POINCARÉ THETA SERIES AND L_1 COHOMOLOGY

R. O. WELLS, JR.* AND JOSEPH A. WOLF**

1. Introduction. Ninety-five years ago, Poincaré revolutionized the theory of automorphic forms by introducing the method of summing over a discontinuous group. In modern language and somewhat greater generality, one has

D: a bounded symmetric domain in C^n ;

K: the canonical line bundle (of (n, 0)-forms) over D; and

 Γ : a discontinuous group of analytic automorphisms of D.

One considers holomorphic sections φ of powers $K^m \to D$, for example $(dz^1 \land \dots \land dz^n)^m$, and forms the *Poincaré theta series*

$$\theta(\varphi) = \sum_{\gamma \in \Gamma} \gamma^*(\varphi) \equiv \sum_{\gamma \in \Gamma} \varphi \circ \gamma^{-1}.$$

 K^m carries a natural Γ -invariant hermitian metric, and if m is sufficiently large $(m \ge 2 \text{ for the unit disc in } C)$, then $K^m \to D$ has absolutely integrable holomorphic sections; in fact $(dz^1 \wedge \cdots \wedge dz^n)^m$ is L_1 . When φ is L_1 , the series $\theta(\varphi)$ is absolutely convergent, uniformly on compact subsets of D, and represents a Γ -invariant holomorphic section of $K^m \to D$. The Γ -invariant holomorphic sections of $K^m \to D$ are the Γ -automorphic forms of weight m on D. See Borel [4] for a systematic discussion.

Poincaré's construction is the primary source of automorphic forms on D. The automorphic forms of a given weight m form a finite-dimensional space $H^0_T(D; \mathcal{O}(K^m))$. For m sufficiently large, the corresponding map of $\Gamma \setminus D$ is a quasiprojective embedding, i.e., the quotients of elements of $H^0_T(D; \mathcal{O}(K^m))$ generate the function field of $\Gamma \setminus D$.

AMS (MOS) subject classifications (1970). Primary 32M10, 32N05, 32F10.

^{*}Research partially supported by NSF grant MPS75-05270; Alexander von Humboldt Foundation awardee.

^{**}Research partially supported by NSF grant MPS74-01477.

An important aspect of automorphic function theory in several variables is the special case

$$D = \{p \times p \text{ complex matrices } Z : Z = {}^{t}Z \text{ and } I - ZZ^{*} \gg 0\},$$

which is analytically equivalent to the "Siegel upper half-space"

$$H_b = \{p \times p \text{ complex matrices } Z : Z = {}^tZ \text{ and Im } Z \gg 0\}$$

of degree p. It has complex dimension p(p + 1)/2, and is the space of normalized Riemann period matrices of degree p. For appropriate choice of Γ , the equivalence classes of period matrices of Riemann surfaces of genus p sit in $\Gamma \setminus D$.

When Griffiths studied periods of integrals on algebraic manifolds [8], [9], he saw that generally the corresponding period matrix domains D are not bounded symmetric domains. In fact [20], they carry no nonconstant holomorphic functions. These period matrix domains belong to a well-understood [12], [20] class of open homogeneous complex manifolds that we call flag domains. Here the first difficulty (see Schmid [12], [13]) is that one cannot expect to find sections of line bundles, or even vector bundles, but must look to cohomology of degree $s = \dim_{\mathbb{C}} Y$ where Y is a maximal compact subvariety of D. In particular there are no automorphic forms in the classical sense on D, and one is led to the automorphic cohomology space

$$H^s(D; \mathcal{O}(E)) = \{ \Gamma \text{-invariant classes in } H^s(D; \mathcal{O}(E)) \}$$

where $E \rightarrow D$ is a "nondegenerate" homogeneous holomorphic vector bundle.

At present, very little is known about automorphic cohomology, especially when $\Gamma \setminus D$ is noncompact. For example, even in the Griffiths period domain case one does not know whether $H_F^s(D; \mathcal{O}(E))$ is finite dimensional, nor does one know how to relate it to function theory on $\Gamma \setminus D$. Recently, however, we constructed absolutely integrable cohomology classes $\varphi \in H^s(D; \mathcal{O}(E))$ for a certain specific class of bundles $E \to D$, and we showed that the Poincaré series $\theta(\varphi) = \sum_{\gamma \in \Gamma} \gamma^*(\varphi)$ always converges to an automorphic cohomology class. That is what we describe below.

The detailed proof of the theorems discussed in this paper appear in [18]. Some of these results had been announced previously by one of us in a preliminary fashion in [17].

2. Flag domains. A complex flag manifold is a compact complex homogeneous space $X = G_c/P$ where G_c is a complex semisimple Lie group and P is a parabolic subgroup. Fix a noncompact real form G of G_c . Then G has only finitely many orbits on X, so in particular there are open orbits. A flag domain is a (necessarily open) orbit $G(x) \subset X$ on which the isotropy subgroups of G are compact. Replacing P by a conjugate, the flag domains have the form $D = G(x_0) \cong G/V$ where $x_0 = 1 \cdot P$ and $V = G \cap P$ is compact. Then V contains a compact Cartan subgroup H of G, so it sits in a unique maximal compact subgroup K of G, and we have $Y = [K(x_0) \cong K/V]$: maximal compact subvariety of D]. All this is classical [20].

We now consider the "linear deformation space" $\pi: \mathscr{Y} \to M$ of Y, given as follows. M is the set of all gY, $g \in G_c$, such that $gY \subset D$, and \mathscr{Y} is the disjoint union of these gY with $\pi(gY) = \{gY\}$. More precisely, let $L = \{g \in G_c : gY = Y\}$. Then L is a complex subgroup, $K_c \subset L$, and we have

where the horizontal arrows are inclusions of open subsets. In particular $\pi: \mathcal{Y} \to M$ is a holomorphic mapping of maximal rank. We prove

THEOREM 1. M is a Stein manifold.

This had earlier been conjectured by Griffiths [8], and one of us [16] had checked the case D = SO(2h, 1)/U(h). The principal tools in the proof are a clear understanding of the group L, Schmid's exhaustion function for D [12], the Andreotti-Norguet solution to the generalized Levi problem for analytic cycles on q-convex manifolds [1], [2], and the Docquier-Grauert exhaustion principle for Stein manifolds [7].

3. Homogeneous vector bundles. As above, $D = G(x_0) \cong G/V$ is a flag domain, $Y = K(x_0) \cong K/V$ is a maximal compact subvariety, and their dimensions are $n = \dim_C D$ and $s = \dim_C Y$.

If μ is a unitary representation of V then E_{μ} will denote the representation space, and $E_{\mu} = G \times_{\mu} E_{\mu} \to G/V = D$ will denote the associated homogeneous hermitian C^{∞} vector bundle. Any extension $\tilde{\mu}$ of μ to a holomorphic representation of P on E_{μ} defines a holomorphic vector bundle $\tilde{E}_{\mu} \to G_{c}/P = X$ such that $E_{\mu} = \tilde{E}_{\mu} \mid_{D}$, and thus imposes a holomorphic vector bundle structure on $E_{\mu} \to D$. If μ is irreducible, there is exactly one extension $\tilde{\mu}$, and so we may view $E_{\mu} \to D$ as a G-homogeneous holomorphic vector bundle in a unique way.

Recall the compact Cartan subgroup H of G with $H \subset V \subset K$ and consider a positive $\mathfrak{y}_{\mathcal{C}}$ -root system Δ^+ on $\mathfrak{g}_{\mathcal{C}}$ such that $\mathfrak{p} = \mathfrak{p}^r + \mathfrak{p}^n$ is the sum of reductive part and nilradical where, for some subset Φ of the simple roots,

$$\mathfrak{p}^r = \mathfrak{b}_{\mathcal{C}} = \mathfrak{y}_{\mathcal{C}} + \sum_{\langle \phi \rangle} \mathfrak{g}_{\mathcal{C}}^{\beta} + \mathfrak{g}_{\mathcal{C}}^{-\beta}$$
 and $\mathfrak{p}^n = \sum_{\mathcal{L}^* \setminus \langle \phi \rangle} \mathfrak{g}_{\mathcal{C}}^{-\alpha}$.

Here $\langle \Phi \rangle = \{ \alpha \in \Delta^+ : \alpha \text{ is a linear combination from } \Phi \}$ is the positive \mathfrak{y}_c -root system on \mathfrak{b}_c . In these orderings, we denote

 μ_{λ} : irreducible representation of V with highest weight λ ,

 E_{λ} : representation space of μ_{λ} ,

 E_{λ} : associated hermitian holomorphic vector bundle on D,

 \mathscr{E}_{λ} : sheaf $\mathscr{O}(E_{\lambda})$ of germs of holomorphic sections.

If G_c is simply connected, which we may assume without loss of generality, and if $\Phi = \{\varphi_1, \dots, \varphi_r\} \subset \{\varphi_1, \dots, \varphi_l\} = \mathcal{V}$ is a simple system for (g_c, Δ^+) , then the possibilities for λ are given by

$$\frac{2\langle \lambda, \varphi_i \rangle}{\langle \varphi_i, \varphi_i \rangle} \quad \text{is an integer for } 1 \le i \le l$$
 and is ≥ 0 for $1 \le i \le r$.

Further, let Δ_K^+ denote the set of compact positive roots and Δ_S^+ the noncompact positive roots, so g = t + 8 with

$$\mathbf{t}_c = \mathbf{y}_c + \sum_{d \downarrow} (\mathbf{g}_c^{\theta} + \mathbf{g}_c^{-\theta})$$
 and $\mathbf{g}_c = \sum_{d \downarrow} (\mathbf{g}_c^{\tau} + \mathbf{g}_c^{-\tau})$.

Finally define $2\rho = 2\rho_G = \sum_{A'} \gamma$, $2\rho_K = \sum_{A'} \beta$ and $2\rho_V = \sum_{\langle \phi \rangle} \alpha$. A homogeneous holomorphic vector bundle $E_{\lambda} \to D$ is nondegenerate if

$$\langle \lambda + \rho_K + \beta_1 + \dots + \beta_l, \alpha \rangle > 0$$
 for all $\alpha \in \langle \Phi \rangle$ and $\langle \lambda + \rho_K + \beta_1 + \dots + \beta_l, \tau \rangle < 0$ for all $\gamma \in \Delta_K^+ \setminus \langle \Phi \rangle$

whenever $\{\beta_1, \dots, \beta_l\} \subset \Delta_S^+$ are distinct. This is just what one needs to apply the Borel-Weil-Bott theorem [6] to conclude: The sheaf cohomology $H^q(Y, \mathcal{O}(E_\lambda \otimes \bigwedge^l N)) = 0$ for $0 \leq q < s$ and all l, where $N \to Y$ is the holomorphic normal bundle of Y in D. Then a variation on Schmid's identity theorem [12, Corollary 6.5] says

PROPOSITION 1. If $E_{\lambda} \to D$ is nondegenerate then $H^q(D; \mathscr{E}_{\lambda}) = 0$ for $q \neq s$, and if $c \in H^s(D; \mathscr{E}_{\lambda})$ with $c|_{gY} = 0$ for all $g \in G$ then c = 0. Further $H^s(D; \mathscr{E}_{\lambda})$ is an infinite-dimensional Fréchet space on which G acts by a continuous representation.

Recall the linear deformation space of §2. The maps $D \stackrel{\tau}{\longleftarrow} \mathscr{Y} \stackrel{\pi}{\longrightarrow} M$ are holomorphic, maximal rank and G-equivariant. First, that gives $F_{\lambda} = \tau^* E_{\lambda} \to \mathscr{Y}$ is a pullback bundle. Second, it gives us $\pi_*^* \mathscr{F}_{\lambda} \to M$, sth direct image sheaf, where $\mathscr{F}_{\lambda} = \mathscr{O}(F_{\lambda})$. Using the identity theorem one sees that $\tau^* \colon H^s(D; \mathscr{E}_{\lambda}) \to H^s(\mathscr{Y}; \mathscr{F}_{\lambda})$ is a G-equivariant topological injection of Fréchet spaces. Since M is Stein, Cartan's Theorem B and the Grauert direct image theorem show that the edge homomorphism

$$e: H^s(\mathcal{Y}; \mathcal{F}_1) \to H^0(M; \pi_*^s \mathcal{F}_1)$$

of the Leray spectral sequence is a topological isomorphism. This establishes our principal representation theorem.

Theorem 2. If $E_{\lambda} \to D$ is nondegenerate then $e \circ \tau^*$ is a G-equivariant topological injection

$$\sigma: H^s(D; \mathscr{E}_1) \to H^0(M; \pi_*^s \mathscr{F}_1)$$

of Fréchet spaces.

We note that $\pi_*^s \mathscr{F}_{\lambda} \to M$ is locally free. In fact it is $\mathscr{O}(\tilde{E}_{\lambda})$ where $\tilde{E}_{\lambda} \to M$ is the holomorphic vector bundle obtained by restriction from the G_c -homogeneous bundle $\tilde{E}'_{\lambda} \to G_c/L$ associated to the L-module $H^s(Y; \mathscr{E}_{\lambda})$. Thus the theorem represents s-cohomology on the flag domain D by sections of a holomorphic vector bundle over the Stein manifold M.

The principal representation theorem is the exact statement of a theorem conjectured by Griffiths [8], [9] and announced by one of us [18].

4. Poincaré series. Since V is compact, the flag domain $D \cong G/V$ has a G-invariant hermitian metric, and so we can speak of the pointwise norm of differential forms with values in a hermitian vector bundle $E \to D$. That gives us the Lebesgue classes

$$\mathscr{E}_r^{p,q}(D; E) = \Big\{ E\text{-valued } (p, q)\text{-forms } \varphi \colon \int_D \|\varphi(x)\|^r < \infty \Big\}.$$

We say that a sheaf cohomology class $c \in H^q(D; \mathcal{O}(E))$ is of Lebesgue class L_r if it has a Dolbeault representative in $\mathscr{E}_r^{0,q}(D; E)$, and $H^q(D; \mathcal{O}(E))$ denotes the set of all such classes.

THEOREM 3. Let $E_{\lambda} \to D$ be nondegenerate, let $c \in H_1^s(D; \mathscr{E}_{\lambda})$, and let Γ be a discrete subgroup of G. Then the Poincaré series $\theta(c) = \sum_{\gamma \in \Gamma} \gamma^* c$ converges, in the Fréchet space topology of $H^s(D; \mathscr{E}_{\lambda})$, to a Γ -invariant class.

A weaker version of this theorem was given by Griffiths in [8]. The idea is to use the principal representation theorem and reduce to

THEOREM 4. Let $E_{\lambda} \to D$ be nondegenerate, let $c \in H^s_1(D; \mathscr{E}_{\lambda})$, let Γ be a discrete subgroup of G, and recall the Fréchet injection $\sigma: H^s(D; \mathscr{E}_{\lambda}) \to H^0(M; \pi_*^s \mathscr{F}_{\lambda})$. The Poincaré series $\theta(\sigma(c)) = \sum_{\gamma \in \Gamma} \gamma^*(\sigma(c))$ converges in the Fréchet topology to a Γ -invariant section of $\pi_*^s \mathscr{F}_{\lambda}$.

Theorem 4 is a variation on a result of Griffiths [8], and our proof follows the classical pattern, as amplified by Griffiths, but modified to take into account the nondegeneracy of E_{λ} . The result is related to some theorems of Godement, Harish-Chandra and Borel (see [5, §9]) which are proved by methods of harmonic analysis on G. Those theorems apply to the case where

- (1) c is K-finite, i.e., $\{k^*c: k \in K\}$ has finite-dimensional span, and
- (2) c is 3-finite where 3 is the center of the enveloping algebra of g_c .

We will see below that β -finiteness is not a serious restriction, but K-finiteness essentially says that c has finite Fourier series. At any rate, this gives convergence of $\theta(c)$, and also gives the result that $\theta(c)$ has a bounded Γ -invariant Dolbeault representative.

5. Square-integrable cohomology. In order to produce L_1 cohomology classes for the Poincaré series of Theorems 3 and 4, we must first digress and discuss L_2 cohomology and unitary representations.

If $E \to D$ is a G-homogeneous hermitian holomorphic vector bundle, then one has the Kodaira-Hodge-Laplace operator $\Box = \bar{\partial}\bar{\partial}^* + \bar{\partial}^*\bar{\partial}$ on the spaces $\mathscr{E}^{p,q}(D; E)$ of smooth E-valued (p, q)-forms. \Box defines a selfadjoint operator \Box on the Hilbert space completion of $\mathscr{E}^{p,q}_{2}(D; E)$, whose kernel

$$\mathcal{H}^{p,q}(D; E) : L_2$$
 harmonic E-valued (p, q) -forms

is a closed subspace consisting of C^{∞} forms. That gives

$$\pi^q_{\mu}$$
: unitary representation of G on $\mathcal{H}^{0,q}(D; E_{\mu})$.

Recently Schmid [14] settled the "Langlands conjecture," completing the identification of the π_{μ}^{q} as follows. Let $\Lambda' = \{ \nu \in i \mathfrak{h}^{*} : e^{\nu} \text{ defined on } H \text{ and } \langle \nu, \alpha \rangle \neq 0 \text{ for all } \alpha \in \Delta^{+} \}$. Given $\nu \in \Lambda'$, Let

$$q(\nu) = \left| \left\{ \alpha \in \Delta_K^+ : \langle \nu, \alpha \rangle < 0 \right\} \right| + \left| \left\{ \gamma \in \Delta_S^+ : \langle \nu, \gamma \rangle > 0 \right\} \right|$$

and

 $[\pi_{\nu}] = \omega(\nu)$: Harish-Chandra's discrete series representation class for G parametrized by ν (see [10]).

Then, if λ is the highest weight of μ ,

- (1) if $\lambda + \rho \notin \Lambda'$ then every $\mathcal{H}^{0,q}(D; E_{\mu}) = 0$;
- (2) if $\lambda + \rho \in \Lambda'$ and $q \neq q(\lambda + \rho)$ then $\mathcal{H}^{0,q}(D; E_u) = 0$;
- (3) if $\lambda + \rho \in \Lambda'$ and $q = q(\lambda + \rho)$ then $\pi_{\lambda}^q \in [\pi_{\lambda + \rho}]$.

One of the first consequences of this is

Theorem 5. If $E_{\lambda} \to D$ is nondegenerate, then the natural surjective map

$$\mathcal{H}^{0,s}(D; E_{\lambda}) \ni \omega \mapsto (Dolbeault \ class) \in H_2^s(D; \mathscr{E}_{\lambda})$$

is injective. If $\lambda + \rho \in \Lambda'$ with $q(\lambda + \rho) = s$, then G acts on the image by the discrete series representation $[\pi_{\lambda+\rho}]$.

6. Absolutely integrable cohomology. An irreducible unitary representation π of G is integrable if the coefficient $f_{u,v}(g) = \langle u, \pi(g)v \rangle \in L_1(G)$ whenever u and v are K-finite. As $|f_{u,v}(g)| \le ||u|| \cdot ||v||$, then $f_{u,v} \in L_2(G)$, so $[\pi]$ is in the discrete series.

We will say that the homogeneous holomorphic vector bundle $E_{\lambda} \to D$ is L_1 -nonsingular if $\lambda + \rho \in \Lambda'$, and $|\langle \lambda + \rho, \beta \rangle| > \frac{1}{2} \sum_{\alpha \in A'} |\langle \alpha, \beta \rangle|$ for all $\beta \in \Delta_S^+$. That is a necessary (Trombi and Varadarajan [15]) and sufficient (Hecht and Schmid [11]) condition for the discrete series class $[\pi_{\lambda+\rho}]$ to be integrable.

THEOREM 6. Let $E_{\lambda} \to D$ be nondegenerate and L_1 -nonsingular with $q(\lambda + \rho) = s$. Then G acts on $H_2^s(D; \mathcal{E}_{\lambda})$ by the integrable discrete series representation $[\pi_{\lambda+\rho}]$, and every K-finite class $c \in H_2^s(D; \mathcal{E}_{\lambda})$ is absolutely integrable, i.e., is in $H_1^s(D; \mathcal{E}_{\lambda})$.

Since the K-finite elements are dense in the infinite-dimensional Hilbert space $H_2^s(D; \mathcal{E}_{\lambda})$, this provides an abundance of L_1 cohomology classes that we can sum in Poincaré series to obtain automorphic cohomology.

The proof of Theorem 6 uses a direct image construction of Schmid [12] and follows a route suggested by him to one of us.

Fix $E_{\lambda} \to D$ nondegenerate and denote $U_{\lambda} = H^{s}(Y; \mathscr{E}_{\lambda})$ and $W_{\lambda} = U_{\lambda} \otimes \mathscr{E}_{c}$. Then K acts irreducibly on U_{λ} with lowest weight $\nu = w(\lambda + \rho_{K}) - \rho_{K}$ for a certain element w of the Weyl group, and we have a K-invariant $W_{\lambda} = W_{\lambda}^{+} \oplus W_{\lambda}^{-}$ where W_{λ}^{+} is a sum of K-modules of lowest weight $\nu \pm \beta$, $\beta \in \Delta_{s}^{+}$. Writing

$$U_{\lambda} \to G/K$$
, $W_{\lambda}^{\pm} \to G/K$ and $W = W^{+} \oplus W^{-} \to G/K$

for the associated G-homogeneous vector bundles, we have an exact sequence of Fréchet space maps

$$0 \to H^s(D;\mathscr{E}_\lambda) \xrightarrow{\zeta} C^\infty(U_\lambda) \xrightarrow{\mathscr{D}} C^\infty(W_\lambda^+)$$

where $C^{\infty}(\cdot)$ denotes the Fréchet space of C^{∞} sections viewed as a subspace of $C^{\infty}(G) \otimes U_{\lambda}$ or $C^{\infty}(G) \otimes W_{\lambda}^{+}$. It is given by

$$\zeta(c)(g) = (g^*c)|_{Y} \in U_{\lambda}$$

and

$$\mathscr{D}(F) = \operatorname{projection}_{(W_i - W_i)} \left\{ \sum_{\beta \in \mathcal{A}_i} e_{\beta}(F) \otimes e_{-\beta} \right\}$$

for a certain normalization of root vectors $e_{\tau} \in \mathfrak{g}_{c}^{\tau}$. In other words, the direct image map ζ is a G-equivariant Fréchet isomorphism of $H^{s}(D; \mathscr{E}_{\lambda})$ onto the kernel $C^{\infty}(U_{\lambda})_{\mathscr{B}}$ of \mathscr{D} .

Using our knowledge of the representation of G on $H_2^s(D; \mathscr{E}_{\lambda})$, one can follow square-integrability through the direct image map ζ and see that it maps $H_2^s(D; \mathscr{E}_{\lambda})$ onto

$${}^{0}L_{2}(U_{\lambda})_{\mathscr{G}}: L_{2} \text{ closure of } \{F \in C^{\infty}(U_{\lambda})_{\mathscr{G}}: F \text{ is } L_{2} \text{ and } \beta\text{-finite}\}.$$

If $E_{\lambda} \to D$ is L_1 -nonsingular with $q(\lambda + \rho) = s$, one can further see that if $F \in {}^{0}L_{2}(U_{\lambda})_{g}$ is K-finite then $F: G \to U_{\lambda}$ is L_{1} .

The identity theorem (Proposition 1) is proved by a careful examination of the order of vanishing of differential forms along the fibres of $D \to G/K$. Standard methods of harmonic analysis on semisimple Lie groups allow one to carry square-integrability through those considerations and obtain both Theorem 5 and the above characterization of $\zeta \cdot H_2^s(D; \mathcal{E}_{\lambda})$. To carry absolute integrability we make use of an estimate as follows.

LEMMA. Let $f \in L_p(G)$ where $1 \le p \le 2$. Let ξ belong to the universal enveloping algebra \mathcal{G} so that both f and $\xi(f)$ are \mathfrak{F} -finite, left K-finite and L_2 . Then $\xi(f) \in L_p(G)$.

Using the lemma, we obtain the L_1 version of the technique used to prove the identity theorem, and that tells us that if $F \in {}^{0}L_2(U_{\lambda})_{\mathscr{D}}$ is K-finite and L_1 then $\zeta^{-1}(F) \in H^s_1(D; \mathscr{E}_{\lambda})$. Theorem 6 follows.

- 7. Some questions. Some obvious questions come to mind at this point.
- (1) Which Poincaré series $\theta(c)$ are nonzero?
- (2) Is $H_{\ell}(D; \mathscr{E}_{\lambda})$ finite dimensional, as in the classical cases?
- (3) What is the dimension of the space of Poincaré series arising from a given $E_{\lambda} \to D$? How does that space compare with the full automorphic cohomology space $H_{\ell}(D; \mathcal{E}_{\lambda})$?
- (4) How does one obtain quasi-projective embeddings from automorphic cohomology?
- (5) Can one construct meromorphic functions on $\Gamma \setminus D$ using holomorphic arc components of boundary orbits [20] in the way that Bailey and Borel [3] use boundary components [19]? How would such Eisenstein series be related to our Poincaré series?

REFERENCES

- 1. A. Andreotti and F. Norguet, Problème de Lévi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 197-241. MR 33 #7583.
- 2. ——, La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 31-82. MR 39 #477.
- 3. W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528. MR 35 #6870.
- 4. A. Borel, Les fonctions automorphes de plusieurs variables complexes, Bull. Soc. Math. France 80 (1952), 167-182. MR 14, 1077.
- 5. ——, Introduction to automorphic forms, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, pp. 199-210. MR 34 #7465.
 - 6. R. Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203-248, MR 19, 681.
- 7. F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebeite Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123. MR 26 #6435.

- 8. P. A. Griffiths, Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568-626. MR 37 # 5215.
- 9. ——, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228-296. MR 41 #3470.
- 10. Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111. MR 36 #2745.
- 11. H. Hecht and W. Schmid, On integrable representations of a semisimple Lie group, Math. Ann. (to appear).
- 12. W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Thesis, Univ. of California at Berkeley, 1967.
 - 13. ——, On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1-42. MR 44 #4149.
 - 14. ——, L2-cohomology and discrete series, Ann. of Math. (2) 103 (1976), 373-394.
- 15. P. C. Trombi and V. S. Varadarajan, Asymptotic behavior of eigenfunctions on a semisimple Lie group: the discrete spectrum, Acta Math. 129 (1972), 237-280.
- 16. R. O. Wells, Jr., Parametrizing the compact submanifolds of a period matrix domain by a Stein manifold, Sympos. on Several Complex Variables (Park City, Utah, 1970), Lecture Notes in Math., vol. 184, Springer-Verlag, Berlin and New York, 1971, pp. 121-150. MR 46 #7555.
- 17. ——, Automorphic cohomology on homogeneous complex manifolds, Rice Univ. Studies 59 (1973), 147-155.
- 18. R. O. Wells, Jr. and J. A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math. (to appear).
- 19. J. A. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-939. MR 33 # 229.
- 20. J. A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121-1237. MR 40 #4477.

RICE UNIVERSITY
UNIVERSITÄT GOTTINGEN

University of California, Berkeley Hebrew University