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HEAT EQUATION, PROPORTIONALITY PRINCIPLE,
AND VOLUME OF FUNDAMENTAL DOMAINS

1. INTRODUCTION

In this note, we extend the Hirzebruch proportionality principle to the
coeflicients in the asymptotic expansions for the Laplacians on differen-

‘tial forms with values in homogeneous vector bundles over symmetric

spaces. The case zero-forms and the trivial line bundle is a proportional-
ity principle for the trace of the heat kernel. For 2m-dimensional
manifolds, the case of m-th order terms of some asymptotic expansions
is a proportionality principle for the indices of certain elliptic com-
plexes. These results have implications for the volumes of fundamental
domains of discrete subgroups, and in refining these implications we
also develop a proportionality principle for equivariant characteristic
classes. ,

Hirzebruch’s original work [9] on proportionality studied ordinary
characteristic classes on hermitian symmetric spaces, and Serre [10]
studied the Euler class in a general setting. N. Wallach tells us that his
student Miatelo obtained a result similar to Corollary 2.8 below, by
methods of harmonic analysis on semisimple Lie groups. And of course
many mathematicians, starting with C. L. Siegel [11], looked for lower
bounds on the volume of fundamental domains for discrete groups.

Our result on the volumes of fundamental domains is a qualitative
improvement on previous work. The latter was a matter of positive
lower bounds for the volume, while we show that the volume is an
integral multiple of a certain number.

2. ASYMPTOTIC EXPANSIONS

Let G/K be a symmetric space of noncompact type, andlet M' = G'/K
denote the compact dual symmetric space. Here we take G and G’ to be
analytic subgroups of a complex group Gc and K=GNG'. Let I’
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denote a discrete, co-compact, torsion-free subgroup of G, and denote
M =T'\G/K the compact locally symmetric space with fundamental
group I" and universal cover G/K. We view M and M’ as riemannian
manifolds with invariant metric arising from the Cartan-Killing form on
the complexification of the Lie algebra of G.

Let 7:K - GL (V) be a (finite dimensional, unitary) representation
of K. We consider the associated hermitian vector bundles.

2.1) E..G'XxkV->M' and E.:(I'G)XxV->M
with typical fibre V. The corresponding second order elliptic operators
2.2) A!, :Laplacianon A (M Y®E. and

4., :Laplacianon A” (M)XE,

define zeta functions (trace heat kernel)

2.3) Lwas(t)=2 e and  Lmap(t)=2 e,

where the summations run over the eigenvalues (with multiplicities) of
AL, and A,,. If d =dim M’ =dim M, then these zeta functions have
asymptotic expansions at t =0 (see Gilkey [8]),

(2.4a) Evrmp(t) ~ (@t (@l o + Qlpal + + o+ @hpat™+0(t"))

and 7
(2.4b) { mwp(t) ~ (4t )_dlz(ao.p,-:r t@ipat +F Qupat” + O(t"“))-

Our main result is the observation.

« Vol (M)

2.5. THEOREM. aixp, =(-1) Vol (M )ak,qr,p

Proof. a., is a local invariant of M, that is ai., = f,, Pinp (%) dx,
where dx is the volume element and P, ..(x) is a polynomial in the
curvatures of M and E at x and their covariant derivatives. All those
covariant derivatives vanish here, so P ... ,(x ) is homogeneous of degree
k in the curvatures. Since M is locally homogeneous, now dy.,=
Pi.o(x)- Vol (M). If y € M’', the same considerations hold, and the
curvatures are the negatives of those at x EM, SO aAimp, =
Pi.. () Vol (M) = (—1)*Pi.., (x) - Vol (M"). Q.ED.

-
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Calculation of the ai., is an algebraic problem with the Peter-Weyl
Theorem for G', Cartan’s highest weight theory for the representations
of G', Frobenius’ Reciprocity Theorem, and the decomposition of a
representation of G’ under restriction to K. See Cahn-Wolf [5, §1].
Theorem 2.5 carries the result from the compact symmetric space M’ to
the compact locally symmetric space M.

In case = is trivial and p =0, the operators (2.2) reduce to

(2.6) A’ :Laplacian on Lo(M') and A :Laplacian on L,(M).

Then (2.3) reduce to the ordinary zeta functions {»- and {u, and (2.4)
becomes

(2.7a) Lut) ~ (@mt) (ab+ait+---+ait"+0(t""") ast | 0
and
(2.7b) La(t) ~ (@mt) *(ao+ art +- - -+ at” +0(t"") ast | 0.

Theorem 2.5 now specializes to

« YoL(M)
2.8. COROLLARY. . = (- 1) @

In this case, the ai can be calculated explicitly (see Cahn-Wolf [35, 6])
and that gives the a..

In the hermitian symmetric case, Theorem 2.5 and Corollary 2.8 hold
for the complex Laplacians. If M and M' are spin manifolds in a
consistent way, then they hold for the Dirac Laplacians (see
Wolf [12, 13]).

3. ELLIPTIC COMPLEXES

We now assume that M' and M have even dimension d =2m. Let ¥,
and ¥, denote their respective twisted signature complexes (Gilkey [8])
using forms with values in E, and E.. Then
@3.1 Index (¥2) =, (-1)’a}., and

Index (%)= 2, (— 1\ dmmp-

Using this, Theorem 2.5 gives us
3.2) Index (#-) - Vol (M') = (—1)" Index (¥:) - Vol (M).
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More generally, if €’ is any natural elliptic complex over M’, and € is
the corresponding complex over M, then our considerations give

3.3. THEOREM. Index(¥)-Vol(M')=(—1)" Index (€')- Vol (M).
Of course Theorem 3.3 can also be derived from the Atiyah-Singer
Index Theorem.
The point of Theorem 3.3 is that Index (€’) can often be calculated
directly. Here are a few examples.

de Rham Complex. The index of the de Rham complex is the
Euler-Poincaré characteristic y. If rank K <rank G then y(M') = 0. If
rank K =rank G then y (M") = |W(G')|/|W(K)|, quotient of the orders
of the Weyl groups. Now Theorem 3.3 gives

x(M) =0 if rank K <rank G, and

_ gy VOL(M) [W(G")|

Dolbeault complex. The index of the Dolbeault complex is the
arithmetic genus A. In the hermitian case, A (M') = 1, e.g. by the Bott-
Borel-Weil Theorem [3]. So Theorem 3.3 gives

(3.5 AM)=(-1)" Vol (M)/Vol (M’) in the hermitian case.
This is equivalent to Hirzebruch’s [9, Satz 4].

34

if rank K =rank G.

Signature complex. When the dimension d = 2m is divisible by 4, the
signature 7 is defined to be the signature of the symmetric bilinear
form H™ X H™ - H*™ (cup product). It is the index of the ordinary
(trivial line bundle) signature complex. Evidently z(M')= =1 if
dim H™(M'; R) =1, so Theorem 3.3 and the fact [14, Theorem 6] that
T(M)=0 give

_ Vol(M)

(3.6) (M) = W

for m even and dim H™(M'; R)=1.
That applies, for example, to the even quaternion projective spaces
Sp Rl +1)/Sp 21) x Sp (1).

At this point we tabulate some information for the M’ = G'/K where
rank K =rank G’ and G' is an exceptional group. Note the curious fact:
if dim H™(M'; R) # 0 then dim H™ (M'; R) divides x(M’). This is also
the case for many classical M’, but not all, e.g. not Sp (8)/SU (8).
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3.7 M'=G'IK 2m x(M') dimH"(M';R) t(M')

@ G./SO (4) 8 3 1 1
(ii) F./Spin (9) 16 3 1 1
(iii) FJACs 28 12 0 0
@iv) EdT\Ds 32 27 3 3
) EdA,As 40 36 4 4
(vi) E,|T:Es 54 56 0 0
(vii) E;|A,Ds 64 63 7 7
(viii) E5A, 70 72 0 0
(ix) Eq/A.E, 112 120 8 8
x) Es/Ds 128 135 9 7

So (3.6) holds directly for G,/SO (4) and the Cayley plane F./Spin (9),
and holds after possible division by a small number for E4T.Ds,
ESIAIAS, E7IA1D6, Es/A1E7, and Es/Ds.

The information in (3.7) comes out of the Hirsch Formula [0, §26], the
primitive invariants for the various simple groups (Borel-Chevalley [2]),
and the recent results of Shaw Mong [14].

4, VOLUME OF FUNDAMENTAL DOMAIN

In the appropriate normalization of Haar measures, Theorem 3.3 says

4.1. THEOREM. Let €’ be a natural elliptic complex over M'. If
Index (€') # 0 then

Vol (I'\G) = |Index (%)) - Vol (G')/[Index (%")|.
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{See Cahn[4] for Vol (G’) here, and note that ¥’ exists with
Index (€’) # 0 precisely when rank K =rank G.}

We interpret Theorem 4.1 as saying: if rank K =rank G then there is
a number Vol (G')/|Index (€’)|> 0 such that Vol (I'\G) is a positive
integral multiple of that number. At worst, one can use the de Rham
complex and conclude

@42)  Vol(I'\G)=n - Vol(G") - |W(EK)||W(G"),
n positive integer.

But that could be derived directly from Chern’s Gauss-Bonnet
Theorem [7]; see Serre [10, §3]. Evidently, the information contained in
Theorem 4.1, under this interpretation, is optimized by minimizing
[Index (€’)|. Here are a few examples.

Dolbeault Complex. If €' is the Dolbeault complex then Index (€') =
AM)=1, s0

“4.3) Vol(I'\G)=n - Vol (G'), n positive integer, in the
hermitian case.

That applies whenever G is a connected linear group locally isomor-
phic to a product whose factors are of the form SU (p, q), SO (2,1),
SO* (21)’ SP (I;R)9 EG.Tle and E7.T|E5-

Signature complex. If the dimension d =2m is divisible by 4, then
Theorem 4.1 says

4.4) Vol (I'\G)=n - Vol (G")/t(M'"), n integer, if T(M’')#0.
As noted in (3.6) and (3.7), this applies to

Sp (2[, 1), Gz.A,Al and F4,B4 with 'T(MI) = 1;
E 6,T\Ds with 7= 3,

E,.n, and E;p, with 7=7;

EG.A[AS With T~ 4, Es,AlE-, With T=8.

5. K-CHARACTERISTIC CLASSES

Recall the definition of the K-characteristic ring of M'. If Bk is the
classifying space for K and o : M’ — Bx induces the principal K-bundle
G->M', then oc*H*(Bk;Z) is the K-characteristic subring of
H*(M';, Z). Its elements, -the K-characteristic classes, are obtained
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modulo torsion as follows. Let & be the Lie algebra of K, €(R) the
graded associative algebra of Adx-invariant polynomials & —» C. Fix a
K-connection on G’ >M' and let ' denote its curvature form. If
¢ € €(8), then the de Rham class [c¢(2')]€ H*(M'; C) is independent
of the connection. We say that ¢ is integral if, in this way, it gives an
integral class on Bx. The coefficient homomorphism H*(M'; Z)—>
H*(M'; C) maps the K-characteristic ring onto {[¢ (2")]: ¢ € 4(R) and
¢ is integral}] Now we have a mild variation on Hirzebruch
Proportionality [9]:

5.1. THEOREM. Suppose that M and M’ have even dimension
d=2m and let c € €(!) be integral and of degree m. Then the
K-characteristic numbers

c[M']=IM’ c(2") and c[M]=IM c(2)

are integers, and
c{M']- Vol (M) =(—1)"c{M]- Vol (M").

{As in the proof of Theorem 2.5, this is a matter of local homogeneity
and Q =—-0'}

5.2. COROLLARY. If rank K=rank G, so d=2m and
o*H>"(Bx; Z) has finite index r in H*"(M'; Z), then Vol (I'\G) is an
integral multiple of Vol (G")/r.

{For then we have ¢ € 4(®) of degree m with ¢c[M']=r}

As an application of Corollary 5.2, suppose that

(5.3a) M' is a product of complex and quaternionic grassmannians.
In other words, suppose that
(5.3b) G is covered by a group II SU (p;, g:) X II Sp (4, m;).
Taking G¢ simply connected,

G'=IOSU@:+q)XISp(+my)
and

K =I1IS(U(p:) x U(q:)) x IT Sp (};) X Sp (m;),

SO
H*(G';Z) and H*(K;Z) aretorsionfree.
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Since it is now known that a compact connected group modulo a
maximal torus is torsion free in cohomology, a result of Borel [0; Prop.
30.2] says H¥(M'; Z) = o *H*(Bk ; Z), and in particular r = 1 in Corol-
lary 5.2. In summary,
54 Vol (I'\G)=n - Vol(G'), n positive integer,

inthecase (5.3)

Borel’s result [0; Prop. 30.2] in fact shows that the number r in
Corollary 5.2 is a product of powers of primes p for which H*(G'; Z) or
H*(K; Z) has p-torsion. In view of (3.7), this sharpens (4.2) in the cases
where M' is E;/A.1Ds, Es/Ds or a real grassmannian of even dimension,
telling us

(5.5a) if G = E; 4,n,then Vol (I'\G) = n - Vol (G'), some integer n ;
(5.5b) if G = Egp,then Vol (I'\G) = n - Vol (G’), some integer n ;
if G islocally isomorphic to SO (2u, 2v) or SO 2u, 2v + 1)

(56)  {and if 2 is the highest power of 2 that divides 2 (* **),

then Vol (I'\G) = n - Vol (G')/2¢ for some integer n.

6. REAL GRASSMANNIANS

We now make some calculations to improve (5.6). The result is

6.1. THEOREM. The even dimensional oriented real Grassman man-
ifolds M'=G’'/K =SO Qu +1)/SO 2u)*xSO(l) have 2 as a K-
characteristic number.

As an immediate consequence we will have

©2) {if G is locally isomorphic to SO (2u,2v) or SO (Ru,2v +1)
) then Vol (I'\G) = n - Vol (G')/2 for some positive integer n.

6.3. LEMMA. Express the non-oriented real Grassmann manifold as

M"=G"[K"=0(k +1)/0(k)x0(). Then H*(M";Z) is equal to its

K"-characteristic subring, that is, is the image of the cohomology
H*(Bx-; Z) of the classifying space.

Proof. Here M' =SO (k +1)/SO(k)xSO()=G’'/K and ¢ M'>M"
denotes the standard 2-sheeted covering. Consider the diagram
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a

M' ——— Bx

B
M" —— Bk-

where the horizontal maps to classifying spaces induce the principal
bundles G’ > M’ and G"— M", and where 7 is induced by K CK". We
must prove B* surjective on integral cohomology.

Borel [1; Theorem 11.1] proved that n* is bijective and B* is
surjective for Z,-cohomology.

Let p be an odd prime. The coverings £ and 7 are of order 2 and 4, and
the spaces in the diagram have no cohomology p-torsion, so £* and n*
are injective for Z,-cohomology. Also, from the Stieffel-Whitney
classes, Bsow = Box, and Bsoay— Bow induce surjective maps for
Z,-cohomology, so n* is surjective as well. Borel’s result [0; Prop. 30.2]
shows a* surjective for Z,-cohomology. We conclude that g* is
surjective.

Now g*: H*(Bk-; Z,)> H*(M"; Z,) is surjective for all p, and that
proves the lemma. Q.E.D.

6.4. LEMMA. Let k=2u and I =2v, even, so that M"” has a G'-
invariant orientation. Give M " the riemannian metric such that M’ > M"
is a local isometry and let £2” be the curvature form. Then there is an
integral, Ad (K")-invariant, polynomial ¢ on & such that

J c(?M=1 and J c(2)=2.
M" M’
{This proves Theorem 6.1 for | even.}

Proof. Lemma 6.3 gives us c, as required, with [, , ¢(2") = 1. Since
£:M' > M"isriemannian, 2’ = £*Q,andso f,,, c(2')=2 fyr c(2") =2
because ¢ is 2-sheeted. Q.E.D.

Proof of Theorem. Write K = K, X K, where K;=S0 (2u) and
K>,=SO(l), and let ] =2v or 2v +1.

The usual (vector) representation 7, of K, has weight system
{as,...,a,—a,,...,—a,} and has Pfaffian Pf(r)=a.a,...a, €
%(8,). The vector representation 7, of K, has weight system
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{by,...,b,,—b1,...,— b, ((0))}, where (( )) indicates that the term
occurs just when [ =2v + 1. Now the representation of K on the
tangent space of M’ is m:&®T,, which has weight system {*(a; + bs),
+(a; — b)), (xa;))}, 1<j<u and 1<k =< v. That has Pfaffian

6.5) E=«mm”.m»llw%wbe%®y

and E(£2') is the Euler class on M’.

We apply Lemma 6.4 to the case | = 2v. The fact that c is integral and
K"-invariant, says that, on the Lie algebra of the maximal torus, ¢
is an integral polynomial in the elementary symmetric functions
o(a?,...,al) and the o.(b%...,b%). Since c(2)M']=2 and

EQYM'l=x(M")=2 (u : v), (6.5) tells us that

6.6) H(a,?—bi)=(u:v)c+2piqi,

ik
where the p: are integral polynomials in the o.(ai,..., a2 and the
o:(b3,...,b?),and the g, are integral polynomials in the o, (a?, ..., b2).

Now let I =2v + 1. Multiplying (6.6) by a.a- . . . a., we see from (6.5)
that

6.7) E=@:ﬁd+2p@,

where ¢’ =(a1a:...a,)c and the pi=(a.a....a.)p: are integral
polynomials in the

og.(ai,...,a%, Pf(r) and o.(b3,...,b%),
and where the q; are integral polynomials in the o..(a},..., b?%. Now

c¢’',p: and ¢ € €(R), all integral, with the ¢; invariant by conjugation
from G’. Thus (6.7) says that

(@)M] = (" N ”)_1 - E(@)[M']=2

is a K-characteristic number of M'. Q.E.D.
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7. SUMMARY FOR FUNDAMENTAL DOMAINS

We proved a number of integrality statements for volumes of fundamen-
tal domains, and here we assemble them for the case of simple groups.
Remember, that the 2-sphere is hermitian and that the 4-sphere is the
quaternion projective line.

7.1. THEOREM. Let G be a connected linear simple Lie group with
rank K =rank G. If I" is a torsion free discrete subgroup with I'G
compact, then

(7.2) Vol (I'\G)=n - Vol (G")/r for some integer n >0

where r depends only on G, and where r = 1 except possibly in the cases

(7.3) G (to local isomorphism) r is a divisor of
SO Q2u,l), 1, 1) #w, 1) #2,1) 2
Fiac, 12
Eoaas 4
E; 4, 72
- Egag, 8

It seems clear that a closer look at the exceptional groups will improve
the result on the value of r, especially for E ;...
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