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Summary. — We show that the operation of charge conjugation (and
hence also CPT) can be realized as an actual geometric transformation
within the framework of Segal’s chronogeometric theory. We also
discuss some geometric questions connected to the foundations of the
chronogeometric theory.

1. — In a recent series of papers (1) SEGAL has developed a theory of the
cosmos based on the fifteen-dimensional conformal group. This is the group
of (locally defined) transformations of Minkowski space M which preserve
the Lorentz metric up to a scalar multiple, or, what amounts to the same thing,
which preserve the light-cones. This group can also be characterized as the
group of (locally defined) transformations which preserve Maxwell’s equations.
(It is very easy to see this fact, known since the turn of the century, using
exterior algebra: Let V be a vector space endowed with a nondegenerate scalar
product of arbitrary signature. The sx-operator, cf. (), maps A*V*—> AnkV*
where » = dim V, and depends on the choice of sealar product. If we modify
the scalar product by multiplying it by a nonzero secalar, the various %-operators
get multiplied by powers of that scalar. It is easy to check that if n = 2m

() 1. SEGAL: Astronomy and Astrophys., 18, 143 (1972). Also A wariant of special
relativity and extragalactic astronomy, to appear.
() L. H. Loomis and 8. STERNBERG: Advanced Caleulus (Reading, Mass., 1966).
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and we take &k = m, the map %: A»V* - A=V* is unchanged. The equations
dw =0, d*w =0 are thus conformally invariant, if o is an exterior form
of degree m on a 2m-dimensional pseudo-Riemannian manifold. If we take
m =1 and w = udxr + vdy on the Euclidean plane, we get the Cauchy-Rie-
mann equations. If we take w to be the two-form giving the electromagnetic
field on Minkowski space, we get the Maxwell equations.)

Special relativity asserts that the group of symmetries of nature is the
subgroup of the conformal group which consists of those transformations
which also preserve the class of «inertial frames». (We shall. elaborate on
this point below.) This group is then the eleven-dimensional group, which
we shall denote by Gy, consisting of the (globally defined) Lorentz transfor-
mations, the scale transformations (i.e. dilatations of M) and the translations.
Let g,, denote the Lie algebra of Gy, and let g¢;; denote the Lie algebra of
conformal vector fields on M. Thus each element of g, is a globally de-
fined vector field on M, but not every element of g, can be exponentiated
to a global transformation on M. The Lie algebra g¢,, is a subalgebra of g,;
(and consists precisely of those vector fields which can be exponentiated).
Let Gy; be a Lie group whose Lie algebra is g¢,;, so that Gy, is a closed sub-
group of Gy;. (We could choose G5 to be the simply connected group. How-
ever, we shall prefer to make a different choice; as we shall indicate in the
next Section, we ghall take Gy; to be the group isomorphic to §0,,.) If we
wish to regard Gy as the «group of physics», then it becomes natural to
« complete » the Minkowski space M to obtain a manifold M on which the
entire group Gy; acts. Let us examine what is involved in this procedure of
« conformal completion ».

We are looking for a manifold #7 which is a homogeneous space for the
group G,; together with a smooth map, f: M — M, such that

f(gm) = §f(m) for all ge @y,
and
U (Em) = Em for all € gy,

where £, deotes the value of the vector field & at mec M, where £ is the
vector field on M given by the action of Gy; on )4 , and where we denote the
action of ge @ on we I by §r. Now this problem, as it stands, does not
admit a unique solution. Indeed, suppose that (i , f) is such a solution, and
let & be any element of G, and let us define a new action of G,; on m , by
setting

§'w= (kgk™*)"x,
and a new map f' by

f'(m) = f(km) .
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Then it is easy to see that the new action and the new map so defined aré
again a solution to our problem.

On the other hand, a solution to our problem does exist. Indeed, let us
pick some point 2, M. Let g}, consist of the vector fields in g,; which vanish
at @y, and let g5, =g, ng). As we shall see below, the algebra g}, generates
a closed subgroup, call it H, of ¢;. Then H n @y is the subgroup generated
by ¢,, n ¢}, and coincides with the isotropy group of x, in G4,. We now define
I = G;/H and map M = G/(H n Gy,) into M by setting

flg(H n Gy)) =gH .

This gives a solution to our problem.

To see the structure of g7, it is convenient to give a general description
of the conformal algebra of any vector space V possessing a nondegenerate
scalar product. We can identify vector fields on V with V-valued functions,
using the linear structure on V. If & is any V-valued function, its differential
dé can be thought of as a V(& V*-valued function, i.e. as a Hom(V, V)-
valued function. The condition that a vector field £ is conformal can then
be written as

déeo(V)DR at all points,

where o(V) denotes the orthogonal algebra of ¥V and R the scalar multiples
of the identity on V. It is well known that, if dim V>3, the only solutions
to the above equations must be polynomial vector fields of degree at most
two. Furthermore, if we break up any conformal vector field into its homo-
geneous components, this corresponds to a decomposition of the conformal
algebra (if dim V' >3) into a vector-space direct sum

V+ (o(V)+R)+ 7,

where V consists of the constant vector fields, (o(V)+ R) consists of the
linear vector fields, and V' consists of the quadratic vector fields. The sub-
spaces V and V' are nongingularly paired under the Lie bracket into o(V) 4 R,
and in fact into the R-component if we project onto the centre. In fact the
structure of the conformal algebra can be most succinctly summarized as
follows. We can, using the scalar product on V, identify o(V) with A2(V).
Here the element v is identified with the linear transformation sending w
into (v, w)u— (u, w)v. Let us construct a new vector space W two dimen-
sions greater, obtained by adjoining two isotropic vectors f., and f,. The
scalar product on W is defined by keeping the old scalar product between
elements of V and setting

(f-1;, 0) = (fa, ”)=(f—1;f—1)=(f4,f4)=0 and (-, f) =1.
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Then the conformal algebra is isomorphic to the orthogonal algebra o(W), with
the constant wvector fields being identified with elements of the form f_ Av, the
quadratic fields with elements of the form f,/\v, and the infinitesimal scale trans-
formation identified with the element f_;Af, (and o(V) with A%(V)cC /\ZW).
We refer to (°) for a description of these facts. In particular, the algebra g;s
can be identified with the algebra o,,. If we take x, to be the origin, then g7,
consists of the linear and quadratic vector fields. By the above description,
this is the eleven-dimensional subalgebra of g5 isomorphic to ¢,,, and, indeed,
conjugate to g;; by an element of the adjoint group of g,;. Thus ¢f, does indeed
generate a closed subgroup of Gy; and we obtain a comformal completion 7
as indicated above. It is not difficult to see that M admits a conformal struc-
ture invariant under Gy; and that our embedding of M into I is conformal.

Notice that, once we have picked a point x, and specified its image point
f(a,) in M, then the question of conformal completion has a unique solution. This
is because the algebra g% n gy is the reductive subalgebra o,; + R which acts
completely reducibly on g,;. It breaks ¢,; up into three inequivalent subspaces,
and hence there is only one way of enlarging the subalgebra o,; 4 R to a
subalgebra, g7, of g, with g}, ng, = 0,5+ R. There is thus only one can-
didate for H. Hence, if we specifiy the image of x,, we can identify b4
with Gy5/H.

It is clear from the above discussion that g,, can be characterized as the
normalizer, in ¢,;, of the subalgebra consisting of the constant vector fields.
We can think of the concept of a « family of inertial frames » as being the same
as some subalgebra of ¢;; acting as constant vector fields, i.e. as «infinitesimal
translations ». It is in this sense that we can regard the group G,; as the group
preserving both Maxwell’s equations and the notion of inertial frame.

2. -~ In order to proceed further, it will be convenient for us to have an
explicit model for M. In what follows we shall take Gy to be the group 80, ,,
the identity component of the group of orthogonal transformations of R2¢,
where R%* is the six-dimensional real space endowed with a metric of signa-
ture + +—— ——. Following SEGAL, we will let M/ denote the projective null
quadrie, 4.e. a point # in M is a null line in R4, Let us choose some point
x, e M, and let P_ denote the isotropy group of x.. In view of the discussion
of Sect. 1, we know that P, is an eleven-dimensional group of 80,, which is
isomorphic to G,. Let us set

Q= {xe M, » not orthogonal to x,}

(®) I.M. SiNgER and 8. STERNBERG: The tnfinite groups of Lie and Cartan, in Journal
a’Analyse Mathématique (1965).
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and

E ={we M, » orthogonal to z, but o=~ x,}.

It is clear that the four-dimensional submanifold 2, the three-dimensional
submanifold 5 and the zero-dimensional submanifold {,} are all stable
under P,. We claim that P_ acts transitively on each of these, so that they
provide the orbit decomposition of /. Indeed, let us choose some null vector
f,€E®,. Then, if x, is some point in £, we can choose some f,ex, with
(f-1y fs) = 1. If we choose some other zc £, then we can find a vector f,
lying in x, with (f_,, f) = 1. By standard linear algebra (Witt’s theorem) we
can find an element of 80,, which carries the pair f.;, f, into the pair 7, f.
In particular, it carries x, into x, (and so lies in P_) and maps @, into .
Thus P, acts transitively on . A similar argument shows that P, acts
trangitively on Z. We have thus proved

Proposition 2.1. — The isotropy group of a point x,€ M is an eleven-dimen-
sional subgroup P, of 80, , isomorphic to the Poincaré group plus scale transforma-
tions, the group which we denoted by Gy, in the preceding Section. Under P, the
manifold M decomposes into three orbits: the open (four-dimensional) orbit Q, the
three-dimensional orbit 5 and the zero-dimensional orbit {x.}.

Let M denote the nilradical of P, so that M is a four-dimensional com-
mutative (vector) group. The group P, is the semi-direct product of P /M
with M, and the group P./M acts on M as Lorentz transformations followed
by dilatations. Thus M has a Minkowski metric determined only up to scale,
i.e. the Minkowski « angle » is well defined. If we choose an « origin» x,€ £,
then we get a map fo: M — 2 given by fo(v) = v-x, for v M. The subgroup
preserving both the «antipode » x, and the origin x, is a seven-dimensional
group @,, isomorphic to R*Xx80,;. We let 8(= 8(x,, ,,)) denote the one-
parameter subgroup of dilatations in ¢,. Thus § is the centre of @, and consists
of the dilatations in P_. It follows that the set of Minkowski metrics on M, and
hence on L2, is a homogeneous space of S.

Let us choose w,, and x, as above, and let U be the two-dimensional space
that they span. Since z, and x, are nonorthogonal null lines in U, it follows
that the restriction of the metric of R*»* to U is nondegenerate and, in fact,
has signature - —. Let V be the orthogonal complement of U in R4, so
that V is a four-dimensional subspace carrying an induced metric of signa-
ture +———. An element of § acts by multiplying a vector on the line x
by some positive number  and on a vector in the line x, by multiplication
by 1, and so as a hyperbolic transformation on U, and aets trivially on V.
(Indeed, if we choose some vector f_,ex, and a vector f,€x,, the element
f-a/fs 18 an infinitesimal generator of S.) The semi-simple part of G, acts as
80,; on V and trivially on U (and is generated by linear combinations of
A0, With v,€ V). Each choice of f_,ex, determines a linear map of ¥V
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into M, by sending veV into f_Ave M co,, and this map is equivariant
with respect to the action of 80O,,;. Replacing f_, by 7f_, means that we now
identify v with rf_yA», which means that the same element of M is identified
with a vector in V which is #—* as large. Thus replacing the vector f_, by rf_,
hag the effect of multiplying the Lorentz metric by r—2.

The group § also acts transitively on the space of positive-definite lines in U
(and also on the space of negative-definite lines). If f , ez, and f,ex, are
chosen go that (., f) = 1, then we can parametrize the set of all positive-
definite lines in U by the unit vectors

e, =af_; 4 bfs, >0, 2ab=1,
and this vector is fransformed into
raf_y + r1bf,,

with the negative-definite lines parametrized similarly, except that 2ab = — 1.

Suppose that we now choose a space-time splitting V= V,+4 V; of V.
This is the same as choosing a space-time splitting of M, or as choosing a
timelike direction in M. If we have also chosen a positive line {e.,} in T,
then e_; together with V, span a two-dimensional positive-definite plane, call
it P, in R*4 and its orthogonal space F, is a negative-definite four-space
spanned by V, and e¢,, where ¢, is the negative-definite vector (of length —1)
orthogonal to e_,. Given F, and F, we obtain a subgroup, isomorphic to
80, x 80,, preserving these two subspaces. The element e_;/ ¢, is clearly an
infinitesimal generator for the 80,, where ¢, is the unit vector in V, (chosen
80 as to correspond to a forward direction of time). It is this element that
SEGAL proposes to use as the energy generator instead of element f_;A e,
which is Minkowski time translation. The subgroup S0, X 8O, acts transitively
on M, and we obtain the global space-time splitting M = §*x 82/Z,, where
8t = 80,-x, and 8% = 80,-x,: SEGAL calls this splitting an « observer » and
uses the geometry of 83 for various computations in cosmology. Both the
« chronogeometric energy generator» and the notion of « observer» depend,
in addition to the choice of x, (which is equivalent to the choice of «inertial
frames »), to the choice of origin x, to the local space-time splitting V= V,+ V5,
and to the choice of vector e_;e U. This last choice is somewhat unfamiliar,
and it becomes of importance to relate it to other similar choices and to under-
stand the physical and operational significance of making such a choice. In
the following Section we shall see that the same choice is involved in the selec-
tion of the operator of « charge conjugation ». In the present Section we shall
investigate how the geometrical picture changes under the action of the scale
group 8.

When we act with a scale transformation, we change e_;, SO, and 80,,
and also 8! and S§% and the metric on M. The point x, is unchanged, as is
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the splitting V =V, + V, and the corresponding splitting M = M, + M,. Al
the spheres 83 are tangent to M, at x,. We propose to show that under a scale
transformation the sphere §% changes in such a way that it has the same radius
~ relative to the new metric on M. Thus we have the amusing situation that
if we try to make a scale transformation so as to normalize the radius of the
sphere, we find that the sphere has moved in just such a way as to keep the
same numerical value of its radius in the new units. To do this computation
we make use of the following observation (which is a consequence of the
discussion in the preceding Section): Let X and Y be two elements of the Lie
algebra 0,4, and suppose that Xf,= Yf,modx,. Then if we consider X and Y
as vector fields on M, they take on the same value at ,.

We may identify M with the tangent space to M at x,. Let & be some
vector in M;. According to our original choice of f_;, we can write £ =f_ Av
for some v€eV,, and, in our original choice of metric, & has the same length
as v, which we might as well take to be —1. There is then a unique o, gener-
ator determined by our choice of e_; = af_, + bf, which iz tangent to & It
is given by a~‘e;,A\v =1, where

s = af_,— bf,.

The circumference of the sphere is the period of the circle generated by 7, '
multiplied by the absolute value of the length of the tangent vector & Here 7

generates a circle with period 2ma, so that a is the radius of the sphere. We

apply a scale transformation, and so get a new f_;, a new v, a new % and

compare. For simplicity we organize the computation according to the fol-

lowing table:

0ld New

fa g f_y

E=f4 A &= (rf ) A0
length of & is —1 length of & is —r1

n=e Ao v=(af_,—bf)ANa"v 1 = (raf_j—rbf)Ar e v =1r"14d0,n where C,
denotes the scale transformation with parameter r

period of circle is 2za period of circle is 2zra since A dC, is anautomorphism

circumference is 2ma circumference is 2na

Thus the radius of the new sphere, relative to the new metrie, is the same
as the radius of the old sphere, relative to the old metric, when we act by a
scale transformation.

3. — In this Section we show how the choice of e_; is related to charge
conjugation. The connection is via the so-called « spin conformal algebra »
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introduced in (4) and its connection with the geometry of the bounded domains
ag developed in (°). We begin with a quick review of concept of charge con-
jugation.

The group 8I,c is the universal covering group of the group 80,;. We
can explicitly see the relation between these two groups as follows: let us
write the vector p = (P, P1, P2, ps) in R? ag the two-by-two Hermitian matrix

p (PP Puitip
Pi—ipy  Po—Ps |’

so that det P = p?— p? — p2 — p} gives the Minkowski metric. For anyge 81, ¢
the matrix gPg* is again Hermitian and the map P ~>gPg* gives a linear
representation of 81, ¢ acting as Lorentz transformations. It is not difficult
to see that this gives a surjective homomorphism of 8I, o onto 80,, with
kernel {I,— I}.

The group 87, ¢ has two inequivalent irreducible representations on a com-
plex two-dimensional space, known as the spin representations of type (%, 0)
and (0, ). They ean be given by # ~>gu and u~>g*'u, or, at the Lie al-
gebra level, by

u~>Au and w~>— A*u, Aesl, ¢, ue C2,

These two representations are clearly not equivalent over the complex numbers,
since the first representation is holomorphic and the second is antiholomorphie.
However they are conjugate via an antilinear map. Indeed, define the anti-
linear map»:C? — C? by

and a direct computation shows that
#Au=—A*%u for Aesl, ¢.

The meaning of the s-operator is the following. Let Z be a complex vector
space equipped with a nondegenerate Hermitian scalar product, and with a
preferred orientation, i.e. a choice of basis of A"Z, where n = dimZ. There
is an induced Hermitian scalar product on each of the spaces A*Z and the

(*) L. CorwiN, Y. NEEMAN and 8. STERNBERG: Graded Lie algebras in mathematics
and physics, to appear in Rev. Mod. Phys.

(®) S8.StErRNBERGand J.A. WoLF: Graded Lie algebras and bounded homogeneous domains,
to appear in Transactions of the American Mathematical Society.
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antilinear map»: A*Z - A" *Z ig defined by
(v, % u) =vAu, vEA"FZ, weEN*Z,

where we have identified A"Z with C. (For »=2 and k=1 and the
standard Hermitian form on C2 we get the #-operator written above.) For any
linear transformation 4 on A*Z, we obtain a linear transformation A on
A**Z defined by

Asopu=vA\Au.
It then follows that
* Ay =— A% u.

4 a b
:‘c d
d —b
w7,
—e a

so that for 4Aesl, ¢ we have A*=— A, which is the reason the # intertwines
(%, 0) and (0, ).

There is a representation of the Clifford algebra associated to the Lorentz
metric on the direct sum (%, 0) @ (0, }). The images of the elements of degree
one in the Clifford algebra are known as Dirac matrices. The Dirac matrices
act irreducibly -on the space (1,0)® (0,3), and leave invariant (infinites-
imally) a nondegenerate Hermitian form § and an antisymmetric bilinear form o.
These together (just as above) define an antilinear map of (%, 0) + (0, 1) into
itself. It commutes with the action of 81, ¢ and interchanges the two components.
This map is charge conjugation. On each component it must be some multiple
of #. There is a certain ambignity in the choice of this multiple, and we shall
see that it is related to the choice of vector e_, in the preceding Section. To
see this we must fit the Dirac matrices into the framework of the conformal
algebra. Before doing so it might be instructive to record the following fact.
Let O, be the Clifford algebra associated to a real quadratic form of signa-
ture (p, ). Then the terms of degree one and two in C, form, under com-
mutation, a Lie algebra isomorphic to o0,..;. (The terms of degree two form
a Lie algebra isomorphic to o0,, and adding the terms of degree one extends
this algebra to o,,,; as can easily be checked by examining generators.)
In the case at hand we get a subalgebra o,,. This will sit as the subalgebra
of 0,, which stabilizes €_q.

Following (*), we consider the ILie algebra su,;, the algebra of all five-
by-five complex matrices ¢ which satisfy '

For a two-by-two matrix

we have

QJ+J@Q*=0 and Tr@=0,
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where
0o o I
J=|0o 1 o},
I o0 o

‘where I is the two-by-two identity matrix. Then su,; =g decomposes as
9= 92+ g+ go+ g1 + g2, Where

0 0 X
g, consists of all matrices {0 0 0 |, Xeu,,
0 0 0
0 u 0
¢, consists of all matrices | 00 0 —u* |, ue C?,
0o 0 o
400 Ael g,
go congists of all matrices { 0 —1 0 R A=2ImTrA,
0 0 —A4*
0 0 0
g, consists of all matrices { —¢* 0 0], ve C?,
0 v 0
and
0 0 0
g-, consists of all matrices | 0 0o 0], Yeu,.
Y o0 o

We have [g;, §,1C guys.

The algebra g,... =g, + g, + ¢, is isomorphic to o,, @ R, with the pro-
jection onto the centre, R being given by 2Im TrA. The grading on g, is
consistent with the grading we introduced in the preeceding Sections for o,,
given by the choice of x, and x,.

Under the action of A esl, o regarded as an element of g,, the space g,
transforms as (}, 0) and the space g_, transforms as (0, 1). The space g, is
irreducible under the action of g, . (and, in fact, is a spin representation for o,,).
We may identify the complexification of g, , the vector space ggen, as con-
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sisting of all matrices of the form

4 0 B
0 a 0},
¢ 0 D

where A, B, ¢ and D are arbitrary complex two-by-two matrices and de C.
The complex conjugation — of g, ., over g, is then given by

4 0 B\ ~ —D* 0 — B*
0 a 0] = 0 —d 0
¢ 0 D —0* 0 —4*

There is an equivariant anti-Hermitian form, H: g ,,X¢,., ——>gfm given by

uv'* 0 wu'*

H(w’ w,) =—2 0 ((u, ”,) + (’U, “,))* ’

Po'* 0 U
where
0 u 0 0 w 0
w=]|—v* 0 —u* and w=] —0v* 0 —u'*
0 ? 0 0 v’ 0

The Lie bracket is given by [w, w'] = ReH(w, w'), and we obtain a graded
Lie-algebra structure, cf. () or (®)) by taking Im H. If we let = denote pro-
jection of ggen onto its centre, then nH is an invariant C-valued anti-Hermi-
tian form. Thus (after dividing by 2¢) we see that the C-valued Hermitian form

ﬂ(w, w,) = (“7 'DI) + ("79 “’)

is invariant under the entire algebra g,,.,.
We are now going to write down an involutive automorphism, ¢ ~ @°,
which will have the following properties:
i) 9y =9,
ii) A =A° for Aesl,cCy,,

iii) w ~>we is antilinear
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and
iv) H(w, w'*) = H(w, w')=°,

where, on the right-hand side of iv) we have extended ° so as to be defined on ¢C_.
Notice that since g,,, generates g, the automorphism is determined once we know
it on g ,,. On the other hand, i), ii) and iii) imply that the map of g, — ¢g_, inter-
twines the action of si, ¢ and hence must be some multiple of %, and similarly the
map from g¢g_; to g, must be some other multiple of ». The fact that the map
w ~>w° i8 involutive implies that the maps must be of the form a:g, —g.,
and b#:.g_, —¢g,, where ab=—1. Thus ¢ is determined up to the nonzero
complex number a. On the other hand, if we start with some ¢ satisfying all
our conditions, we can conjugate by any element of the centre of the group
generated by g,. This group is 8 x U,, where § is the group of scale transfor-
mations, and the effect of the action of §x U; will be to multiply ¢ by an ar-
bitrary nonzero complex number. Thus we need only exhibit one value of a
which works. Let us take a =14 and explicitly write

A u. X\ — Ao ity — Yo
—v* —id w* } = —(wu)y* 44 — (iwv)*
Y v —A* — Xe iy A%

A direct verification shows that i)-iv) do indeed hold for this choice of « charge
conjugation ». Notice that the elements in g, ., which are left fixed by ¢ con-
sist of matrices

A 0 X
o o o], Aesl,c, Xeu,.
—Xe 0 —A*

It is easy to check that this subalgebra of o,, consists of those elements which
infinitesimally preserve the vector e_, = (1/v2)(f_, + o) relative to a fixed
identification. Indeed, one can verify that charge conjugation, when restricted
t0 0,4, i3 given by conjugation by the element of 0, ,, which consists of reflection
through a positive-definite line in U, and the identity on V, where U and V
are the two subspaces of R*¢ described in the preceding Section. Thus a choice
of charge conjugation does indeed determine a positive-definite line in U,
and hence a choice of charge conjugation together with a space-time gplitting
determines Segal’s energy generator.
For p = (po, p1, P2, Ps) let us define the element y(p)eo,, by

0 0 P Do+ Ps D1+ 1ps
y(p) = 0 0 0|, where P=

—4iPe 0 0 Pi— s DPo— Ds
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Then it is easy to check that

[7(?)’ [y(p), w]] = [p|2w

for any weg,,,- Thus the y(p) are indeed Dirac maitrices.

Finally we remark that charge conjugation is realized geometrically as
conjugation of SU,; by a certain antiholomorphic isometry of D,,, In
effect, the isometry group of D, , , has two topological components, the identity
component consisting of the holomorphic isometries and the other component
consisting of the antiholomorphic ones (see (°), p. 264, for this fact due to
CARTAN). The holomorphic isometries are the P — g(P), ge 8U,,. The anti-
holomorphic ones are the P — g(P), ge SU,, and P — P induced by complex
conjugation of O%% and R*3 Conjugation by the latter induces every outer
automorphism on SU,,.

4. — The Segal cosmos appears as the set of boundary components of a
certain type in the Grassmann manifold of negative-definite 4-planes in R4,
and the choice of 80,x 80, in 80,, is the choice of an interior point in that
Grassmannian. Here we discuss the general concept of boundary components
of Grassmann manifolds, ef. () and (8), show how these components are re-
lated by interior geodesics, and elucidate the role of the scale transformation.
The calculation is the same in the general case as in the case (negative-definite
4-planes in R*%) of the Segal cosmos.

In what follows F will denote the real or complex numbers or the algebra
of real quarternions, F>¢ will denote the space of (p + g)-tuplets endowed with
the symmetric (if real) or Hermitian (if complex or quarternion) form

H(z) = 2151 + ...+ zzvzzv_ zp+1§11+1_ see T zﬁ+q2m+q 9

where — denotes conjugation of F over the reals, and so is to be ignored
if F consists of the reals. Welet D, denote the open subset of the Grassman
manifold of ¢-planes in F*? consisting of those g¢-planes for which the re-
striction of H is negative definite. Let P be such a negative-definite plane,
and let W denote the p-dimensional (positive-definite) subspace spanned
by the first p standard basis vectors of F”? Then we clearly must have
P n W = {0}, and hence the projection (along W) of P onto the space spanned
by the last ¢ standard basis vectors e,,s, ..., €,,, is a bijection. Thus P has
a unique basis of the form w, + e, 4, ..., w, 4 €,,,, Where the w,c W. If we

6 A. Worr: Spaces of Constant Curvature, 3rd edition (Boston, Mass., 1973).

) J.
"} F. I. KARPELEVIS: Trans. Moscow Math. Soc., 14. 48 (1965).
8) J. A. Worr and A. KoriANY1: Amer. Jowrn. Math., 87, 899 (1965).

———
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write these vectors out as column vectors, we obtain the matrix

()

where Z is a matrix with p rows and ¢ columns, and I is the ¢Xxg¢ identity
matrix. The condition that P be negative definite becomes the requirement
that the matrix I — Z*Z be positive definite.

Welet U,,=U,,, » denote the group of linear transformations of F*? which
preserve H. In the quarternion case we agree to put scalar multiplication on
the right so that linear transformations act on the left, as usual. This does
not introduce any complications. The group U,, acts transitively on the
space of k-planes having a specified signature under the restriction of H. In
particular it acts transitively on D, ,. The closure of D, ,, in the variety
of all g-planes consists of those g-planes for which the restriction of H is
negative semi-definite. We denote by 0,D, , the set of those negative semi-
definite g-planes on which H has nullity 4. Thus 0, D, ,= D, ,, while the
boundary of D, , is the union from one to ¢ of the 0,D, ,. Each of the
0:D,, is also an orbit for the action of U,,. Let H be some fixed isotropic
subspace of dimension r. We let 0,D denote the set of all g-dimensional semi-

definite subspaces b such that bn b+ = E. Thus

0,D=U0,D) with dimE=r.
E

If » is any point of D, ., then the isotropy group of z is clearly isomorphic
to U, x U,, which is a maximal compact subgroup of U,,. The Killing form
on U,, induces a Riemann metric on D,,,, making D,,, into a symmetric
space. If ¢ is the involution fixing @, then ¢ breaks up the Lie algebra of U,
into the decomposition k + p, where p can be identified with the tangent
space to #. The geodesics through » are then the curves of the form y,(t) =
= exp [tf]@, E€p.

Notice that the groups U,,, and 80,,, are related by a homomorphism
U,.0—>80,,, whose kernel consists of scalar matrices, so that the spaces
D,,, and D, . are isometric.

We now describe the geodesics of D,

rar 304 their asymptotic behaviour
at the boundary.

Theorem 4.1. Let & be a point of D, . and let E be a totally isotropic r-dimen-

stonal subspace of F™°. Then there exist geodesics passing through x

9:@) = oxp [€]o

tending to 0,D as t — co. The set of all such geodesics is parametrized by the
cone of rXr positive-definite Hermitian matrices over F, and all such geodesics
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tend to the same boundary point

E® @nEYeo,D
as t > -+ oo.

Proof. We may, by an appropriate choice of basis, assume that « is spanned
bY {611y -y oy} and that E is spanned by {e; + €, ..., ¢, + ¢,,,}. In this
basis {ei, ..., €,.} of F*? the Lie algebra of U,, consists of all matrices of

the form
A B
Bx ()’

where 4 4+ A*=0 (decw,), C+C*=0 (Cecw,) and B is an arbitrary
-1,

0 I,
only fixed point in D, and is an involution. Thus conjugation by this matrix
is the desired involution ¢. The positive eigenspace of ¢ is %, which thus con-
sists of all matrices

p X ¢ matrix over F. The matrix belongs to U,,, has = as its

4 0
0 E Aeu, and Ceu,,

and the isotropy group of # is U,x U,. The negative eigenspace of ¢ is p and
congists of all matrices of the form

0 B
Bx ol where B is pXq.

We must now investigate the conditions imposed on B by the requirement
g,x) - 0,D, a8 t - oo. Let b be a limit point of g,(x). Then, for any ¢, g.(b)
is also a limit point, so g¢,(b) =b. Now also g,(bt)=5bt, so E=bnbt=
=g(bnb*) = ¢,(E). Differentiating the equation g,(F)= E with respect to ¢
yields

¢ECE,

or

E(ei‘l‘em-u‘) =zbi(ej+ep+j)7 ) i=1,..,r.

=1

From the form of & we conclude that the matrix B has the block decomposition

' O r 14
O BI/? B*:B?
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where B’ is the rxr matrix B = (b)) and B' is some matrix with p— r rows
and ¢— r columns. We now propose to bring B to a more convenient normal
form by conjugation by a suitable element in (U, o), 0 (U, d)r, 4.6. the sub-
group which simultaneously fixes # and E. This subgroup consists of all ma-
trices of the form

where Ae U,, A'€ U,—,, and A"e U,,.
0

Conjugation of B

B

0) by such a matrix has the effect of replacing it by
0 C

ot o) where

AB' A1 0
0 = 0 A/BIIAII._l M

Since B’ is self-adjoint, we can find some unitary operator A which diagonalizes it.
Furthermore, by suitable choices of A’ and A” we can also arrange that
A’B" A" is real diagonal. (Indeed, by preliminary pre- and post-multiplica
tion by unitary matrices we can arrange that B” becomes a square matrix
surrounded by zeros, and that the square matrix is nonsingular. By polar
decomposition we may assume that this matrix is of the form PU. We ecan
then pre- and post-multiply by unitaries to eliminate the U and to diagonalize P.)
We may thus assume that A’'B”A"-! consists of all zeros with the possible
exception of some positive entries running down the main diagonal. We pro-
pose to show that all the diagonal entries of AB’A-! are positive and all the
entries of A’'B"A"-! are zero. After the conjugation & is given by

b b

80
cosh (thy)

U, v , ™ cosh (tb,,
g = exp [t5]=(vi " ) with U, = ) | :
4 i .
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cosh (#b,)
" cosh (tby)

W, 1 ’

I

sinh (tb,)

v, sinh (tb)

0 .

Thus

gtep_*_i = Sinh (tbl) 6,; + GOSh (tbl) 01,_,_,: .

As t — oo the line spanned by the vector on the right tends to the line through
e; + é,.; if b,> 0, to the line through e,,, if b, =0 and to the line through
e;— 6, if b,<<0, Since E is contained in the limit set of g,»#, we conclude
that b;,> 0 for i<r. Since F is the maximal isotropic space contained in the
limit set we conclude that all the remaining b, must be zero. We thus see that
the limit of g,(x) consists precisely of the space spanned by ¢, + €,,4, ..., € 1 €5y,
€yri1y -y bpyqy, Which is exactly E @ (xn E).
Now the conjugated & is
b,

o B\ b,
B 0 wit =

B* 0
with B’ rXr Hermitian positive definite. This completes the proof of
Theorem 4.1.

The proof of Theorem 4.1 tells us when and how two boundary components
can be joined by interior geodesics.

0 B )
b;> 0, and so the original £ was ol where B is an arbitrary 0 )

Theorem 4.2. — Let E and B’ be nonzero totally isotropic subspaces of F?,
Then the boundary components 0,(D) and 0,(D) are joined by a geodesic in
D=D,,r if and only if

i) E and E' have the same dimension, say r,
and

ii) H restricts to a form of signature (r,r) on E + E'.

Under these circumstances the geodesios joining 0,(D) and 0,(D') are just
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the y(t) = y(t) ® y, where

yi(t) is a geodesic « joining» E and E' in the D,,r based on ED E'
and

y is a negative definite (q— r)-plane, element of the D,_,._.» based
on (E@ E)- '
The union of all such geodesics is a totally geodesic submanifold of D, ,»
isometric 10 Dy, p XDy _py s p.

Proof. — In the proof of Theorem 4.1 ‘I_i}_% g:(z) is the space spanned by
{61— €piay ooy €= €405 € 1y ooy €pyq), Which belongs to 9,(D) where E is
spanned by {e,— €,.1, ..., &— €,,,}. Thus dimE'=r=dimE, and F+ B’ is
the span of {e, ..., €} €511, ..., €51r}, Space on which H has signature (r,r).

Conversely, let £ and E’ be totally isotropic r-dimensional subspaces of F*¢
such that H has signature (r,7) on ¥ 4 E’. Then F*? has an orthonormal
basis {e, ..., €,,,} such that

E is spanned by {e, + €11, oy € + €500}
and
E' is spanned by {6, — €,11, oy 6 — €540} -

The proof of Theorem 4.1 gives geodesics « joining » 0,(D) and 2,(D).

Recall that the arbitrary geodesic ray from zeD =D, to £+ (xn EL)e
€ 0-(D) was of the form g,(x) = g,(2) + y where {€,.4, ..., €,1,} spanned x, 2 is
the span of {e,.4, ..., €yir}y a0A {€y414sy ..y €4} SPans y. There g, was the
identity on ¥, and ¢,(z) was the span of the sinh (tb;) e; + cosh (tb,) ¢, ., 1 <i< T,
8o t —g,(2) was a geodesic joining ¥ to E' in the D,,, based on F 4 F'.
Intrinsically, 2 =axn (F 4 E')t and y=2nELt=2nE*. We can replace y
by any %' in the D,_,,.r based on (F - E')%, thus replacing # =2@y
by a'=2@ y’, replacing the geodesic g,(x) by g.z') = ¢.(2) ® y', and replacing
the limit points Py and Py by EP y’ and E'@y’. This completes the
characterization of the interior geodesic joining 2,(D) and 2,.(D), and it describes
the union of all such geodesics as {#@y:.yeD,,r based on E@ E and
2€Dyrqorr based on (E@ E')}.

Since it is stable under the symmetry to D at each of its points, that
set forms a totally geodesic submanifold.

Theorem 4.2 is proved.

In the case r =1 and F = R, D,,, is a line, and D,_,, , =D, ;, ; cuts
each geodesic 0,(D) — 0,.(D) in a single point. If further p =2, then D, ,, ;-
is a real hyperbolic (g— 1)-space. We reformulate this case as

Corollary 4.3. — Let B be an isotropic line in R™® and v€ D = Dy, . Then
there is a unique (up to change of parameter) geodesic ray in D, .5 from x to the
boundary component 0,(D).
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Let E' be another isotropic line in B**. Then 0,(D) and 0,(D) are joined by
an interior geodesic if and only if B' is not orthogonal to E. In that case, all such

geodesics are given by

t— (exp [tb]f , + exp [— th]f)RD y,

where b%0, E=f_ R, B'={f,R, and y belongs to the real hyperbolic (¢ — 1)-
space D, , _, » based on (E D E')*~

® RIASSUNTO (%)

8i dimostra che ’operazione di coniugazione della carica (e quindi anche la CPT) si
pué realizzare con un’effettiva trasformazione geometrica reale entro la struttura della
teoria cronogeometrica di Segal. Si discutono anche alcune questioni geometriche eon-
nesse con i fondamenti della teoria cronogeometrica.

(*) Traduzione a cura della Redazione.

3apsanosoe conpsikenne n xocmosorus Cerana.

Pestome (*). — TTokazbIBaeTCs, YTO ONEPALNA 3aPATOBOTO CONMpPSDKEHNs (¥, CIIEAOBATENBHO,
COPT) MoxeT GBITh peaIi30BaHA, KAK PEAIbHOS IFeOMETPHIECKOE IPeoGpa30BaHme B paMKax
xpororeomerpuieckoii teopun Ceranma. Mbr Taxxke o0CyXImaeM HEKOTOPHIE TE€OMETPH-
YecK¥e BOIPOCH], CBSI3aHHBIE ¢ OGOCHOBAHMEM XPOHOTEOMETPUYECKOW TEOPHH.

(*) Ilepesedeno pedaxyueii.



