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§1. Introduction. Let N be a connected, simply connected nilpotent Lie
group. N acts on the space C,”(N) of compactly supported C” functions by
f°(x) = f(g"'zg) for x, g&¢ N. A distribution © on N is called invariant if 6(f°) =
0(f) for all f ¢ C.,°(N) and g ¢ N. For any irreducible unitary representation
m of N, the operator

w() = [ 7@ da,  feCoW)

is of trace class, and the map f — trace = (f) is an invariant distribution 6, called
the global character of = [1]. Furthermore, 6, is tempered; 7.e. ©, extends to the
Schwartz space $(IN), defined by the exponential map identification of N with
Euclidean space. Hence there is a natural class of invariant tempered distri-
butions on N.

In this paper we consider the converse question: can an arbitrary tempered
invariant distribution on N be expanded in terms of characters of irreducible
unitary representations? We give an affirmative answer in the case where N
is locally isomorphic to a product of Heisenberg groups.

To illustrate the type of result obtained, let N be the 3-dimensional Heisenberg
group with Lie algebra n spanned by z, y, ¢, such that [z, y] = ¢. Let z*, y* t*
be a corresponding basis for n*, the real dual space of n, so that (x, y, ¢) is the
linear coordinate on n*. For f ¢ S(N) let f denote Euclidean Fourier transform
of f. Then any infinite dimensional irreducible unitary representation of N has
global character O, given by

0.) = s [[ 7w v, 5) dz dy

for some se R, s # 0. (See §3 for more details.) Any finite dimensional irreducible
unitary representation is one dimensional with global character of the form

ex.ﬂ(f) = j‘(x’ Y, 0)

for some (z, y) ¢ R®. Then for any f ¢ S(N), |s|0,(f) £ S(R) and O, ,(f) £ S(R?).
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We may now state our main result for this case. Let h(z, y) ¢ C.,”(R®) with
[J h(z, y)dedy = 1. If © is an invariant tempered distribution on N, then
there is a distribution Se on R? such that

0(f) = 62h(, y) ls| 6.()) + Sa(6:.,(f)

for all f e S(N), where 6 is the Euclidean Fourier transform of 6. In particular,
this proves that if { ¢ $(V) is annihilated by every global character on N, then f
is annihilated by every invariant tempered distribution on N.

§2. Preliminaries on characters and distributions. We first recall the
Kirillov theory of irreducible unitary representations and their global characters
[4]. Let n be the Lie algebra of N. The exponential map Exp: n — N is a real
analytic diffeomorphism, equivariant for the adjoint actions of N on n and N.
Thus we may view functions and distributions on N as functions and distribu-
tions on n, and conjugation-invariance on N corresponds to Ad(N)-invariance
on n. Hence Haar measure on N determines a volume element on n. One may
also identify the Schwartz space S(N) and its dual 8'(N), the tempered distri-
butions, with the corresponding spaces $(n) and 8'(i).

Let n* be the real linear dual of n and Ad* the co-adjoint representation of N
on n* : [Ad*(9)N](z) = NAd(g7Y)2x), A ¢ n*. n* has the unique volume element
which makes the Euclidean Fourier transform, f — f,

0 = [ 1@ da,

an isometry from L’(n) onto L*(n*). The Fourier transform carries $(N) onto
$(n*) and thus 8’(N) onto 8'(n*) by 6(f) = O(f) for f ¢ S(N) and © ¢ 8'(n).
The Fourier transform is also N-equivariant.

Kirillov [4] identifies the space N of irreducible unitary representations of N
with the space of Ad*(N)-orbits on n*. In this identification the class [mo] € N
corresponding to an orbit © C n* has global character

o) = co [ 09

where d\ is an invariant measure on 0. Fach O, is an invariant, tempered
distribution.

We always assume that distributions take values in a semi-complete locally
convex space so that we can use the Schwartz Kernel Theorem to carry our
results over from one Heisenberg group to a product of Heisenberg groups.
For this application the quasi-complete locally convex space involved is the
space of distributions of a subgroup.

Recall that a distribution © vanishes on an open set U if 6(f) = 0 for all
f e C,”(U). Then supp O, the support of 0, is the complement of the largest
open set on which © vanishes. If = is a closed submanifold of R", any distribution
O3 on = extends to a distribution 6 on R” defined by 6(f) = 0:(f|Z), where
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f | = is the restriction of f. We shall not distinguish between © and 65 . If D
is a differential operator on R", the distribution DO is defined as

De(f) = e(D'),
where D’ is the adjoint of D. Suppose Z is a submanifold of R" and {s;} a coordi-
nate system such that T is given by s; = s, = -+ = s, = 0. If 0 is a distribu-
tion with supp © C Z, then 6 has a unique representation as an (infinite) sum
of terms of the form (87/ds;)©; , where each ©; is a distribution on =, and I
runs through all distinct multi-indices (¢; , %2, « -+ , %.), %; = 08, Ch. III, §10,
Théoréme XXXVI].

If & is a smooth (not necessarily completely supported) function on R", then
h© is defined by

rO(f) = O(hf).
Note that these definitions reverse the usual order of differentiation; <.e.
hDO(f) = 6D (hf)).

§3. The Heisenberg Group. Let N be the Heisenberg group of dimension
2n 4 1. We view N as R @ C" with group law

(w, 2)(W', ") = (w+ w + £ Imzz, z + 2).

Thus N has Lie algebra n with basis {2, -+, %, ; %1, - , Y» ; ¢t} in which the
exponential map Exp: n — N is given by

Exp QO w'z; + D2 v'y; + wt) = (w, u + w).

The only nonzero brackets in this basis are [z; , y.] =t = — [y. , ..
Let {x,*, -+ , % % -+, .5 t*} denote the dual basis of n*
Then (T, , %Y1, -, Yn; b)) = (w,y, 1) is the corresponding linear coordi-

nate on n*. It is standard, and we will see in a moment, that the co-adjoint
representation Ad* of N on n* has orbits

(3.1a) the hyperplanes {(z,y,s) : x,yeR" s 5 0 fixed}
and

(3.1b) the one point sets with coordinates (z, y, 0), =z, y ¢ R"

We denote the corresponding irreducible unitary representation classes on N
by [#,) and [, ,]. Their global (distribution) characters are multiples of integra-
tion of Fourier transform over the orbits, as follows [7].

(3.2a) 0, =06, :fcl|s|™ ff'(x, Y, s) dz dy, c=n!2",

and

(32b) 0,y = O, ,: f— f(xy Y, O)

Now we can state our main result.
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3.3 Theorem. Let © be an invariant tempered distribution on N with values
in a locally convex topological vector space E. Then O is an E-valued distribution
combination of the 6, and the ©,,, , as follows.

Choose h e C,” (R*™) with [h(x, y)dxdy = 1. Then there is an E-valued distri-
bution S on R* such that

34 8(f) = 6(n!2"(z, y) Y"6.()) + S(6,.,(f)) for f £ S(NV).

In particular,

3.5. Corollary. If fe S(N) is annthilated by the characters of the irreducible
unitary representations of N, then f is annihilated by every invariant tempered
distribution on N.

Harish-Chandra [2, Theorem 2] and S. Helgason [3, Proposition 2.6] proved
theorems of the following type. If a Lie group G acts as Lie transformation
group on a manifold M, and if there is a smooth section £ to the orbits, then
every G-invariant distribution on M consists of integration over the orbits fol-
lowed by a distribution on Z. If  were supported in the set ¢ # 0 (resp. were a
distribution on the hyperplane ¢ = 0) in n*, this would give Theorem 3.3 directly.
As will be seen below, the proof of Theorem 3.3 is a modification of that idea.
It consists of examining the difference

fr06() — 6n12"h(x, y)|t"6.(f))

of © and the corresponding distribution combination of orbital integrals on the
set ¢ # 0in n*.

We now set about proving Theorem 3.3. We first need the standard facts on
Ad*:

3.6. Lemma. Ad*(N) acts on the coordinates (x, y, t) of n* by
Ad*(Exp (rz;)) :y: — y: — rt, all other coordinates fixed;
Ad*(Exp (ry;)) : x; — x; + rt; all other coordinates fixed;
Ad*(Exp (rt)) : all coordinates fized.

In particular the Ad*(N) = orbits are given by (3.1), and the induced action on
C*(*) s

3.7 ad*(x;) = ——tgz-‘ ) ad*(y;) = tgg; and ad*(t) = 0.

Proof. If x,ze nand \ e n* then [Ad*(Exp (rz))A](z) = MAd(Exp (—rz))2)
= Az — 1z, 2]) because [n, n] is central in n. Take x = ¢: then Ad*(Exp (r))N =
N\. Take 2 = 2, and let z run over our basis of n : then [Ad*(Exp (rz,))A(z) =
AMz) forz 5 y, , = Ny, — rt) for z = y, . Now Ad*(Exp (rz;)) sends z;* to z;*,
y;* to y,;* and ¢* to £* — ry,* That gives the action on coordinates as claimed.
If f e C° () now

[ad*@)fIO) = 5 JAQExp (~r2Vlsm0 = —t 200,

The calculation for y, is similar. QED.
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We now fix
(3.8a) a locally convex topological vector space E, and
(3.8b) an E-valued distribution T : C,”(n*) — E.
Eventually T will be 6, which is Ad*(NV)-invariant by the Ad(N)-invariance
of 6, so we now assume that 7 is invariant:
(89a) if feC.,”(n*) and g e N then T'(f o Ad*(g)) = T({).
Differentiating and using (3.7), we phrase this invariance as infinitesmal in-
variance [2, 3]:

(3.9b) tg—T—=0 and 35 0 for 1<i<n

Now we are ready to start the reduction of 7. Choose
(3.10) he CoR™) with [ bz, y) drdy = 1
and define a distribution 7" : C,”(n*) — E by
(3.10b) T'(f) = T(f") where f'(z,y,t) = hiz,y) L: f(u, v, t) du dv.

3.11. Lemma. T’ isinvariant (3.9) and T — T’ is supported in the hyperplane
t = 0 of n*.

Proof. Observe [{f(z,y,t) — f'(z,y, ) }dx dy = 0 because [h(z, y)dx dy =
Thus there exist p; , ¢; ¢ C,”(n*) with f — ' = > 9p./dz; + 2 8¢:/dy: . Now
(T =T =T¢ — ) = T 0p:/dz: + 2 3¢:/9y.) = 2 (3T /dx.)(p.) +
2. (9T /9y)(go).

If the support supp (f) does not meet (t = 0), the same holds for f/, p, and ¢, ,
and we have

@-m0) = £ () ir) + = (Z)(}a),

which vanishes by (3.9). Thus T' — 7" is supported in (¢ = 0).
Invariance of T is just translation invariance of the Lebesgue integral in
the definition (3.10b) of f. Q.E.D.

As consequence of Lemma 3.11, we have E-valued distributions 7', on the
hyperplane (¢ = 0) such that T — T’ = Zk-o” (8*/8t*)(T',); see Schwartz [8].

3.12. Lemma. If £ > O there is a vector e, ¢ E such that T.(f) =
(i, y, 0)dz dy)e. for all f & C.” (n*).
-

Proof. Since T and T” are invariant we have (3.9b)
J

0- [ (¢ L) - T')](f) = [( 25 "T"] =27 {(a (s :1))

P YT <F NER-LA (Lt
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Fix £ = 1 and choose a ¢ C,"(R) with a(t) = 1 for |t| < 1. If g e C,"(R™) we
define f = f, by f(z, y, t) = a()tt 'q(x, y)/£!. Then
-

£} (e
Tk{< atk_l or, - =0 for k # t, and T¢ £

o™t 0w
= T.(8q/dx;). Thus dT,/dx; = 0. Similarly 9T,/dy; = 0. If e* ¢ I, now the
scalar distribution e* o T, is killed by the 8/dz; and the /9y, , so there is a
constant c¢(¢, e*) such that e*T,(¢) = c(¢, ¢*)[q(x, y) dx dy. Thus T, has the
required form.

3.13. Lemma. If¢ > 0then T, = 0.

Proof. Recall [{f(z,y,t) — {'(z, y, t)}dx dy = 0. We differentiate under the
integral to see [(8*/0t"){f(x, y, ) — f'(z, y, t)}dx dy = 0. Lemma 3.12 then
implies Q.E.D.

(3.14) (;—; T'k)(f —f)=0 for k=1.

Also observe ()’ = {’, so that
@15 T'() = T() = T'().
Now compute using (3.15)
T6) = ') = TG — 1) = TG — 1)+ S5k~ ).
Using (3.14) we conclude
(3.16) TG =1'0) + TG — 1)

Now S : f— To(f — ') is an E-valued distribution on (¢ = 0).
Since § = T — T" = > (8*/0t*)(T,), Lemma 3.12 gives us

.17) s =10+ 3 ([ Z v, 0 e ag)er

Fix£{ = 1 and a e C,”(R) with a(t) = 1 for |t| < 1. If g e C,"(R™) define f =
f.eC.2(n*) by f(z, y, t) = tba(t)q(x, y). Then S(f) = To(f) = 0 because S and T
are distributions on (¢ = 0), where f vanishes. If k > ¢ then (3"f/8t") (z, y, 0) = 0,
and (a¢f/ot) (x, y, 0) = Llg(x, y). Now (3.17) sayse, = 0,s0 T, = 0. Q.E.D.

In summary, we have proved

3.18. Theorem. Let T be an E-valued invariant distribution on n*. Let h
C.” R™) with [h(zx, y)dady = 1, and define an E-valued invariant distribution
T" on n* by

() = T(") where f'(x,y, 1) = h(z, y) f f(u, v, 1) du dv.
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Then there 1is an E-valued distribution S on the hyperplane (¢ = 0) in n* such that
T=1T 4 8.

The proof of Lemma 3.13 shows S(h) = 0.
The formulae (3.2) for the global characters of the irreducible unitary repre-
sentations of N give us

(3.19a) T'(f) = T(n'2"h(z, y)|t"|6.(f))
and
(3.19b) S(f) = 8(6..,().

Thus Theorem 3.18 expresses on E-valued invariant distribution 7 on n* as a
distribution combination of Fourier transforms of global characters.

(3:20) T(f) = T(n!2h(z, "6.()) + S(6...(f).

If we take T = O where 6 is an E-valued invariant tempered distribution on N,
and if we take f = & where ¢ ¢ $(N), then (3.20) becomes

(3.21) 8(p) = 6(n12"h(z, P|tI"0.(¢)) + S(6...(¢))-
That agrees with (3.4). Theorem 3.3 is proved.

§4. Products of Heisenberg Groups. Let N = N, X --+ X N, where
N, is the Heisenberg group of dimension 2n; 4+ 1. The corresponding Lie algebras
and their linear duals are

n=n1@-"@nk and n*=n1*@"'@nk*.

In the manner of §3 we choose a basis

@iy o T 5 Yy 0 s Y ;ti}
of 1; in which the only nonzero brackets are [z; ; , y:.;] =t = — [Y:,i, 2i.il,
obtaining a linear coordinate
@y Yy t) = @n, oy Timi 5 Yiay 0y Yirme 5 b)
on n,*. Then (¢, , ¥y, , by *°° ; Ty » Yoy » L) serves as linear coordinate on
n*, In that coordinate system, the Ad*(V)-orbits on n* are grouped into families
for multi-indices I = (4, , - , %), where0 < m = |I[| S kand1 =27, < -+ <

1,, = k, as follows. The orbits in the family for I are the subsets of n* given by

j if £ ¢ I then t, = nonzero constant and z, , ¥, variable over R"

(4.13,) 1

if ¢ 1 thent, = 0and xz(, , y are constant.

A cross section to this family of orbits is the submanifold of n* given by
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(41b) 2 = El@"‘@Ek
where {if tel, Z,= {ren*:20 =yu =0, t #0)}
if ¢el, Z,isthehyperplanet, =0 in n/*.

If X & n* we write [m] for the corresponding unitary representation class and
0, for its global character.
If = is a submanifold of n* and U is a distribution on Z, then we sometimes
write [sh(\)dU(\) for U(h).
Now we can state the main result of this §4.

4.2. Theorem. If © is an invariant tempered distribution on N, then there
are distributions U; on Z; such that

k

43 oeH=3 3 fz T 160} -00) AU, for 1 e 5QV.

m=0 [Il=m

In particular,

4.4. Corollary. If fe 8(N) is annthilated by the characters of the irreducible
unitary representations of N, then f is annihilated by every invariant tempered
distribution on N.

It will be clear from the proof that Theorem 4.2 and Corollary 4.4 remain
true (?) for distributions with values in a quasi-complete locally convex topologi-
cal vector space and (i) with N replaced by any Lie quotient group e.g. for a
product of Heisenberg, vector and torus groups. {For (i) note that the linear
dual of the Lie algebra of N/D is the annihilator of the Lie algebra of D in n*.}

In the manner of §3 we first prove

4.5. Proposition. Let T be an invariant distribution on n*. Then there are
distributtons S; on Z; such that

3
@6 10)= % = [ (TTI0F)-6:0) dS0) for f2C .

Proof. If k = 1 this follows from Theorem 3.18 in its formulation (3.2).
Now let k¥ > 1 and let E be the space of distributions on n,* @ -+ @ n,—*.
The Schwartz Kernel Theorem [9, Proposition 25] represents T' as an Ad*(N,)-
invariant distribution T, : C,” (n,*) — E whose values are Ad*(N; X -+ X N,_))-
invariant, under

T,(f0)(0) = T(e®fi) for ¢eC.°*@ - @m-*) and feeC.”().

Choose h; £ C.” (R*™*) with [h(zwy , Y)dZwdYw = 1. According to Theo-
rem 3.18, T, = T,/ + T.” where T, is an E-valued distribution on the hyper-
plane t, = 0 in w,* and 7/ (f.) = Tr(h(xry , Y) [fr (e, v, t)du dv). The values
of T\ are Ad*(N, X --- X N,_,)-invariant, and the same invariance follows for
Tk// = T), - Tk,.
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By induction on k, we have distributions A4,(f;) and B,(f,) on Z, P
- @ Z..:, as J runs through the multi-indices (j; , -+ , jn) with1 = j, <
«v+ < jm £ k — 1, such that

k-1

ROIOED S I RACTIRIANS

and

100 = 3 X [ 0 asio

mOI

where ¥,(¢) denotes the Riemann 1ntegral of ¢ over the orbit Ad*
(N, X -+ X Ni,-)(V). Glancing back at (4.1) and the definitions of T,/ and
T,”, the Schwartz Kernel Theorem gives us distributions C; on Z; such that

(&.72) r0) = 3 % [ a0 doo

m=0 |Il=m

where ®,(f) is the integral of f over the orbit Ad*(N)(\). If Ae Z, then ([7], [5], [6])
(4.7b) 6:(f) = (n!2)” H LR,  n= 2[: n; .

Combine (4.7a) and (4.7b) to obtain (4.6) with S; = (n '2")0 7. Q.E.D.
Theorem 4.2 follows from Proposition 4.5 with 7' =

5. Some open questions. The problems studied here for products of Heisen-
berg groups are still unresolved for general nilpotent Lie groups. That is, can
an invariant tempered distribution on a nilpotent Lie group be expanded, in
some sense, in terms of the characters of the irreducible unitary representations
of that group? Since the cross-sections for the co-adjoint representation are in
general more complicated than those of the Heisenberg group, one cannot
expect to obtain an exact analog of Theorem 4.2. However, it still makes sense
to ask whether a function which is annihilated by all characters is annihilated
by all invariant tempered distributions.

More generally, consider a nilpotent Lie group N and a unipotent representa-
tion on N on some Euclidean space R™. It is known that any orbit of N on R™
carries an invariant, tempered measure. Thus each orbit determines an invariant
tempered distribution on R™. Again one may ask to what extent these distribu-
tions determine all N-invariant tempered distributions on R™. Here one of us
is optimistic and the other is pessimistic.
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