CONFORMAL GROUP, QUANTIZATION, AND THE KEPLER PROBLEM Joseph A. Wolf

§1. INTRODUCTION. This is a report on some joint work with Shlomo Sternberg. We consider a variation on geometric quantization for the orthogonal groups SO(2,n), realizing certain of their representations on the nonzero cotangent bundle of the (n-1)-sphere. Here the elliptic orbits of the Kepler problem (with collision orbits regularized) appear as SO(2)-orbits. Another viewpoint, related by a geometric Cayley transform, gives the hyperbolic orbits as SO(1,1)-orbits in the nonzero cotangent bundle of real hyperbolic (n-1)-space. This gives a correspondence between the classical bound states and the classical scattering states for the hydrogen atom.

Our group-theoretic considerations are valid with only minor changes for the unitary groups U(2,n), the special unitary groups SU(2,n), and the unitary symplectic groups Sp(2,n). While there is a connection with the harmonic oscillator, the physical interpretations are not always so clear. In any case, here I just indicate the situation for SO(2,n). Complete details will appear elsewhere.

§2. A NILPOTENT CO-ADJOINT ORBIT. Let $R^{2,n}$ denote the real vector space with standard basis $\{e_1, e_0, e_1, \ldots, e_n\}$ and inner product $\langle u, v \rangle = u_1 v_1 + u_0 v_0 - (u_1 v_1 + \ldots + u_n v_n)$. O(2,n) is the orthogonal group of $R^{2,n}$, G = SO(2,n) denotes its identity component, and the alternating tensor square $\Lambda^2(R^{2,n})$ is identified with the Lie algebra $g = \sigma(2,n)$ under

 $u \wedge v : x \mapsto \langle x, u \rangle v - \langle x, v \rangle u$.

Here the adjoint representation is given by $Ad(g)(u \wedge v) = gu \wedge gv$.

If $\xi \in g$ let E_{ξ} denote its range. If E_{ξ} is 2-dimensional and totally isotropic, then $\xi^2 = 0$, and E_{ξ} projects onto R^2 , $0 = \text{span}\{e_{-1}, e_0\}$, so ξ has unique expression

(2.1) $\xi = s(e_1 + p) \wedge (e_0 + q)$ where $\begin{cases} p, q \in \mathbb{R}^{0,n} = span\{e_1, \dots, e_n\} \\ \|p\|^2 = \|q\|^2 = -1, \langle p, q \rangle = 0 \end{cases}$

From: Group Theoretical Methods in Physics
(Fourth International Colloquium, Nijmegen, 1975)
Lecture Notes in Physics, vol. 50 (1976), Springer-Verlag

All such ξ form a single O(2,n)-orbit. Here $s = \langle \xi, e_{-1} \wedge e_0 \rangle$, and that single orbit falls into two G-orbits as s > 0 or s < 0. We will use the orbit

(2.2) $V = \{\xi \in \mathcal{F} \text{ as in } (2.1) : s > 0\}.$

The semisimple Lie algebra g is identified with its dual space g^* under the Killing form, and we view $\mathcal V$ as a (co-adjoint) orbit of G on g^* . That gives $\mathcal V$ the structure of G-homogeneous symplectic manifold.

In the notation (2.1), think of q as a point on the unit sphere $S^{n-1}=\{x\in R^{0,n}:\|x\|^2=-1\}$ and sp as an arbitrary nonzero cotangent vector to S^{n-1} at q. This identifies $\mathcal U$ with the bundle $T^+(S^{n-1})$ of nonzero cotangent vectors to S^{n-1} . In this identification, the subgroup

 $\begin{array}{c} \textbf{G}_1 = \text{SO(1,n)} = \{ \ \textbf{g} \in \textbf{G} : \ \textbf{ge}_{-1} = \textbf{e}_{-1} \ \} \\ \text{is visibly transitive on } \textbf{T}^+(\textbf{S}^{n-1}), \ \text{and thus on } \mathcal{V} \ . \ \text{Furthermore} \\ \boldsymbol{\xi} = \textbf{s}(\textbf{e}_{-1} + \textbf{p}) \wedge (\textbf{e}_0 + \textbf{q}) & \mapsto \textbf{sp} \wedge (\textbf{e}_0 + \textbf{q}) \ \text{is a bijection of } \mathcal{V} \\ \text{onto the principal nilpotent coadjoint orbit of } \textbf{G}_1 \ , \ \text{which is} \end{array}$

(2.3)
$$\mathcal{V}_1 = \{ \xi_1 \in \mathcal{G}_1 : \dim E_{\xi_1} = 2 \text{ and } \dim(E_{\xi_1} \cap E_{\xi_1}^{\perp}) = 1 \}.$$

 $\mathcal V$ now carries three symplectic structures: as co-adjoint orbit of G, from the natural symplectic structure on the cotangent bundle of $\mathbf S^{n-1}$, and from the natural symplectic structure of $\mathcal U_1$. Here our result is

THEOREM. The three symplectic structures on $\mathcal V$ coincide. In particular, the natural symplectic structure on $T^+(S^{n-1})$ is invariant under the action of G=SO(2,n).

§3. ORBITS FOR THE KEPLER PROBLEM. We have $R^{2,n}=R^{2,0}\oplus R^{0,n}$ as above, and the G-stabilizer of this splitting is the maximal compact subgroup $K=SO(2)\times SO(n)$. Here SO(n) acts on $\mathcal U$ through its usual action on the tangent bundle $T(S^{n-1})$,

A: $s(e_1 + p) \wedge (e_0 + q) \mapsto s(e_1 + Ap) \wedge (e_0 + Aq)$, and SO(2) acts by rotations, the rotation r_{ϕ} through an angle ϕ sending $s(e_1 + p) \wedge (e_0 + q)$ to

 $\begin{array}{c} s(\cos\varphi \ e_{-1} + \sin\varphi \ e_0 + p) \wedge (-\sin\varphi \ e_{-1} + \cos\varphi \ e_0 + q) \\ = s(e_{-1} + \cos\varphi \ p - \sin\varphi \ q) \wedge (e_0 + \sin\varphi \ p + \cos\varphi \ q) \ . \\ \\ \text{On (co)-tangent vectors of length s, this rotation } r_{\varpi} \ \text{is geodesic} \end{array}$

flow $f_{\phi/S}$ at time ϕ/s . The infinitesmal generator of the geodesic flow $\{f_t\}$ is the vector field V_H corresponding (by exterior derivative and the symplectic form) to $H = -s^2/2$, so $\{r_\phi\}$ has infinitesmal generator that is the Hamiltonian field for $(-2H)^{1/2} = s$. Since the SO(2)-orbits are the orbits of the geodesic flow, they are the elliptic orbits of the Kepler problem with collision orbits regularized.

Similarly $R^{2,n}=R^{1,1}\oplus R^{1,n-1}$ where $R^{1,1}=\mathrm{span}\{e_{-1},e_{n}\}$ and $R^{1,n-1}=\mathrm{span}\{e_{0},e_{1},\ldots,e_{n-1}\}$. The G-stabilizer of this splitting is a two-component group with identity component $K'=\mathrm{SO}(1,1)\times\mathrm{SO}(1,n-1)$, and $\mathcal U$ is the union of three K'-invariant sets

$$\mathcal{V}^+ = \{ t(e_{-1} + p) \land (e_n + q) : t > 0, p, q \in \mathbb{R}^{1, n - 1}, \|p\|^2 = -1, \|q\|^2 = 1, p \neq 0, q > 0 \},$$

$$\mathcal{V}^0 = \{ \xi \in \mathcal{V} : E_{\xi} \cap \mathbb{R}^{1, 1} \neq 0 \}, \text{ and }$$

 $\mathcal{V}^- = \{\mathsf{t}(\mathsf{e}_{-1} + \mathsf{p}) \land (\mathsf{e}_{n} + \mathsf{q}) \colon \mathsf{t}(\mathsf{0}, \; \mathsf{p}, \mathsf{q} \in \mathsf{R}^1, \mathsf{n}^{-1}, \| \mathsf{p} \|^2 = 1, \| \mathsf{q} \|^2 = 1, \mathsf{p} \| \mathsf{q}, \langle \mathsf{e}_{0}, \mathsf{q} \rangle < 0 \}.$ Let $\mathsf{H}^{\mathsf{n}-1}_+$ (resp. $\mathsf{H}^{\mathsf{n}-1}_-$) denote the real hyperbolic (n-1)-space that is is the sheet $\langle \mathsf{e}_{0}, \mathsf{q} \rangle > 0$ (resp. $\langle \mathsf{e}_{0}, \mathsf{q} \rangle < 0$) of the mass hyperboloid $\| \mathsf{q} \|^2 = 1$ in $\mathsf{R}^1, \mathsf{n}^{-1}$. Then \mathcal{U}^+ (resp. \mathcal{U}^-) is identified with its bundle $\mathsf{T}^+(\mathsf{H}^{\mathsf{n}-1}_+)$ (resp. $\mathsf{T}^+(\mathsf{H}^{\mathsf{n}-1}_-)$) of nonzero cotangent vectors, $\xi = \mathsf{t}(\mathsf{e}_{-1} + \mathsf{p}) \land (\mathsf{e}_{n} + \mathsf{q})$ corresponding to the vector tp of length $| \mathsf{t} |$ at q . Here $\mathsf{SO}(1,\mathsf{n}^{-1})$ acts through its usual action by isometries and $\mathsf{SO}(1,1)$ acts, as before, by hyperbolic rotations proportional to the geodesic flow. So the $\mathsf{SO}(1,1)$ -orbits on \mathcal{U}^- are the hyperbolic orbits of the Kepler problem.

If one interprets the SO(2)-orbits on $\mathcal U$ as the classical bound states for the hydrogen atom, and the SO(1,1)-orbits on $\mathcal U^\pm$ as the scattering states, then the Cayley transform relating SO(2) to SO(1,1) gives a sort of correspondence between those states. The geometric picture for this Cayley transform comes from noting that the sign condition on $\langle e_0, q \rangle$ identifies H_+^{n-1} with the upper hemisphere of S^{n-1} and H_-^{n-1} with the lower hemisphere:

$$t(e_{-1}+p)\Lambda(e_n+q) = t\langle e_0, q \rangle \{(e_{-1}+p)\Lambda(e_0 + \langle e_0, q \rangle^{-1}(q-\langle e_0, q \rangle e_0+e_n)\}.$$

Another interesting picture comes from taking p for base point and tq for (co)-tangent vector.

§4. GEOMETRIC QUANTIZATION. We turn to the question of quantizing the action of G = SO(2,n) on its co-adjoint orbit $\mathcal{V} = T^+(S^{n-1})$.

The standard Kostant-Souriau quantization procedure does not work here because there is no G-invariant polarization. In effect, a result of Ozeki and Wakimoto says that any such polarization would be a parabolic subalgebra q of $g_{\rm C}$, a result of mine would then say $q=p_{\rm C}$ for some parabolic subalgebra p of g, and of course p would necessarily have codimension n-1 in g. But the maximal parabolic subalgebras of g are the stabilizers of null lines, which have codimension n, and the stabilizers of null planes, which have codimension 2n-1, and so p does not exist.

There are several possibilities for circumventing this lack of polarizations:

- (1) weaken the definition of polarization.
- (ii) view ${\mathcal V}$ as a limit of polarized co-adjoint orbits.
- (iii) use the Kostant-Sternberg-Blattner half-form method. In the first approach, one takes the usual definition of invariant polarization as complex subalgebra q of $q_{\rm C}$, but no longer requires that $q+\bar{q}$ be an algebra; that is done implicitly in N. Woodhouse's report at this conference. In the second approach, one has a smooth family $\mathcal{V}_{\rm t}$ of co-adjoint orbits with $\mathcal{V}=\mathcal{V}_{\rm O}$, with representations $\pi_{\rm t}$ associated to $\mathcal{V}_{\rm t}$ for t \neq 0, in such a way that one can make sense of $\pi_{\rm O}=\lim \pi_{\rm t}$ and associate it to \mathcal{V} ; in E. Onofri's report here, that is done for elliptic semisimple approximating orbits and holomorphic discrete series approximating representations, and I have a comment on this in §6 below. Sternberg and I use the third approach.
- §5. HALF FORMS AND VARYING POLARIZATIONS. Let P denote the standard polarization on $T^+(S^{n-1})$; its maximal integral manifolds are the cotangent spaces with origin deleted. Then $G_1 = SO(1,n)$ is the stabilizer of P in G = SO(2,n), and the G-translates of P are parameterized by the mass shell $H = \{x \in \mathbb{R}^2, n : \|x\|^2 = 1\}$:
- $G/G_1 = SO(2,n)/SO(1,n) \cong SO(2,n)(e_{-1}) = H \ .$ Given $x = ge_{-1} \in H$, let P_X denote the image g(P). The half form method gives a family of Hilbert spaces \mathcal{H}_X , and nondegenerate pairings between them, stable under the action of G. Here G_1 has

natural irreducible unitary representation ψ on $\mathcal{H}=\mathcal{H}_e$ by standard geometric quantization using $P=P_e$; in fact $^{-1}$ ψ is the principal series representation that corresponds to the trivial character on the minimal parabolic subgroup, and \mathcal{H} is $L^2(S^{n-1})$. More generally, if $g\in G$ then g carries \mathcal{H} to \mathcal{H}_X , $x=ge_1$, and we pair this back to \mathcal{H} using the half forms. Thus G acts on $L^2(S^{n-1})$, and this action π restricts to the representation ψ of G_1 . Sternberg and I still have to clarify some technical matters with the half form pairing here.

§6. LIMIT METHOD. I'll close by exhibiting the representation π of G, corresponding to the co-adjoint orbit $\mathcal{V}=\mathtt{T}^+(\mathtt{S}^{n-1})$, as a limit of spherical principal series representations. This has the advantage of simplicity over Onofri's procedure with the holomorphic discrete series, but the disadvantage of obscuring the place of \mathtt{G}_1 and $\mathtt{L}^2(\mathtt{S}^{n-1})$ as compared with the half form method.

Fix $\xi = (e_{-1} + e_{n-1}) \wedge (e_0 + e_n) \in g$. Its matrix is $\begin{pmatrix} J & 0 & -J \\ 0 & 0 & 0 \\ J & 0 & -J \end{pmatrix}$ where $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then $\gamma = -\frac{1}{4}(e_{-1} - e_{n-1}) \wedge (e_0 - e_n)$ is another nilpotent element of g. It has matrix $\frac{1}{4}\begin{pmatrix} -J & 0 & -J \\ 0 & 0 & 0 \\ J & 0 & J \end{pmatrix}$, and so $h = \begin{bmatrix} \xi & \gamma \end{bmatrix}$ has matrix $\begin{pmatrix} 0 & 0 & I \\ 0 & 0 & 0 \\ I & 0 & 0 \end{pmatrix}$ where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Now

 $h \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\xi \longrightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\eta \longrightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ defines a Lie algebra isomorphism of span $\{h, \xi, \gamma\}$ onto $\mathfrak{sl}(2;\mathbb{R})$. From this we see that

 $\xi_t=\xi+$ th is semisimple with real eigenvalues for $t\neq 0$. Let B be a minimal parabolic subgroup of G whose Lie algebra contains ξ and h , and denote

 $v_{t} = Ad(G) \cdot \xi_{t}$ viewed as a co-adjoint orbit,

 $\pi_{\mathbf{t}}$: the corresponding principal series representation $(\mathbf{t} \neq 0)$, $\phi_{\mathbf{t}}$: the positive definite spherical function for $\pi_{\mathbf{t}}$ $(\mathbf{t} \neq 0)$. Then the $\pi_{\mathbf{t}}$, $\mathbf{t} \neq 0$, are irreducible unitary representations of G

on $L^2(G/B)$ given by formulas that depend smoothly on t , and one has

 $^{\pi}=\lim_{t\to 0}\pi_{t}$: unitary representation of G on $\text{L}^{2}(\text{G/B}).$ Here π_{t} corresponds to the orbit \mathcal{V}_{t} for $t\neq 0$, and so π corresponds to $\mathcal{V}=\mathcal{V}_{0}$.

One obtains the same limit with the spherical functions. For ϕ_t defines π_t in the standard manner when $t\neq 0$, and $\phi=\lim_{t\to 0}\phi_t$ is a positive definite spherical function and thus defines a limit representation π .

Departments of Mathematics,
University of California at Berkeley
The Hebrew University of Jerusalem
Tel Aviv University