CONFORMAL GROUP, QUANTIZATION, AND THE KEPLER PROBLEM

Joseph A. Wolf

§1. INTRODUCTION. This 1s a report on some joint work with
Shlomo Sternberg. We consider a varlatlion on geometric quanti-
zation for the orthogonal groups SO(2,n), realizing certain of
their representations on the nonzero cotangent bundle of the
(n-1)-sphere. Here the elliptic orbits of the Kepler problem
(with collision orbits regularized) appear as 50(2)-orbits.

Another vlewpoint, related by a geometric Cayley transform, gives

the hyperbolic orbits as SO(1,1)-orbits in the nonzero cotangent
bundle of real hyperbolic (n—l)—space."This gives a correspon-
dence between the classical bound states and the classical
scattering states for the hydrogen atom.

Qur group~theoretic considerations are valid with only
minor changes for the unitary groups U(2,n), the special unitary
groups SU(2,n), and the unitary symplectic groups Sp(2,n). While
there is a connection with the harmonic oscillator, the physical
interpretations are not always so clear. In any case, here I
just indicate the situation for S0(2,n). Complete detalls wiil
appear elsewhere. ’

2,n denote the real

§2. A NILPOTENT CO-ADJOINT ORBIT. Let R
vector space with standard basis {e_l, ens €150 en} and inner

product <u,v> = u_jv_y o+ ugvp - (ulv1 + oeee + unvn). o(2,n) is
the orthogonal group of R2,n, G = SO0(2,n) denotes 1ts identity
component, and the alternating tensor square 1&2(R2’n) is iden-

" tified with the Lie algebra g = o(2,n) under
UAV I X+ <X,udV - <X,VDu .

Here the adjoint representation is given by Ad(g){uav) = guagv.

If §eg let Eg denote its range. If E; is 2-dimensional
and totally isotropic, then §2 = 0, and Ef projects onto R2’O =
span{e 1,eo], 80 ¥ has unique expression
- o,n
_ p, a € R
(2.1) Fo=sle_) + p)Aleq + q) where

= span{el,...,en}

Ipi? = (q® = -1, <p,a>.= 0
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A1l such ¢ form a single 0(2,n)-orbit. Here s = <§,e 1408075
and that single orbit falls into two G-orbits as s > O or s < 0.
We will use the orbit

(2.2) UV ={(fez asin (2.1): s> 0},

The semisimple Lle algebra g 1is identified with its dual
space ?* under the Killing form, and we view U as a (co-adjoint)
orblt of G on g’. That glves V the structure of G-homogeneous
symplectie manifold. .

In the notation (2.1), think of g as a point on the unit
sphere st (xe R%D : gxt® = -1 } and sp as an arbiltrary

at q. This identifies U with
the bundle T+(Sn'1) of nonzero cotangent vectors to s, 1n
this identificatlon, the subgroup

G, =S0(1,n) = { geG:ge ) =e }
is visibly transitive on T+(Sn-1), and thus en V' . Furthermore
T= s(e_l + p)/\(eo + q) —> spz\(eo + q) is a bijection of VUV
onto the principal nilpotent cocadjoint orbit of G1 , which is

nonzero cotangent vector to st1

(2.3) Vy = (§,€9) ¢ din B = 2 and dim(Eglf\Egi) =1 ).

V' now carries three symplectic structures: as co-adjoint

orbit of G, from the natural symplectle structure on the cotangent
bundle of Sn"l, and from the natural symplectic structure of QJi .

Here our result is

THEOREM. The three symplectle structures on V coincide. 1In
particular, the natural symplectic structure on T+(Sn'l) is invar-

iant under the action of G = SO(2,n).

§3. ORBITS FOR THE KEPLER PROBLEM. We have R2'D = g2:0 @ gO51

as above, and the G-stabillzer of this splitting is the maximal
compact subgroup K = SO(2)X S0(n). Here S0(n) acts on U through
its usual action on the tangent bundle T(Sn'l),
_ A :s{e; +p)a(eg+ q) = s(e + Ap) Aey + AQ) ,

and S0{2) acts by rotations, the rotation To through an angle ¢
sending s(e__1 + p)/\(e0 + q) to

s(cose e_q + sin@ eq + p) A(~sing e_y + cosP ey + q)

= s(e_1 + cosp p - sing q),A(eO + sing p + cosp q) .
On (co)-tangent vectors of length s, this rotation T, 1s geodesic
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flow rw/s at time ¢/s. The infinitesmal generator of the geodesic
flow {ft] s the vector field Vy corregpgnding (by exterior deriv-
ative and the symplectic form) to H = -s/2, so-{nw] has infini-
tesmal generator that i1s the Hamiltonian field for (-2H)1/é = 8.
Since the SO(2)-orbits are the orbits of the geodesic flow, they

are the elliptic orblts of the Kepler probiem with collision orbits

© regularized. . 11 .
Similarly gD o R1’1‘$ RLPL yhere RLSY - span[e_l,en} and
gi.n-1 span{eo,el,...,en_il. The G-stabllizer of this splitting

is a two-component group with identity cqmponent .
K’ = s0(1,1)x80(1,n-1), and U is thé unlon of three K’~invariant
sets

: ; - 2 2
Ut = {t(e_y+p)ale +a): £50, p,aeRM ™1 ypi®e-i, gl =1,piq,<eq,q>>0},
vo {($ev : Egan’l;é 0}, and ‘
- 2
V™ = {t(e l+p)A(en+q): t<0, p,qeRl’n 1,npu2=-1,|qu =l,plq,<e0,q><0).

iet H:'l (resp. Hf"l) denote the real hyperbolic (n-1)-space that is
is the sheet <éo,q> > 0 (resp. <eo,q> < 0) of the mass hyperb?loid
1qi® = 1 1n RSP Then Ut (resp. UT) is identified with
its bundle T+(H:'l) (resp. T+(H§'1)) of nonzero cotangent vectors,
3 =.t(e_l + p)/\(en + ) corresponding to the vegtor tp of length
It] at q. Here S0(1,n-1) acts through its usual action by 1lso-
metries and SO{1,1) acts, as before, by hyperbolic rotations .
proportional to the geodesic flow. So the S0(1,1)-orbits on U

are the hyperbolic orbits of the Kepler problem.

If one interprets the SO(2)-orbits on U as the classical .
bound states for the hydrogen atom, and the SO(1,1)-orbits on U~
as the scattering states, then the Cayley transform relating 30(2)
to S0(1,1) glves a sort of correspondence between those states.

The geometric picture for this Cayley transforg-iomes from noting
that the sign condition on <eo,q> identifies H+ wlth the upper
hemisphere of Sn'lvand Hf’l with the lower hemlsphere:

-1
te_j+p)ale +a) = t<ey,a> ((e_1+p)A(ey + <ej,a> (a-<eg,a>egre )],

Another interesting picture comes from taking p for base
point and tq for (co)-tangent vector.
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§4; GEOMETRIC QUANTIZATION. We turn to the question of
quantizing the action of ¢ = 50(2,n) on its co-adjoint orbit
U = 1H(s™).

The standard Kostant-Souriau quantization procedure does not
work here because there 1s no G-invariant polarization. In effect
a result of Ozekl and Wakimoto says that any such polarization
would be a parabolic subalgebra g or'gc ; & result of mine would
then say 8 =Pc for some parabolie subalgebra p of g , and of
course p would necessarily have codimension n-1i in g - But the
maximal parabolic subalgebras of g are the stabilizers of null
lines, which have codimension n, and the stabilizers of null
planes, which have codimension 2n~-1, and so ® does not exist..

There are several possibilities for circumventing this lack
of polarizations:

{1) weaken the definition of polarization,

(11) view V as a 1imit of pelarized co-adjoint orbits,

(111) use the Kostant-Sternberg-Blattner half-form method.
In the first approach, one takes the usual definition of invar-
lant polarizatiocn as complex subalgebra 7 of‘?c » but no longer
requires that 2 +2 Dbe an algebra; that 1is done implicitly 1n
N. Woodhouse’s report at this conference. In the second approach,
one has a smooth family ’U£ of co-adjoint orbits with VU = ?Io ,
with representations LA assoclated to Tft for t ¥ 0, 1In such a way
that one can make sense of TO = 1lim ”t and assoclate it to U ; in
E. Onofri’s report here, that is done for elliptic semisimple
approximating orbits and holomorphic discrete series approximating
representations, and I have a comment on this in §6 below. Stern-
berg and I use the third approach.

2

§5. HALF FORMS AND VARYING POLARIZATIONS. Let P denote the
standard polarization on T+(Sn"1); its maximal Integral manifolds
are the cotangent spaces with origin deleted. Then G1 = S0(1,n)
is the stabilizer of P in G = S0(2,n}, and the G-translates of P
are parameterized by the mass shell H = (xe RS+ 1xI? = 1}

G/G1 = 50(2,n)/s0(1,n) = SO(2,n)(e_1) =H .

Given x = ge_ ) € H, let P 'denote the image g(P). The half form
method gives a family of Hilbert spaces 7¥x > and nondegenerate
palrings between them, stable under the action of G. Here G1 has
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natural irreducible unitary representation ¥ on Y = 74e by
standard geometric quantization using P = P, ; 1in fact -1 ¥ 1is
the principal serles representation that coriéapohds to the
trivial charadter on the minimal parabolic subgroup, and X is
L2(Sn'1). More generally, if ge G then g carries N to Wy s

X = ge_,, and we pairvthis back to N using the half forms. Thus
G acts on L2(Sn'1), and this aetlon 7 restricts to the represen-
tation ¥ of Gl' Sternberg and I s;ill have to clarify some technical

matters with the half form pairing here.

§6. LIMIT METHOD. I°l1 close by ‘exhibiting the representa-
tion 7 of G, corresponding to the co-adjoint orbit U = T+(Sn°l),
as a limit of spherical principal series representations. This

- has the advantage of simplicitybover Onofri’s procedure with the
holomorphic discrete series, but the disadvantage of obscuring the
place of G, and L2(Sn“l) as compared with the half form method.

: : J 0O «J
Fix ¥ = (e_j+e; j)a(egre )eg . Its matrix is (‘(]? g _3))
0 =1

C — 4 1 -
where J = (l 0) - Then 7 ==~ E(e?l-e 1)A(eO en) is another

N~
1( Y 0 -J
nilpotent element of‘g. It has matrix T 0O 0 0}, and so
: : 0 0 I J 0o J
. 1
he [ ] has matrix {O O O) where I = ( ) . Now
§a7 (I o o 01

- [h,3) =28, [h,?] = -2 and [591 =h .
So (h,§',7 } is a standard generating triple for a split three
dimensional simple subalgebra (TDS) in o , that is
=) 5= @0, =29
defines a Lle algebra isomorphism of span[h,§',7 } onto gf{2;R).
From this we see that :
§t = §+-tt1 is semisimple with real eigenvalues for ¢ # 0.
Let B be a minimal parabolic subgroup of G whose Lie algebra con-
tains £ and h , and denote ‘
Uy Ad(G)-§£'viewed as a co-adjoint orbit,
e : the corresponding principal series representation {(t £ 0),
'“¢t'2 the positive definite spherical funection for 7, (t £ 0).
Then the 7 t # 0, are irreducible unitary representations of G

t >

~
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on LQ(G/B) glven by formulas that depend smoothly on t , and one
has

7=1im . 47, ¢ unitary representation of G on L2(G/B).
Here Ty ¢corresponds to the orblt 7); for t £ 0, and so 7 corres-
ponds to U= 1]0 .

One obtains the same limit with the spﬁerical functions. For
L defines e in the standard manner when t ¥ 0, and ¢ = 1imt—+0 Py
1s a positive definite spherical function and thus defines a limit
representation & .
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