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POINCARE THETA SERIES AND I,
COHOMOLOGY ‘
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1. Introduction, Ninety-five years ago, Poincaré revolutionized the theory of
automorphic forms by introducing the method of summing over a discontinuous
group. In modern language and somewhaf greater generality, one has

D: a bounded symmetric domain in C*;

K: the canonical line bundie (of (n, 0)-forms) over D; and

I': a discontinuous group of analytic automorphisms of D.

One considers holomorphic sections ¢ of powers K= — D, for example (dz! A
-« A dz#)», and forms the Poincaré theta series

0p) = Lr* @ =Le-r
rel rel

K™ carries a natural [-invariant hermitian metric, and if m is sufficiently large
(m = 2 for the unit disc in C), then K» — D has absolutely integrable holomor-
phic sections; in fact (dz! A .- A dz#)m is L;. When ¢ is L,, the series 6(p) is
absolutely convergent, uniformly on compact subsets of D, and represents a /-
invariant holomorphic section of K~ — D. The -invariant holomorphic sections of
K™ — D are the I-automorphic forms of weight m on D. See Borel {4] for a sys-
tematic discussion. .

Poincaré’s construction is the primary source of automorphic forms on D.
The automorphic forms of a given weight m form a finite-dimensional space
HYD; 0(K™)). For m sufficiently large, the corresponding map of I'\D is a quasi-
projective embedding, i.e., the quotients of elements of HY(D; ¢(K™)) generate the
function field of "\D.
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An important aspect of automorphic function theory in several variables is the
special case

D = {p x p complex matrices Z : Z = tZ and [ — ZZ* » 0},
which is analytically equivalent to the “Siegel upper half-space”
H, = {p x p complex matrices Z : Z = ‘Z and Im Z » 0}

of degree p. It has complex dimension p(p + 1)/2, and is the space of normalized
Riemann period matrices of degree p. For appropriate choice of I, the equivalence
classes of period matrices of Riemann surfaces of genus p sit in /"\D.

When Griffiths studied periods of integrals on algebraic manifolds [8], [9], he
saw that generally the corresponding period matrix domains D are not bounded
symmetric domains. In fact [20], they carry no nonconstant holomorphic functions.
These period matrix domains belong to a well-understood [12], [20] class of open
homogeneous complex manifolds that we call flag domains. Here the first difficulty
(see Schmid [12], [13]) is that one cannot expect to find sections of line bundles, or
even vector bundles, but must look to cohomology of degree s = dim,Y where Y
is a maximal compact subvariety of D. In particular there are no automorphic
forms in the classical sense on D, and one is led to the automorphic cohomology
space ‘

HyD; )(E)) = {P—invériant classes in Hs(D; O(E))}

where E — D is a “nondegenerate” homogeneous holomorphic vector bundle.

At present, very little is known about automorphic cohomology, especially when
I'\D is noncompact. For example, even in the Griffiths period domain case one
does not know whether H#(D; O(E)) is finite dimensional, nor does one know how
to relate it to function theory on '\ D. Recently, however, we constructed absolutely
integrable cohomology classes ¢ € H5(D; O(E)) for a certain specific class of bundles
E — D, and we showed that the Poincaré series 6(p) = . r*(p) always converges ‘
to an automorphic cohomology class. That is what we describe below.

The detailed proof of the theorems discussed in this paper appear in [18]. Some
of these results had been announced previously by one of us in a preliminary
fashion in [17].

2. Flag domains. A complex flag manifold is a compact complex homogeneous
space X = G/P where G, is a complex semisimple Lie group and P is a parabolic -
subgroup. Fix a noncompact real form G of G¢. Then G has only finitely many
orbits on X, so in particular there are open orbits. A flag domain is a (necessarily
open) orbit G(x) = X on which the isotropy subgroups of G are compact. Replac-
ing P by a conjugate, the flag domains have the form D = G(x,) = G/V where
xg=1-Pand V= G ) Pis compact. Then V contains a compact Cartan sub-
group H of G, so it sits in a unique maximal compact subgroup K of G, and we
have Y = [K(x;) = K/V: maximal compact subvariety of D]. All this is classical
[20].

We now consider the “linear deformation space” =n : % — M of Y, given as
follows. M is the set of all g¥, ge Gg, such that gY < D, and % is the disjoint
union of these g¥ with z(g¥) = {g¥}. More precisely, let L = {ge G,:gY = Y}.
Then L is a complex subgroup, K, = L, and we have



POINCARE THETA SERIES 61

@ »Go/L | P
7 Z
/ .
M >Gc/L

where the horizontal arrows are inclusions of open subsets. In particular z: % - M
is a holomorphic mapping of maximal rank. We prove

THEOREM 1. M is a Stein manifold.

This had earlier been conjectured by Griffiths [8], and one of us [16] had checked
the case D = SO(2h, 1){U(h). The principal tools in the proof are a clear under-
standing of the group L, Schmid’s exhaustion function for D [12], the Andreotti-
Norguet solution to the generalized Levi problem for analytic cycles on g-convex

manifolds [1], [2], and the Docquier-Grauert exhaustion principle for Stein mani-
folds [7].

3. Homogeneous vector bmﬂés. As above, D = G(xy) = G/V is a flag domain,
Y = K(xp) = K/V is a maximal compact subvariety, and their dimensions are
n = dimgD and s = dim,Y.

If u is a unitary representation of ¥ then E, will denote the representation space,
and E, = G x,E, —» G/V = D will denote the associated homogeneous hermi-
tian C= vector bundle. Any extension 7 of u to a holomorphic representation of P
on E, defines a holomorphic vector bundle E'/, - G¢/P = XsuchthatE, = E‘,‘ | D
and thus imposes a holomorphic vector bundle structure on E, — D. If y is ir-
reducible, there is exactly one extension 7, and so we may view E, —» D as a G-
homogeneous holomorphic vector bundle in a unique way.

Recall the compact Cartan subgroup H of G with H « ¥V < K and consider a
positive ye-root system 4+ on g such that p = p~ + p* is the sum of reductive
part and nilradical where, for some subset @ of the simple roots,

pr=bo=yc+2,08+g:" and p= 3 go".
({4 4D

Here (®) = {a € 4*: ais a linear combination from @} is the positive ye-root
system on b,. In these orderings, we denote

4, : irreducible representation of ¥ with highest weight 4,

E; : representation space of y;,

E, : associated hermitian holomorphic vector bundle on D,

&, : sheaf O(E,) of germs of holomorphic sections.
If G, is simply connected, which we may assume without loss of generality, and if
O = {p, -, ¢} < {p1, -, ¢} = ¥ is a simple system for (g¢, 4*), then the pos-
sibilities for A are given by

2{A, ¢;> isanintegerforl <i <!

{pirp;> andis 20forl <i=r.

Further, let 4} denote the set of compact positive roots and 43 the noncompact
positive roots, so g = t + 8 with
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te = e + AZ) (g8 + go°) and 8, = ; (8% + 827)-
x ) t

Finally define 2p = 2p; = X4 7, 20k = L4 fand 2oy = Y a.
A homogeneous holomorphic vector bundle E; — D is nondegenerate if

A+pg+ b/ + - +B,a)>0 forall we(P) and
QA+px+ B+ +BT)<0 forall yedE\(P)

whenever {8, -+, B;} = 4¢ are distinct. This is just what one needs to apply
the Borel-Weil-Bott theorem [6] to conclude: The sheaf cohomology
Hy(Y, 0(E; ® \'N)) = 0for 0 < g < sand all /, where N — Y is the holomorphic
normal bundle of ¥ in D. Then a variation on Schmid’s identity theorem [12,
Corollary 6.5] says

PROPOSITION 1. If E; — D is nondegenerate then Hi(D; &;) =0 for q # s, and if
ce H{(D; &;) with c| gy = 0 for all ge G then ¢ = 0. Further HX(D; &,) is an
infinite-dimensional Fréchet space on which G acts by a continuous representation.

Recall the linear deformation space of §2. The maps D% -5 M are holomor-
phic, maximal rank and G-equivariant. First, that gives F; = 7*E; — % is a pull-
back bundle. Second, it gives us 754 ; — M, sth direct image sheaf, where &#; =
O(F)). Using the identity theorem one sees that t*: H{(D; &;) - H(¥; %) is a
G-equivariant topological injection of Fréchet spaces. Since M is Stein, Cartan’s

Theorem B and the Grauert direct image theorem show that the edge homomor- .

phism
e: H(¥; &) » HAM; n3, %)

of the Leray spectral sequence is a topological isomorphism. This establishes our
principal representation theorem.

THEOREM 2. If E; — D is nondegenerate then e - 7* is a G-equivariant topological
injection
o: H(D; &) -~ H(M; n3 ;)
of Fréchet spaces.

We note that 75,.%; — M is locally free. In fact it is O(E;) where E; » M is the
holomorphic vector bundle obtained by restriction from the G,-homogeneous
bundle E; - G/L associated to the L-module H¥(Y; &;). Thus the theorem re-
presents s-cohomology on the flag domain D by sections of a holomorphic vector
bundle over the Stein manifold M.

The principal representation theorem is the exact statement of a theorem con-
jectured by Griffiths [8], [9] and announced by one of us [18].

4. Poincaré series. Since V is compact, the flag domain D = G/V has a G-in-
variant hermitian ntetric, and so we can speak of the pointwise norm of differential
forms with values in a hermitian vector bundle E — D. That gives us the Lebesgue
classes

&rYD; E) = {E-valued (p, g)-forms ¢: IDIIgo(x) Ir < oo}.

-
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We say that a sheaf cohomology class ¢ € H4(D; O(E)) is of Lebesgue class L, if it
has a Dolbeault representative in £24(D; E), and HY(D; @(E)) denotes the set of all
such classes.

THEOREM 3. Let E; — D be nondegenerate, let c € Hi(D; &;), and let I be a
discrete subgroup of G. Then the Poincaré series 0(c) = X.,cp T*c converges, in the
Fréchet space topology of H(D; &), to a I-invariant class.

A weaker version of this theorem was given by Griffiths in [8].
The idea is to use the principal representation theorem and reduce to

THEOREM 4. Let E; — D be nondegenerate, let c € H{(D; &,), let I’ be a discrete
subgroup of G, and recall the Fréchet injection o : H{(D; &;) - HY(M; n53F)).
The Poincaré series 0(o(c)) = X,ep r*(o(c)) converges in the Fréchet topology to a
I-invariant section of 7% ;.

Theorem 4 is a variation on a result of Griffiths [8], and our proof follows the
classical pattern, as amplified by Griffiths, but modified to take into account the
nondegeneracy of E;. The resultiis related to some theorems of Godement, Harish-
Chandra and Borel (see [S, §9]) which are proved by methods of harmonic analysis
on G. Those theorems apply to the case where

(1) c is K-finite, i.e., {k*c: k € K} has finite-dimensional span, and

(2) cis 3-finite where 3 is the center of the enveloping algebra of g,.

We will see below that 3-finiteness is not a serious restriction, but K-finiteness
essentially says that ¢ has finite Fourier series. At any rate, this gives convergence
of 6(c), and also gives the result that 6(c) has a bounded [-invariant Dolbeault
representative.

5. Square-integrable cohomology. In order to produce L, cohomology classes for
the Poincaré series of Theorems 3 and 4, we must first digress and discuss L, co-
homology and unitary representations.

If E - D is a G-homogeneous hermitian holomorphic vector bundle, then one
has the Kodaira-Hodge-Laplace operator [ = 90* + 0*0 on the spaces £2.4(D; E)
of smooth E-valued (p, g)-forms. (3 defines a selfadjoint operator (3 on the Hilbert
space completion of £24(D; E), whose kernel

#t4(D; E) : L, harmonic E-valued (p, g)-forms
is a closed subspace consisting of C~ forms. That gives
74, : unitary representation of G on #%4(D; E)).

Recently Schmid [14] settled the “Langlands conjecture,” completing the identifica-
tion of the x¢, as follows. Let A’ = {v e iy*: e” defined on H and (v, a) # O for
all « € 4*}. Givenv e A, Let

q®) = |[{ae df: v, @) < O} + |[{redé: v, r> > 0}
and

[z,] = w(v): Harish-Chandra’s discrete series representation class for
G parametrized by v (see [10]).

Then, if A is the highest weight of 4,
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(1) if A+ p ¢ A’ then every #%«D; E,)) = 0;
Q) if A+ peA andq # qA + p) then #%(D; E)) = 0,
B)ifA+ peA andq = qQd + p) then w{ e [m;.,).

One of the first consequences of this is

THEOREM 5. If E; — D is nondegenerate, then the natural surjective map
#05(D; E;) 3 w — (Dolbeault class) e H{(D; &)

is injective. If A + pe€ A’ with g(A + p) = s, then G acts on the image by the discrete
series representation [x;.,).

6. Absolutely integrable cohomology. An irreducible unitary representation z of
G is integrable if the coefficient f, ,(g) = {«, n(g)v) € L,(G) whenever u and v are
K-finite. As | f, /(g)| < |ul-|Iv], then £, , € Ly(G), so [z] is in the discrete series.

We will say that the homogeneous holomorphic vector bundle E; — D is
Ly-nonsingular if 2 + p e A, and |[(A + p, 8| > 3 Zocyr |[<a; B ] for all fe 4.
That is a necessary (Trombi and Varadarajan [15]) and sufficient (Hecht and
Schmid [11]) condition for the discrete series class [z;4,] to be integrable.

THEOREM 6. Let E; — D be nondegenerate and L,-nonsingular with g( + p) = s.
Then G acts on H3(D; &;) by the integrable discrete series representation [x;,,],
and every K-finite class c e H{(D; &) is absolutely integrable, i.e., is in H{(D; &),

Since the K-finite elements are dense in the infinite-dimensional Hilbert space
Hy(D; &,), this provides an abundance of L, cohomology classes that we can sum
in Poincaré series to obtain automorphic cohomology.

The proof of Theorem 6 uses a direct image construction of Schmid [12] and
follows a route suggested by him to one of us.

Fix E; — D nondegenerate and denote U; = H{(Y;&;) and W, = U; ® 8.
Then K acts irreducibly on U; with lowest weight v = w(d + px) — px for a
certain element w of the Weyl group, and we have a K-invariant W; = Wi @ Wy
where Wi is a sum of K-modules of lowest weight v + §, 8 e 4. Writing

U,->G/K, Wf—->G/K and W= W+-@W - G/K
for the associated G-homogeneous vector bundles, we have an exact sequence of
Fréchet space maps
0 - HAD; 6) 5 C=(Up) % C=(W})
where C=( - ) denotes the Fréchet space of C= sections viewed as a subspace of
C=(G) @U, or C(G) @ Wi It is given by
L) (@ = (g*o)|re Ua
and
9(F) = projectiongy, .y { ﬂé} e(F) ® e_ﬂ}

for a certain normalization of root vectors e, € g;. In other words, the direct
image map ( is a G-equivariant Fréchet isomorphism of Hs(D; &;) onto the kernel
C=(U))gof 9.
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Using our knowledge of the representation of G on H4(D; &,), one can follow
square-integrability through the direct image map { and see that it maps Hi(D; &,)
* onto

OLy(Us)g: Ly closure of {Fe C=(U,)4: Fis L, and 3-finite}.

If E; - D is Ly-nonsingular with g(2 + p) = 5, one can further see that if Fe
O0L(UY)y is K-finite then F: G — Uy is L,.

The identity theorem (Proposition 1) is proved by a careful examination of the
order of vanishing of differential forms along the fibres of D — G/K. Standard
methods of harmonic analysis on semisimple Lie groups allow one to carry square-
integrability through those considerations and obtain both Theorem 5 and the
above characterization of {- H§(D; &;). To carry absolute integrability we make
use of an estimate as follows.

LEMMA. Let f e L(G) where 1| < p < 2. Let § belong to the universal enveloping
algebra % so that both f and &(f) are B-finite, left K-finite and L,. Then &(f) e
L, (G). .

Using the lemma, we obtain the L, version of the technique used to prove
the identity theorem, and that tells us that if F € °L2(U,1)9 is K-finite and L, then
{"Y(F)e H{(D; &;). Theorem 6 follows.

7. Some questions. Some obvious questions come to mind at this point.

(1) Which Poincaré series 6(c) are nonzero?

(2) Is HY(D; &;) finite dimensional, as in the classical cases?

(3) What is the dimension of the space of Poincaré series arising from a given
E; —+ D? How does that space compdre with the full automorphic cohomology
space H¥(D; &))?

(4) How does one obtain quasi-projective embeddings from automorphic
cohomology?

(5) Can one construct meromorphic functions on /"\D using holomorphic arc
components of boundary orbits [20] in the way that Bailey and Borel [3] use bound-
ary components [19]? How would such FEisenstein series be related to our Poin-
caré series?
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