = 2<Xy (i>1<(piy (i> . 

X is called integral if all the ni(X) are integers. If Gc is simply connected, 
then X is integral if and only if 

e;: exp(d) X e'',d I 

is a well defined character on the torus group H. For example, p is integral 
with ni(p) = 1 for all i, and Pv is integral within V with ni(pv) = 1 for i ? r. 

If pe is an irreducible representation of V, then tlle is a finite sum of 
characters el where the X are integral elements of t* called the weights of 
rte. If we impose a lexicographic order on the real span it* of the roots such 
that A+ consists of positive elements, then pe has a unique highest weight 
and it does not depend on the choice of the ordering. That highest weight 
determines , up to equivalence, and we write 

toe: irreducible representation of V with highest weight X; 
E: representation space of A2; 

(3.1.14) E D: holomorphic vector bundle associated by Lemma 3.1.3; 
&2 D: sheaf of germs of holomorphic sections of El -I D (i.e., 

O3(E2), cf. 3.1.6). *' 

CQ2 here should not be confused with the notation for C-(p, q) forms &p,q, and this will 
be clear from the context. 
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If G, is simply connected, the highest weights of representations of V are 
exactly the linear functionals X e t* such that 

(3.1.15) ni(X) is a non-negative integer for 1 ? i < r, 
an arbitrary integer for r < i I l. 

In any case, the highest weights satisfy (3.1.15). We note that the degree 
dim El of p, is 1 just when ni(X) = 0 for 1 < i ? r, so the homogeneous 
holomorphic line bundles over D are the El -+ D with ni(X) = 0 for 1 i < r, 
ni(X) an arbitrary integer for r < i ? 1. 

The holomorphic tangent bundle TD--+ D is the restriction of the holo- 
morphic tangent bundle T, -+ X, and the latter is the homogeneous holo- 
morphic vector bundle over X = GC/P associated to the representation of P 
on T = gC/t GA,\(P> go. Similarly the bundle T* .- D of (1, 0)-forms is based 
on the dual space T* of T. As the Killing form pairs E+\<,, g7 to I+\<, ge7 = i?' 

we identify T* with gC/(pr + p-n\(.> g1) o Let n = dimcD, so the canon- 
ical bundles {(n, 0)-forms} are KD- AnT* -+ D and K X = -T X. Note 
that PI" acts trivially on AnT*, and that V acts on AMT* by the character el 
where X= -2(p - Pv). This shows that KD--+ D is the homogeneous holo- 
morphic line bundle E2(P-Pp) D. 

Similarly, the holomorphic tangent bundle T, -+ Y is based on fc/p n oc 
,,+V<>g7, and if s- dimcY then KY = A8T* = E2(pVpKIy. 

The irreducible representations of K similarly are described by highest 
weight relative to A+. Here we must be careful because the simple root 
system for (t, A+) usually is not contained in P. 

We end these preliminaries by recalling the Bott-Borel-Weil theorem for 
our maximal compact subvariety Y= K/V = Kc/P n Kc (Bott [10], cf. 
Griffiths-Schmid [14], Kostant [26]). First, it says 

(3.1.16) if <X + PK, XI> 0 for some fi G AK then H2(Y; %i) = 0 for all q. 
If <X + PK, 0 for all f6 e AK, then we denote 

qK(X + PK) = I { e AK: <X + PK, f> < 0} I 

and we take the element w of the Weyl group W(K, H) such that 
<W(X + PK), fi> >0 for all fi e A+. Now the second and main part of the Bott- 
Borel-Weil theorem says that 

Hq(Y; &') = 0 for q = qK(G + PK), and 

(3.1.17) HqK('+PK)(Y,&A) is the K-module of 
highest weight w(X + PK) -PK X 

For example, let us apply this to the sheaf Xy M Y of germs of holomorphic 
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sections of the canonical bundle K --+Y. We saw K, = E2(ppKly, Now 

<PV - PK, > = 0 for every fe A,, and it is easy to check that <PK-PVy >>?0 
for all ,8 e At\<(D>. It follows that 

K2(pv - PK) + PK, l> > O for 8 e <'D>, < 0 for 8 e A+\<'D> 

so (3.1.17) applies and the cohomology occurs in dimension AK\<(D> IdimY =s. 

3.2. Schmid's Identity Theorem and some consequences 

In this section we state a variation on the Identity Theorem [28, Corollary 
6.5] of Wilfried Schmid and we indicate consequences used in the sequel. 
The Identity Theorem is proved in Section 3.3. 

Retain the notation and conventions of Section 3.1 and consider a homo- 
geneous holomorphic vector bundle 

E;. ) D for a representation ei 
of V with highest weight X e i t* . 

We will assume that E2 - D is nondegenerate in the sense that 

{if la, *.., 8, are distinct noncompact positive t)-roots then 

(< + pi, + 1 + **+ 1, a> > O for all a e <> =A' 
(3.2.1) an and 

<X + PK + f1 + *+ ly> < O for all 7 e AK\<KD> . 
Two remarks on (3.2.1): First, <pv, a> <PK, a> for all a e Av, so the second 
condition of (3.2.1) is equivalent to: <X + PK + f1-t- .. * +,f1, a> > 0 for all 
a e <1)>. Second, in the case where V is reduced to the compact Cartan sub- 
group H, Av is empty and (3.2.1) reduces to: 

<X + PK + 81 + I +,S+ly,> < O for all,-YG A+K. 

The Identity Theorem is 

3.2.2. THEOREM. Suppose that EK D is nondegenerate (3.2.1) and 
that c E Hs(D; &2), s = dim, Y, such that c restricts to the zero cohomology 
class on every fibre g Y of D - GIK. Then c = 0. 

The proof will yield the complementary result 

3.2.3. THEOREM. If E- D is nondegenerate (3.2.1) then Hq(D; 6) 0 

for q # s. 

One important and immediate consequence of the Identity Theorem is 

3.2.4. THEOREM. If E2 - D is nondegenerate (3.2.1), then H-(D; 62) is 

a Fre'chet space on which the natural action of G is a continuous represen- 
tation. 
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This is just a matter of proving Frechet, and that follows from 
3.2.5. LEMMA. The maps a: &0 q-1(D; En) -? &oq(D; En) have closed range. 

Proof (W. Schmid). Let {aqn} - (Jo in &I?q(D; En). As a is continuous, 
5i = 0, so co represents a cohomology class c e Hq(D; &,). We must show 
cO = 0; then co will be in the range of 3. 

If q # s then c = 0 by Theorem 3.2.3. 
Let q = s. Let g e G so g Y is a fibre of D G/K. As Y is compact, 

&: ^q-l(g Y; En) -&1 q(g Y; En) has closed range. The topologies being com- 
patible, now .-pni,,} 

- )col shows (ol,, to be 8-exact, so cel, = 0. Thus the 
Identity Theorem says c = 0. Q.E.D. 

Lemma 3.2.5 allows us to apply Serre duality. Writing KD - D for the 
canonical bundle, and then glancing back at Theorem 3.2.3, we conclude 
(letting H*( ) denote cohomology with compact supports) 

3.2.6. COROLLARY. Let El - D be nondegenerate, n dimD and 
s = dim, Y. Then H-q(D; &2* (9 CD) = 0 for q t s and Hc"-(D; &A (? XCD) is 
the strong dual of H8(D; &i). 

We close Section 3.2 with some comments on the existence of vector 
bundles satisfying the nondegeneracy condition (3.2.1). 

First we note that nondegenerate bundles E- D always exist. At the 
end of Section 3.1 we saw that 

<2p,- PK, a> > O for aer <qs> 
and 

K2pV - PK, > < O for YGCk\K\<@>. 

It follows that 

X= a{(b + 1)pv - bPK}, a and b positive integers, a > 0, 
satisfies the nondegeneracy conditions (3.2.1). More generally, to construct 
X satisfying (3.2.1) in terms of the integers ni = 2<K, i>/<qi, vi>, we first 
choose integers 

ni >max < * 
9> .. / e 

S + are 
distinct) <(vi, (vi> J 

for 1 ? i ? r, and then choose nr+1, * , na sufficiently large negative so that 
the <X + 981+ * * * +,St, Y> < -PK, "> for all 7 G AK<>. 

Second, we note that a homogeneous holomorphic line bundle can satisfy 
(3.2.1) only under special conditions: 

3.2.7. PROPOSITION. If G is simple, and if a homogeneous holomorphic 
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line bundle Li D is nondegenerate (3.2.1), then either V = H and P is a 
Borel subgroup of G,, or V = K and D is a Hermitian symmetric space 
G/K of noncom pact type. 

Proof. Let Li - D be a homogeneous holomorphic line bundle. Then 
the representation [,c of V with highest weight X must have degree 1. This 
says <X, a> = 0 for all a C A,. 

Suppose H # V # K. Then A, is non-empty and A g\ contains a 
nontrivial irreducible V-module E. Let G C A+\<<>> denote the lowest weight 
of V on E. Then <fS, a> < 0 for some simple root a of bo, and we calculate 

2<' + pv Jr a, a> _2<pv, a> + 2<l, a> -1+ 2<S, a> < 0. 
<a, a> <a, a> <a, a> <a, a> 

This contradicts (3.2.1). 
Now either V = H or V = K. If V = H then P is reduced to its Borel 

subgroup because P has reductive part Vc. If V = K, then GIK= D, so 
GIK has invariant complex structure and thus D is the Hermitian symmetric 
space GIK. Q.E.D. 

In the Borel case V = H, one obtains nondegenerate line bundles LI - D 
by taking X to be a large negative multiple of PK. In the Hermitian sym- 
metric case V = K one obtains nondegenerate line bundles LI D by taking 
X to be a large positive multiple of PK. 

Of course if G = G1 x ... x G, with Gi simple, then D = Dy x ... x D, ac- 
cordingly, and the homogeneous holomorphic line bundles LI D are just 
tensor products of line bundles Li. Di with X= x1 + +Xt. L D is 
nondegenerate just when all the LI, - Di are nondegenerate, so Proposition 
3.2.7 settles the question of whether D admits nondegenerate homogeneous 
holomorphic line bundles. 

3.3. Proof of the Identity Theorem 

The Identity Theorem was proved by Wilfried Schmid [28] in the case 
where V is reduced to the compact Cartan subgroup H. Our proof is a 
combination of Schmid's arguments with a Leray spectral sequence argument. 
The spectral sequence comes from a holomorphic projection 

(3.3.1) f: X = GC/B - * GC/P = X by f(gB) = gP 

where B is the Borel subgroup of Gc with Lie algebra b = tc + ,A+ gcjj. 
Take x, = 1 B C X as base point sitting over x0 = 1 *P C X and denote 

D = G(X,) _ G/H, open G-orbit in X, 
and 
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Y K(xO) _ K/H, maximal compact subvariety of D . 

Then f restricts to holomorphic fibrations, 

(3.3.2) f: D - D and Y->Y with fibre V/H. 

We apply Schmid's arguments to D and carry the results down to D by the 
Leray sequence. The nondegeneracy hypothesis (3.2.1) combines with the 
Bott-Borel-Weil theorem to collapse the spectral sequence. 

The holomorphic normal bundles to Y in D and to Y in D are the 
Kc-homogeneous holomorphic vector bundles 

N Y and N - Yassociated to the adjoint 

(3.3.3) actions of Kc n P and of Kc n B on 
N= E,gcl C 

S 

Notice that N = f *N where f is given by (3.3.2). 

3.3.4. LEMMA. If El D is nondegenerate (3.2.1), 1 > 0 and q # dimc Y, 
then H,7(Y; (0 AIlN) = 0. 

Proof. Let L2 MY denote the homogeneous holomorphic line bundle for 

the character el on Kc n B and write Ll, for L2? AIN. As Kc n B is solvable, 
it is triangulable on the fibre of L2,l. That gives a sequence 

0 = FocFlc *c. cFr= ==L2 

of Kc-homogeneous holomorphic vector bundles over Y, such that each 
Fi/Fi-1 is a homogeneous line bundle L2, for a character e'i on Kc n B. Here 
A, is of the form X + 61+. *+,S, where the Sj e V+ are distinct. So (3.2.1) 
ensures 

Kus + PK, 7> <0 for all -e z\ AK+<D>. 
Now the Bott-Borel-Weil theorem (3.1.17) says 

Hq(Y; 22) = 0 for q < IA+K\<@> I = dimc Y. 

In consequence, the exact sequences 

0 - > i-F > - i >IF2i - 0 

give us 

Hq(Y; JiFl) -Hq(Y; HiFi) for q < dimcY. 
Iterating this and using Y1- 2, we conclude 

(3.3.5) Hq(Y; 22") = 0 for q < dim Y. 

In case V = H, that completes the proof of the lemma. 
The Leray spectral sequence (Godement [12]) is based on some direct 
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image sheaves f (2,,1) Y constructed as follows. If p is an integer > O0 
then fP(Q,,1) is associated to the presheaf that assigns the abelian group 
HP(Yn f ' U; l) to an open set U c Y. As f: Y-Y is a holomorphic fibre 
bundle, fP(2,,) is the sheaf of germs of holomorphic sections of the bundle 
over Y with fibre HP(Y n r'-,x,; 2,,). Restrict the bundles Fi and L,, of the 
proof of (3.3.5) to Y n f -(xo) _ Vc/B n Vc, without change of notation. 
From (3.2.1), each 

<xi + p, a> > O for all a C <$> . 
Now the Bott-Borel-Weil theorem says 

HP(Yn f'xo; s,) o0 for p > 0 

and H0( Yn f -xo; 2,) is the Vc-module E2, of highest weight xA. Using 
N -f*N we conclude 

f (22,) 0 for p> 0 
(3.3.6) 
and 

f* (2i -) =2 (0 A t 

In view of (3.3.6), the Leray spectral sequence collapses and gives us 

Hq( Y; .1i,1) Hq( Y; &2 X9 A M) ) 

That combines with (3.3.5) to give the statement of the lemma. Q.E.D. 

For every root a G A choose nonzero e, G ga and define ha G gc by 
<ha, h> a a(h) for all h C Act Then constants na, p are defined by 

[ea, ep] na ,peafp if a, A, a + / G A . 

It is standard that the ea may be chosen so that 

(<eef es> , f and [el, ea1 ht; 
(3.3.7) n,,fi is real and n-,c fi=-npfi for a, A, a + f C A; 

ng fi =nofi , = no for a, A, -' C A with a + fi + r' = 0; 
reag=-e__ where z is conjugation of gc over g 

Then the conjugation a of gc over q, and the Cartan involution 0 = az= zTa, 
satisfy 

u(ea) -s-_a 0(eb) 

where i 1 for a At , - 1 for a G AK; and thus also 

lsasfs, =-1 whenever a, 8, f C A with a + f + 0 . 
The dual complex-valued linear differential forms on G are given by 

(Oa(efi) = 6 and Wa(tc) = 0 C 
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Calculating 

dcoa(ep, er) = - {ep ca(er) -er wa(e~)- (Oefi, e>l} 
2 

one has the Maurer-Cartan equations 

dwak) 
1 

E,+,=, nprw A t07 + terms involving * 
2 

Let co belong to the space &I?q(D; En) of E-valued (0, q)-forms on D. 
Then co has lift to G of the form 

Ct = EIBI=q fBW)B 

B = {i1, * * , ,ql C A+\<$D>, (f-B -= r-P' A /\A -Pq 

where the fB: G O ER represent sections of En. Then the Maurer-Cartan 
equations above give 

EaeA+\<b> IBI=q e-a(fB)w- A \-B 

(3.3.8) + 1E1:9i;5q EaP eA+\<O> EIBI-q (-1) napfB(O a A )P Ap/ (0-(B\Pi) 2 a+i- 

We will need this for a calculation below. 
The typical fibre N == 5 ga of the holomorphic normal bundle N- Y 

carries an Ad(V)-invariant positive definite Hermitian inner product (e, f)= 

-<e, z-f>. If A+ {an la, , aj and ei = eai e gai as above, then (3.3.7) shows 
that {e1, .., et} is an orthonormal basis of N. Thus Al(N) has orthonormal 
basis consisting of the e1 = ei, A ... A ei, where 1 i, < ... < i, ? t. Now 
we have K-invariant Hermitian metrics on the AIN Y, and the K-invariant 
tensor fields 

(3.3.8a) hl=LIIIe ()e 

combine with those metrics to give the complex conjugation operations 
A1N -*AN. 

Let &IqD; E) denote the space of all E2-valued (0, q)-forms on D that 
vanish to order ? r on the fibres of D GIK. Thus I, ?(D; En) consists of all 
s C &I'q(D; En) whose lift to G has the form 

so = EfBc-FB wherefB= 0 whenever IBA,+I < r . 
If a, fi e A+ with a + fi e A+, then one of a, f must be noncompact, so (3.3.8) 
gives us 

(3.3.9) 5&rq)(D; En) C &q)+'(D; E) . 
Recall the K-invariant sections hl of ARN 09 AIN MY given by (3.3.8a) 

and define 
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a : &(rD; E2) -f 4Sq-r(Y; E2 0 M rN) 

by restriction to Y and contraction with h . In other words, if j, ** ,q-r 

are tangent to Y at a point x G Y. 

(3.3.10) (LrkO)))M(1 
... pq-r) = ()X(eI; P1 1 q-r) (? e1 

Comparing definitions we have 

(3.3.11) )&% 1,(D; E) = {@ G &%q (D; E): 9Zr(g*a) 0 for all g G G}. 

In particular, &Irq 1) is in the kernel of 9ir. 

3.3.12. LEMMA (W. Schmid [28]). If w0 G &(r7D; E), then Skr4@co) iS well 

defined by (3.3.9), and 

8?k7(cO) - (-1)1 1r(8?O) 

Proof. Split w = + +p where cp G &rq 1)(D; E2) and + lifts to G as 

= fBC(0 A (fC 

B {Y1,81 qr}QAk. 

C = 71p .. * * q-r} C~ AK 

Now (9Zrk)* = fBCaO-C (? eB and so, using (3.3.8) restricted to K, and cal- 
culating e0a,(fBceB) by the product rule, we have 

(3.3.13) (0Rr*)7 = 
Le6A4\<t> LB.C e-o(fBC)w A (O)C eB 

2 -iCv r a1,a2+V<<> (-l)i-nala2fBc(wt)a1 A (0-a2 A 0-(C\ri) (? eB 

al+a2=Ti 
B, C 

+ ?aeA\<(>1BC fBC) ca A (10c (? Ar(ad(e-a))*eB 

Since 

A r(ad(e-))'-B = ep, A ... A epi_1 A [ec-, ecil A e.,l A ... A er 

the third term of the right hand side of (3.3.13) is 

E 1i:<r L A ' \<0> B, C (-1)i1napifBca) A (jc (0 ep,_a A eB\Pi 

Pi-a6Ae 

Similarly 

(3.3.14) (-17(a e A+\<.D>1:BC e-a(fBC)0B A CO- A COc 

t21 E1:i:q-r a1, >2e \<> (1)l-nal,a2fBC(G B A (0-al A -a2 A ()c\ri) 

al+a2=Ti 
B, C 

? i-L?i:r Laia2eA+?b>( -1)r+i-l na,,a2fBcW-al A W)a2 A W-(B\pi) A WOC 
2 atl+a2=Pi 

B,C 

+ lifts of terms in &rq++(D; E) 
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In the third term of the right hand side of (3.3.14), a, + a2 = f3i C Al forces 
one of the al, a2 to be noncompact and the other to be compact. So the 
third term becomes 

1: i:5r ~?k\<1>BC ()l) 0piafBca)-i A+ (A1 AB\Pi) a) (Or A (C 

As nc,,p,- = n-aPin from (3.3.7), we conclude &k7(*) (-_1)rkr(a*). Since 
?-+ C S~r+s)(D; E,), the lemma follows from (3.3.9) and (3.3.11). Q.E.D. 

3.3.15. LEMMA (W. Schmid [28]). Let ao G Rq(D; E2) be such that 
Ha() (rO+?l1(D; E2), so (3.3.11) and Lemma 3.3.12 tell us that JR (g*) = 0 for 
all g G G. Suppose further that every 1k(g*o) is 8-exact. Then there exists 

R C6r'(D; Ej) with a) - a* G &I( )(D; El). 
Proof. Every g C G has unique factorization exp(e)k, e C 4 and k C K, and 

exp(e)K F-- exp(Q) is a Co section to G -*GIK. Now 

(3.3.15') G/K - &? q-r( Y; E2 (9 ArN) by exp(Q)K i-> Rr (exp($)*co) 
is a C- map from GIK to the 8-exact forms in the Frechet space 
&O,q-r(Y; E, (9 ArN). As Y is compact, a has closed range [41], so 

0 - {>* e &Oq-r--1 a* = 0} -> Oq-r-1 > a&Oq-r-l > 0 

is an exact sequence of Frechet spaces. Thus [11 the Co map (3.3.15') lifts 
to a Co map 

G/K > Oq-r- (Y; E2 & A MN) by exp(d)Ki-> qh with 5we = 94 (expQ) (). 

That gives * e &0, -'(D; E2) with d (-1)TSr 9(exp(Q)**). If g e G, say g = pk 
with p = exp(Q), e ? A, and k ? K, then 

9jr(g*(W - a*)) = k*{jZr(p*(0) -(-)r5 9r(P**)} = 0 

Now (o - Ge C 1(OfD; E2) by (3.3.11). Q.E.D. 

Now we prove the Identity Theorem and Theorem 3.2.3 in their Dolbeault 
cohomology formulation. 

3.3.16. THEOREM. Let EA -D be nondegenerate (3.2.1) and let Coe 

60,q(D; En) be a-closed. 
1. If q + s = dim, Y then Co is a-exact. 
2. If q = s and if every Colgy is a-exact, then GO is a-exact. 

Proof (Schmid [281). D is (s + 1)-complete by Theorem 2.5.9, so 
Hq(D; &I) = 0 for q > s, proving so is a-exact if q > s, [1]. 

Now assume q!s. Each Ro(g*Co) = Cojgy C 60 q(Y; En) is a-exact by hypo- 
thesis if q = s, by Lemma 3.3.4 if q < s. Now Lemma 3.3.15 provides 
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As> ? q--1(D; E2) such that o - N e ?(D; En)). 
(0- *, is s-closed, and each Z(g*( o- )) C q O Y; E2 ? N) is s-exact by 
Lemma 3.3.4, so Lemma 3.3.15 provides 

+2 ((D; En) such that 0 - DQq 1 + A2) ? &((D; En) . 
Continuing, we obtain A, C l 3 < j < q, such that o - D(21?..j + +' C 

0?(q7D; En). Every a-closed form in F(D; En) is zero because HO(Y; E2 0 A qN) 0, 
so now io a(*4c1+ + q). Q.E.D. 

3.4. The Main Cohomology Representation Theorem 

Let D be an open orbit of a complex flag manifold X, and let E- D be 
a homogeneous vector bundle over D, using the same notation as in the 
previous sections of this chapter. In the classical case where, say, D is a 
bounded symmetric domain, and E2 is the canonical bundle, H0(D, &a) -F(D, 3) 
is an infinite dimensional Frechet space. Also, if IC is a discrete subgroup of 
G acting on D, then the invariant sections, which we denote by H12(D, 6<2), 
are the classical automorphic forms on D of weight m (cf. Borel [8]; in the 
one-dimensional case one must add an additional growth condition), and are 
a finite dimensional subspace of H0(D, ) when IC is an arithmetic subgroup 
of G. The vanishing theorem of Schmid (Theorem 3.3.16) shows that in the 
general (non-Hermitian) case when D has nontrivial compact complex fibres 
of dimension s > 0, the vector space H0(D, At) 0 0 for nondegenerate holo- 
morphic vector bundles, and thus HI?(D, ,i) =0, and there are no classical 
automorphic forms. However, Theorem 3.2.4 tells us that HS(D, Li) is a 
Frechet space, which we shall see later is infinite dimensional (cf. Schmid 
[28]). Thus we let H18(D, 0K) be the I-invariant cohomology classes in Hs(D, hi) 
and, following Griffiths [15], we call H18(D, &,) the vector space of auto- 
morphic cohomology classes on D (with respect to the particular nondegen- 
erate vector bundle E2,- D). At present it is unknown whether this vector 
space of automorphic cohomology classes is finite dimensional or not. Never- 
theless, we are able to represent automorphic cohomology classes as sections 
of an associated homogeneous vector bundle over the parameter space for 
the fibres, MD, and this we carry out in this section, utilizing the previous 
results. 

Consider the diagram 

1D - D 
(3.4.1) 

M = MD 
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as in (2.5.2). Let E2 - D be a homogeneous holomorphic vector bundle over 
D, whose sheaf of holomorphic sections over D is again denoted by &2. Let 
F2 JD be the pullback bundle F2 = r*E2, and let Hi be the corresponding 
sheaf of holomorphic sections. There is a natural mapping 

(3.4.2) z: H (D, &2) - q D HiF) 

which can, for example, be represented by the pullback of 8-closed E2-valued 
(0, q)-forms on D, by Dolbeault's theorem. 

Suppose now that SY is any coherent analytic sheaf on SD, then, as in 
Section 3.3 we let wuff denote the direct image sheaves on M. The Leray 
spectral sequence for this fibration wc has the form 

(3.4.3) H (M, irff) Hr (ids D) 

Let Hr(C9D, f) and Hq(M, wrlY) be equipped with their natural topologies 
induced by uniform convergence of holomorphic functions on compact sub- 
sets. 

3.4.4. THEOREM. The topological vector space Hr (CD, IT) is a Frechet 
space which is topologically isomorphic to H0(M, wjF). 

Proof. Since M is Stein, by Theorem 2.5.1, we have by Cartan's 
Theorem B that Hr(M, wrpf) = 0 for r > 0, since, by Grauert's direct image 
theorem (Grauert [13]), the direct image sheaves are coherent. Thus the 
spectral sequence (3.4.3) is completely degenerate and we have algebraically 
H0(M, iF) Hq(, Af). Moreover, the natural continuous mapping in the 
spectral sequence giving the above algebraic isomorphism is the edge homo- 
morphism 

(3.4.5) e: Hq(%, A) >H?(M, Zi 

Since e-1(0) is a closed set, it follows that Hq(, IT) is Hausdorff and thus a 
Frechet space. Moreover, H0(M, wIrf) is a Frechet space, and thus e in (3.4.5) 
is a bijective continuous mapping of Frechet spaces. By the open mapping 
theorem we conclude that e is a topological isomorphism. Q.E.D. 

We now return to the pullback mapping (3.4.2). Recall that 
s dim, K/V = dim, Yc D. 

3.4.6. THEOREM. Suppose that E2 D is a non-degenerate homogeneous 
vector bundle. The mapping 

T*HS'(D~ 62) > Hs(%YD WA) 
is a topological injection of Fre'chet spaces. 

Proof. We know by Theorem 3.2.4 that Hs(D, &2) is a Frechet space. 

This content downloaded from 169.229.32.136 on Sun, 25 Aug 2013 15:28:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


AUTOMORPHIC COHOMOLOGY 431 

By Theorem 3.4.4, Hs(C'JD, WA) is also Frechet. We need to show two things: 
first, that z* is algebraically injective, and, second, that z* has closed range. 
The fact that z* has closed range follows from the fact that 9, 

r D is a 
holomorphic fibre bundle. One uses a family of semi-norms on 'JD which are 
compatible via the projection - with a family of semi-norms on D, which is 
simple to construct. Then a sequence of forms f*q, which converge on 'lJD 
to * implies that qA. will converge on D to an element q G 61,q(D, E,), and 
am(p = A. Since -* commutes with 8, we see that z*(Hs(D, 62)) is closed in 
Hs('JD, TA). To see that -* is injective, suppose that we represent e C Hs(D, do) 
by a 8-closed form cp with coefficients in En. Then suppose that -*d = 0 in 
HIS(%D, T,), i.e., -*(p is 8-exact. This implies that m*9 is a-exact on the 
G-translates of the principal fibre Y, i.e., on the fibres of D. Thus we have 
that cp restricted to the fibres of D is 8-exact on those fibres, and hence by 
Theorem 3.3.16 we find that q' is a-exact on D. Thus e 0, and injectivity 
is proved. Q.E.D. 

We can now state and easily prove our principal representation theorem. 

3.4.7. THEOREM. Let E, be a nondegenerate homogeneous vector bundle 
over D. The composition of the mappings (3.4.2) and (3.4.5) is a topological 
injection of Frechet spaces 

a: HS(D, Ad) - H0(M, wTJY2) 

which is equivariant with respect to the action of G. 

Proof. The first part of the theorem follows immediately from Theorems 
3.4.4 and 3.4.6. We merely note that the action of G on E2 and on the homo- 
geneous space D G OG/V induces an action on Hs(D, 62). This action is com- 
patible with the mappings - and wc since the elements of G map fibres of D 
to fibres of D inducing an action on QJD and on M. We then see that the action 
of G on Hs(QJD, i2) induces an action on H0(M, -,Fled) and thus the theorem is 
proved. Q.E.D. 

Remark. The sheaf w8J y2 is a locally free sheaf of rank = dimHs(Y, E2) 
(since 1 is of maximal rank and T2 is a locally free sheaf on CYD). So Theorem 
3.4.7 gives a representation of cohomology on D (with coefficients in En) by 
sections of a holomorphic vector bundle E ,- M whose sheaf of sections is 

F. Note that even if E2 were a homogeneous line bundle on D, it would 
not follow that E, would be a line bundle. Also, we see that the action of 
G on M induces an action of G on the sections of E, M. Thus we could say 
that E, is a homogeneous vector bundle in the general sense. However, M 
can be homogeneous only in the "Hermitian case": 
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3.4.8. PROPOSITION. M is homogeneous under a subgroup of G, if, and 
only if, G/K is Hermitian symmetric with D GIK holomorphic or anti- 
holomorphic along each irreducible factor. 

Proof. The maximal subgroup of G, preserving M is Q= 
{g ? G,: g' Y ci D gg' Y ci D}, which contains G but cannot contain a simple 
factor of G, just when it is homogeneous under G, in which case M_ G/K. 
That is the situation in the "Hermitian case." In the "non-Hermitian case," 
Proposition 2.3.5 shows dim M = dimRGC - dimRL > dim GIK, so M cannot 
be homogeneous. Q.E.D. 

In the notation of Section 2.3, M is a subsetof GC/L, and E- M is the 
restriction of a G,-homogeneous holomorphic bundle ER -* GC/L. The repre- 
sentation of L involved here is seen from the proof of Theorem 3.4.4, the 
Bott-Borel-Weil theorem and Proposition 2.3.5. 

4. Poincare series and integrability 

4.1. The Poincare series of an absolutely integrable cohomology class 

In this section we formulate the basic result on convergence of the 
Poincare series associated to an absolutely integrable cohomology class 
c C Hs(D; hi) and a discrete subgroup F ci G. The convergence follows directly 
from the results of Sections 2 and 3 and a theorem of Griffiths [15]. Then in 
the remainder of Section 4 we show, under appropriate conditions on x, that 
HI(D; &2) contains nonzero absolutely integrable classes. 

Let D = G(x,)c(-X = GC/P as before, so D ?G/GnP. From now on we 
assume that V-G = n P is compact. Thus we have G-invariant Hermitian 
metrics on (the fibres of) the holomorphic tangent bundle TD D, and more 
generally on every homogeneous holomorphic vector bundle. This gives us 
a pointwise inner product on E-valued (p, q)-forms and gives us a G-invariant 
volume element on D. For every real number r > 1 we denote 

(4.1.1) { Ill (D; E) = {pq: | 
I 

(D (X)Ir dx) < Io 

where dx is the invariant volume element and I R(x) II <9(x), 9(x)>"12 is the 
norm associated to the inner product on the fibre of E ? APTt 0 T over 
x e D. We denote 

(4.1.2) Lrpq(D; E): Banach space completion of Fryq(D; E) 

and observe that LP q(D; E) is a Hilbert space with inner product 
*) srpq should not be confused with ; used in Section 3.3 in the proof of Schmid's 

Identity Theorem. 
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(4.1.3) (g, '0) D = p(, *).dx=X T TE 
D D 

Here we are using the Hodge-Kodaira orthocomplementation operators 

_ E_ 

E APT, ? A qTi <' E* (? Ax 'T* (9 A? nqT 
--1 
*E1 

for our inner products, and A is exterior product followed by contraction of 
E with E* (cf. Wells [41], p. 175). The compactly supported C- (p, q) forms 
are in each UPq and dense in Lr, so the latter may be viewed as their 
Banach space completion. 

We say that a Dolbeault cohomology class [k] e HP q(D; E) is of Lebesgue 
class Lr if it is represented by a form R e L, q(D; E), and we denote 

(4.1.4) j'Hr "(D; E): the Lr classes in HP q(D; E) and 
44 

Hrq(D; c) { e Hq(D; &): c corresponds to a class in Hr q(D; E)} 

Later in this chapter we will give sufficient conditions for the existence of 
integrable (L1) and square integrable (L2) cohomology classes. We are inter- 
ested in the integrable classes, but their existence depends on representation- 
theoretic facts about the square integrable classes. 

Let r be a discrete subgroup of G. In other words, since D _ G/V with 
V compact, r is a subgroup of G whose action on D is properly discontinuous: 

if Z c D is compact then {1x e r: -z meets Z} is finite . 

If c e Hq(D; 6) we form the Poincare series 

(4.1.5) 0(c) = 1:', (/) . 

If s = dim, Y as before, our result on convergence of these series is 

4.1.6. THEOREM. Let E, D be a nondegenerate (3.2.1) homogeneous 
holomorphic vector bundle, r a discrete subgroup of G, and c e Hi"(D; 60). 
Then the Poincare series 0(c) = E, -y*(c) converges, in the Fre'chet topology 
of Hg(D; &J, to a r-invariant class. 

Convergence of the Poincare series for L, classes in dimension s was 
conjectured by Griffiths [15, p. 616] for the case where El is a high power 
of the canonical bundle. In view of Proposition 3.2.7, a high power of the 
canonical bundle is nondegenerate only when P is a Borel subgroup of Gc, 
that is, only when V is reduced to H. The result that Griffiths proves in 
[15] is a weak form of Theorem 4.1.7 below in which nondegeneracy is not 
required (except perhaps implicitly for the existence of L, classes), but the 
fibres g Y of D - GIK are required to be complete intersections in D (which 
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may be true in general but is only known in a few particular cases). 
These results are related to some theorems of Godement, Harish-Chandra, 

and Borel (see [8], ? 9) which are proved by methods of harmonic analysis on 
G. Those theorems apply to the case where 

c is K-finite, i.e., {k*c: k e K} has finite dimensional span 

and 

c is 23-finite, where 83 is the center of the enveloping algebra of g, . 

We will see below that 23-finiteness is not a serious restriction, but K-finite- 
ness essentially says that c has a finite Fourier series. At any rate, in this 
case one has by their methods convergence of 0(c), and also the result that 
0(c) has a bounded F-invariant Dolbeault representative. 

Let a: H8(D; Hl) -H(M; wz**) be the G-equivariant Frechet injection 
of Theorem 3.4.7. Then we can form the Poincare series for a(c) and r, and 
prove 

4.1.7. THEOREM. Let E2 D be a nondegenerate (3.2.1) homogeneous 
holomorphic vector bundle, F a discrete subgroup of G, and c e HfS(D; &2). 
Then the Poincare' series on M 

O(a(c)) = Erer y*(a(c)) 

converges in the Frechet topology to a P-invariant section in H0(M; Z.*',6). 

Theorem 4.1.6 is a consequence of Theorems 3.4.7 and 4.1.7. 
The remainder of Section 4.1 is a proof of Theorem 4.1.7 following 

Griffiths' line of argument [15, pp. 619-623], but using nondegeneracy to 
simplify matters, clarify some technical points, and avoid the restriction 
that the fibres of D - GIK be complete intersections. 

Fix a 8-closed L1 form q e &?-3(D; En) whose Dolbeault class [P] G Hf'8?(D; En) 
corresponds to c. If Z is a compact subset of D, let b(Z) denote the (finite) 
number of elements a e IF such that a(Z) meets Z. Evidently 

(4.1.8) bl p 11lIz b 9(z) II( dx d eF l() (I dx, b = b(Z) 

for every finite subset F c F. 
The inclusion g Ye D induces the restriction rg: H8(D; &K) -H8(g Y; &). 

Note that H-(g Y; &2) is the fibre over g Ye M = MD of the vector bundle 
whose sheaf of germs of holomorphic sections is wr-z-*&2 M. Thus 

(4.1.9) a(c)(g Y) = rg(), g e G, with g Y c D . 

Using Corollary 3.2.6 and Serre duality on g Y, we denote the map on dual 
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spaces induced from rg by 

(4.1.10) r*: H?(g Y; & ? gY) -* Hcr(D; & ? CD) ) 

Given , e H?(g Y; &2 ? XgJ) = H8s0(g Y; E2), and c = [k] e H8(D; &2) we have 

<a(c)(g Y), *> = <rg(P), *> = <K, r**> = T 7 rg*. D 

We will use this to calculate 

4.1.11. LEMMA. Let r e H0(g Y; ? XCgy) and let F be a finite subset 
of F. Then there is a constant a = a(*r; F) > 0 such that 

EreF 
I <y*q(c)(gY), *> ? a IIp1 11 . 

Proof. r*r has compact support Z c D. Now denote a = 

b(Z).supxZ H rr*()(x) b(Z)*supx.rz 11 (y-l)*r**(x) Observe that 

<k*q(c)(gy) *> = <rgy*9, *> = <KY*, r*I> 

5Y7*9 A r*j 5 y*( 9 A(y-)*q*9) = 5 9 A (yl)*r* 

That gives 

<I *f(c)(g Y), *> ? < p(x) I I - I (y-l)*r* (x) I I dx b(Z) 1 (z) dx 

The assertion now follows from (4.1.8). Q.E.D. 

Now we must be more precise about the support of rg as cohomology 
class: 

4.1.12. LEMMA. If /r e H?(g Y; X ? fCgy) then the compactly supported 
class r* ,r, viewed as a linear functional on H8(D; &2), has support in g Y. 
In particular, if U is a neighborhood of g Y in D, then r>/ is represented 
by a form in S60'8(D; E2) with support in U. 

Proof. In the duality 

H? q(D, E2) H- 0 H?' -q(D, KD 0 E1) 
we have used CP forms above to represent the pairing by integration, but 
to compute compact supports it is easier to represent H,,',-q(D, KD (0 E*) by 
currents. First we note that 

Ho n-q(Dj KD 0 Efl )- Hn-q(Dj E*), 

and if T e XnJn-q(D, E*) is a current of type (n, n - q) with coefficients in E* 
and with compact support, then the current pairing <T, d> is well defined 
for ? c wo (D, E2) (currents in YJnn-(D, E*) with compact support can be 
defined as the dual space to &O?q(D, E), cf. e.g., Serre [33], Wells [42], Harvey 

This content downloaded from 169.229.32.136 on Sun, 25 Aug 2013 15:28:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


436 R. 0. WELLS, JR. AND J. A. WOLF 

[22]). Thus we have 

H'(DI E) r2Hs(g Y E) 

I r* I 
H?&&-8(D_ E2) < 9 H8'0(Y, E*). 

Define the current Tg acting on forms & e C6'8(D, Ej) by 

<T9Y d>=@ r 9 e *g 7T rg(e) gy gy 
where *rg given above is an element of H0(g Y, Kgy ? Er), i.e., an (s, 0)-form 
which is 8-closed with coefficients in E*. Thus */g A e is a scalar (s, s)-form 
on g Y and the integration makes sense, giving a well defined current. 
Moreover aTg = 0, since 

<aTg, > <Tg, at> 

= @~y~~ A g7 0 
*g 

gy 
after integrating by parts once. Thus Tg is a current representing a 
cohomology class in HT 'T8(D, E*) with support equal to g Y. We now show 
that the class represented by Tg is indeed r*(*g), but this is clear since 

<rg*(*rg) t <*rg, rg(e)> 

* grg rg(t) gy 
which is the definition of the action of Tg on d. Q.E.D. 

4.1.13. LEMMA. Let x, e M. Then there exists a compact neighborhood 
U of x0 in M such that, given s > 0, there exists a finite subset F c1 r with 

re' r-F I <Y*(U(9))g, 9> g>< 

for gL e U. 

Proof. Choose U to be a compact neighborhood of x, such that UgLe U g Y 
is compact in D. Let *,(g) e HC? "-q(D, KD ? E*) be defined by rQ*(rg). By 
Lemma 4.1.12, supp *,(g) = g Y. We can choose a Coo representative *(g) for 
*,(g) with support close to g Y (but not equal to g Y, which is impossible), 
and we can choose these representatives A(g) with supports close enough to 
g Y so that 

U2eU Supp *(g) = C 
is compact in D. Let 
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a = supz6 I *K(g) Ix 
1 e U 

Then ac < I. Now p is given by hypothesis to be in L', so we can choose C 
large and compact in D so that 

ID-CI 9 <ab(C) 
Let 

F- {= C r: a Cal 0}, 
which is a finite set by proper discontinuity of r. For gL e U, we have 

L}C -F |<7 *(Uf(r)),, 1e9> I }C r-F@ 19T| ()| 

? a CE C er-F| 9l dx 

?ab(C) I _91dx<s. Q.E.D. 
D-(a 

In conclusion we see that Lemma 4.1.11 and Lemma 4.1.13 combine to 
give the convergence of 

A C r ( /*(((P())g1 10g> 

uniformly on compact subsets of M. But since the fibre of the vector bundle 
associated with the locally free sheaf wSO(z-*E2) is given by H8(g Y, En), and 
Pg is an element of the dual space of this fibre for each X c M, we can con- 
clude that the Poincare series 

converges uniformly on compact subsets of M. This completes the proof of 
Theorem 4.1.8. 

4.2. Square integrable cohomology 

In order to obtain the absolutely integrable cohomology classes that we 
need for the Poincare series in Theorems 4.1.6 and 4.1.7, we apply some 
unitary representation theory to the cohomology groups based on square 
integrable forms. In this section we discuss those square integrable coho- 
mology spaces. 

As before, D = G(x0) ci X = GC/P, so D _GIG f P and we assume that 
V = G n P is compact. E -k D is a homogeneous holomorphic vector bundle 
with a G-invariant hermitian metric; that is, E - D = G/V is associated to 
a unitary representation of V. We also have a G-invariant Hermitian metric 
on the holomorphic tangent bundle TD D, and thus a G-invariant volume 
element dx on D. The operator 
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a: &p q(D; E) -> U1q+l(D; E) 

has formal adjoint P3* *E*a*E, where *E* and *E are the Hodge-Kodaira 
orthocomplementation operators as in Section 4.1 (cf. Wells [41], p. 177). Let 

(4.2.1) = (4 + a*)2 = a* + a*a 
be the Kodaira-Hodge-Laplace operator acting on &P q(D; E). View a] as an 
operator on L,,,q(D; E) with dense domain consisting of the compactly sup- 
ported Co E-valued (p, q)-forms on D. The work [4] of Andreotti-Vesentini 
shows that [I is essentially self-adjoint; that is, r] has a unique self-adjoint 
extension, which is its closure. We also write a for the closure. Andreotti 
and Vesentini also show that the Hilbert space Lp q(D; E) is an orthogonal 
direct sum 

(4.2.2) Lp q(D; E) = XCP q(D; E) (Dcl[aLP-l(D; E)] 0Dcl[a*Lp q+l(D; E)] 
where 

D2 has kernel X7P q(D; E)cE&,q(D; E), 
(4.2.3) a has kernel XCP q(D; E) 03 cl[5L2Pq-l(D; E)] 

3* has kernel yJP q(D; E) (D cl[a*Lp q+1(D; E)] . 

A form T e L2p q(D; E) is called harmonic if Liiq = 0. From (4.2.2) and (4.2.3), 
we see that the Hilbert space 

XCr q(D; E): square integrable harmonic E-valued (p, q)-forms on D 
is the analogue of Dolbeault cohomology where one only uses square inte- 
grable forms, and so we call it the square integrable cohomology group. 

The action of G commutes with 3, *E and *E*, thus also with P. Now 
G commutes with lI and acts on XCP q(D; E). It is easy to see that this action 
is a unitary representation. If , is an irreducible representation of V, we 
denote 

(4.2.4) wq: unitary representations of G on XC?q(D; Es). 
The representations wq now are completely understood ([301, [45], [32]), and 
we proceed to describe them. 

Let G denote the set of all equivalence classes [71] of irreducible unitary 
representations w of G. The discrete series of G is 

GdiSC = {[w] e G: [w] is a subrepresentation of the regular representation}. 
If [z] e G, then H1 denotes its representation space, and the coefficients of 
[w] are the functions 

f G-> C by f.,(g) = (u, w(g)v); u, v e H,. 

If [z] e G then the following conditions are equivalent: 
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(i GZ Gdisc; 

(4.2.5) (ii) there exist nonzero u, v e H., with fv e L2(G); 
(iii) whenever u, v e H, the coefficient fG e L2(G) . 

In view of (4.2.5), the discrete series classes are often called square integrable. 
We say that a vector v e H., is K-finite if {w(k)v: k e K} is contained in a 
finite dimensional subspace of H.,. Restricting w to K one sees that K-finite 
vectors are dense in H,. The L, analog of (4.2.5) is: A class [w] e G is 

(4.2.6) integrable if flu, e L1(G) for all K-finite u, v e H, . 
Since I f.,, (g) ? ! I I u I I - I I v 1, L, implies L2, and so integrable classes are square 
integrable. The converse is false. 

The space of compactly supported CW functions G -- C is denoted by 
Cc(G), and we view it with the standard locally convex topology. If [w] e G 
then 7(f) =0f(g)w(g)dg is a trace class operator on H. for every fe Cc(G), 

G 

and 

(4.2.7) E): C -(G) - C by E)(f) = trace w(f) 

is continuous, i.e., is a Schwartz distribution on G. The distribution eA is 
called the global or distribution character of [w], and it specifies [w] within 
G. In addition, eB is invariant under conjugation by elements of G, and it 
is an eigendistribution of 

&3: algebra of bi-invariant differential operators on G . 

The eigenvalues define the infinitesimal character of [w] 

(4.2.8) XZ: 3 -> C homomorphism by ze, = X(z)) . 
G has a dense open subset, the regular set, given by 

G' = {g e G: {d e g: Ad(g)d =} is a Cartan subalgebra of g} . 
Harish-Chandra proved 

(4.2.9) e) is a locally L1 function on G, analytic on G' . 
Now we can state Harish-Chandra's description ([20], [21], [45]) of Gdisc 

in our notation. For convenience, replace G, by a finite cover if necessary 
so that p = PG exponentiates to a well defined character eP on the compact 
Cartan subgroup H of G. Then 

AGH = HT I,+ (e/2 _ e-a/2) 

is well defined on H and nonzero on H n G'. Let 

A'l{x e if*: el defined and co(x) # 0} where Co(X) = IIaA a> . 
If X e A', Harish-Chandra associates a class [ad] e Gdisc, characterized by 
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(4.2.10) (8)7rlHnG' = CG(-1Jq~) (11AGH)E det4 (w)ew 
where 

(4.2.11) q(X) {a e AK <, a><0}I + I{ e A+: <X, ?>>0}I 

and the summation runs over the Weyl group WGH = WKH. Every class in 
GdiSi is one of the [w21 just specified, and discrete series classes [w21 [Xi,] if 
and only if ' e WGH(X)- 

Now we can specify the representations wri of G on the square integrable 
cohomology spaces XC? q(D; E,). Let X be the highest weight of A, so 
[I] -[ It2] e V and EM = En. Combining [45, Theorem 7.2.3] with the recent 
vanishing theorems of Schmid [32] (cf. [31], [37]), we have 

(i) if X + p e A' then every XC? q(D; En) = 0, 

(4.2.12 A (ii, if X + p C A' and q q(X + p) then XC? q(D; EA) = O. 

( )(iii) if X + p e A' and q q(X + p) then wq belongs to the discrete 
series class [Z2+p]. 

See Section 4.3 below for a sketchy indication of the proof. 
We will say that E2 D is L,-nonsingular if 

(4.2.13) X + p e A', and <x + p. ,S> I> 1 ZaeA+ <a, f> I for all le As . 
2 

Trombi and Varadarajan [36] proved that (4.2.13) is a necessary condition for 
the square integrable class [ir2+p] to be integrable, and recently Hecht and 
Schmid [23, 24] completed the proof that (4.2.13) is sufficient for [7c2+p] to be 
integrable. Thus (4.2.12) specializes to 

4.2.14. PROPOSITION. Let EY E D be an L1-nonsingular (4.2.13) homo- 
geneous holomorphic vector bundle. The G acts on XfC q,+?p)(D; En) by the 
integrable discrete series representation [2+pl]. 

Recall (3.1.12) the simple root system T {v1 ..., pq} for (gc, A+) such 
that <D {=i, ..., orp,}. Consider X defined by the integers ni = 2<X, vi>/ 
<i, pi> where 

(i) if i ? r then ni > max {o, -2<Sl<+ . +ft, pi> with 
<9i, q-i> 

is 
... 

* *st e A+ distinct} and 

(4.2.15) (ii) if r < i then ni is sufficiently large negative so that 
(a) <X + S1 + - - * +St, 7> < -<PK, X> for - e AK\<@> and 

lj e / z+ distinct. 

(b) <X+pfl>< ae - a S.Aforall/S8eAs. 2 ,+I<,8 fral8GA 
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Then (i) without the 0 and (iia) say that El - D is nondegenerate (3.2.1). 
The 0 in (i) says <x + p, a> > O for all a e <PD>, (iia) with t = O says <x + p, v> < O 
for all Y C AZ\<K$> and (iib) implies <S + p, /> <0 for all / e As; so X + p C A' 
with q() + p) = I AZ\<KP> s. Glancing back at (4.2.13) we now see 

4.2.16. PROPOSITION. A homogeneous holomorphic vector bundle E, D 
satisfies (4.2.15) if and only if it is nondegenerate (3.2.1) and L1-nonsingular 
(4.2.13) with q(x + p) = s. In that case, JCo?(D; E;) 0 for q # s, and G 
acts on ThC0(D; EA) by the integrable discrete series representation [Zips]. 

4.3. Absolute integrability of K-finite cohomology 

Retain the setup of Section 4.2. Every square integrable harmonic 
form is Co and 8-closed, and so defines a Dolbeault cohomology class. That 
gives us a G-equivariant homomorphism 

(4.3.1) -JCo?(D; E) - HO?q(D; E) by cv - cv + &o4q-l(D; E) 

of our square integrable cohomology space to the subspace HO?q(D; E) re- 
presented by square integrable forms. In this section we examine the iso- 
morphism of (4.2.12 (iii)) to see, for E = El satisfying (4.2.15), that (4.3.1) 
gives a G-isomorphism of fC0s(D, E) onto H2's(D; E) which maps the dense 
subspace of K-finite classes into H2's(D; E). That provides the L, cohomology 
classes which we can sum in the Poincare series of Theorems 4.1.6 and 4.1.7. 

Several comments are in order before we proceed. First, the natural 
map (4.3.1) is not injective in general; Theorem 3.2.3 and Proposition 4.2.14 
give situations in which X7O q(D; E) is infinite dimensional and Ho?q(D; E) = 0; 
for example, q = 1 with any positive power of the holomorphic tangent 
bundle over the unit disc. Second, given (4.2.15), a class in TC0's(D; En) does 
not have to be K-finite to map into HO's(D; En); one only needs that its 
K-isotypic components go to zero fast enough. Third, one can prove the 
results of this section using the methods of [28] and [29] together with some 
L1 a priori estimates based on [36] that was done in the original version of 
this paper-but here we take a shorter route using recent results ([31], [32]) 
of W. Schmid. 

Fix [te] e V, say with highest weight x, such that X + p e A', and let 
q q(X + p). We need Schmid's equivalence [32] of 7Cq with the discrete 
series representation c+, of G. 

Whenever [w] e G, we write H., for the space of K-finite vectors in the 
representation space H,. It consists of analytic vectors, and is a module 
for the universal enveloping algebra 6 of g,. Let QK e 6 denote the "Casimir" 
element that is the sum of the squares of a basis of f, orthonormal with 
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respect to the Killing form of g,. Each dwr(QK)j is a symmetric operator on 
Hz-, and we set 

H = nf=l (domain of HD-closure of dw(QK)j|,?-) 4 

It is equal to the intersection of the closures of the dw(E), E C 0, from Hz; 
and of course Hz c Hz c Hz. 

Let a: H.: ? A(T)* Hz , ?A(pn)* denote the coboundary operator for 
Lie algebra cohomology of the p"-module Hz . We proceed as in [30, ? 3] and 
[32, ? 3], using pn in place of ?,+gc- and V G n P in place of the compact 
Cartan subgroup H, to examine the cohomologies HP(4p"; Hz2). The usual 
AdG(K)-invariant positive Hermitian inner product <d, r> O-(d, O( )) on qc 
gives a Hilbert space structure to pn and thus also to HI, 0 A(pn)*. As in 
[30] and [32], a + a* is essentially self adjoint there from the domain 
Hz 0 AW (n)*, so each "harmonic space" X5(P(w) (=kernel of closure of 
(a + &*)|H ?AP(n*) is a closed subspace. Let A denote the square of the closure 
a + a*, so that 3K17P(w) is the kernel of A on Hz 0 Ap(Tn)*. Then, as in [32, 
Lemma 3.6], q' F-* (Lie algebra cohomology class of Ap) defines a V-module 
isomorphism X7{P(w) HP(p,; Hz'), and as in [32, Lemma 3.21] Hz > H' defines 
a V-module isomorphism HP(Qp"; Hz) -HQ(pt; HI). Therefore, as in [32, 
Thm. 3.1], 

(4.3.2) x7CP(w) is V-module isomorphic to HP(p"; H1?) . 

If M is a V-module then MV denotes the subspace of V-fixed vectors. 
If [pie] e V we write M2 for the ,I-t-isotopic component of M, and so 
dim(M ? E)' = dim(M-1 0 El)V is the multiple of , by which V acts on 
M2i. 

We use Harish-Chandra's notation for infinitesimal characters of classes 
[Xn] e G. Thus, if X e GA' the discrete series class [nro] has infinitesimal char- 
acter XI. 

Fix [ha] e V. Schmid's result [30, Lemma 6] holds in our situation, in 
the form 

(4.3.3) 5-C0'P(D; En) Hr (0 {ICKP(w*) (? EI}Idw 

as unitary G-module, where dw is Plancherel measure. If we write vP for 
the action of V on AP (Pr)* induced by AdG, then this isomorphism comes from 

XYC0' (D; En) > {f: G - A p(Pn) * 0 Em: IIf e L2, f(gv) = (0P (8 Mt)(v)-'f(g)} 
{F e 12(G) 0 AP(T)* ( Em: (r (? UP' (e p2)(v)F = F} 

= AH {HZ 0 AP(An)* 0 E4vdo 
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and comparison of A with the Hodge-Kodaira-Laplace operator (4.2.1). A 
result [47] of Casselman and Osborne also holds here: if HP(pl,; Hr*)_ # 0 
then w has infinitesimal character Z2, Note that (4.2.12(i)) follows using 
(4.3.2). Now, as in [32, Cor. 3.22 and 3.23], 

(4.3.4a) w; is a sum of discrete series representations of G 

and 
(4.3.4b) [J] C GdISC has multiplicity dim{lXP(w*) ? E}1' in wo 

The remainder of Schmid's proof [32] of (4.2.12) consists of combining [26] 
and [31] with a close look at the Hochschild-Serre spectral sequence for the 
?&-cohomology of an (H 7)Z relative to the subalgebra 4n f fC; it gives us: if 

[wj] C GdiSC where v - p is V-dominant, then 

'dim{HP(p; Hi*) ? En}; = 1 if v = X + p and p = q(>, + 6)), 
0= otherwise . 

Now (4.2.12) follows from (4.3.2), (4.3.4) and (4.3.5). 
Now we reverse the map that gives (4.3.3). Fix a discrete series class 

[7+p]. Using the Weyl group W(G, H) we may suppose that X is V-dominant, 
i.e., that we have [tg] El V. Using (4.3.2) and (4.3.5) with q =q( + p), the 
isomorphism H,,?+p - o q(D; E,) is given by 

(4.3.6) ,,r + p ~ 0 E,+}' 
H 0 H* 0 / q(pn)* (gE c L2(G) 0 Aq(pn)* 0 El. 

As in [32, Lemma 3.4], Xq(7Op)c((Hr* q(pn)*. Also, if [w] C GdiSC then 
H, (0 (Hr*}) i> L2(G) has image in C-(G). Since the 

Hal+ p 0 [{(H,*,+ p)'0 (0 Ap(PTI} 0 E,]V >O SP(D; E ) 

+P [{(Hp () ? 
Ap+l(Pn)*} (0 E]jV> C '0P+1(D; El) 

commute, and since every 3-cocycle in (H,*,)'w ? Aq'(pn)* is cohomologous to 
one in (H,*j+p)? 0 Aq(pn)*, now every form in the image of (4.3.6) is a-coho- 
mologous to one in the image of 

(4.3.7) H,+ ( (H* + 0 qn)* E2 E -> {L2(G) n C-(G)} 0 A q(p7,)* (0 El. 

In particular, every form in the image of HZ,_p under (4.3.6) is a-coho- 
mologous to a form in the image of Hr-+p (& (H0 *,+,+) 0 A (pn)* (0 El under 
(4.3.7). That gives us 

4.3.8. THEOREM. If E- D is L,-nonsingular and q = q(?, + p), then 
the natural map (4.3.1) sends every K-finite element of XOKq(D; En) into 
Hl0 q(D; El). 

This content downloaded from 169.229.32.136 on Sun, 25 Aug 2013 15:28:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


444 R. 0. WELLS, JR. AND J. A. WOLF 

Of course, Theorem 4.3.8 is not very useful unless the natural map 
(4.3.1) is nontrivial. For that, we will prove 

4.3.9. THEOREM. Let El - D be a nondegenerate (3.2.1) homogeneous 
holomorphic vector bundle. Then the natural map XC?q(D; El) - H?~ (D; El) 
is a topological injection, with image H2, q(D; E2), for 0 ? q ? s. 

We start the proof with two technical lemmas. Recall, from Section 3.3, 
the spaces &%"(D; El) of all E2-valued (0, p)-forms on D that vanish to order > r 
on every fibre g Y of D > GIK. Also recall the holomorphic normal bundle 
N -~ Y to Y in 9) and the maps Rr: &'rP(D; E2) >O &p-r( Y, E (8 ArN). 

4.3.10. LEMMA. Let 

ov G LI, q(D; El) n &%?rq(D; El) n 8&0 q-'(D; El) 

with 0 ? r ? q and 0 < q < s. Then there exists * e Lo q-l(D; E2) nl ?-'(D; El) 
with 9 - O 1)(D; El). 

Proof. First, suppose that {9gy} c 6' '( Y; El ? A rN) is a C- family of 
a-exact forms parameterized by GIK, where 0 # p # s + 1. We show that 
there is another C- family {*gy} c U' P-l(Y; E2 ? AMrN) with 3Jgy = 9gy and 
L2-norms over Y satisfying yII'UY <YcpCggy I' for some c > 0. For let 

{1gy}cU0P'-'(Y; E2 0 MrN) be any C- family with aCgy = 9gy. Lemma 3.3.4 
says H0'-'( Y; E; r MN) = 0, and Y is compact, so the Laplacian MY for 
E2 0 MrN > Y has bounded inverse 9 on L2? -'(Y; E, 0 M rN), say 11 1 c. 

Set 2gy_= -a*arg. That gives a C- family, a/gyg aDYg~gyY agy = gY, 

and 
I I(pg_ 12 = I l I[ +*g 112y~ > C-1 11 *gy IIY, 

gy Y - (Fjy~kgy, 'i/gy)y ?C '/gYY 

as claimed. 
Now let S be the image of a C- section to G G/K and set 9gy =r(g*P) 

for g ? S. That is a C- family in &O(q-r( Y; EA (0 MrN). Each pgy is a-exact: if 
q - r < s, gy is a-closed by Lemma 3.3.12 and so a-exact by Lemma 3.3.4; 
if q -r = s then r = 0 and, if q = %y, pgy = (g*%)ly = a((g*C)ly). The 
paragraph above, gives us a C- family 

I+gyl (Y; E (3 A rN) with a*gy = pgy and HUYl Y < c Y9gYHY . 

The formula for Rr in the first few lines of the proof of Lemma 3.3.12 pro- 
vides * G ?Orq-'(D; E2) with 9r(g*b) = /gy and 11g**1< 

I I kgY II for g e S. 
Now the L2-norm of * over D is finite: 

/2 
I 
I g** 12 d(gK) G | 1g 12 d(gK) G/K G/K 

<CI jlgyd(gK) c g*9d(gK) = Cll2j < oo. 
G/K G/K 
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So e E LO -l(D; E,) D &-60q)-'(D; En). Each 9k,(g*(p - 0 by construction 
of A, which says cp - C )(,D; En). Q.E.D. 

4.3.11. LEMMA. In Lemma 4.3.10, if p is K-finite and 3-finite then + 
can be chosen so that 9-a p is K-finite, 3-finite and square integrable. 

Proof. Let F c K be a finite subset such that 9 transforms under F. 
In other words, if dF is the sum of the normalized characters deg(r) trace ic, 
ac G F, then aF*9 = aF(k)k*(9)dk is equal to 9. Start with * given by 

K 

Lemma 4.3.10 and define a' =aF*. Then *' C LI -l(D; En) n Lr'(D; En), A' 
is K-finite, and 9-8 aF*(- ) (r+1)(D; E2). 

As 9 is K-finite and 3-finite, it transforms under G by some finite subset 
Jc GdISC. Let i3, be the sum of the normalized characters deg(z)E),, deg(w) 
meaning formal degree, and set A" 5 = Sj(g)g*V'dg. r" remains 

K-finite, in L',q-l(D; En) n SI, q -'(D; En), and such that - e"-,S, E 
(r1+l)(D; En). But A" also is 3-finite. 

Recall the Casimir operators QK, QG c . Express A" f A Eo-C 

where Bc-As, CcIA\$D and BI- r. As A" is L2 and 3-finite, each 
QG(fBC) L2(G). As A" is K-finite, each QK(fC) C L2(G). Taking a linear 
combination, we see that each E e(e-a(fBc)) eL2(G). Integrating 

S 

(I , eae_.fBc, fBc) by parts, we get e B(fBc) C L2(G) for every a C Al. 
We use (3.3.8) to calculate 5*" = (a*")r + (*"X)r+l + (5*")r+2 where 

subscript denotes exact order of vanishing on the fibres of D GIK. Here 

(a f)r+2 2 Li/; 6 C EaP eAS+ /B,C (-?n,P)fB,Cco0A /\ eA A (/)/\ II 
2 

a+ =7T 

is square integrable because each fBc C L2(G), 

(a lf)r+l EeAS EB,C ea(fBc)ora) or B A \c 

is square integrable because each e.(f BC) e L2(G), and ("')r = Pr, because 
9 - D+" E F(r+l)(D; E,), which gives its square integrability. So now 

9 -@+ E LI q(D; En) n 61?q , (D; E) . 

But a commutes with the action of K and of 3, so 5*" inherits K-finiteness 
and 3-finiteness from A", and now also 9- +" is K-finite and 3-finite. 

Q.E.D. 

Proof of Theorem 4.3.9. We first prove infectivity on K-finite elements 
of SJC? (D; En). 

Let 9 _ yC? q(D; E2) be K-finite and 8-exact. Note that 9 is 3-finite because 
G is irreducible on XICq(D; En). Lemmas 4.3.10 and 4.3.11 give us 

E L q-'(D; En) such that 9- is K-finite, 3-finite, L2 and in &?,q (D; En). 
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Now apply Lemmas 4.3.10 and 4.3.11 to gi - 8 , with r 1 to get 
*2 C L02q-l(D; EA) such that g - 8( + *2) is K-finite, &-finite, L2 and in 
R(,D; En). Iterating, we have {'1r *.., qJq}cL~q-l(D; EA) such that 

a- (+ **Jeq)e Lq(D; En) n 0Aq(D; E) -0. So now 9 = 8(*i+.** + *q) 
lies in XCoq(D; E2) n aL',q-l(D; E2) = 0. 

We have just seen XCO?q(D; E2) -H q(D; E2) infective on the dense sub- 
space of K-finite vectors. It is continuous, so now it must be injective. Q.E.D. 

Finally, we combine Theorems 4.3.8 and 4.3.9 to see 
4.3.12. THEOREM. Let E2 o D be a nondegenerate (3.2.1) L1-nonsingular 

(4.2.13) homogeneous holomorphic vector bundle with q(X + p) = s. Then G 
acts on H2(D; En) by the integrable discrete series representation [7r,+p, and 
every K-finite class c e H23(D; En) is absolutely integrable, i.e. is in Hl (D; E,). 

This provides the promised abundance of L1 cohomology classes that we 
can sum in the Poincare series of Theorems 4.1.6 and 4.1.7. 
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