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We study a class of semidirect product groups G = N - U where N is a
generalized Heisenberg group and U is a generalized indefinite unitary group.
This class contains the Poincaré group and the parabolic subgroups of the
simple Lie groups of real rank 1. The unitary representations of G and (in the
unimodular cases) the Plancherel formula for G are written out. The problem of
computing Mackey obstructions is completely avoided by realizing the Fock
representations of N on certain U-invariant holomorphic cohomology spaces.

1. INTRODUCTION AND SUMMARY

In this paper we write out the irreducible unitary representations
for a type of semidirect product group that includes the Poincaré
group and the parabolic subgroups of simple Lie groups of real
rank 1. If F is one of the four finite dimensional real division algebras,
the corresponding groups in question are the N, , - {U(p, ¢; F) XF1},
where

F?.2: right vector space FP*? with hermitian form

» P+a
hx,y) =Y x5 — Y %%,
1

p+1

N, e Im F 4 F?2with

D
(g , Zo)(w, 2) = (wy -+ w + Im Az, , 2), 2, + 2),

U(p, ¢; F): unitary group of Fr:¢,

F*: subgroup of the group generated by F-scalar multiplication
on F7:2,
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Here N, , ¢ is a sort of Heisenberg group, and our main interest sits
with the G, = N, . r - U(p, ¢; F). The Poincaré group is G, &
and (for F # Cayley numbers) G, 4 r - (multiplicative group of F) is
the parabolic subgroup of U(p + 1, 1; F).

The classical procedure for enumerating the (irreducible unitary)
representations of the Poincaré group goes through without serious
change for all the G, , x = R?7 - O(p, g); here note N,, , » = R”?and
U(p, ¢; R) is the indefinite orthogonal group O(p, ). In effect, every
v € R?¢ specifies a unitary character y,(2) = ¢™*®?, x, has O(p, g)-
stabilizer L, = {g € O(p, ¢): g(v) = v}, x, extends to a character %,
on R%:2 - L by 7.(2, £) = x.(%), one has the unitarily induced

Moy = IndR”'q-LvTGp,q,R()Zv ® 7)»

where y represents L, , and every irreducible unitary representation
of G, , r is equivalent to a =, , . Of course v influences , , only to the
extent of its O(p, ¢)-orbit, so there are just four cases: (i) v = 0 and
L, = O(p, q); (i1) (v, v) > 0and L, =~ O(p — 1, ¢); (iii) A(v, v) <O
and L, ~ O(p, ¢ — 1); and (iv) v = 0 with A(v, v) = 0, where it
turns out that L, >~ G, 5, 1 z- Thus one has the unitary dual
G, .z described, in several steps, in terms of the O(r, )" for 0 <7 < p
and 0 <{s < g. This is known, at least in the cases ¢ = Q0 and ¢ = 1.

This recursion procedure breaks down for the F»:¢ - U(p, ¢; F)
with F complex or quaternionic. In the isotropic case (iv), where v # 0
with A(v, v) = 0, the stabilizer L, turns out to be =~G,_; ,_, r. Working
with the central extensions G, ,r instead of the F?¢ - U(p, ¢; F)
we again put ourselves in a recursive situation for the representations
that arise from unitary characters of N, , . The rest of Nopor
consists of certain infinite dimensional classes [5,], each characterized
by its central character %,

ni(w, 3) = €2 (0, 2),

where A: Im F — R nonzero, linear/R. In particular [%,] is U(p, ¢; F)-
stable. We explicitly extend it to G, , » by using a method and theory
of Satake, or results of Carmona, to realize some 7% € [7,] as the
representation of N, ,r on a certain square integrable cohomology
group HY*(%,). Here &£, — N, , ;//Im F ~ C%% is the N, , ~homo-
geneous bundle associated to e¢”. This setup is U(p, ¢; F)-stable, so
n%$ extends to a representation 7, of G, , r on HY*(%,). The resulting
classes [#, ® y], [y]€U(p, ¢; F)", complete the description of
G and they are the only classes involved when we write out the

0,q.F )
Plancherel formula for G, , r .



REPRESENTATIONS OF SEMIDIRECT PRODUCTS 341

Complete descriptions and parameterizations of the G, , », F real,
complex, or quaternionic, are found in Section 5. The corresponding
Plancherel formulas for the F?:2 - U(p, ¢; F) and the G, ,r are in
Section 6. These results are extended in Section 7 to the G, , r - F*
where F* is a subgroup of the multiplicative group of F, except that
here we do not write down any nonunimodular Plancherel formulas.
The Cayley algebra case of F, which has its own peculiarities, is found
in Section 8.

Our case ¢ = 0 is studied by F. W. Keene in another context, and
certainly that gave me some helpful insight into the groups studied
here.

There are several places where we extend representations explicitly
rather than calculate the Mackey obstructions [12, 17, 18] to see
whether the extensions exist. (In fact those obstructions are not very
easy to compute.) Qur recursive procedure combines with the explicit
extensions to form a rather pretty and relatively nontechnical picture
of the representation theory for our groups G, ,r and G, ,r - F"

2. THE Groups G, , : F ReaL, CoMPLEX, OR QUATERNIONIC

Let F be a real division algebra R (real numbers), C (complex
numbers) or Q (quaternions). We view the space F* of n-tuples from
F as a right vector space, so linear transformations act on the left. If p
and ¢ are nonnegative integers with p 4+ ¢ = n, then we have the
hermitian vector space

» 44q
F7.¢ ; F* with the hermitian form A(x,y) = ) x'3! — ) «'5%.  (2.1)
1

P+l

The F-linear transformations of F” that preserve % form the group
U(p, g; F) : unitary group of Fr.¢, (2.2)

U(p, ¢; R) is the indefinite orthogonal group O(p, ¢), U(p, g; C)
is the indefinite unitary group U(p, ¢), and U( p, ¢; Q) is the indefinite
symplectic group Sp(p, ¢). In each case, the group is compact just
when pg = 0, i.e. when 4 is positive or negative definite. The semi-
direct product groups

Gp,q,F = Fv.1- U(P» q; F) (23)

thus are generalized motion groups. Note that G| , x is the Poincaré
(inhomogeneous Lorentz) group.



342 JOSEPH A. WOLF

As hinted in the Introduction, our initial aim was to work out the
representation theory for the groups G, , r , but technical considera-
tions forced us to work with central extensions in which the additive
group of F»:¢ is replaced by a 2-step nilpotent group of Heisenberg
type.

LetIm F denote the imaginary component of F,soF =R 4+ ImF
as real vector space. Thus Im R = 0, Im C = /R, and Im Q =
iR + jR 4 kR in the usual notation. Our generalized Heisenberg
groups are the

Nyor=ImF + Fra (2.4a)
with group composition given by
(g, 2o)(w, 2) = (2 + w + Im b(zy, 2), 25 + 2). (2.4b)

Here wy,welmF; z,,3eF?% and Im#A(z,, ) is the ImF-
component 3{A(z,, 2) — k(2 , 2)} of h(z,, 2). Note that N, . has
center Im F (unless F = R) and is the simply connected group with
Lie algebra

Ny or = ImF +FPe with [(ng, &), (0, €)] = QIm A(§,, £),0).  (2.5)

Of course N, , = RP:¢, but the extension is genuine for C and Q.
N, 0.c 18 the ordinary Heisenberg group of dimension 2» + 1. From
(2.1) and (2.5) we have

LemMa 2.6.  Define f:n, o5 —> Ny ig05 by f(0, §) = (0, §) where

£ = (4, bp )PPt and & = (& ,.., &y, Egia oo Eprg)- Then
f is a real Lie algebra isomorphism, and so f induces an isomorphism of

N_’D,Q,F onto Np+q,0,F .
U(p, ¢; F) acts by automorphisms on N,, , » by g(w, 2) = (w, g(2)).
Thus we have the semidirect product group
Gy, r = Ny r U(p, ¢ F). (2.72)
The product in G, , r is given by
(wo > % 5 &)W, 75 &) = (wy + w + Im Az, , £9(2)), 2o + £o(2), £08)-  (2.7D)

Evidently G, , r has center Im F and is a central extension ] - ImF —

G,.q.r = Gp.q.r — 1. The point of the various p and gin N, , r is the

formation of this semidirect product.
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The result of Section 3 shows that G, , » occurs naturally as a
subgroup of U(p + 1, ¢ + 1; F), more precisely that a certain
maximal parabolic subgroup P, , r of U(p + 1, ¢ + 1; F) is a semi-
direct product G, , r - (multiplicative group of F).

In Section 8 we will discuss analogs of the G,, , r and the P, , » where
F is replaced by the (nonassociative) Cayley—Dickson division algebra.

3. Gp_1.4-1.5 25 A Suscroupr oF U(p, ¢; F)

In order to apply the Mackey machinery of induced representations

to our semidirect product groups G, , rand G, , » we will need

TueoreM 3.1. Let ve FP:2 be a nonzero isotropic (h(v, v) = 0;
this requives p > 1 and q > 1) vector, and consider its stabilizer
L, = {geU(p, ¢; F): g(v) = v}. Then L, is isomorphic to Gp,_; , 4 r .

We first indicate the idea of the proof. If S is a totally isotropic
(A(S, S) = 0) subspace of F?:¢, one has the group

Ps = {geU(p, ¢; F): g(5) = S}.

The groups Py are the maximal parabolic subgroups of U(p, ¢; F),
and as such one knows something about their structure. L, is a sub-
group of codimension dimy, F in Py , and this will give us the structure
of L, . However, we do not actually use any theorems about parabolic
subgroups in our proof of Theorem 3.1.

With the above considerations in mind, and in order to simplify
notation, we denote

U = U(p, ¢; F) and u is its Lie algebra, (3.2a)
P ={gecU:gveoF}andp is its Lie algebra, (3.2b)
L = {geU:gv = v} and |l is its Lie algebra. (3.2¢)

In terms of F-linear transformations ¢ of Fr:¢
u = {&: h(fzy,2) -+ Mz,,¢2) =0  forall z,,2cFrq, (3.33)
p = {f e ek}, (3.3b)
[ = {fecu: év =0} (3.3¢)

Let {e; ..., €4_piqt D¢ the standard basis of F», so (2q,..., &,) =
3 e,2, . In the proof of Theorem 3.1 we may replace v by any g(v),
g € U, thus replacing L and P by gLg~* and gPg~!; so we now assume

V=€ t sy - (34)



344 JOSEPH A. WOLF

Now decompose F?-2 as orthogonal direct sum of its subspaces
V=e¢F+e, F and W=¢F+ - +¢eF+e,.,F+ - 4+¢F. (3.5

This allows us to decompose p:

LemMa 3.6. As real vector space, p is the dirvect sum of
p" = {£ew: EW C W and there exists y € F with
ey = e(Imy) + e, 1(Rey), bepyy = e(Rey) +e,y(Imy)y,  (3.72)
Pt = e EWCV and £V C W with év = 0}, {3.7b)

and
P = {£ e ws {W) = 0 and there exists B € Im F with

ey = (e + epy1)B and ey = —(e + €510)B}- (3.7¢)
Further, vy is arbitrary in (3.7a) and specified by {v = vy.

Proof. Let my and m, denote projections to those subspaces. If
£ep we decompose it as a sum & + £ + £, as follows. First,

¢ = ¢ 4 &™, where

Ely=myof and Elp=myof
so that £, = £ — &' is given by

§hly =mwoé and &t |w=myod

Then (3.3a) gives £ €, so also & € p, and thus £ ep. fo = v so
&™) = 0. Now p, = {&,": £ ep}.

Second, ¢ = ¢ 4 £, where £y =& |y =7y o€ and §,
is given by

&e; = e(Imy) + e,.4(Rey), &e, . = e(Rey) + e,4(Imy),

where y € F is the number defined by éo = vy. Thus £ = ¢ — &
annihilates Wand & |, = &' |, — & | . Notice

Hgrey , &) + bley , €76) — Imy +Tmy = 0,
h(€rep s epin) + Hlepiy, £epyy) = —Imy —Imy =0,
h(é7e; , e,0) + hley s €e,) = —Rey + Rey =0,

so it follows from (3.3a) and A(V, W) = 0 that {" e u. Now £"ep, so
also & € p. Thus p* = {&: £ epl.
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In the above, {v = £'v = €0, so &™v) = 0. Let n = &" |,
Since n(v) = 0,  has matrix
a —a
P

in the basis {¢; , ¢,.,}, and we compute
0 = h(ne, , &) + h(e, , ne)) = a + a,
0 = h(ne,i1 s €pi1) + Hlepin s mep) = b+ b,
0 = h(ney , epq) -+ hley , mey.) = —b — @,

soa = beImF. Thus &" € p,™. It now follows that p,» = {£,*: £ e p}.
Q.E.D.

We now set about examining the spaces (3.7), using them to identify
p and I as semidirect sums p™ + p" and p* -+ ([ N p*), where p* =
P" + p," is a nilpotent ideal =~ n,_, , ; » and where p” and I N p” are
reductive algebras. This is summarized in Proposition 3.16 below.

Lemma 3.8. p" is a reductive Lie algebra, divect sum of ideals
Y |y and " |y . Further, p" |, is isomorphic to the Lie algebra of the
multiplicative group of ¥, and p™ | = 1 N p” and is naturally isomorphic
to the Lie algebra of U(p — 1,9 — 1; F).

('This is immediate from (3.3b), (3.3¢c), and (3.7a).)

Lemma 3.9. Let ¢ € py™ and express £e, — Yy e,z . Then

3 = %y = 0, fepig = — Z €%,
and
fe; = —(ey +epn) & for2 <j<p, +(eg +ep) & forp+2<j<n.

Proof. £V C W forces 2, == 2., = 0, and v = O forces e, ;, =
—&e; = —Y ez;. Since EWC V we have fe; = e,a; + e,,b; for
1 #7#p+ 1. Lete(j) =1forj <p, —1forj > p. Then

0 = (e, ) + h(ey, be;) = (j) 2 +a;,  so a5 = —e(j) %,
and
0 = h(feyiy, &) + hlepyy, o) = —e(j) 2, — by, 50 b= —e(j) % .

Q.E.D.

Now an element § € p,” is completely specified by &e, € IW. Note
that any & € W is of this form e, .
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Lemma 3.10. Let &, E;ep™ Then [&, &) € po™ with
[61, &) er = (&1 + epr) - 2Im A(Ege, , £per),  where Bz, %) = h(Z, 7).

Proof. Lemma 3.9 gives block form matrix expressions

0 —tx 0 Y 0 %% 0 tw
x 0 —x 0 u 0 —u O
8=l —% 0y ad &=y g o @)
y 0 —y O w 0 —w O
)
B O —8 0
00 00
[61962] - 5152—5251 - ﬂ 0 —B 0 ]
00 00
where

B=—%ut+% wti-x—twy=—"2Im(% u—*9-
= —2Im h(—f:e_l , Eae)) = 21m i(éiey , £rey). QE.D.

We record some consequences of these block form matrix expres-
sions.

If £ep,”and npep,"then éy =0 =xf and £ = 0. (3.11a)
If my 5 mp € P then nyny = 0 = 7amy . (3-11b)

With Lemmas 3.9 and 3.10 that gives
[P 917 = P2 [p," 9" =0 and [ps" po"l = 0. (3.12)

Lemma 3.13. p® = p,® + p," is a Lie algebra, and we have an
isomorphism f: p* —n,_; . r given by

if n € p" and mey = (61 + €41)B, then f(n) = (B, 0)
if Eepand e, = 3 € W= FP197, then f(£) = (0, ).

Proof. p™is a Lie algebra by (3.12). Lemma 3.9 and the definition
(3.7¢) show that f is an isomorphism of real vector spaces. Let §; € p,”
with &6, = 2; and n; € p,™ with n,e; = (¢; + €,,1)B; - Using Lemma
3.10 and (3.11) we calculate

flm + & sme + &l = f[61, 6] = 21mA(z,, 7), 0)

= [(Bl s &), (.32 ) 52)] = [f("h + fl)yf("h + §2)]
Q.E.D.
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With p® identified, we turn to the action of p” on its constituents
p." and p,™.

LemMa 3.14. Let (ep", say with {v = vy. If £€p™, then
[¢, €] € py™ with [{, Ele, = {(&e,) + (Eer)7-

Proof. { preserves IV and W, and ¢ interchanges them, so [{, €]
interchanges them. Also [{, {]lv = (fv — élv = —§lv = —fvy = 0
since £2 = 0. Now [{, £] € p,®, and we use v = 0 to calculate

(6 €l ey = L(Eer) — £(Ley) = U(Eer) — £l Imy + epiq Rey)
= {(ée)) + &e(Rey — Imy)) = {(ée)) + ey Q.E.D.

LemmMa 3.15. Let (ey’, say with (v = vy. If nep, then
[5, m] € po™ with [L, mley = y(ner) + (nel)?-

Proof. { and 7 each preserve both V" and W, so [{, n] preserves I
and W. n annihilates oF and W, each of which is {-stable, so [{, 7]
annihilates oF and W. Now [{, 7] € p,”. We compute

[, ) e = Llney) — n(le,) = {(ne)) — nle; Imy + e,.4 Rey)
= Une;) — n(e; Imy — e; Rey) = {(ne,) + 7(e)y. Q.E.D.

We now combine Lemmas 3.6, 3.8, 3.13, 3.14, and 3.15 with (3.11)
to get the structure of the Lie algebras p and I.

ProposiTION 3.16. p = p™ L p" semidirect sum where p* is an
ideal consisting of nilpotent linear transformations and is the maximal
such ideal, and where p* is a maximal reductive (completely reducible)
subalgebra of p. Stmilarly 1 = p™ + (1 N p") semidirect sum.

Pr=p A p " ImF (W =FP10) =m0 re

P o= 9" |, @' |w direct sum of ideals, where p"|, =~ F as vector
space under { + y where {v = vy, and p" |y = 1 N p" s the Lie
algebra of U(p — 1, ¢ — 1, F), the unitary group of W = Fr-1l.e-1,

The action of p" |y onp™: If p" |, 2 >y €eF, p"s3p— BeImF and
proéoze W=Fr14 then p,*a[l,n] & yB -+ By €Im F and
pln > [Cy f] (—)2’}_/6 w.

The action of p"|w = 1Np" on p~ If {€p" |y, nE P and
pitaéze W, then [[,n] =0 and p"3[{, €] «> {(z)e W.
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We lift Proposition 3.16 to the group level by exhibiting maximal
compact subgroups of P and L. Since P and L are linear algebraic
groups, a maximal compact subgroup meets every topological com-
ponent.

Write U(J; F) for U(/, 0; F). Thus U(/, R) is the ordinary orthogonal
group O(!), U(/, C) is the ordinary unitary group U({), and U(/, Q)
is the ordinary symplectic group Sp(/). They are compact.

The maximal compact subgroups of U(J, m; F) are the conjugates
of U(l; F) X U(m; F). Here U(/; F) acts on the first / coordinates of
F'™ and U(m; F) acts on the last m coordinates.

Write F* for the multiplicative group {y € F:y == 0}. In the norm
| v | = (y7)'/% it has maximal compact subgroup F’ = {yeF:|y| =1}.
In fact y+— (| y |, | y |73v) gives an isomorphism of F* onto R+ x F’
where R* is the multiplicative group of positive real numbers. Note
F' ~ U(1; F). More specifically, R" = {--1}, and C’' and Q' satisfy
F = {e:yeImF}.

Lemma 3.17. Let K,, denote the set of all F-linear transformations
g: FP9 — FP:2 such that g preserves both V and W with (identify W
with Fp—1,¢-1)

2 |v: left scalar multiplication by any element of F’,
g |w: action of any element of U(p — 1; F) X U(g — 1; F).

Then Ky is a maximal compact subgroup of P.
La K, ={geKpgly =1} =U(p — 1;F) x U(g — 1; F). Then
K, is a maximal compact subgroup of L.

Proof. K, is a compact subgroup of P, and its Lie algebra §,
is the Lie algebra of a maximal compact subgroup S of P. Let g€ S.
Then g preserves oF, hence also v+ = oF - W. As W is h-non-
degenerate and f,-stable, now g(W) = W. Thus W' = V is also
g-stable. Now g |, is left scalar multiplication by an element of F’,
e.g. by direct calculation, and gy e U(p — 1; F) x U(g — 1; F)
because it normalizes the Lie algebra of that maximal compact
subgroup of U(p — 1,¢ — 1; F). So ge K. Now S = K, so the
latter is a maximal compact subgroup of P.

The assertion on K, follows. Q.E.D.

Combining Proposition 3.16 with Lemma 3.17 we get the structure
of Pand L:

ProrosiTioN 3.18. There are semidirect product decompositions

P=Pr-Pr and L =P (LNP
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where P* = exp(p") is the maximal unipotent normal subgroup, where PT
and L N PT have respective Lie algebras p” and I N p", and where P" and
L N\ P are respective maximal reductive subgroups.

P ~ N, , . 1.r,group of Heisenberg type.

P F*xU(p—1,qg—1; Fywith LN Pr~U(p —1, ¢ —1; F).

Following the isomorphism of Lemma 3.13, F* acts on N,_, , ,r by
ow, )™t = (awd, az), and U(p — 1,9 — 1; F) acts on N,_, o 7 by
8w, 2)g7t = (w, g(2))-

Proposition 3.18 completes the proof of Theorem 3.1.
We rephrase Proposition 3.18 in the language of parabolic sub-
groups.

PropositioN 3.19. P has Langlands decomposition MAN where the
unipotent radical P* = N ~ N, , , ; r and where the reductive part
Pr = MA ~ F* x U(p — 1, ¢ — 1; F). Identifying under those
isomor phisms,

A=R" acts on N, ,,,r by a(w 2)a? = (d’w, az),
and M = M, X M, where

M, =F actson N,_, , 1 r by m(w, 2)m~! = (mwm, mz),
My=U(p—1,q9— L;Factson N, , , ,rby gw, 2)g! =

(, £(7))-
L = MyN and so P = M\AL ~ G, , , - F*

4. REPRESENTATIONS OF N, , . AND THEIR STABILIZERS

We write down the irreducible unitary representations of the
Heisenberg-type groups N, , » . For every such representation 4, we
calculate the U(p, ¢; F)-stabilizer L, of the unitary representation
class [5], and we extend 7 to a unitary representation of the semidirect
product N, . - L, in a way that side-steps the Mackey obstruction.

From (2.4) one has N, ,r as a central extension 1 -~ImF —
N, ,.r —F?%2— 1 where Im F is the derived group. It follows that an
irreducible unitary representation of N, , ; is finite dimensional if and
only if it annihilates Im F, and in that case it is a unitary character

e (w, 2) > /)]

where f: F?¢— R is R-linear. The real-linear functionals on F»«¢
are just the
foo Fr7 R by  fu(2) = Reh(z, o). (4.1a)

580/19/4-3
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Now the finite dimensional irreducible unitary representations of

N, ,.r are just the characters

Xo! (@, 8) — etRertz.vl (4.1b)

where v € Fr.9,

ProrosiTioN 4.2. Fix veFra. If gecU(p, ¢; F), then x, g 1s
equivalent to x, <> X, & = x» <> £(v) = v. Thus the U(p, q; F)-
stabilizer of x, is

L, = {geU(p, q; F): g(v) = v},

and there are four cases:
(1) h(v,v) >0andL, >~ U(p — 1, ¢; F);
(i1) A(v,v) <0 and L, ~U(p,q — 1; F);
(iii) v =0andL, = U(p, ¢; F);
(iv) v #0but h(v,v) =0,andL, ~ G, 5, -

In each case, ,, extends to a unitary character on the semidirect product
group N, r- L, by

ToW, 2, 8) = xo(w, 2) = eReMED, 4.3)

Proof. Equivalence is equality for characters, and y, - g = x, just
when f, = f,(,) , which is when g(v) = v.

In cases (i), (ii), and (iii), L, is the unitary group of 1, as specified.
In case (iv), L, =~ G,_y ,-1,r by Theorem 3.1.

Using (2.7b) and (4.1b), the function §, on N, , - L, defined by
(4.3) satisfies 2,{(wp » 20, £0)(®, 3, &)} — exPli Re h(3 + go2), )} =
exp{i Re A(z, , v)} - exp{i Re h(gy(2), v)}. Since g, € L, , h(gy(z), v) =
h(z, g5'(v)) = h(z, v). Thus

ol (@0 » 20 Lo 2, £)} = Xo(@o 5 %o 5 &) * Xo(®) 2, &) Q.E.D.

If % is an infinite dimensional irreducible unitary representation
of N, o5, then 9 |jup is of the form co e, where ¢ is a nontrivial
unitary character. In other words, n(w, 2) = ™ . 9(0, 2), where
AImF —R is nonzero and R-linear. Of course this requires
ImF # 0,i.e. F = Cor Q, and then Im F is the center of N,, , » and
&' is called the “‘central character” of .

A trivial variation on the classical Heisenberg commutation
relations:
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LemMa 4.4, The equivalence classes of infinite dimensional irre-
ducible unitary representations of N, , r are in bijective correspondence
[m] <> A with the nonzero R-linear functionals A: Im F — R by

nw, 8) = e - 1,(0, ),

i.e. m, has central character e?. The U(p, q; F)-stabilizer of [n,] is all of
U(p, q; F): if g U(p, ¢; F) then (w, 2) > n,(g"Ww, 2)g) is equivalent
to M -

Proof. If F =R the Lemma is vacuously true.

Let F = C. Lemma 2.6 says N,, , . =~ N, o, n = p + ¢, which
is the usual Heisenberg group of dimension 27 + 1. The bijection
[7] <> A is standard for the Heisenberg group N, , . and follows for

N, q.c - For the stabilizer: U(p, ¢; C) acts trivially on the center of

7:9.C "

Let F = Q. If A2:Im Q — R is nonzero and R-linear, let Z, =
{fwelm Q: (w) = 0}, and then N, ,o/Zy == Ny, 4, . The case
F = C gives us an irreducible unitary representation 7, of N, , o/Z,
whose lift %, to N, o has central character e, Thus [7,]+> A is
surjective. If % and %’ are irreducible unitary representations of
N, ..o with the same central character ¢, A = 0, then they factor
through N, , o/Z, and give equivalent representations of that
Heisenberg group, so [5] = [y']. Now [5,]+> A is injective. For the

stabilizer: U(p, g, Q) acts trivially on the center of N, Q.E.D.

».q,Q

We now extend the infinite dimensional unitary representation
classes [7,] from N, , . to the semidirect product groups

Npor-U(p,¢; F) = Gopor-

In the language of polarizations (see [2, 3]) this is done by associating
[7] to a U(p, q; F)-invariant complex polarization. However we
carry out the extension in an explicit manner and thus side-step the
problem of computing the Mackey obstruction [12, 17, 18].

Suppose F = C. The R-linear functionals A on Im C = iR are the

AImC—R by  MNw) = —ilw, [eR; (4.5a)

s0 e = ¢, Fixing A, thus fixing / € R, we have the complex line
bundle
&L, —> N, oc/ImC = Cre (4.5b)

associated to e”d, The C® sections of .Z, are the C* functions

U:Nygc—C {4.6a)
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such that U(w, 2) = e~® {J(0, ), and they are in obvious bijective
correspondence with the C® functions

U:Cre—C by U = 00,2). (4.6b)

N,

.0.c ACts on these sections and functions by the rule

[La(wo » 20)UN(w, 2) = Ul(wy , 20)™ (, 2))
= Uw —wy — Im h(z,, 2), 2 — 29),  (4.7a)
and thus
[Lawy » 50)Ul(z) = eMwatimhtea) Uls — g,). (4.7b)

The complex line bundle %, has the structure of holomorphic line
bundle, which we now describe. Define a norm function on C?-2 and
a pointwise norm on its functions by

W(z) = e~W/2rEAand  {[Fl,. = o(3) | F(3)l. (4.8)

We transport the action L, of N, , . on C® functions by the corre-
spondence U = vF:

Ly(w, , 2,) - (multiply by v) = (multiply by v) - Ty(ws , 2).  (4.9a)
In other words,
[T(zo > 20)F1(2) = [z — 20)/¥(3)] - et 1mtCo2) Fz — z).  (4.9b)
This transported action has the pleasant properties

[ Ti(zog » 20)F la,z = I F s, (4.10a)

2
and
T\(w, , 25)F is holomorphic < F is holomorphic. (4.10b)

Now the holomorphic structure on .%, is the one whose holomorphic
sections are the

U:N,,c—~C by O(w, ) = e~ y(z) F(),
where F is a holomorphic function on C?-¢, with fibre norm
| U(wa z)' = V(z) IF(.%‘)I = ”F”/\.z ’

under the action T, (4.9b)of NV, , .
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Evidently T, defines a unitary representation of N, . on the
Hilbert space

H,(%,) = {F: C** — C holomorphic: f | F|3,dxdz < oo,

Cr.2

but unfortunately Hy(-%,) = O unless /i is positive definite. Thus we
have to look at the other square integrable cohomology groups of .%, .
Fix integers 7, s between 0 and n = p - ¢, and denote

Ar5(L,); C=(r, s)-forms on C?-¢ with values in .%, . (4.11a)

The hermitian metrics
<Za”d21Ad§J,ZbUydzUAdEV> = Vzianb_” (411b)

(=( ) and de! =dz; A - Adz; J={(j,., ;) and
d¥’ = dz; A -+ A dF; ) specify Hodge ~Kodaira operators

AT L) 2> Ar-rn=s( L = L) E> Ara( L), (4.11c)

If o, B € A™3(&,) then o A #8 is an ordinary (n, n)-form on C?+9, so we
have a pre-Hilbert space

ATN(L) = %aeA’ (L) [ anppa<w (4.12a)

Cc?:1
The space of #-valued square integrable (7, s)-forms is
L33(%,): Hilbert space completion of AL-5(%)). (4.12b)
The operator
9:Y aypdat A dF > (—1) Y (0a;;/0%%) da’ A dE* A dF7

gives a densely defined linear operator ¢: Ly¥(%,) — Ly™+(%}), whose
formal adjoint is 0* = —#0#. These give a second-order elliptic
operator

= (@ + 0%)? = 90* + 0*3: Kodaira-Hodge-Laplace operator, (4.12c)

which is essentially self-adjoint from the domain of compactly sup-
ported forms in A"%%); see [1]. Its self-adjoint extension []*
(adjoint) = {7 (closure) has kernel

H;s(ﬁ%) = {w eLg-s(,Z;): ﬁw = 0}, (4.13)
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whose elements are called square integrable harmonic (r, s)-forms with
values in %, . Evidently H}*(%,) is a closed subspace of Ly*(%)
consisting of C* forms.

N, .q.c acts on A™5(%) by

Tro(w, , 2,) Y. a4, dz' A dF7 =) T(w, , 2,) a,; d3" A d¥’.
From (4.10a) that action commutes with # and # and thus goes over to
T7-: unitary representation of N - on L3:%(Z)). (4.14a)

The action also commutes with @ by (4.10b), so it commutes with []
and preserves Hy*(.%,). Now T;°® restricts to

77$: unitary representation of N - on H-%(%)). (4.14b)

Notice that %}'® has central character ¢”. According to Satake [17] and
Carmona [4],

H)(%) =Ounless! >0ands =porl <Oands=gq (4.152)

and
if I>0ands = p, orif/ < 0ands = g, then 7+ is irreducible. ~ (4.15b)

Thus [7,], A nontrivial, is realized by 5)'® as in (4.15b)
U(p, ¢; F) acts on the quotient space C»? = N, , -/Im C by its
ordinary linear action. This action lifts naturally to %, for we can view

%, as the G, , ~~homogeneous line bundle over

CPa = G, 0. c/ImC) - U(p, ¢; ©)

associated to (w, 0, g) > ™). Evidently »(gz) = v(z) for ze CP¢
and g € U(p, g; C), so the hermitian metric on %, is G, 4 c-invariant,
as is the holomorphic structure described after (4.10b). Since Lebesgue
measure on C?¢ is U(p, ¢; C)-invariant, now G, , . preserves all the
ingredients (4.11), (4.12) in the definition (4.13) of H3*(%£}), and thus
acts on Hy*%,) by a unitary representation whose restriction to
N,.q.cis 7y In view of (4.15), this extends [7,] from N, ; - t0 G, c -
Compare Satake [17].

Finally suppose F = Q. If A: Im Q — R is nonzero and R-linear,
we set Z) ={weIm Q: Mw) = 0} as in the proof of Lemma 4.4. The
basic units Z, j, 2 = ij € Im Q can be chosen so that j, ke Z,, and
then N, 0/Z, 22 Ny 95,c carries U(p, ¢; Q) over to a subgroup of
U(2p, 2q, C) If [#,] is the unitary representation class of N, , o/Z,
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that lifts to [r,], we realize it, as above, as an 7y’%, extend 73° to
Gp,g,.o/.Z,\ , .and lift it to a representation of G, , o whose N, , o-
restriction is in [x,].

In summary, we have proved

ProposiTiON 4.16. Every infinite dimensional irreducible unitary
representation class [n,] of N, ,r extends to a unitary representation

class [ of G, 0. -

5. REPRESENTATIONS OF THE GRrouPs G, , r AND G, , r

We use the results of Section 4 to apply Mackey’s little-group
method ([8, 9, 10, 11, 12]; see [13]) and obtain all irreducible unitary
representation classes of the groups G, , rand G, . r .

First note the conditions necessary to apply the little-group method
to a semidirect product G = N - U of locally compact groups. Write
~ for unitary dual, the set of all equivalence classes of irreducible
unitary representations, with its usual Borel structure. If [n] e N,
denote its stabilizer

G, =N U, ={geG: n—n(g-ng) is equivalent to o}  (5.1a)
and consider the “extensions’

E(n) = {[4] € G,: ¢ |y is equivalent to a multiple of 7). (5.1b)

If all the groups are of type /, and if there is a Borel section to the
action of G on N, then G consists of the classes of representations
unitarily induced from E(n), i.e.

G = {{Indg,;c()]: [1] € N and [$] € E(n)}. (5.1¢)
These conditions are automatic for our groups
Gyqr = Nyor U(p, ¢ F)

because there N, G, and the G, are algebraic and G is analytic on N.
Proposition 4.2 gives us (G, , ), and E(n) when [y]e N, ; is a
unitary character,

N = xp: (W, &) > etREMET) v e F?q, (5.2a)
In that case

(Goa.pn = Nyar Lo, Ly ={geU(p, ¢; F): g(v) = v}, (5.2b)
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and 7 extends to a unitary character on (G, , r), by the formula

7w, 2, g) = n(w, 2) = etReMz), (5.2¢)

It follows that
E(n) = {[7 ®y]: Y €L}, (5.32)
where 7 & y represents (G, , r), on the representation space of y by
(7 @ Y)(w, 5, ) = R0 (). (5.3b)

The resulting induced representations

Ty = Indy, o106, (1 ®¥) (5.4a)

specify a subset of the unitary dual of Gp.or
(G, .ps =7, J: €L} (5.4b)

If o = g(v)eU(p, ¢; F)v), then the corresponding families
(5.4b) coincide. On the other hand

o,y |Np,q'}:' = fU(p CE)L Xo(o) 4(&Ly),

so families corresponding to distinct U(p, ¢; F)-orbits on F?:¢ are
disjoint. Glancing back at Proposition 4.2 we summarize as follows.

PRrOPOSITION 5.5. The classes in G, o r which arise from unitary
characters on N, , r fall into four disjoint series as follows.

1. (G, g r)positive 5 parameterized by R+ X U(p — 1, ¢; F)"
under [m, ] < (r, [y]) where r? = h(v 7)) > 0,L,isthe U(p — 1, q; F)
acting on v, and [y] € L, . This series is non'vozd Just when p > 0.

2. (Gy.g.Fhegative 15 parameterized by R~ x U(p, ¢ — 1; Fy
under [m, .} © (7, [v]) where —r® = h(v v) << 0,L,isthe U(p,q—1; F)
acting on v*, and [y] € L, . This series is nonvoid just when g >0.

3. (Gy.p.F)sero s parameterized by U(p, q; F)", [y] corresponding
to its lift [m, ). This series is nonvoid.

4. (Gp.q.F)isotropic 18 parameterized by G, 4 4, punder [m, ] < [y]
where v # 0, h(v,v) = 0, and L, is identified with its tsomorph

Gp-1.q-1. - This series is nonvoid just when p > 0 and g > 0.

Lemma 4.4 and the discussion summarized in Proposition 4.16 give
us (G,.0.5)n and E(n) when [g] €N, ,r is not a unitary character.
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In that case = 7, , infinite dimensional representation with non-
trivial central character e'(w) = €™, and (G, , f), is all of G, , r .
We have a particular extension j, of 5, to G, , r, and

E(n,) = {7 @ vl [v1 € U(p, ¢; F), (5.62)
where 7, & y represents G, , r on H,, @ H, by
(M @ P)(w, 2, 8) = Ta(w, 2, 8) ® ¥(8)- (5.6b)

Since Gy, 4 r acts trivially on the center Im F of N, , r, the 7, &) y are
mutually inequivalent. Now

PROPOSITION 5.7. The classes in G, o which arise from infinite

dimensional representations of N, , r form a single series
(G, .,.p% =11, ®y]: 2:ImF — R nonzero and [y] € U(p, q; F)"}.

This series is void for F = R and nonvoid for F = C and F = Q.

The Mackey little-group result (5.1) tells us that we have exhausted
G

».q.F*

THEOREM 5.8. The irreducible unitary representation classes of
.o.F Jall into five disjoint series,

ép,q,F = (G

G

»

A~

D.q, F)zero

U (G U (G

) )n
.9, F/positive »,q,F/negative

U (G U (G

)is e
D.q,F/isotropic 0,q,F/c0 ?

as described in Propositions 5.5 and 5.7.
View (G, q,r)" as {[7] € G, . r: 7 factors through G,  f}.

CoRrOLLARY 5.9. The irreducible unitary representations of G, , p =
Fr.2 - U(p, ¢; F) fall into four disjoint series

(Gp,rl.F)A = (Gp.q,F);ositive v (Gp.q,F);egative Y (Gp,q,F);ero

v (G

A~

p,q.F)isotropie ’
as described in Proposition 5.5.

We now have a complete description of G, , » modulo knowing the
U(r, s; F)” for 0 <7 < p and 0 < s < ¢. This is obvious for the

S€res (Gp,q,F);ositive’ ng,q,F)ﬁegative) (Gp,q,F);ero and (Gp,q,F);’
so we need only explain the enumeration of (G, , r)fotropic - L€t
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m = min(p, g). Then (G, . ¢mF)otropic 18 €mpty, so we have
Gy—m.q—m,r explicitly. This gives us (G,_,,11,g-m1.F)isotropic » SO NOW
we have G,_n1, mir explicitly. Continuing, we have G, , 1 r
explicitly, it gives us (G, g r)isotropic» 2nd thus we have G, ¢
explicitly.

Similarly we now know (G, ; )" modulo knowing the U(r, s; F)~ for
0<r<pand0 < s < g

One has explicit knowledge of the various series in the Uz, s; F)
which contribute to Plancherel measure, e.g. through the work of
Harish-Chandra. In principle the recent work of Langlands [7]
describes all of each U(r, s; F)", except that he works with Banach
representations and the unitarization problem there is quite nontrivial.
At any rate, one has enough for the Plancherel formulas which we
write down in Section 6.

6. PLANCHEREL FORMULA FOR THE G, ,  AND G, . .

We combine the results of Section 5 with the Plancherel formulas
for the groups U(7, 5; F), 0 <7 << p and 0 << s < ¢, and write down
the Plancherel formula for G, , r and G, ; r .

1. Suppose F = R. This case is easily extracted from the
considerations of Kleppner and Lipsman [6], who carry it out for the
case p = [, extending Rideau’s results [16] on the Poincaré group
Gy sz - (The just-cited authors actually work with the connected
group—the identity component of our group—but passage to the
larger group is a routine matter.)

The indefinite orthogonal group O(p, ¢) = U(p, ¢; R) has orbits
on R?¢ = N_ 5 as follows.

P2

For r > 0 there is the quadric Q, = {v € R*%: h(v, v) = r?}; (6.1a)

for r << 0 there is the quadric O, = {v € R*%: kv, v) = —r%}; (6.1b)

there is the origin {0}; (6.1c)
and

there is the light cone C = {v € R?%: v £ 0 and k{v, v) = O} (6.1d)

These correspond to the four series listed in Proposition 5.5. Since
Lebesgue = Plancherel measure on R?+? is concentrated in the union
of the two open sets

Rijq = U Qr and R2? = U Qr s

™0 <0
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now Plancherel measure for G, ,z = R?%- O(p, ¢) is concentrated
in the union (G, g z)positive Y (Gp.q,R)negative Of the corresponding
series. Let dQ, denote the volume element on the quadric Q, specified
by its pseudo-riemannian metric induced from R?-¢, Since Q. =
| 7| 0O_,, the euclidean volume element is

dVy = |r """ dr A dQy; on R,

Now, as in [6, pp. 511-512], G,, , & has Plancherel formula

[ iferas=cl

v, R

[ o DE A o dr
[y]leO(p-1,0)

+af |f IR 7 s, (62)
o Y[sleO(p,g—1)"

where A(v, v) = r? and d[y] is Plancherel measure for O(p — 1, g),
h(w, w) = —s? and d[8] is Plancherel measure for O(p, ¢ — 1), the ¢;
are positive constants depending on normalizations of Haar measure,
and | - ||, is Hilbert—Schmidt norm.

2. Suppose F = C. As above, G, ,. = CP¢-U(p, q) has
Plancherel formula

[ e =af 3 J.,

?,q9,C

72(2)+q)—1 dr

- [ ()2 dlY]

p—1,q.

val il

where A(v, v) = #2 and d[y] is Plancherel measure for U(p — 1, ¢),
h(w, w) = —s?% and d[8] is Plancherel measure for U(p, ¢ — 1), and
the ¢; are positive constants depending on normalization of Haar
measure.

We go to G, .. The Heisenberg group N, , .
formula

e BBl £ as (63)

D4

has Plancherel

fn) =¢ f ) Oyr,f)|1|Pt9dl,  fis C* and rapidly decreasing, (6.4a)
where [r,f](n") = f(n'n),c = (p + ¢)! 2779, and O, is the distribution

character of the class [5,] of Lemma 4.4 for A: Im C — R by A(w) =
—ilw. Of course @(r, f) is the orbital integral,

Oraf) = [ (raf); (9) du ), (6.4b)
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where (r,f); is the function (r,f) - exp on the Lie algebra n,, .,
(r.f)7 is its Fourier transform (function on the real dual space n¥ , (),
the integration is over the Ad(N, , . )*-orbit of A:m,, - —R by
Mw, ) = —ilw, and du, is symplectic measure (see [15]).
Now the Plancherel measure for G, ,c = N, .. U(p,q) is
concentrated on the series (G, ,,c)» of representation classes described

in Proposition 5.7. Applying [6, Theorem 2.3] we get the Plancherel

formula for G, , .,

| f@rds = f;

Gﬂyq

[ I @R 11ed (65)
[v1eU(p.¢)

where A(w) = —ilw as above, d[y] is Plancherel measure for U(p, q),
and ¢’ is a positive constant depending on normalization of Haar
measures.

3. Suppose F =Q. As in (6.2), the group G, o =
QP2 - Sp(p, q) has Plancherel formula

I, Q|f(x)lzdx:clff i

D:9,
o
+ 62_]\
0

where (v, v) = 7%, h(w, w) = —s?, etc.
We go to G, , o - The Heisenberg type group N, , o has Plancherel

formula

™ H ﬂ’lfﬂ(f)”; d['y]i 74(11+q)—1 dr

p(p—1.4

[ imea g ot (66)
Sp(p.a-1)"

f(n) =¢ fn" O(r )l 1+ gl,  fis C and rapidly decreasing, (6.72)

where ¢ = (2p + 2¢)! 22+, dl is Lebesgue measure on R3, and 0,
is the distribution character of the class [7,] of Lemma 4.4 for
AImQ—R by Mag+ ayj + ask) = La, + lLa, + Las. There
O((r,f) is the orbital integral

Or.f) = ¢ | ()7 (3) di( 3), (67b)

where p, is symplectic measure on the Ad(N,,o)*-orbit of
Aing, . 0 — RbyMayi + ayf + ask, 2) = La, + La, = lza;(see[14]).

Now the Plancherel measure for G, 0 = N, .0 Sp(p, q) is
concentrated on the series (G, , 0)5 of representation classes described
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in Proposition 5.7. As before [6, Theorem 2.3] gives us the Plancherel
formula for G, , o:

[oisepar=c [ M i@ @RI @, (638)
Gpa,Q R? UyleSp(p.0)
where Mayi + a,j + ask) = La;, + La, + lza; as above, d[y] is
Plancherel measure for Sp( p, ¢), and ¢’ is a positive constant depending
on normalization of Haar measures.

7. REPRESENTATIONS OF CERTAIN ParaBoric GRoups

The results of Section 3 show that G, , » is contained in a certain
maximal parabolic subgroup P =P, of U(p + 1,¢ -+ 1;F).
There P has Langlands decomposition MAN with

M=F xUpqF), A=R+, ad N=N,.r, (Ila)
which naturally leads one to consider its nonreductive subgroups

N=N,.r, AN = N, . r-RY,

(7.1b
MN =G,,rF, and MAN =G, F* )

Here we use the method of Sections 5 and 6 to describe the representa-
tions of AN, MN, and P = MAN, and the Plancherel formula for
MN. See the thesis of F. W. Keene[5] for the case ¢ = 0. The Plancherel
formulas for the nonunimodular groups AN and MAN are more
delicate. In view of Lemma 2.6, the formula is worked out by Keene [5]
for AN. Keene and I plan to write it out for MAN in a joint paper.

We first consider representations that come from unitary characters
on N. Here we retain the notation of Propositions 4.2 and 5.5. Recall
from Proposition 3.18 that F* = F’ X R* acts on G, ; =

Ny,or - U(p, ¢; F) by
a(w, 3, g)a! = (awa, az,g), 0 +#acF. (7.2)
In particular F* acts on the unitary characters of N by
[a(xo))(w, 2) = [a(x)](0, ) = x.,(a7}(0, 2)a) = x,(0, a'2)

= exp(i Re h(v, a'2)) = exp(i Re k(@ v, 2) = x,1,(0, 2)

= Xa-ﬂv(w’ z)»
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that is
if ae F* and v e Frq, then a(x,) = Xz-1, - (7.3a)

If F* is a subgroup F*, now y, has U(p, ¢; F) x Ff-stabilizer
L, = {(g,a)eU(p, q; F) X F*: g(v) = va1}. (7.3b)

As in (4.3), x, extends to N, , r - L," by the formula
kv(w’ z & a) - Xv(w) 2) = etRer(z.v), (73C)

Notice L, ~ {ge U(p, q; F): g0 € ¥F'} under g+ (g, a), where
g7 = Ta~. Thus

if A(v, v) > 0, then L/ ~U(p—1,¢F) xF NnF), (74a)
ifh(v,v) <0, then Lt~U(p,q—1;F) x (F' NF), (7.4b)
ifo =0, then L," = U(p,gq;F) x FY, (7.4¢)

if v £ 0 but (v, v) = 0, then L *(F* = F*) ~ P, ; o 1

and L,/(F* = F') is the MN of its Langlands decomposition. (7.4d)

Now we have the extensions of y, to N, , » - L,", and thus the induced
representations of G, , » - F7, in particular for F* = R*, F’, or F*.

Now consider representations that do not come from unitary
characters on N. Here we retain the notation of Lemma 4.4 and
Propositions 4.16 and 5.7. Use (7.2) to trace the action of F* on
{[m]: A: Im F — R is nonzero and R-linear} by means of the central
character:

[a(n)](w, 0) = n(awd, 0) = new(w,0),  where  [a(N)]w = Aawa),
that is
ifacF* and AImF — R, then a[n] = ey, (7.5a)

where [a(A)]Jw = A(awa).
Now [n,] has U(p, ¢; F) x F*- and U(p, ¢; F) X F'-stabilizers

L[’m\]:U(P,q;F)X{aEF':aeR+Rl, where
Mw) = —Re(lw), I Im F}. (7.5b)

[n.] extends to N, , ¢ 'LEn,\] as in the discussion preceding Proposition
4.16. In both cases (F =C and F = Q; R does not occur here),
LE,,A] ~ U(p, ¢; F) x C'. This tells us the extensions of [5,] to

p.0.F " Lin,1 » and thus the induced representations of G, , r - F* and

p.0.F "
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In summary, Mackey’s little-group method gives us the unitary
duals of AN =N, ,r R, MN =G, ,r-F and P = MAN =

G, .7 - F* as described in Propositions 7.6 and 7.8 below.

ProposITION 7.6. Let F' denote R*, ¥’ or F*. Then (N, , " F')
is the disjoint union of three series, as follows.

(1) The series F* viewed as the representation classes that annihilate
the normal subgroup N, , r;

(2) a series of classes [Indynvgt(x,)], 0 % © € FP-9, parameterized
by the space of orbits vF' in F?-¢;

(3) a series of classes [Indyg rye(fh ® 0)], A:ImF—>R by
Aw) = —Re(lw) where 0 54 1 € Im F and where

Sy ={acF'NF:al = la},
series parameterized by {(Im F — {0})/F" under the action a: [+ ala}x S, .

In regard to the series (3) above, here is a case-by-case explicit
parameterization. The series exists only for F = C and for F = Q. If
F* = R* then S, = {1}; otherwise S, is the circle group F' N (R + RJ)
and S, is parameterized by Z. The orbit structure of Im F — {0} under
the action a: [+~ al@ of F' is

.7
F' = R+ Ft =F F* = F*
orbits iR+ and one-point orbits, orbits iR* and
F=C —iR*, orbit space —iR*,
orbit space {1, —1} ImC — {0} orbit space {1, —1}
orbits /[R* real 2-sphere orbits one orbit
rays, !l! =nr >0’ ImQ_{O},
F = Q  orbit space P(R) orbit space R* orbit space {point}
real projective
plane

ProrosiTioN 7.8. Let F' denote R+, F', or F*. Then (G, , * F')"
is the disjoint union of five series, as follows.

(1) The series {U(p, ¢; F) X F'Y viewed as the representation
classes that annihilate N, , r;
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(2) the series of classes
[70,v,6] = [IndNL,,‘fmp a0 FF*()?U Xy ® B,

[7o.0] € (Gp.g.r)positive and [Bl € (F' N F'), series parameterized by
Ft=F: Rt x U(p — 1, ¢ F)* x ¥ under [n,, ] & (h(v, v)'72,
], [8), Ft=F* U(p—1, ¢ F)* x ¥ under [m,,q] < (7],
[B]), Ft = R+: U(p — 1, ¢; F)" under [m,, 5] < [y] where k(v, v) > 0
and v has U(p, q; F) X F* stabilizer L' given by (7.4a);

(3) the series of classes [m,.,gl, [7y.] € (Gp.q.F)negative s and

[B] € (F' N F')~, series parameterized by F' = F': R= X U(p, ¢ — I;
F)* x F' under [m,,q] < (— | hz, )1 [y], [B]), F' = F* U(P,
g — ;)" X F under [m,,q] < ([y], [8]), F" = R*": U(p, ¢ — 1;

F)" under [n, ., ] < [y] where h(v, v) < 0 and v has U(p, g; F) x F*
stabilizer L, given by (7.4b);

(4) the series of classes [m,. g, [7yy) € (Gp.gF)isotropic s and
[B] € F, series parameterized by G,,_, . r XF' under [, , ¢] < ([v], [B]),
where 0 # v e F»? with h(v, v) = 0 and v has U(p, ¢; F) X F'-
stabilizer L,' =~ G, 1 , 15 X F"asin (7.4d);

(5) the series of classes

[Ta,5.0] = [IndNL)ﬁTGI,,q,FF)r(ﬁA ®y @ o),
AMImF — R by Nw) = —Re(lw), where 0 = leImF,
={aeF'NF'":al = la},
and L,' = U(p, ¢; F) X S, , series parameterized by
{Im F — {0})/F" under the action a: 1 > ala} x U(p, ¢; F)* x S,
under [m,., ] « ({ala: a e F1}, [y], [¢]); see (7.7).

The Plancherel measure of MN = G, ., r - F'is concentrated on the
series (5) of classes [m,,,] in Proposition 7.8 when F 5 R, on the
union of series (2) and series (3) when F = R. As in Section 6, the
corresponding Plancherel formulas are as follows.

IfF =R, then F' =R’ = {41} so F' = {e.}, where ¢.(1) = 1 and
e.(—1) = 41, and (6.2) goes over to

sj 1 f(x))2 d
Gp,a,R°'R

p+g—1 df

2 = N T (PR e (D A 7

e enc N e (1) B -(7 dg)
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IfF = C, then F' = C’ = {¢: 6 real} so F’ consists of the charac-
ters {,,: ¥ > &, n € Z, and (6.5) goes over to

1 f()I? dx
Gp,q,C'C

(7.10)
= Y [T I AR 11

N=—00

If F = Q we still have S, a circle group in Proposition 7.8 for
F* = F’, and so, using (7.7), the formula (6.8) goes over to

GRS

Gp,q,Q'Q

(7.11)
= C’I hod © ] 2 d r2(11+q) dr,
J;) gf[‘.']ESp(p,q)“ I Trh"y'cn(f)llz [7]

n=—cw

where A,: Im Q — R by A(w) = —Re(ri@), r > 0, 50 S, = C'.

8. Tue CavLey VARIATION ON Our THEME

Our considerations of the semidirect product groups G, ,r and
their enveloping parabolics P, , » = G, . r * F* go through to some
extent when F is replaced by the Cayley-Dickson division algebra
Cay. These new groups are of some intrinsic interest; for example
P, , cay 1s the minimal parabolic subgroup of the group of type F,
with maximal compact subgroup Spin(9), associated to the Cayley
hyperbolic plane, and has been studied from this viewpoint in Keene’s
thesis [5].

Cay” denotes the real vector space of n-tuples of Cayley numbers,
and as in (2.1) we denote

» p+q
Cay?-«: Cay?+? with the “‘hermitian” form A(x, y) = ) x'y' — Y x5 (8.1)
1 2+1

This defines a Heisenberg-type group

N, q.cay = Im Cay -+ Cay?? with group composition given by  (8.2a)
(@ » o), 2) = (wy + w + Im A(2y , 2), 25 + 2). (8.2b)

580/19/4-4
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N, ,.cay is a simply connected nilpotent Lie group of real dimension
8(p + ¢) + 7 with 7-dimensional center Im Cay. It has Lie algebra

0.y = Im Cay + Cay™¢  with  [(ng, &), (1, §)] = 2 Im A(£, , £), 0).

(8.2¢)
Lemma 2.6 goes through without change to these groups.
We must be careful as to just what we mean by
U(p, ¢; Cay): unitary group of Cay?-<¢ (8.3)

We want it to consist of the Cay-linear transformations that preserve
h. By definition, a transformation

T: Cay™ — Cay™ (8.4a)
is Cay-linear if it is R-linear and satisfies

T(z)a = T(za) for zeCay® and acCay, (8.4b)
i.e. if it commutes with all right “scalar” multiplications
7(@): (21 yorer 21) > (2150nny 2,0)
in the sense T - r(a) = r(a) + T for all a € Cay.

LemMma 8.5. T:Cay® —Cay™ is Cay-linear if and only if
T(2) oy Bp) = (X @1y%j 3oy 2t Ams%;) fOr some m X nreal matrix (a;;).

Proof. First consider the case m = n. Let A denote the real
associative algebra of R-linear transformations of Cay” generated by
the 7(a), a € Cay. Since x - Cay = Cay for 0 # x € Cay, the real
vector space of Cay® is direct sum of 7 irreducible A-modules.
Now A is a simple associative algebra and it acts on Cay” by na =
a @ -* @ o, where « is the action on a coordinate.

Let {e;,..., ¢;} be an orthonormal basis of Im Cay. Alternative
algebras satisfy the identity (xa)b + (xb)a = x(ab + ba), so

r(e;) r(e;) + r(e;) r(e;) = r(ee; -+ eje)) = —28;;,

where 8;; is 0 for ¢ # j, 1 for = j. Now {a(e,),..., a(e;)} generates a
homomorphic image of the Clifford algebra CLiff(R?). But Cliff(R") o~
M(R) ® M(R) direct sum of real matrix algebras, so dim; «(A) > 64.
Since « has degree 8 as real representation, now o(A) consists of all
R-linear transformations of Cay.
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Expressing Cay” = C* Q R® we have A as the matrix algebra
M(R) acting on the second factor. Thus A has R-linear commuting
ring M, (R) acting on the first factor. That proves our assertion in the
case m = n.

For the general case, define T: Cay™t* — Cay™* by

T2y 5ees Zman) = (05ees 03 T(2y yeees )
and express T as the transformation for a real matrix. Q.E.D.
Lemma 8.5 shows that the unitary group (8.3) is

U(p, g; Cay) = {4 ® I3: A € O(p, q)}, which we denote O(p, 9) ® I . (8.6)

Here (X means &)z and I is the 8 X 8 identity matrix. O(p, q) @ I
acts by automorphisms on N, , cay by g(w, 2) = (w, g(2)). Thus we
have the semidirect product group

Go.4.cay = Npg,cay * U(p, ; Cay) = Ny ey - O(2, 9) ® I, (8.7a)
whose multiplication law is
(wo s %o ,go)(w, 2, g) = (wo +w + Im h(zo ’go(z)): 2y + go(z)» gog)- (87b)

We are going to form an extension of G, , ¢,y , more or less as we
did over R, C and Q, but to do this we need some trivialities on Cayley
numbers: if ¢, b € Im Cay and u, v € Cay then we need

a(b(au) = (aba)u  and  (au)(a@v) = a(u?)a.

Both assertions are clear if the three relevant numbers lie in a quater-
nion subalgebra of Cay, and both are linear in #, v and b and homo-
geneous in a. Thus we may take {a, b, ab, u} orthonormal in Im Cay
to check the first assertion, and {u, v, a} orthonormal in Im Cay for
the second. Suppose that {e, ,..., e;} is the orthonormal basis of Im Cay
in which

€16y = €3, €36y = €7, 8365 =7 €, 6164 = &5,

€08 = €4, €485 = €5, €165 = €7,

For the first assertion, we apply an automorphism of Cay and may
assume @ = e, , b = e, and . = ¢, , and then

a(b(au)) = ey(ex(—erea)) = ex(—ea6;) = —ere; = €g = —ese, = (ab)u.
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For the second, we apply an automorphism of Cay and may assume
u=e,v=e and a = ae; + a,¢,, and then

(au)(@v) = (aze; — ases)(ase; — asee) = (ad — a,®) ey — 2aya4e,
= (a5 + ase;)(—ase; — as8,) = {a(uv)}a = a(uv)a.

We reformulate the identities just proved, in group-theoretic terms:

Lemma 8.8. Let Spin(7) denote the (2-sheeted) simply connected
covering group of the rotation group SO(7). Then we can realize

a: Spin(7) — SO(8), spin representation, by action on Cay
and the covering as
v: Spin(7) — SO(7), vector representation, by action on ImCay
in such a way that
Im{o(a) u - o(a)v} = v(a) - Im(uz) for acSpin(7) and u,veCay.

Proof. 1f a € Cay let [(a): Cay — Cay by 2 — az. As in the proof
of Lemma 8.5, [(Im Cay) generates an associative algebra A o~ M(R),
homomorphic image of the Clifford algebra

CLff(R7) o~ My(R) @ My(R),

and that homomorphism p: Cliff(R?) - A maps the generating
subspace R” onto /(Im Cay). One constructs Spin(7) as the multi-
plicative group of all invertible x € CIiff(R?) such that

lx]=1,xR" 21 =R",
and
v(x): R”"— R7 by ¥ — xyx~! has det v(x) = 1.

Then v is the universal covering Spin(7) — SO(7), the vector repre-
sentation. Here p |spia(;) is an irreducible representation o, the spin
representation, which thus is given as an R-linear action on Cay.

The first identity proved above, says I(a) - I(b) - (@) = l(ab@) for
a, b € Im Cay. Let U be the multiplicative group generated by

{l(a): acImCay, |a| = 1}.

Now a - [Im Cay) - a* = [(Im Cay) for all a € U, it follows that U
is a nontrivial closed connected subgroup of the simple group
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o(Spin(7)), and we conclude that o: Spin(7) >~ U. We identify
Spin(7) to U under this isomorphism, and now the vector represen-
tation is given on generators of Spin(7) by w(I(a)): I(b) — l(aba) for
a, beIm Cay, | a| = 1. Re-write that as a representation of Spin(7)
on Im Cay given on generators by v({(a)): b — aba for a, b € Im Cay
with |a| = 1.

Taking imaginary component in the second identity proved above,
we have Im{l(a) u - l(@)v} = v(I(a)) - Im(u?) as Il(a) runs over our
generating set for Spin(7). Now Im {o(a) u - o(a)v} = v»(a) - Im(u?d)
for all a € Spin(7). Q.E.D.

Lemma 8.8 tells us that Spin(7) acts by automorphisms on N, , ¢,y »
by the formula

A(W; By 5eees Bpag) @ = (V@) w; o(a) 2y ,..., 6(a) Zpyy)- (8.92)
The action (8.9a) of Spin(7) commutes with the action of
U(p, ¢; Cay) = O(2,9) ® Is;

in fact it takes place on the other factor of Cay?? = RP¢ R R8.
Thus we have the larger group

Gy.a.cay * Spin(7) = Ny g.car {O( 2, ¢) X Spin(7);.  (8.9b)
It has group law
(%0 > 20> 80 5 @)@, 2, 8, @)
= (wy + agwdy + Im A(z, , £480%,), 2y + Lo9oRs oL Ap). (8.9¢)
If instead we let a range over Spin(7) X R*, then we get parabolic-

type group
Py q.coy = Gy q,car * {Spin(7) X R¥}

= Ny q.car “{O(2, 9) X Spin(7) X R#}, (8.102)
in which the analog of the Langlands decomposition is P = MAN
with
N =N, cav» M=0(p,q)xSpin(7), and A =R* (8.10b)
As remarked (or hinted) earlier, P, g cey is the minimal parabolic
subgroup in the simply connected group of type F, and real rank 1.

The classes [1] € N, , csy Which annihilate the center Im Cay are
just the unitary characters

xo(w, 2) = efRerv.2), (8.11a)
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where v € Cay?:%. As before, y, has stabilizer
LS = {(8 ) € O(p, 9) X S:£(v) = ofa)v} (8.11b)
in O(p, g) X S for any subgroup S of Spin(7) X R+, and y, extends
to N, ,.cay ' {O(P, g) X S} by the formula
Xo®, 2, 8, @) = xo(w, %) = eRem2), (8.11¢c)

This gives us representation classes

[70,v.6] = [Inde,q,CayL.,STG,,,q,Cay-S()zv ®yR@Ple (Gp.q.Csy “SY, (8.12)
where [y]e{ge O(p, ¢): g(v) € a(S)v}, and [BleS. The classes

[74.v,5] With v zero, positive, negative, or isotropic correspond to the
classes in the series (1), (2), (3), and (4) of Proposition 7.8. To be more
specific one must (i) enumerate the O(p, ¢) X S-orbits on Cay?:¢
and then (i) calculate L, for a choice of ¢ in each of those orbits. If
p -+ g =1 this is just the matter of the o(S)-orbit structure of
Cay o~ RS, but if p | ¢ > | it is messy.

The classes [7] €N, ,cy which do not annihilate the center
Im Cay, are in bijective correspondence [7,] «+» A with the nonzero
R-linear A: Im Cay — R, as in Lemma 4.4, by n,(w, 2) = @)y (0, 2).
The O(p, g) X S-stabilizer of [»,] is

Ly = O(p, q) x {a€ S: Nw) = Mawa@) for weImCay}. (8.13a)

If we represent

A:Im Cay — R by Nw) = —Re(!@), 052 !eImCay, (8.13b)
then as in Section 7 we have
Lfls;l,\] == 0(?1 9) X Sy, (8130)

where S, = {a € S N Spin(7): v(a)l = I}. We check that [,] extends
S

to Ny 4.cov 'L[n,\]:

Lemma 8.14.  [n,] extends to N, 4 .coy - {O(p, @) X Spin(7),}.

Proof. Let Z, = {weImCay: N w) = 0}, so [5,] factors through
a representation class [7,] of N, ; ces/Z) =2 Nyp,q,c - As in (4.15),
realize [7,] by the representation 73'® of Ny, 44.c On a square integrable
cohomology group HY'5(-%,), so [4,] is realized by the lift 53'® of 73'% to

Np,q,Cay .
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View Cay?-? as a complex vector space where the scalars are left
multiplications by elements of R + R/ Then the projection

Nopq.cas — p.q,Cay/Z/\ = Nipae.c

induces a C-linear isomorphism of Cay?:¢ onto C*-44. This carries
O(p, 9) ® I to a subgroup of O(4p, 49) ® I, C U(4p, 4q). It carries
Spin(7), = Spin(6) to a subgroup I,,,, ® SU(4) of U(4p, 49). Now
the ingredients of 73 all are invariant under O(p, ¢) X Spin(7),,
QE.

and this gives the extension. D.

The extensions [#,] of Lemma 8.14 give us representation classes

[Tav.0] = [IndN,,,q,Cay‘{O(p.q)xS)\}TGp,q,Cay-S(ﬁA Xy @) €(Gpacay " S
(8.15)

where [y] € O(p, ¢)* and o € S, . These classes [, ,] correspond to
the classes in series (5) of Proposition 7.8. They are parameterized by
(Im Cay — {OD/(S) X O(p, g)° X S, under [my.,.] > (ASY*, 5], o).
Every class in (G, cay * 5)" is given by (8.12) or (8.15).
Plancherel measure is concentrated on the classes (8.15). Thus,
for example, G, , cay has Plancherel formula

[ era=c[ [ GO d @.6)

»,q,Cay R

where Aw) = —Re(l@) and /e Im Cay is viewed as an element of
R’. Similarly N, , cay * {O(2, 9) X Spin(7)} = G, 4.cay - Spin(7) has

Plancherel formula

| f(x)[? dx

Gp,q,Cay*Spin(7)

— jo i 3 f[ Y17, 0o IR deg(o) dfy]

v1e0(2.0)” [g]

(8.17)

r4(ﬂ+q) dr,

where A,: Im Cay — R by A(w) = —Re(ri@), r > 0, so Spin(7), =
Spin(6) ~ SU(4), and [o] runs over S,\r =~ SU@4)".
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