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We study a class of semidirect product groups G = N . U where N is a 
generalized Heisenberg group and U is a generalized indefinite unitary group. 
This class contains the Poincare group and the parabolic subgroups of the 
simple Lie groups of real rank 1. The unitary representations of G and (in the 
unimodular cases) the Plancherel formula for G are written out. The problem of 
computing Mackey obstructions is completely avoided by realizing the Fock 
representations of N on certain U-invariant holomorphic cohomology spaces. 

1. INTRODUCTION AND SUMMARY 

In this paper we write out the irreducible unitary representations 
for a type of semidirect product group that includes the Poincare 
group and the parabolic subgroups of simple Lie groups of real 
rank 1. If F is one of the four finite dimensional real division algebras, 
the corresponding groups in question are the Np,Q,F . {U(p, 4; F) xF+}, 
where 

FP~*: right vector space F”+Q with hermitian form 

h(x, y) = i xiyi - y xipi ) 
1 lJ+1 

N p,p,F: Im F + F”q* with 

(w. , ~o)(w, 4 = (w, + 7.0 + Im h(z, ,4, z. + 4, 

U(p, Q; F): unitary group of Fp,q, 

F+: subgroup of the group generated by F-scalar multiplication 
on Fp>*. 
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Here Np,q,F is a sort of Heisenberg group, and our main interest sits 
with the Gp,q,F = ND,P,F * U($, q; F). The Poincare group is G3,1,R 
and (for F # Cayley numbers) Gp,O,F * (multiplicative group of F) is 
the parabolic subgroup of U(p + 1, 1; F). 

The classical procedure for enumerating the (irreducible unitary) 
representations of the Poincare group goes through without serious 
change for all the G3,Q,R = Rfl*~ * O(p, q); here note Np,p,R = Rps* and 
U(p, q; R) is the indefinite orthogonal group O(p, q). In effect, every 
v E Rpag specifies a unitary character xv(s) = eifb(V.z), xa has O(p, q)- 
stabilizer L, = {g E O(p, q): g(u) = z)>, xV extends to a character 2V 
on Rpp* *L, by fl.(x, g) = x*( z ), one has the unitarily induced 

nv,.< = IndR~~~.~yf~P,q,R(~D 0 ~1, 

where y represents L, , and every irreducible unitary representation 

Of G,,,.R is equivalent to a 7rV,v . Of course z, influences nV,v only to the 
extent of its O(p, q)-orbit, so there are just four cases: (i) v = 0 and 
L, = O(p, q); (ii) h(a, V) > 0 andL, g O(p - 1, q); (iii) h(v, V) < 0 
and L, z O(p, q - 1); and (iv) v # 0 with h(v, V) = 0, where it 
turns out that L, g Gp-l,q-l,R . Thus one has the unitary dual 
G p,q,R described, in several steps, in terms of the O(Y, s)” for 0 < Y < p 
and 0 < s < q. This is known, at least in the cases q = 0 and q = 1. 

This recursion procedure breaks down for the Fpsn - U(p, q; F) 
with F complex or quaternionic. In the isotropic case (iv), where v # 0 
with h(v, V) = 0, the stabilizerL, turns out to be ~G~-i,~-i,~. Working 
with the central extensions G33,p,F instead of the FP*P * U(p, q; F) 
we again put ourselves in a recursive situation for the representations 
that arise from unitary characters of Np,p,F . The rest of 8p,p,F 
consists of certain infinite dimensional classes [T,], each characterized 
by its central character eiA, 

7&LJ, z) = &A(w) Q(O, z), 

where A: Im F -+ R nonzero, linear/R. In particular [Q] is U(p, q; F)- 
stable. We explicitly extend it to G23,4,F by using a method and theory 
of Satake, or results of Carmona, to realize some q”+’ E [y,J as the 
representation of N,,a,F on a certain square integrable cohomology 
group Hi*“(-Epn). Here 22$ -+ N,,,,JIm F m Capyaq is the N,,q,F-homo- 
geneous bundle associated to eiA. This setup is U(p, q; F)-stable, so 

rl 0~~ extends to a representation gh of Gp,q,F on H’$S(ZA). The resulting 
classes [+jA @ 71, [r] E U(p, q; F)^, complete the description of 

GL9.F Y and they are the only classes involved when we write out the 
Plancherel formula for Gp,q,F . 
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Complete descriptions and parameterizations of the G,,g,F , F real, 
complex, or quaternionic, are found in Section 5. The corresponding 
Plancherel formulas for the Fp,q * U(p, 4; F) and the Gp,p,F are in 
Section 6. These results are extended in Section 7 to the Gp,q,F * F+ 
where F+ is a subgroup of the multiplicative group of F, except that 
here we do not write down any nonunimodular Plancherel formulas. 
The Cayley algebra case of F, which has its own peculiarities, is found 
in Section 8. 

Our case q = 0 is studied by F. W. Keene in another context, and 
certainly that gave me some helpful insight into the groups studied 
here. 

There are several places where we extend representations explicitly 
rather than calculate the Mackey obstructions [12, 17, 181 to see 
whether the extensions exist. (In fact those obstructions arc not very 
easy to compute.) Our recursive procedure combines with the explicit 
extensions to form a rather pretty and relatively nontechnical picture 
of the representation theory for our groups G33,p,F and G,,,, . Ft. 

2. THE GROUPS Gp,q,F: F REAL, COMPLEX, OR QUATERNIONIC 

Let F be a real division algebra R (real numbers), C (complex 
numbers) or Q (quaternions). We view the space F” of n-tuples from 
F as a right vector space, so linear transformations act on the left. If p 
and q are nonnegative integers with p + q = n, then we have the 
hermitian vector space 

FM : F” with the hermitian form h(r, y) = i xzyz - ‘2 xZyz. (2.1) 
1 P+l 

The F-linear transformations of F” that preserve h form the group 

U(p, Q; F) : unitary group of FPJ. (2.2) 

U(p, q; R) is the indefinite orthogonal group O(p, q), U(p, q; C) 
is the indefinite unitary group U( p, s), and U( p, q; Q) is the indefinite 
symplectic group Sp(p, q). I n each case, the group is compact just 
when pq = 0, i.e. when h is positive or negative definite. The semi- 
direct product groups 

~2w.F = Fp,* . U(p, q; F) (2.3) 

thus are generalized motion groups. Note that G1,3,R is the PoincarC 
(inhomogeneous Lorentz) group. 
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As hinted in the Introduction, our initial aim was to work out the 
representation theory for the groups GD,p,F, but technical considera- 
tions forced us to work with central extensions in which the additive 
group of F”~Q is replaced by a 2-step nilpotent group of Heisenberg 

type. 
Let Im F denote the imaginary component of F, so F = R + Im F 

as real vector space. Thus Im R = 0, Im C = iR, and Im Q = 
iR + jR + KR in the usual notation. Our generalized Heisenberg 
groups are the 

N~,O = Im F + Fp*a (2.4a) 

with group composition given by 

two 7 “0 NW, 4 = two + w + Im 4x0 ,4, z. + x). (2.4b) 

Here wO, w ~Irn F; z,, , ZE Fp,g; and Imh(x,, 2) is the ImF- __- 
component &{h(q,, x) - h(z, , 2)) of h(zo, 2). Note that Np,q,F has 
center Im F (unless F = R) and is the simply connected group with 
Lie algebra 

%d.F = Im F + Fpsq with [ho, to), (7, f)] = (2 Im h(fo , 5),0). (2.5) 

Of course ND,q,R = Rplq, but the extension is genuine for C and Q. 
is the ordinary Heisenberg group of dimension 2n + 1. From 

~l~%d (2.5) we have 

LEMMA 2.6. Dejne f: np,q.F -+ np+q,o,F by f(q, 5) = (7, 5') where - - 
t = ((1 ,..-, tp+,> E Fp,q and f’ = (Cl ,..., fp , 5q+l ,..., fp+,). Then 
f is a real Lie algebra isomorphism, and so f induces an isomorphism of 
N p,q.F Onto Np+q,O.F - 

U(p, q; F) acts by automorphisms on Np,q,F by g(w, ,z) = (w, g(x)). 
Thus we have the semidirect product group 

G 9.q.F = N~.a,F . W, 4; F). (2.7a) 

The product in Gp,q,F is given by 

(wo T ZO ; go>(w, z; g> = (w. + w + Jm h(zo , g,(z)), z. + go(z), g,g). (2.7b) 

Evidently Gp,,,F has center Im F and is a central extension 1 -+ Im F -+ 
G F - G~,q,F -+ 1. The point of the various p and q in NpaqSF is the 
fo%ation of this semidirect product. 
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The result of Section 3 shows that Gr,q,F occurs naturally as a 
subgroup of U(p + 1, q + 1; F), more precisely that a certain 
maximal parabolic subgroup Pp,q,F of U(p + 1, q + 1; F) is a semi- 
direct product Gp,q,F * (multiplicative group of F). 

In Section 8 we will discuss analogs of the Gp,q,F and the Pp,g,p where 
F is replaced by the (nonassociative) Cayley-Dickson division algebra. 

3. Gp-l,q--l,F AS A SUBGROUP OF U(p, q; F) 

In order to apply the Mackey machinery of induced representations 
to our semidirect product groups Gp,a,F and G,,,,, we will need 

THEOREM 3.1. Let v E Fps* be a nonzero isotropic (h(v, v) = 0; 
this requires p > I and q 2 1) vector, and consider its stabilizer 
L, = (g E U(p, q; F): g(v) = v>. Then L, is isomorphic to Gp--1,9--1,F . 

We first indicate the idea of the proof. If 5’ is a totally isotropic 
(h(S, S) = 0) subspace of FppQ, one has the group 

f’s = (g E U(P, q; F): g(S) = s>. 

The groups P, are the maximal parabolic subgroups of U(p, q; F), 
and as such one knows something about their structure. L, is a sub- 
group of codimension dim, F in POF , and this will give us the structure 
of L.,, . However, we do not actually use any theorems about parabolic 
subgroups in our proof of Theorem 3.1. 

With the above considerations in mind, and in order to simplify 
notation, we denote 

U = U(p, q; F) and u is its Lie algebra, 

P = {g E U : gu E vF) and p is its Lie algebra, 

L = (g E U : gv = v} and I is its Lie algebra. 

In terms of F-linear transformations f of Fpag, 

(3.2a) 

(3.2b) 

(3.2~) 

u = {tt: h(kz, , 4 + h(%J > Ez) = 0 for all x,, , .z E Fp*a}, (3.3a) 

p = (5 E II: &E vF}, (3.3b) 

I = ((Elc (v = 0). (3.3c) 

Let (q ,..., e,,,,,) be the standard basis of Fn, so (zi ,..., 2,) = 
C e?, . In the proof of Theorem 3.1 we may replace v by any g(v), 
g E U, thus replacing L and P by gLg-l and gPg-‘; so we now assume 

Q = e, + e,,, . (3.4) 
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Now decompose Fplq as orthogonal direct sum of its subspaces 

V = e,F + e,+lF and W = e,F + ... + e,F + e,+,F + *.. + e,F. (3.5) 

This allows us to decompose p: 

LEMMA 3.6. As real vector space, p is the direct sum of 

pr = (6 E u: fW C W and there exists y  E F with 

Eel = dm r> + e,+l(Re Y), 5e,+l = el(Re r> + e,+4myh (3.74 

Pl “=(~~11:~WCVand~yCWwith~v=O), (3.7b) 

and 

m Pz = (5 E u: E(W) = 0 and there exists p E Im F with 

Eel = (el + e,+dB and 5e,+l = -(el + e,+dBb (3.7c) 

Further, y is arbitrary in (3.7a) and specified by -$v = vy. 

Proof. Let nv and nw denote projections to those subspaces. If 
5 E p we decompose it as a sum 5’ + [in + fsrn as follows. First, 
5 = 8’ + fin, where 

so that [in = f - .$’ is given by 

51” Iv = TWO t and 51” lw = =vo E. 

Then (3.3a) gives [’ E u, so also [’ E p, and thus fin E p. &J = [‘v SO 

fin(v) = 0. Now pin = {tin: E E p]. 
Second, E’=5’+Ezn, where ~Iw=<‘Iw=7rw~5 and 5’1, 

is given by 

Fe1 = e,(Im r> + e,+dRe YL 5’e D+l = e,(Re A + e,+dIm Y), 

where y E F is the number defined by & = vy. Thus ezn = <’ - p 
annihilates W and Ez” Iv = E’ IV - p IV . Notice 

46% , 4 + Ye1 , ~e,)=Imr+Imr=O, 

h(t?e P+l , e,+d + h(e,+, , Pe,+J = --Im Y - Jm = 0, 

&Fe, , e,+, ) + h(e, , 5Te,+d = --Re y + Re Y = 0, 

so it follows from (3.3a) and h(V, IV) = 0 that .$” E u. Now 5’ E p, SO 

also c2n E p. Thus pr = {p: 5 E p}. 
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In the above, 5~ = [‘v = ev, so .$sn(v) = 0. Let q = tzn I,, . 
Since y(v) = 0, q has matrix 

[ 1 ; x;: 
in the basis {e, , e,,,}, and we compute 

0 = h(rle, , e,) + h(e, , v,) = a + a; 
0 = 4v,+, , e,+A + h(e,+, , rle,+d = b + 6 
0 = &v, , e,+,> + 4~ , v,,,) = --b - a; 

so a = b E Im F. Thus fzn E pz”. It now follows that pa” = {t,? E E p}. 
Q.E.D. 

We now set about examining the spaces (3.7), using them to identify 
p and I as semidirect sums pn + p’ and p” + (I n p’), where pn = 
nzn + pin is a nilpotent ideal g np--l,q--l,F and where p’ and I n pr are 
reductive algebras. This is summarized in Proposition 3.16 below. 

LEMMA 3.8. pr is a reductive Lie algebra, direct sum of ideals 
P’ Iv and pr lw. Further, pr Iv is isomorphic to the Lie algebra of the 
multiplicative group of F, and pr j w = I n pr and is naturally isomorphic 
to the Lie algebra of U(p - 1, q - 1; F). 

(This is immediate from (3.3b), (3.3c), and (3.7a).) 

LEMMA 3.9. Let [ E pl* and express (e, = Cl” elxl . Then 

21 = zn+l = 0, te %I+1 = - 1 v4 y 
and 

5ei = -(el + e,+d %j for 2 < j < p, +(e, + e,,,) zj for p + 2 < j < n. 

Proof. EV C W forces x1 = .z~+~ = 0, and [v = 0 forces fe,+l = 
-[e, = -C elzl . Since .$W C V we have fej = e,aj + ep+lb, for 
1 f j # p + 1. Let e(j) = 1 forj < p, -1 forj > p. Then 

0 = h(Ee, , ej) + h(e, , tej) = c(j) zi + Gj , so aj = --c(j) Zj , 

and 

0 = h(fe p+~ y 4 + h(e,+~ , (ej) = -c(j) zj - bj , so b, = -c(j) si . 
Q.E.D. 

Now an element f E pin is completely specified by [e, E W. Note 
that any x E W is of this form fe, . 
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LEMMA 3.10. Let t1 , & E pin. Then [[, , [,I E pzn with 

El , E21 el = (el + e,+d f 2 Im &,e, , t2el), dim-e J+, z’) = 4% Z’)- 

Proof. Lemma 3.9 gives block form matrix expressions 

where 

p=-tf.u+tji.,+tu.x-tw.y=-21m(tx.u-ty.w) 

= -2 Im h(5,ei , [,e,) = 2 Im &tie, , &ei). Q.E.D. 

We record some consequences of these block form matrix expres- 
sions. 

If 5 E pi” and 17 E pz” then 57 = 0 = $ and 5” = 0. 

If ~1, Q. E ~2% then 77~1~ = 0 = 71~71~ . 

With Lemmas 3.9 and 3.10 that gives 

(3.1 la) 

(3.Ilb) 

rPln, PI”1 = Pzfl, [PlT2, P2”l = 0 and [pzn, ~z”l = 0. (3.12) 

LEMMA 3.13. pn = p2n + plm is a Lie algebra, and we have an 
isomorphism f : pn -+ ncp-l.q-l,F given by 

if 71 E pzn and v, = (el + ep+l)A thenf(rl) = (8,O) 
if .$ E pin and teI = z E W = Fp--l+-l, then f(t) = (0, z). 

Proof. p” is a Lie algebra by (3.12). Lemma 3.9 and the definition 
(3.7~) show thatf is an isomorphism of real vector spaces. Let & E pin 
with tiei = xi and rli E psn with r]$e, = (e, + e,+#, . Using Lemma 
3.10 and (3.11) we calculate 

fh + t1 , q2 + t21 = f[E, , E21 = (2 Im 4% , y22), 0) 
- [(PI ) z,), (82 I z,)l = [f(?I + c3f(rl2 + 52)1* 

Q.E.D. 
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With pn identified, we turn to the action of pr on its constituents 
pz” and pm. 

LEMMA 3.14. Let 5 E p”, say with [v = vy. If E E pin, then 
[L 51 E pin with K, C% = 5(&J + (547- 

Proof. c preserves V and W, and .$ interchanges them, so [c, .$I 
interchanges them. Also [c, .$]v = Z;& - .$cv = -t[v = --&q~ = 0 
since fv = 0. Now [c, .$I E plm, and we use &J = 0 to calculate 

[t, (1 e, = 5(&J - E(5el) = 5(&d - & Im Y + ep+l Re r> 

= 5(Eel) + S(e,(Re Y - Im Y)) = 5(54 + 5% Q.E.D. 

LEMMA 3.15. Let 5 E pr, say with [v = vy. I f  17 E pan, then 

K ~1 E pzn with K, de, = rheJ + h>7. 

Proof. c and 77 each preserve both V and IV, so [i, q] preserves V 
and IV. 7 annihilates vF and IV, each of which is <-stable, so [[, r] 
annihilates vF and IV. Now [[, q] E pz”. We compute 

[5,d e, = &A - dL’eJ = 5b4 - rlh Im Y + ep+l Re r> 

= 5(& - rl(e, Im Y - el Re Y) = I(rle,) + de& Q.E.D. 

We now combine Lemmas 3.6, 3.8, 3.13, 3.14, and 3.15 with (3.11) 
to get the structure of the Lie algebras p and I. 

PROPOSITION 3.16. p = pn + pr semidirect sum where pn is an 
ideal consisting of nilpotent linear transformations and is the maximal 
such ideal, and where pr is a maximal reductive (completely reducible) 
subalgebra of p. Similarly I = pn + (I n p’) semidirect sum. 

pn = pzn + pin E Im F + (IV = Fp-l**-l) = n,-r,,-r,r . 
pr = pr 1 V @ pr 1 W direct sum of ideals, where pr IV E F as vector 

space under [ f--t y where [v = vy, and pr jw = I n pT is the Lie 
algebra of U(p - 1, q - 1, F), the unitary group of W = Fp-l+l. 

The action of pr 1 v on p n:2jrprj.3~5ttyF,p,n3rlt-‘P~ImFand 
pin 3 5 tt x E W = Fp--l$q--l, then pzn 3 [c, q] t) r/3 + /3jj E Im F and 

PI” 3 [5, 51 t, 27 E JV. 
The action of prlw = lnpp’ on pn: If LEPER,+,, ~~~~~ and 

pln 3 ,$ H z E W, then [<, q] = 0 and pin 3 [<, (1 t-, c(z) E W. 
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We lift Proposition 3.16 to the group level by exhibiting maximal 
compact subgroups of P and L. Since P and L are linear algebraic 
groups, a maximal compact subgroup meets every topological com- 
ponent. 

Write U(Z; F) for U(Z, 0; F). Thus U(Z, R) is the ordinary orthogonal 
group O(Z), U(Z, C) is th e ordinary unitary group U(Z), and U(Z, Q) 
is the ordinary symplectic group Sp(Z). They are compact. 

The maximal compact subgroups of U(Z, m; F) are the conjugates 
of U(Z; F) x U(m; F). H ere U(Z; F) acts on the first I coordinates of 
Fz>m and U(m; F) acts on the last m coordinates. 

Write F* for the multiplicative group {y E F: y # 0). In the norm 
/ y / = (y~)i/~, it has maximal compact subgroup F’ = {y E F: / y 1 = 11. 

In fact Y b-+ (I Y I7 I Y I-54 g ives an isomorphism of F* onto R-k x F’ 
where R+ is the multiplicative group of positive real numbers. Note 
F’ g U( 1; F). More specifically, R’ = {*l}, and C’ and Q’ satisfy 
F’ = {ey: y E Im F}. 

LEMMA 3.17. Let K, denote the set of all F-linear transformations 
g: Fp>q -+ Fpy’J such that g preserves both V and W with (identifr W 
with FP-l,q-1) 

g Iv: left scalar multiplication by any element of F’, 

g 1 w: action of any element of U( p - 1; F) x U(p - 1; F). 

Then Kp is a maximal compact subgroup of P. 
LetK,={g~Kp:g~V=l)~U(p-l;F)~U(q-l;F).Then 

K, is a maximal compact subgroup of L. 

Proof. Kp is a compact subgroup of P, and its Lie algebra fp 
is the Lie algebra of a maximal compact subgroup S of P. Let g E S. 
Then g preserves vF, hence also VL = vF + W. As W is h-non- 
degenerate and f,-stable, now g(W) = W. Thus W-L = V is also 
g-stable. Now g IV is left scalar multiplication by an element of F’, 
e.g. by direct calculation, and gI,EU(p- l;F) x U(q- 1;F) 
because it normalizes the Lie algebra of that maximal compact 
subgroup of U(p - 1, q - 1; F). So g E Kp . Now S = Kp so the 
latter is a maximal compact subgroup of P. 

The assertion on K, follows. Q.E.D. 

Combining Proposition 3.16 with Lemma 3.17 we get the structure 
ofPandL: 

PROPOSITION 3.18. There aye semidirect product decompositions 

p =7 p” . pr and L = Pll '(L l-7 P') 



REPRESENTATIONS OF SEMIDIRECT PRODUCTS 349 

where Pa = exp(pn) is the maximal unipotent normal subgroup, where P+ 
and L CT Pr have respective Lie algebras pr and I n pr, and where Pr and 
L n Pr are respective maximal reductive subgroups. 

P”-N- p I,q--l,F , group of Heisenberg type. 

P’-F*xU(p-l,q-l;F)withLnP’rU(p-l,q-1;F). 

Following the isomorphism of Lemma 3.13, F* acts on Np-l,q-l,F by 
a(w, z)a-1 = (orw%, CCZ), and U(p - 1, q - 1; F) acts on Np-l,q-l,F by 
g(w, z)g-l = (w,g(x)). 

Proposition 3.18 completes the proof of Theorem 3.1. 
We rephrase Proposition 3.18 in the language of parabolic sub- 

groups. 

PROPOSITION 3.19. P has Langlands decomposition MAN where the 
unipotent radical P” = N g Np--l,q--l,F and where the reductive part 
Pr = MA g F* x U(p - 1, q - 1; F). Identifring under those 
isomorphisms, 

A = R+ acts on ND-l,q--I,F by a(w, ~)a-l = (a2w, ax), 
and M = MI x M2 where 

MI = F’ acts on Np-l,q-l,F by m(w, z)m-l = (mwE, mx), 

M, = U(p - 1, q - 1; F) acts on Np-l,q-l,F by g(w, x)g-l = 

(WY A!@)>. 
L = MzN and so P = M,AL E Gp--l,q-l,F . F*. 

4. REPRESENTATIONS OF NppqsF AND THEIR STABILIZERS 

We write down the irreducible unitary representations of the 
Heisenberg-type groups ND,p,F . For every such representation 7, we 
calculate the U(p, q; F)-stabilizer L, of the unitary representation 
class [v], and we extend 7 to a unitary representation of the semidirect 
product Np,*,r *L, in a way that side-steps the Mackey obstruction. 

From (2.4) one has ND,p,F as a central extension 1 -+ Im F 4 
N p,q,F --t F”~P -+ 1 where Im F is the derived group. It follows that an 
irreducible unitary representation of Np,p,F is finite dimensional if and 
only if it annihilates Im F, and in that case it is a unitary character 

eif: (w, 2) t-+ eif(*), 

where f : Fpyq + R is R-linear. The real-linear functionals on Fppa 
are just the 

fv: FP,* + R by fJ.z) = Re h(z, v). (4.la) 

5WI9/4-3 
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Now the finite dimensional irreducible unitary representations of 
N p,q,F are just the characters 

xv: (w, z) --f e--v’, (4.lb) 

where v E FPJ. 

PROPOSITION 4.2. Fix v E F p,g. If g E U(p, q; F), then xv * g is 
equivalent to x0 o xv * g = x0 o g(v) = v. Thus the U( p, q; F)- 
stabilizer of xv is 

L, = k E VP, 4; F): g(v) = 4, 

and there are four cases: 

(i) h(v, v) > 0 andL, z U(p - 1, q; F); 

(ii) h(v,v) <0 and L,GU(p,q- 1;F); 

(iii) v = 0 and L, = U( p, q; F); 

(iv) v # 0 but h(v, v) = 0, andL, E Gp--l,q--l,F. 

In each case, xv extends to a unitary character on the semidirect product 
group I&g * L, br 

gV(w, z, g) = xv(w, z) = eiReh(z*v). (4.3) 

Proof. Equivalence is equality for characters, and xv * g = x0 just 
when f, = fgcv) , which is when g(v) = v. 

In cases (i), ( ii ), and (iii), L, is the unitary group of ~1, as specified. 
In case (iv), L, G GP--l,rl--l,F by Theorem 3.1. 

Using (2.7b) and (4.lb), the function ffl on Np,q,F * L, defined by 
(4.3) satisfies );)V{(wO , x0 , go)(w, x, g)) = edi Re hbo + go(4, 4) = 
exp{i Re h(z, , v)} * exp{i Re h(go(z), v)}. Since go EL, , h(g,(z), V) = 
h(a, g;‘(v)) = h(z, v). Thus 

If 77 is an infinite dimensional irreducible unitary representation 

Of N~,,,F 7 then r] lImF is of the form cc eiA, where eil is a nontrivial 
unitary character. In other words, ~(w, Z) = eintw) * ~(0, z), where 
X: Im F + R is nonzero and R-linear. Of course this requires 
Im F # 0, i.e. F = C or Q, and then Im F is the center of N,,,,, and 
ein is called the “central character” of 7. 

A trivial variation on the classical Heisenberg commutation 
relations: 
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LEMMA 4.4. The equivalence classes of in&&e dimensional irre- 
ducible unitary representations of Np,q,F are in bijective correspondence 
[Q] t+ X with the nonzero R-linear functionals A: Im F + R by 

r],(w, z) = eiAcu’) . 7jA(0, z), 

i.e. Q has central character e iA. The U(p, q; F)-stabilizer of [Q] is all of 
U(p, q; F): ifg E U(p, q; F) then (w, .z) t+ Tn(g-l(w, z)g) is equivalent 
to 77n * 

Proof. If F = R the Lemma is vacuously true. 
Let F = C. Lemma 2.6 says N3 ,,*, c s N,,,,, , n = p + q, which 

is the usual Heisenberg group of dimension 2n + 1. The bijection 

$1”” is standard for the Heisenberg group N,,,,, and follows for 
p,p,c . For the stabilizer: U(p, q; C) acts trivially on the center of 

N p.q.c . 
Let F = Q. If A: Im Q + R is nonzero and R-linear, let ZA = 

{w E Im Q: X(w) = 0}, and then N,,,,o/Z, g Nzp,sn,e. The case 
F = C gives us an irreducible unitary representation +jA of N,,,,,/Z, 
whose lift vn to N,,,,, has central character eiA. Thus [q,] t-+ h is 
surjective. If 77 and 7’ are irreducible unitary representations of 
N p,p,Q with the same central character eiA, h # 0, then they factor 

through N,,,,dZ and give equivalent representations of that 
Heisenberg group, so [q] = [v’]. Now [T,] I-+ h is injective. For the 
stabilizer: U(p, q, Q) acts trivially on the center of NP,*,o . Q.E.D. 

We now extend the infinite dimensional unitary representation 
classes [$J from NP,Q,F to the semidirect product groups 

N p,g,F . u(l’, 9; F) = G,,,,F . 

In the language of polarizations (see [2, 31) this is done by associating 
[T,J to a U(p, q; F)-invariant complex polarization. However we 
carry out the extension in an explicit manner and thus side-step the 
problem of computing the Mackey obstruction [12, 17, 181. 

Suppose F = C. The R-linear functionals h on Im C = iR are the 

X:ImC--+R bY X(w) = -iZw, ZER; (4.5a) 

SO eiAcir) = eizY. Fixing A, thus fixing 1 E R, we have the complex line 
bundle 

gA - N,,,,,/Im C = 03” (4.5b) 

associated to eiA. The Cm sections of -Epn are the Cm functions 

0: N,,,,, -+ C (4.6a) 
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such that O(w, z) = e- iA o(O, x), and they are in obvious bijective 
correspondence with the C” functions 

u: CP,” + c by U(z) = qo, z). (4.6b) 

N P,p,c acts on these sections and functions by the rule 

[L(wo 3 %)Q(W, 4 = q(w, , %)-1 (w, 4) 
= U(w - w. - Im h(z, , z), z - zO), (4.7a) 

and thus 

[-wo 9 ~oY-Jl(4 = eiA(w,+lmh(z,.z)) ,TJ(z - +). (4.7b) 

The complex line bundle ZA has the structure of holomorphic line 
bundle, which we now describe. Define a norm function on C**q and 
a pointwise norm on its functions by 

v(z) = e-(z/zm(z.z) and IIF 111.2 = “(4 I FG4 (4.8) 

We transport the action L, of N,,,#, on Cm functions by the corre- 
spondence U = vF: 

L(wo 3 0 z ) . (multiply by V) = (multiply by V) . T,(w, , zo). 

In other words, 

[T,(w, , z~)F~(z) = [U(Z - z~)/~(z)] . ef%+lm%sz)) F(z - zo). 

This transported action has the pleasant properties 

II Tdwo > zo)F l/a = II F Il~.z-zo 

and 

TAWO 9 0 z )P is holomorphic o F is holomorphic. 

(4.9a) 

(4.9b) 

(4.10a) 

(4.10b) 

Now the holomorphic structure on YA is the one whose holomorphic 
sections are the 

0: N,,,/z - C by o(w, ix) = e-iA’w’ u(z) F(z), 

where F is a holomorphic function on CW, with fibre norm 

I &+ 4 = 44 IF(z)1 = l1Flln.z 3 

under the action T, (4.9b) of N,,,,, . 
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Evidently T,, defines a unitary representation of N,,,, on the 
Hilbert space 

Hz(S$) = 
I 
F: CD** + C holomorphic: 

I IIF II:., dz ds -=c ~0 , 
C’dl 1 

but unfortunately H&Q = 0 unless lh is positive definite. Thus we 
have to look at the other square integrable cohomology groups of LYA . 

Fix integers Y, s between 0 and n = p + q, and denote 

AT*B(YA); P(r, s)-forms on CW with values in ZA . 

The hermitian metrics 

(4.11a) 

( 
1 aIJ d.9 A d$,c b,, dz” A d.3 

> 
= 2 1 aI& (4.11b) 

(I = (il ,..., 
dzJ = d.q, A 

i,.) and dz’ = dzi, A *a* A d,z+,; J = (jr ,..., j,) and 
*** A d,?fjs) specify Hodge-Kodau-a operators 

A’**(YJ -2 An--T*y!zA* = PeA) -s A’.“(ZA). (4.11c) 

If OL, p E LP’~~(LQ then 01 A #/3 is an ordinary (n, n)-form on CYy*, so we 
have a pre-Hilbert space 

kl;$q = [a E A'."(sg: j a A #a < a/. (4.12a) 
CD.” 

The space of S$-valued square integrable (r, s)-forms is 

L;*“(ZA): Hilbert space completion of A,‘*“($P,). 

The operator 

(4.12b) 

gives a densely defined linear operator 2: LL3”(ZA) --+ LL++i(L&), whose 
formal adjoint is a* = -#‘8#. Th ese ive a second-order elliptic g’ 
operator 

- - 
0 = (8 + ,*)z = aa* + 8*a: Kodaira-Hodge-Laplace operator, (4.12~) 

which is essentially self-adjoint from the domain of compactly sup- 
ported forms in ~P3”(9~); see [l]. Its self-adjoint extension !J* 
(adjoint) = 0 (closure) has kernel 

H;,“(LQ = {w EL;s~(~~): f&~ = 0}, (4.13) 
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whose elements are called square integrable harmonic (r, s)-forms with 
values in sA. Evidently HgPS(YA) is a closed subspace of L2’($p,) 
consisting of C” forms. 

N p,q,c acts on A’+(oEO,) by 

T,‘+q, , z,,) 1 aIJ d.9 A d.9 = 1 TA(w,, , 2,) arJ dz’ A d9. 

From (4.10a) that action commutes with # and #” and thus goes over to 

T;,“: unitary representation of NP,g,, on AJ$*“(L??~). (4.14a) 

The action also commutes with s by (4.1Ob), so it commutes with 0 
and preserves Hiy’(-P,,). Now TIys restricts to 

TA T,S: unitary representation of NP,p,C on H;s~(~~). (4.14b) 

Notice that ~~~” has central character eiA. According to Satake [17] and 
Carmona [4], 

H0,~S(2’A)=OunlessZ>Oands==porZ<Oands=g (4.15a) 

and 

if 1 > 0 and s = p, or if 1 < 0 and s = q, then T$” is irreducible. (4.15b) 

Thus [T,], X nontrivial, is realized by @ as in (4.15b). 
U(p, q; F) acts on the quotient space CXq = N,,,,,/Im C by its 

ordinary linear action. This action lifts naturally to 9A for we can view 
ZA as the GP,q,c- homogeneous line bundle over 

CPJ = G,,,J(Im C) . U(P, q; Cl 

associated to (w, 0, g) t, eiA@‘). Evidently z(gz) = ~(2) for 2; E Cp>q 

and g E W, q; Cl, so the hermitian metric on PA is G,,,,,-invariant, 
as is the holomorphic structure described after (4. lob). Since Lebesgue 
measure on CP+r is U(p, q; C)-invariant, now G,,,,, preserves all the 
ingredients (4.1 l), (4.12) in the definition (4.13) of Hg$“(TA), and thus 
acts on High by a unitary representation whose restriction to 
N P,q,c is ql>“. In view of (4.15), this extends [r,J from N,,,,, to G,,,,, . 
Compare Satake [ 171. 

Finally suppose F = Q. If h: Im Q -+ R is nonzero and R-linear, 
we set 2, = {w E Im Q: h(w) = O> as in the proof of Lemma 4.4. The 
basic units i, j, k = ij E Im Q can be chosen so that j, k E Z,, , and 
then N,,,,,/& g NsP,zn,c carries U(p, q; Q) over to a subgroup of 
WP, 2% C). If ISI is the unitary representation class of N,,,,o/Z, 
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that lifts to [Q], we realize it, as above, as an +$J, extend $>s to 

%&Q/G T and lift it to a representation of Gp+*,o whose Np,q,o- 
restriction is in [qA]. 

In summary, we have proved 

PROPOSITION 4.16. Every infinite dimensional irreducible unitary 
representation class [?,+I of NP,q,F extends to a unitary representation 

class Cfhl of G,,,,,, - 

5. REPRESENTATIONS OF THE GROUPS Gp,q,F AND e,,,,p 

We use the results of Section 4 to apply Mackey’s little-group 
method ([8, 9, 10, 11, 121; see [13]) and obtain all irreducible unitary 
representation classes of the groups Gp,q,F and Gp,p,F . 

First note the conditions necessary to apply the little-group method 
to a semidirect product G = N - U of locally compact groups. Write 
* for unitary dual, the set of all equivalence classes of irreducible 
unitary representations, with its usual Bore1 structure. If [T] EN, 
denote its stabilizer 

G, = N . U, = {g E G: n ++ v(g-lng) is equivalent to q> (5.la) 

and consider the “extensions” 

E(T) = {[#I E &: # jN is equivalent to a multiple of 7). @lb) 

If all the groups are of type I, and if there is a Bore1 section to the 
action of G on n, then G consists of the classes of representations 
unitarily induced from E(q), i.e. 

~2 = W-&~&)1: [?I E fi and WI 6 E(d). (5.lc) 

These conditions are automatic for our groups 

G n.n,F - - NWLF . W> 4; F) 

because there N, G, and the G, are algebraic and G is analytic on NT. 
Proposition 4.2 gives us (Gn,Q,F)a and E(q) when [T] E fip,p,F is a 

unitary character, 

7 = xv: (w, 2) ++ eiReh(z-t), v E F”.“. (52a) 

In that case 

(G~,FX = N,.,.F . Lv 1 L, = k E U(P, 4; F): g(v) = 4, Wb) 
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and 7 extends to a unitary character on (Gp,n,F)s by the formula 

+j(w, ~,g> = ?l(~, Z) = Peh(e,v). (5.2c) 

It follows that 

&I) = {bj 0 rl : bl E LA (5.3a) 

where 9 @ y represents (G33,q,F)rr on the representation space of y by 

(vj @ y)(w, z, g) = eiRehfzvu) y(g). 

The resulting induced representations 

7r l),y = Ind N,,,&%s,,,~(ji @ y) 

specify a subset of the unitary dual of G,,,,,: 

(G,.,.& = hJ: M4. 

If zl’ = g(v) E U(p, q; F)(v), then the corresponding 
(5.4b) coincide. On the other hand 

so families corresponding to distinct U(p, q; F)-orbits on Fp~g are 

(5.3b) 

(5.4a) 

(5.4b) 

families 

disjoint. Glancing back at Proposition 4.2 we summarize as follows. 

PROPOSITION 5.5. The classes in GP,o,F which arise from unitary 
characters on N p,g,F fall into four disjoint series as follows. 

1. (Gp,q,F)F;ositive is parameterixed by R-t x U( p - 1, q; F)” 

under hJ - (r, [rl) w h ere r2 = h(v, v) > 0, L, is the U(p - 1, q; F) 
acting on 79, and [y] E& . This series is nonvoid jz& when p > 0. 

2. (Gp,q,Fkegative is parameterized by R- x U(p, q - 1; Fr 
under b-J f-f (r, [rl) w h ere -r2 = h(v, v) < 0, L, is the U( p, q - 1; F) 
acting on 79, and [y] E & . This series is nonvoid just when q > 0. 

3. (Gp,q.F)zAero is parameterized by U(p, q; F)̂ , [r] corresponding 
to its lift [T~,~]. This series is nonvoid. 

4* (Gp,p.F)Z&ropic isparameterized by C?P--l,Q--l,F under [v*,~] +-+ [y] 
where v # 0, h(v, v) = 0, and L, is identi$ed with its isomorph 
Gp--l.g--l,~ . This series is nonvoid just when p > 0 and q > 0. 

Lemma 4.4 and the discussion summarized in Proposition 4.16 give 

us @%*,A and E(T) when [q] EN~,*,~ is not a unitary character. 
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In that case 7 = T,I*, infinite dimensional representation with non- 
trivial central character &(w) = eincw), and (Gp,q,F),, is all of GP,4,F . 
We have a particular extension 7jA of r], to Gp,P,F , and 

-%A) = GA 0 ~1: [rl E W> 4; WI, (5.6a) 

where jiA Q y represents GP,P,F on H,, @ H, by 

(% 0 Y)(W! z> g) = 7sA(W, z> g) 0 y(g). (5.6b) 

Since Gp,q,F acts trivially on the center Im F of Np,q,F , the ;iA @ y are 
mutually inequivalent. Now 

PROPOSITION 5.7. The classes in (?p,p,F which arise from injinite 
dimensional representations of ND,q,F form a single series 

(G,,,,F)G = ([qA @ y]: A: Im F -+ R nonzero and [y] E U(p, q; F)“}. 

This series is void for F = R and nonvoid for F = C and F = Q. 

(2 
The Mackey little-group result (5.1) tells us that we have exhausted 

p,q,F: 

THEOREM 5.8. The irreducible unitary representation classes of 
G33,q,F fall into five disjoint series, 

%e F . > = (Gp,n,F)phoositive ” (Gp,a,F)k$ative ” cG, q  F)k?m 9 , 

” (Gp,rl,F)~otrOpic ” (Gp,q,F)z ) 

as described in Propositions 5.5 and 5.7. 

View (GD,q,~)A as {[r] E G;3,q,F: 7~ factors through GP,q,F}. 

COROLLARY 5.9. The irreducible unitary representations of Cp,q,F = 
Fp3q * U(p, q; F) faZ1 into four disjoint series 

as described in Proposition 5.5. 

We now have a complete description of GP,q,F modulo knowing the 
U(r, s; F)̂  for 0 < Y < p and 0 < s < q. This is obvious for the 

series (Gp,q.F)&oitive 2 (Gp.q.Fkegative 9 (Gp,q,FkhePO and (Gp,q,F)G9 
so we need only explain the enumeration of (GP,q,F);80tropic . Let 



358 JOSEPH A. WOLF 

m = min(p, q). Then (G23-m,q-m,F)~~‘sotropic is empty, so we have 
%n.q--m.F explicitly. This gives us (G 
we have ~p--m+l,q--m+~,~ 

B _ m+l,q-Tn+l,F vmtropic~ SO now Î  

explicitly. Continuing, we have Gr,-l,q--l,F 
explicitly, it gives us (G~,q,F)&,tropiC, and thus we have Gp,,,F 
explicitly. 

Similarly we now know (Gp,Q,F)h modulo knowing the U(Y, s; F)” for 
O<r<pandO<s<q. 

One has explicit knowledge of the various series in the U(r, s; F)̂  
which contribute to Plancherel measure, e.g. through the work of 
Harish-Chandra. In principle the recent work of Langlands [7] 
describes all of each U(r, s; F)̂ , except that he works with Banach 
representations and the unitarization problem there is quite nontrivial. 
At any rate, one has enough for the Plancherel formulas which we 
write down in Section 6. 

6. PLANCHEREL FORMULA FOR THE GP,q,F AND Gp,q,F 

We combine the results of Section 5 with the Plancherel formulas 
for the groups U(Y, s; F), 0 < r < p and 0 < s < q, and write down 
the Plancherel formula for Gp,q,F and Gr,,a,F . 

1. Suppose F = R. This case is easily extracted from the 
considerations of Kleppner and Lipsman [6], who carry it out for the 
case p = 1, extending Rideau’s results [16] on the PoincarC group 
G 1,3,R . (The just-cited authors actually work with the connected 
group-the identity component of our group-but passage to the 
larger group is a routine matter.) 

The indefinite orthogonal group O(p, q) = U(p, q; R) has orbits 
on RP+r = Nr,,Q,R as follows. 

For r > 0 there is the quadric Q? = (v E RJ’%“: h(v, v) = r2); 

for Y < 0 there is the quadric Q,. = (v E Rp.4: h(v, v) = -r2}; 

there is the origin (0); 

and 

(6.la) 

(6.lb) 

(6.1~) 

there is the light cone C = (v E Rp+@: z, # 0 and h(v, ZJ) = 01. (6.ld) 

These correspond to the four series listed in Proposition 5.5. Since 
Lebesgue = Plancherel measure on R p,q is concentrated in the union 
of the two open sets 
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now Plancherel measure for Gp,q,R = Rps* . O(p, 4) is concentrated 
in the union (Gp,SI,R)&sitive u (G33,~,R)nhegative of the corresponding 
series. Let dQ, denote the volume element on the quadric Qr specified 
by its pseudo-riemannian metric induced from Rp$q. Since Qrt,r, = 
j Y / Q-i , the euclidean volume element is 

dV* = I r 19+4-1 dr A dQ+, on RFg. 

Now, as in [6, pp. 511-5121, Gp,q,R has Plancherel formula 

where h(v, ZJ) = r2 and d[y] is Plancherel measure for 0( p - 1, Q), 
h(w, zu) = --s2, and d[6] is Plancherel measure for O(p, q - l), the ci 
are positive constants depending on normalizations of Haar measure, 
and (/ * (I2 is Hilbert-Schmidt norm. 

2. Suppose F = C. As above, G,,,,, = CPlq . U(p, q) has 
Plancherel formula 

where h(v, V) = y2 and d[y] is Plancherel measure for U(p - 1, q), 
h(w, w) = -s2, and d[6] is Plancherel measure for U(p, q - 1), and 
the ci are positive constants depending on normalization of Haar 
measure. 

We go to Gp,q,c - The Heisenberg group N,,,,, has Plancherel 
formula 

f(n) = c jm O&J) 1 1 /P+Q dl, f is Cp- and rapidly decreasing, (6.4a) 
-cc 

where [rJ](n’) = f(n’n), c = (p + q)! 2P+q, and 0, is the distribution 
character of the class [q,J of Lemma 4.4 for h: Im C + R by h(w) = 
-iZw. Of course Or(rJ) is the orbital integral, 

Wnf) = c-l j (rJ>; ( Y> 44 Yh (6.4b) 
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where (r&r is the function (mf) . exp on the Lie algebra np,p,c , 
(YJ); is its Fourier transform (function on the real dual space n&J, 
the integration is over the Ad(N,,,,,)*-orbit of k ttp,*,c -+ R by 
X(q z) = --iZw, and dp, is symplectic measure (see [15]). 

Now the Plancherel measure for Gp,q,c = ND,,,, * U(p, q) is 
concentrated on the series (G,,,,,); f o re p resentation classes described 
in Proposition 5.7. Applying [6, Theorem 2.31 we get the Plancherel 
formula for Gp,p,C , 

where X(w) = -iZw as above, d[y] is Plancherel measure for U(p, q), 
and c’ is a positive constant depending on normalization of Haar 
measures. 

3. Suppose F = Q. As in (6.2), the group Gflsp,o = 
Q”>” * Sp(p, q) has Plancherel formula 

where h(v, V) = r2, h(w, w) = -9, etc. 

We go to Gp.q,Q . The Heisenberg type group N,,,,c has Plancherel 
formula 

f(n) = c jR3 @&nf)ll 2 l12(e+q) d4 f is C” and rapidly decreasing, (6.7a) 

where c = (2p + 2q). 2 t s(p+@, dl is Lebesgue measure on R3, and 0, 
is the distribution character of the class [q,J of Lemma 4.4 for 
h: Im Q -+ R by h(a,i + u2j + ask) = Z,ai + Z2u2 + Z,u, . There 
@,(rJ) is the orbital integral 

fq,f) = c-l j (Y,f>; t r> +zt 3% (6.7b) 

where p1 is symplectic measure on the Ad(N,,,,,)*-orbit of 

h: %q,Q + R by h(a,i + u,j + ask, x) = Ziur + Z,u, = Z3u3 (see [14]). 
Now the Plancherel measure for G,,,,, = Np,q,Q . Sp(p, q) is 

concentrated on the series (G,,,,,): f o re p resentation classes described 
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in Proposition 5.7. As before [6, Theorem 2.31 gives us the Plancherel 
formula for Gp,p,o: 

where h(a,i + u2j + a.&) = liar + Zaa, + Zaa, as above, d[r] is 
Plancherel measure for Sp( p, q), and c’ is a positive constant depending 
on normalization of Haar measures. 

7. REPRESENTATIONS OF CERTAIN PARABOLIC GROUPS 

The results of Section 3 show that Gp,q,F is contained in a certain 
maximal parabolic subgroup P = Pp,q,F of U(p + 1, q + 1; F). 
There P has Langlands decomposition MAN with 

M = F’ x U(p, q; F), A = Rf, and N = Np,q.~, (7.la) 

which naturally leads one to consider its nonreductive subgroups 

N = N~,F 7 AN = Np,Q,F * R+, 

MN = G,,,,, . F’, and MAN = G,,,,, . F*. 
(7.lb) 

Here we use the method of Sections 5 and 6 to describe the representa- 
tions of AN, MN, and P = MAN, and the Plancherel formula for 
MN. See the thesis of F. W. Keene [S] for the case q = 0. The Plancherel 
formulas for the nonunimodular groups AN and MAN are more 
delicate. In view of Lemma 2.6, the formula is worked out by Keene [5] 
for AN. Keene and I plan to write it out for MAN in a joint paper. 

We first consider representations that come from unitary characters 
on N. Here we retain the notation of Propositions 4.2 and 5.5. Recall 
from Proposition 3.18 that F* = F’ x R+ acts on Gp,q,F = 
N p,q,F ’ u(P, 4; F, bY 

u(w, 2, g)a-l = (uwa; az, g), O#UEF. (7.2) 

In particular F* acts on the unitary characters of N by 

kdxlJ>l(w~ 4 = [4xvW, 4 = xv(~-l(O~ 44 = xv@, a-l.4 
= exp(i Re h(o, a-%)) = exp(i Re h(ir-ls, z) = xd-&), z) 

= X&(W, 4, 
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that is 

if aEF* and v  E F”sg, then 4x,> = X$-Iv * (7.3a) 

If F+ is a subgroup F*, now xv has U(p, q; F) x F+-stabilizer 

L,+ = {(g, a) E U(p, q; F) x F+: g(g) = vh-l}. (7.3b) 

As in (4.3), xv extends to Np,q,F . L,+ by the formula 

jgw, z, g, u) = xv(w, ,z) = eiRe-2’). (7.3c) 

Notice L,+ z {g E U(p, q; F): go E EF+} under g w (g, a), where 
g?? = E&. Thus 

if h(v, v) > 0, then L,+ g U(p - 1, q; F) x (F+ n F’), (7.4a) 

if h(v, v) < 0, then L,+ g U(p, q - 1; F) x (F+ n F’), (7.4b) 

ifv = 0, then L,’ = U(p, q; F) x F+, (7.4c) 

I 

if v # 0 but h(v, v) = 0, then L,*(F+ = F*) g PP--l,Q--l,F 
and L,‘(F+ = F’) is the MN of its Langlands decomposition. (7.4d) 

Now we have the extensions of xv to Np,q,F *Let, and thus the induced 
representations of Gp,q,F * F+, in particular for F+ = Rf, F’, or F*. 

Now consider representations that do not come from unitary 
characters on N. Here we retain the notation of Lemma 4.4 and 
Propositions 4.16 and 5.7. Use (7.2) to trace the action of F* on 
([$I: X: Im F + R is nonzero and R-linear) by means of the central 
character: 

[4%>1@4 0) = rl(awa, 0) = %dA)(W, o>, 
that is 

where [u(h)]w = h(uwa), 

ifuEF* and A: Im F + R, 

where [a(h)]w = h(aw8). 

then ehl = rllz(A) > (7Sa) 

Now [qA] has U(p, q; F) x F*- and U(p, q; F) x F’-stabilizers 

L’ [VA1 =U(p,q;F) x {uEF’:uER+RZ, where 

X(w) = -Re(l@), 1 E Im F}. (7Sb) 

[Q] extends to Np,q,F . L;,,, as in the discussion preceding Proposition 
4.16. In both cases (F = C and F = Q; R does not occur here), 

L;??A, = U(p, q; F) x C’. This tells us the extensions of [7,J to 
N psq,F 
G 

* LLnAl , and thus the induced representations of GD,q,F. F* and 

n,q.F . F’. 
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In summary, Mackey’s little-group method gives us the unitary 
duals of AN = Np,P,F * R+, MN = G23,p,F . F’ and P = MAN = 
G p,q,F . F* as described in Propositions 7.6 and 7.8 below. 

PROPOSITION 7.6. Let F+ denote R+, F’ or F*. Then (Nn,q,F * F+)̂  
is the disjoint union of three series, as follows. 

(1) The series I? viewed as the representation classes that annihilate 
the normal subgroup N23,q,F; 

(2) a series of classes [Ind,,,,+(x,)], 0 f v E Fp,q, parameterized 
by the space of orbits vF+ in Fp*q; 

(3) a series of classes [Ind,,,,r+($ @ u)], A: Im F + R by 
X(w) = -Re(Z@) where 0 # I E Im F and where 

S, = {a E F+ n F’: al = La>, 

seriesparameterized by {(Im F - {O})/F+ under the action a: I I-+ a&j x $ . 

In regard to the series (3) above, here is a case-by-case explicit 
parameterization. The series exists only for F = C and for F = Q. If 
F+ = R+ then S,, = {I}; o th erwise S, is the circle group F’ n (R + RI) 
and L?,, is parameterized by Z. The orbit structure of Im F - (0) under 
the action a: 1 t-+ ala of F+ is 

(7.7) 

F+ z Rf F’ = F’ F’ = F* 

orbits iR+ and one-point orbits, orbits iR+ and 
F=C -iR+, orbit space -iR+, 

orbit space ( 1, - 1 } Im C - (0) orbit space {I, -l} 

orbits ZR+ real 2-sphere orbits one orbit 

rays, / I / = r, Y > 0, Im Q - {O), 
F=Q orbit space P(R) orbit space R’ orbit space {point} 

real projective 
plane 

PROPOSITION 7.8. Let F+ denote Rf, F’, or F*. Then (GD,q,F * F+)̂  
is the disjoint union of jive series, as follows. 

(1) The series {U(p, a; F) x F+}̂  viewed as the representation 
classes that annihilate N,,q,F; 
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(2) the series of classes 

[~+MI = [Ind NL,t.rGD,,,~Ft(~v 8 7 @ /-% 

[?T~,~] E (G~,Q,F)~ositive and [/3] E (Ft CT F’)^, series parameterixed by 
FS = F’: R+ x U(p - 1, q; F)^ x $’ under [T~,~,~] t+ (h(a, ZJ’)~/~, 
[rl, [PI), Ft = F*: VP - 1, q; VA x @’ under b-,.01 f+ ([rl, 
[j?]), Ft = R+: U(p - 1, q; F)* under [TV,,,,,] H [r] where h(v, v) > 0 
and u has U(p, q; F) x Ft stabilizer L,+ given by (7.4a); 

(3) the series of classes [~U,Y.SI, h,,,] E (Gp,g,F)nhegative , and 
[PI E (Ft n WA, series parameterixed by Ft = F’: R- x U(p, q - 1; 
F)^ x I?’ under [T~,~,~ I - (- I h(v, W2, bl, [PI), Ft = F”: U(P> 
q - 1; F)” x fi’ under [T v.v,ol H (Crl, IN), Ft = R+: VP, 4 - 1; 
F)* under [T,,,,~] t) [r] where h(v, v) < 0 and v has U(p, q; F) x Ft 
stabilizer LVt given by (7.4b); 

(4) the series of classes [~,,,,EJ, bu,,l E (Gp,p.F)kotropic y and 
[/3] E Pt, seriesparameterized by GP,--l,q--l,F x Ft under [TV,,,,] t+ ([r], [PI), 
where 0 # ~1 E FPyQ with h(v, VI) = 0 and v has U(p, q; F) x Ft- 
stabilizer LVt g GP--l,qP1,F x Ft as in (7.4d); 

(5) the series of classes 

[%url = [In‘hr,trc,,,,Fd~n @ Y @ u>l, 

A: Im F -+ R by h(w) = -Re(Z$), where 0 # I E Im F, 

S, = {a cF+ CT F’: al = la}, 

and L,t = U(p, q; F) x S, , series parameterixed by 

{(Im F - {O})/Ft under the action a: E i--t ah) x U( p, q; F)” x 3, 

under [z-~,~,J t) ((ak: a EF), [r], [a]); see (7.7). 

The Plancherel measure of MN = Gp,q,F . F’ is concentrated on the 
series (5) of classes [-rr,,,,,] in P ro osi ion 7.8 when F # R, on the p t 
union of series (2) and series (3) when F = R. As in Section 6, the 
corresponding Plancherel formulas are as follows. 

If F = R, then F’ = R’ = {&l) so F’ = (E+>, where q( 1) = 1 and 
~-1) = rJr1, and (6.2) goes over to 
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IfF=C,thenF’=C’=(e @: 8 real} so P’ consists of the charac- 
ters &: eie ti ein@, n E 2, and (6.5) goes over to 

(7.10) 

If F = Q we still have S, a circle group in Proposition 7.8 for 
F+ = F’, and so, using (7.3, the formula (6.8) goes over to 

where A,: Im Q ---f R by h,(w) = -Re(rzZ), Y > 0, so S,,, = C’. 

8. THE CAYLEY VARIATION ON OUR THEME 

Our considerations of the semidirect product groups GpSp,r and 
their enveloping parabolics PP,q,F = G33,g,F . F* go through to some 
extent when F is replaced by the Cayley-Dickson division algebra 
Cay. These new groups are of some intrinsic interest; for example 
P l.O.CSY is the minimal parabolic subgroup of the group of type F4 
with maximal compact subgroup Spin(g), associated to the Cayley 
hyperbolic plane, and has been studied from this viewpoint in Keene’s 
thesis [5]. 

Cay” denotes the real vector space of n-tuples of Cayley numbers, 
and as in (2.1) we denote 

Cay”*Q: Cay*+* with the “hermitian” form h(x, r) = i x”yl - ‘5 x”~“. (8.1) 
1 Pfl 

This defines a Heisenberg-type group 

N B,q,caY = Im Cay + Cay”-Q with group composition given by (8.2a) 

(WO, XO)(~, z> = (w. + w + Im h(z,, 4, x0 + 4. (8.2b) 
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N p,p,caY is a simply connected nilpotent Lie group of real dimension 
8(p + q) + 7 with 7-dimensional center Im Cay. It has Lie algebra 

n 9,q,cay = Im Cay + Cayp*q with [bb , &A (7, 81 = (2 Im 45, , 0, 0). 
(8.2c) 

Lemma 2.6 goes through without change to these groups. 
We must be careful as to just what we mean by 

U(p, q; Cay): unitary group of CayP**. (8.3) 

We want it to consist of the Cay-linear transformations that preserve 
h. By definition, a transformation 

T: Cay” -+ Cay” (8.4a) 

is Cay-linear if it is R-linear and satisfies 

T(z)a = T(zu) for z E Cay” and aECay , (8.4b) 

i.e. if it commutes with all right “scalar” multiplications 

r(a): (zl )..., x1) w (qu ,..., +z) 

in the sense T. r(u) = r(u) * T for all a E Cay. 

LEMMA 8.5. T: Cay” -+ Cay” is Cay-linear if and only if 

T(x, >..., %) = cc: a,jxj >*-*, c" 1 amjzj) for some m X n real matrix (Uij). 

Proof. First consider the case m = n. Let A denote the real 
associative algebra of R-linear transformations of Cayn generated by 
the r(a), a E Cay. Since x * Cay = Cay for 0 # x E Cay, the real 
vector space of Cay” is direct sum of TZ irreducible A-modules. 
Now A is a simple associative algebra and it acts on Cay” by no1 = 

01 ye;-{f (II, where 01 is the action on a coordinate. 
>***, e,} be an orthonormal basis of Im Cay. Alternative 

algebras satisfy the identity (xa)b + (&)a = x(ab + ba), so 

r(ei) r(ej) + r(e$) r(ei) = r(eiej + ejei) = -26, , 

where 6, is 0 for i # j, 1 for i = j. Now {o(e,),..., “(e,)) generates a 
homomorphic image of the Clifford algebra Cliff(R7). But Cliff(R’) G 

MAR) 0 J44W d irect sum of real matrix algebras, so dim, or(A) > 64. 
Since 01 has degree 8 as real representation, now ar(A) consists of all 
R-linear transformations of Cay. 
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Expressing Cay” = Cn Q R8 we have A as the matrix algebra 
M,(R) acting on the second factor. Thus A has R-linear commuting 
ring M,(R) acting on the first factor. That proves our assertion in the 
case m = n. 

For the general case, define T: Caym+n + Caym+lt by 

vh ,**a, %+,) = a..., 0; T@, ,***7 %)> 

and express p as the transformation for a real matrix. 

Lemma 8.5 shows that the unitary group (8.3) is 

Q.E.D. 

U(p, 4; Cay) = {A @I,: A E O(p, q)}, which we denote O(p, 4) 81, . (8.6) 

Here @ means OR and 1s is the 8 x 8 identity matrix. O(p, q) @ 1s 
acts by automorphisms on Np,q,CaY by g(w, s) = (w, g(z)). Thus we 
have the semidirect product group 

G 9.Q.CW - - N9,q.cw . U(P, 2; Cay) = ND.q.Cay . O(P, 4) 0 4, (87a) 

whose multiplication law is 

(wo 9 x0 , go)(w, x, g> = (w. + w + Im 4x0 , go(4 2, + go(4, god. (8.7b) 

We are going to form an extension of GP,P,car , more or less as we 
did over R, C and Q, but to do this we need some trivialities on Cayley 
numbers: if a, b E Im Cay and U, z1 E Cay then we need 

a(b(m) = (abiqu and (au)(av) = a(u 

Both assertions are clear if the three relevant numbers lie in a quater- 
nion subalgebra of Cay, and both are linear in U, ZI and b and homo- 
geneous in a. Thus we may take {a, b, ab, U} orthonormal in Im Cay 
to check the first assertion, and {u, V, a> orthonormal in Im Cay for 
the second. Suppose that {e, ,..., e,} is the orthonormal basis of Im Cay 
in which 

e,e, = e3 , e,e, = e, , e,e, = e, , e1e4 = e, , 

e2e6 = e, , e,e, = e6 , elee = e, . 

For the first assertion, we apply an automorphism of Cay and may 
assume a = e, , 6 = e2 and u = e4, and then 

u(b(tiu)) = el(e,( -ele4)) = el(-e,eJ = -e1e7 = e8 = -e2e4 = (ubi+. 
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For the second, we apply an automorphism of Cay and may assume 
u = e, , v = e2 and a = a3e3 + a4e4, and then 

(uu)(ii@) = (a3ep - a,e5)(u3el - u4e6) = (q2 - ~2~“) e3 - 2u,u,e, 

= (a3 + u4e,)(-use3 - u4e4) = {u(u~)}Z = a(u 

We reformulate the identities just proved, in group-theoretic terms: 

LEMMA 8.8. Let Spin(7) denote the (2-sheeted) simply connected 
covering group of the rotation group SO(7). Then we can realize 

cr: Spin(7) -+ SO@), spin representation, by action on Cay 

and the covering as 

Y: Spin(7) --+ SO(7), vector representation, by action on ImCay 

in such a way that 

Im{u(u) u . u(u)v> = V(U) * Im(uV) for a E Spin(7) and 24, v E Cay. 

Proof. If a E Cay let Z(a): Cay -+ Cay by 2: --t ax. As in the proof 
of Lemma 8.5,Z(Im Cay) generates an associative algebra A z M,(R), 
homomorphic image of the Clifford algebra 

CWR7) z M,(R) @ M,(R), 

and that homomorphism p: Cliff(R’) + A maps the generating 
subspace R7 onto Z(Im Cay). One constructs Spin(7) as the multi- 
plicative group of all invertible x E Cliff(R’) such that 

and 
1x1 = 1,x.R7*+ =R’, 

v(x): R7 + R7 by y -+ xyx-l has det V(X) = 1. 

Then v is the universal covering Spin(7) + SO(7), the vector repre- 
sentation. Here p lSpin(7) is an irreducible representation 0, the spin 
representation, which thus is given as an R-linear action on Cay. 

The first identity proved above, says Z(a) * Z(b) * Z(a) = Z(a6Z) for 
a, b E Im Cay. Let U be the multiplicative group generated by 

(Z(u): a E Im Cay, 1 a 1 = I}. 

Now a . Z(Im Cay) * a-l = Z(Im Cay) for all a E U, it follows that U 
is a nontrivial closed connected subgroup of the simple group 
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a(Spin(7)), and we conclude that u: Spin(7) E U. We identify 
Spin(7) to U under this isomorphism, and now the vector represen- 
tation is given on generators of Spin(7) by ~(l(a)): Z(b) + Z(&i) for 
a, b E Im Cay, / a j = 1. Re-write that as a representation of Spin(7) 
on Im Cay given on generators by v(Z(a)): b + aba for a, b E Im Cay 
with/al = 1. 

Taking imaginary component in the second identity proved above, 
we have Im{Z(u) u * Iov) = v(Z(u)) * Im(u@) as Z(u) runs over our 
generating set for Spin(7). Now Im {u(u) u * a(a>v} = Y(U) * Im(u??) 
for all a E Spin(7). Q.E.D. 

Lemma 8.8 tells us that Spin(7) acts by automorphisms on Np,*,caJr , 
by the formula 

u(w; z1 )...) z .+q) a-l = (v(a) w; 44 z1 ,*.., u(u) %+,>- (8.9a) 

The action (8.9a) of Spin(7) commutes with the action of 

U(P,q;Cay) =O(P,d 01,; 

in fact it takes place on the other factor of CayP3* = Rpyq @ R*. 
Thus we have the larger group 

G p.q.~w . SpW) = ND.q,tir * UXP, 4) x SPWN- (8.9b) 

It has group law 

(wo ,x0 3 go , a,)@% z> g, 4 

= (w. + aowfio + Im Q. , goaozo), x0 + goaoz, gog, uo4. (8.9c) 

If instead we let a range over Spin(7) x Rf, then we get parabolic- 

type group 
P P,Q.CW - - Gm,cw * (Spin(7) x R+} 

= N,,,.cw * P(P, q) x SpW) x R+l, (8.10a) 

in which the analog of the Langlands decomposition is P = MAN 
with 

N = Ns.a.cw 7 M = O(P, 4) x SpW), and A = R+. (&lob) 

As remarked (or hinted) earlier, Pl,o,c, is the minimal parabolic 
subgroup in the simply connected group of type F4 and real rank 1. 

The classes [7jJ EN~,~,~~~ which annihilate the center Im Cay are 
just the unitary characters 

xv(~, x) = &Reh(vJ), (8.1 la) 
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where v E Caypj’J. As before, x,, has stabilizer 

LJs = {(g, 4 E O(p, 4) x s: g(v) = +>v> (8.11b) 

in O(p, 4) x S for any subgroup S of Spin(7) x Rf, and xv extends 

to NP*q,caY * {O(p, 9) x S> by the formula 

fv(w, x, g, a) = xu(w, z) = eiReh(vJ). (8.11~) 

This gives us representation classes 

[~v.,.~l = CInd N,,,,c~~~,~TG~,,,c~~.S(~~ @ Y @ 811 E tGm.csr * s>*, (8.12) 

where [r] E {g E O(p, 4): g(v) E a(S)v)*, and [J?] E S. The classes 
[~T~,~,J with v zero, positive, negative, or isotropic correspond to the 
classes in the series (l), (2), (3), and (4) of Proposition 7.8. To be more 
specific one must (i) enumerate the O(p, 4) x S-orbits on CaypvQ 

s and then (ii) calculate L, for a choice of v in each of those orbits. If 
p + q = 1 this is just the matter of the o(S)-orbit structure of 
Cay s R*, but if p + q > 1 it is messy. 

The classes [q] E NP,q,Csr which do not annihilate the center 
Im Cay, are in bijective correspondence [r,J t-) A with the nonzero 
R-linear h: Im Cay --f R, as in Lemma 4.4, by ~(w, 2) = ei”%lA(O, 2). 
The O(p, q) x S-stabilizer of [qJ is 

Lid = O(p, q) X (a E S: h(w) = h(awii) for w E Im Cay). (8.13a) 

If we represent 

A: Im Cay -+ R by h(w) = -Re(Z@), 0 f ZEImCay, (8.13b) 

then as in Section 7 we have 

%,I = O(P, Q) x s, , (8.13~) 

where S, = {u E S n Spin(7): v(a)2 = 1). We check that [v,J extends 

to N*,*,CaY * qqj: 

LEMMA 8.14. [Q] extends to ND,q,CaP * {O(p, q) x Spin(7),}. 

Proof. Let 2, = (w E Im Cay: X(w) = 01, so [q,+] factors through 
a representation class [+j,,] of N,,,,,.,/Z, E N4p,4p,c . As in (4.15), 
realize [q,J by the representation G$” of Nap,lq,c on a square integrable 
cohomology group Hz*s(Yh), so [vJ is realized by the lift $‘*” of $*‘to 
N p,q,cay * 
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View CayPT* as a complex vector space where the scalars are left 
multiplications by elements of R + RI. Then the projection 

induces a C-linear isomorphism of Caypyp onto C*“>**. This carries 
O(p, q) @ 1s to a subgroup of 0(4p, 4q) 01, C U(4p, 4q). It carries 
Spin(7),+ = Spin(6) to a subgroup 19+* @ SU(4) of U(4p, 4q). Now 
the ingredients of $9” all are invariant under O(p, q) x Spin(7), , 
and this gives the extension. Q.E.D. 

The extensions [$I of Lemma 8.14 give us representation classes 

where [rl E O(P, Q)^ and (T E ,!?,, . These classes [T~,~,~] correspond to 
the classes in series (5) of Proposition 7.8. They are parameterized by 
(Im Cay - {O})/v(S) x O(p, q)̂  x 4 under [q,J - (v(S)*A [rl, 4. 

Every class in ( G23,q,Cay * S)” is given by (8.12) or (8.15). 
Plancherel measure is concentrated on the classes (8.15). Thus, 

for example, Gp,q,car has Plancherel formula 

where X(W) = -Re(Z6) and I E Im Cay is viewed as an element of 
R7. Similarly Np,q,Car * {W-J, d x SpW’)) = Gp,q,Car - Wn(7) has 
Plancherel formula 

s Gp,,l,cay.Spin(7) ’ f(x)‘” dx 

m 

=d IS 0 [YlEO(D 11r ; II - (I ~~+,(f)lli ded4 4A 1 r*(‘+‘) dry 
(8.17) 

where h: Im Cay -+ R by h,(w) = -Re(r&), r > 0, so Spin(7),r = 
Spin(6) E SU(4), and [a] runs over &r G SU(4)^. 
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