Orbit Method and Nondegenerate Series

Joseph A. WOLF

(Received May 14, 1974)

1. If G is a reductive Lie group, then its Plancherel formula ([1], [2], [8]) involves a series of representations for each conjugacy class of Cartan subgroups. These "nondegenerate series" are realized [8] by the action of G on square integrable cohomology of partially holomorphic vector bundles over certain G-orbits on complex flag manifolds. That is similar to their realization by the Kostant-Kirillov orbit method using semisimple orbits. The differences occur when G has noncommutative Cartan subgroups, and also for representations with singular infinitesimal character, i.e. when the semisimple orbit is not regular. Recently Wakimoto [6] used possibly-nonsemisimple orbits to realize the principal series, which is the series for a maximally noncompact Cartan subgroup H, when G is a connected semisimple group and H is commutative (e.g. when G is linear). Here we use our method [8] to extend Wakimoto's procedure and realize all but a few members of every nondegenerate series of unitary representation classes for a reductive group. In the case of regular infinitesimal character there is no essential change from [8]. But in the case of singular infinitesimal character we rely on results of Ozeki and Wakimoto ([4], [6]), using nonsemisimple orbits in an interesting way.

To avoid repetition we assume some acquaintance with [8].

2. G will be a reductive Lie group of the class studied in [8] and [9]. Thus its Lie algebra

(2.1a) $g=c+g_1$ with c central and $g_1 = [g, g]$ semisimple, we assume

we assume

(2.1b) if $g \in G$ then Ad(g) is an inner automorphism on g_c ,

and we suppose that G has a closed normal abelian subgroup Z such that

(2.2a) Z centralizes the identity component G_0 of G,

- (2.2b) ZG_0 has finite index in G, and
- (2.2c) $Z \cap G_0$ is co-compact in the center Z_{G_0} of G_0 .

Then the adjoint representation maps G to a closed subgroup $\overline{G} = G/Z_G(G_0)$ of

Research partially supported by N.S.F. Grant GP-16651.

the inner automorphism group $\overline{G}_C = \text{Int}(\mathfrak{g}_C)$, where $Z_G(G_0)$ is the G-centralizer of G_0 .

By "Cartan involution" of G we mean an involutive automorphism θ whose fixed point set $K = G^{\theta}$ is the inverse image (under $G \rightarrow \overline{G}$) of a maximal compact subgroup of \overline{G} . If h is a Cartan subalgebra of g and

 $H = \{g \in G, \operatorname{Ad}(g)|_{\mathfrak{h}} \text{ is the identity transformation of } \mathfrak{h}\}\$

denotes the corresponding Cartan subgroup of G, then there is a Cartan involution θ of G with $\theta(H) = H$. This splits

(2.3a)
$$\mathfrak{h} = \mathfrak{t} + \mathfrak{a}$$
 where $\mathfrak{t} = \{h \in \mathfrak{h} : \theta(h) = h\}$ and
 $\mathfrak{a} = \{h \in \mathfrak{h} : \theta(h) = -h\}$ and

(2.3b)
$$H = T \times A$$
 where $T = H \cap K$ has Lie algebra t and $A = \exp(\mathfrak{a})$,

and the G-centralizer of A splits as

(2.4)
$$Z_G(A) = M \times A$$
 where $\theta(M) = M$ and M satisfies (2.1) and (2.2).

Let Σ_{a}^{+} be a positive a-root system on g and denote

(2.5)
$$n = \sum_{\alpha \in \Sigma_{\alpha}^{+}} g^{\alpha} \text{ and } N = \exp(n).$$

The corresponding "cuspidal parabolic" subalgebra $p \subset g$ and subgroup $P \subset G$ are given by

(2.6)
$$p = m + a + n$$
 and $P = MAN$.

T is a Cartan subgroup of M with $T \cap M_0 = T_0$. The object acting as weight lattice is

(2.7a)
$$\Lambda_t = \{v \in it^* : v \text{ exponentiates to a character } \exp(t) \to e^{v(t)} \text{ on } T_0\}$$

We replace G by a \mathbb{Z}_2 -extension if necessary so that, for all H and all choices Σ_t^+ of positive t_c -root system on m_c ,

(2.7b)
$$\rho_t = \frac{1}{2} \sum_{\varphi \in \Sigma_t^+} \varphi$$
 is contained in Λ_t .

The relative discrete series $(M_0)_{disc}$ of unitary representation classes of M_0 is parameterized by

(2.8a)
$$\Lambda_t'' = \{ v \in \Lambda_t : v \text{ is m-regular, i.e. } \langle v, \varphi \rangle \neq 0 \text{ for all } \varphi \in \Sigma_t^+ \}$$

as follows. If $v \in \Lambda_t^{"}$ denote

620

Orbit Method and Nondegenerate Series

(2.8b)
$$s_{\mathcal{M}}(v) = |\{\text{compact } \varphi \in \Sigma_{t}^{+} : \langle v, \varphi \rangle \langle 0 \rangle| + |\{\text{noncompact } \varphi \in \Sigma_{t}^{+} : \langle v, \varphi \rangle \rangle | \}|.$$

Then the class $[\eta_v] \in (M_0)_{disc}$ for $v \in \Lambda''_t$ is the one whose distribution character satisfies

(2.9)
$$\Psi_{\eta_{\nu}}|_{T_0\cap M''} = (-1)^{s_M(\nu)} \{\prod_{\varphi\in\Sigma_t^+} (e^{\varphi/2} - e^{-\varphi/2})\}^{-1} \sum_{W(M_0,T_0)} \det(w) e^{w\nu}$$

where M'' is the regular set and $W(M_0, T_0)$ is the Weyl group. The relative discrete series of

(2.10)
$$M^{\dagger} = \{m \in M : \operatorname{Ad}(m) \text{ is an inner automorphism of } M_0\}$$

= $Z_M(M_0)M_0$

consists of the $[\chi \otimes \eta_{\nu}]$ where $[\chi] \in Z_M(M_0)^{\hat{}}$ and $[\eta_{\nu}] \in (M_0)^{\hat{}}_{\text{isc}}$ both restrict to the same unitary character on $Z_{M_0} = Z_M(M_0) \cap M_0$. The relative discrete series \hat{M}_{disc} of M consists of the classes

(2.11)
$$[\eta_{\chi,\nu}] = [\mathrm{Ind}_M^{\dagger}_{\uparrow M}(\chi \otimes \eta_{\nu})] \text{ where } [\chi \otimes \eta_{\nu}] \in (M^{\dagger})^{\circ}_{\mathrm{disc}}.$$

Finally, the H-series of unitary representation classes of G consists of the

(2.12)
$$[\pi_{\chi,\nu,\sigma}] = [\operatorname{Ind}_{P\uparrow G}(\eta_{\chi,\nu}\otimes e^{i\sigma})], [\eta_{\chi,\nu}]\in \widehat{M}_{\operatorname{disc}} \text{ and } \sigma\in\mathfrak{a}^*.$$

This series depends only on the conjugacy class of H in G, and not on the choice of Σ_{a}^{+} . The Plancherel measure on \hat{G} is concentrated on the union of the various *H*-series.

3. Fix a semisimple element $x \in g$. Then x is contained in some Cartan subalgebras of g, and we choose

(3.1) h: maximally split among the Cartans of g that contain x.

With h fixed, we choose θ and obtain the splitting (2.3) and (2.4). Now choose

(3.2a) Σ_{a}^{+} : any positive a-root system on g, and

(3.2b) Σ_t^+ : positive t_c -root system on \mathfrak{m}_c with $\varphi(ix) \ge 0$ for $\varphi \in \Sigma_t^+$.

These specify a positive \mathfrak{h}_c -root system Σ^+ on \mathfrak{g}_c such that

(3.2c)
$$\Sigma_{\alpha}^{+} = \{\gamma|_{\alpha} : \gamma \in \Sigma^{+} \text{ and } \gamma_{\alpha}| \neq 0\}$$
 and

 $\Sigma_t^+ = \{\gamma|_t : \gamma \in \Sigma^+ \text{ and } \gamma|_{\alpha} = 0\}.$

Evidently the centralizer of x in g is

(3.3)
$$g^{x} = g \cap g^{x}_{C} \text{ where } g^{x}_{C} = \mathfrak{h}_{C} + \sum_{\gamma \in \Sigma^{+}, \gamma(x)=0} (g^{\gamma}_{C} + g^{-\gamma}_{C}).$$

Ozeki and Wakimoto [4, Lemma 4.4 and its proof] proved

(3.4a) if
$$\varphi \in \Sigma_t^+$$
 with $\varphi(x) = 0$, and if $\gamma \in \Sigma^+$ with $\varphi = \gamma|_t$, then $g_C^{\gamma} \subset \mathfrak{t}_C$

where $f = g^{\theta}$, Lie algebra of $K = G^{\theta}$. In other words

(3.4b) $u = g^x \cap m$ is contained in \mathfrak{k} .

This says

(3.5)
$$e = \sum e_{\alpha}, 0 \neq e_{\alpha} \in g^{x} \cap g^{\alpha}$$
, is regular-nilpotent in g^{x}

where the sum runs over {simple $\alpha \in \Sigma_{\alpha}^+: \alpha = \gamma|_{\alpha}$ with $\gamma(x) = 0$ }. Now, according to Wakimoto [6, Theorem 3.6],

(3.6)
$$q = (t_C + \sum_{\varphi \in \Sigma_t, \varphi(ix) > 0} g_C^{\varphi}) + a_C + n_C$$

is a complex polarization of g for x+e. If τ denotes complex conjugation of g_c over g then we note

(3.7)
$$q + \tau q = m_c + a_c + n_c = p_c$$
 and $q \cap \tau q = u_c + a_c + n_c$.

In case x is regular, $g^x = h$, so e = 0 and $q \cap \tau q = t_c + a_c + n_c$.

LEMMA 3.8. The polarization q for x + e is $Ad(G^{x+e})$ -invariant.

PROOF. We may replace G by $\operatorname{Ad}(G) = G/Z_G(G_0) = \overline{G}$ for the proof, thus assuming $G \subset \operatorname{Int}(\mathfrak{g}_C) = G_C$.

Since x is semisimple, e is nilpotent, and [x, e] = 0, the centralizers satisfy $G^{x+e} = G^x \cap G^e = (G^x)^e$.

Observe that $q \cap g_{c}^{x} = p^{x}$, which is a minimal parabolic subalgebra of g^{x} . It follows ([3]; see [5]) that $q \cap g^{x}$ is an invariant polarization of g^{x} for *e*. Writing *P*, *P_c* and *Q* for the parabolic subgroups with respective Lie algebras p, p_{c} and q, $G^{x+e} = (G^{x})^{e} \subset P^{x} \subset P_{c}^{x} = G_{c} \cap Q \subset Q$. Thus G^{x+e} normalizes *Q*. Q.E.D.

4. We briefly recall the orbit method as it would apply to G. Let $y \in g$ corresponding to the linear functional $y^*: z \to \langle y, z \rangle$ on g, and let q be a G^{y} -invariant polarization of g for y. Then one has groups

 $E = G^{\mathbf{y}} \cdot E_0 \quad \text{where } E_0 \text{ is the analytic group for } \mathbf{e} = (\mathbf{q} + \tau \mathbf{q}) \cap \mathbf{g},$ $D = G^{\mathbf{y}} \cdot D_0 \quad \text{where } D_0 \text{ is the analytic group for } \mathbf{b} = (\mathbf{q} \cap \tau \mathbf{q}) \cap \mathbf{g}.$

Suppose that y is integral in the sense that

 $\hat{D}_{y} = \{ \text{unitary characters } \xi \text{ on } D : d\xi(z) = i < y, z > \text{ for } z \in \mathfrak{d} \}$

is not empty. Every $\xi \in \hat{D}_{\nu}$ specifies a G-homogeneous complex line bundle.

$$\mathscr{L}_{\xi} \to G/D$$
 associated to $\xi \otimes e^{\rho}$ where $\rho(z) = \frac{1}{2} \operatorname{trace}_{g/e} \operatorname{ad}(z)$

which is holomorphic over every fibre of $G/D \rightarrow G/E$. One looks for a corresponding Hodge-Dolbeault theory which will produce Hilbert spaces $H_2^{0,s}(\mathscr{L}_{\xi})$ that are square integrable cohomology groups for the cochain complex $\{A^{0,s}(\mathscr{L}_{\xi}); \bar{\partial}\}$ where

 $\begin{array}{lll} A^{0,s}(\mathscr{L}_{\xi}) \colon & C^{\infty} \text{ objects that are } \mathscr{L}_{\xi}\text{-valued }(0,s)\text{-forms on each } gE/D,\\ & \bar{\partial} & \vdots & \text{operator whose every } \mathscr{L}_{\xi}|_{gE/D}\text{-restriction is the usual }\bar{\partial} \text{ there.}\\ & \text{If this is done correctly, the natural action of } G \text{ is} \end{array}$

 $\pi_{y,q,\xi,s}$: unitary representation of G on $H_2^{0,s}(\mathscr{L}_{\xi})$. In fact we will modify this general pattern as in [6] and [8], enlarging D and E to contain Cartan subgroups of G. Then the results of [8] will apply directly.

5. We describe our modification of the orbit method as applied to the element $y=x+e\in g$ of §3, and we prove the lemma that allows one to apply the results of [8].

Retain the setup and notation of §3. Using (3.7) and Lemma 3.8, we consider the groups E and D of §4 for y=x+e, but we replace them by their respective finite extensions

(5.1a) $P^{\dagger} = M^{\dagger}AN$ where $M^{\dagger} = Z_{M}(M_{0})M_{0}$ as in (2.10), and

(5.1b) L = UAN where $U = G^x \cap M^{\dagger}$ is in K by (3.4b).

Notice that $P^{\dagger} = EH_0 = TE_0$ and $L = HD_0 = TD_0$.

Recall $\overline{G} = G/Z_G(G_0) \subset Int(\mathfrak{g}_C) = \overline{G}_C$. Using the terminology ([7], [8]) of real group orbits on complex flags,

LEMMA 5.2. Let \overline{Q} denote the parabolic subgroup of \overline{G}_C with Lie algebra $\overline{q} = ad_{\mathfrak{g}_C}(q)$, and let X be the complex flag manifold $\overline{G}_C/\overline{Q}$. Then there is a measurable integrable orbit $Y = G(x_0) \subset X$ such that P^{\dagger} is the G-normalizer of the holomorphic arc component of Y through x_0 and L is the isotropy subgroup of G at x_0 .

PROOF. Let Π_t be the simple t_c -root system on \mathfrak{m}_c corresponding to Σ_t^+ (3.2b) and let Π be the simple \mathfrak{h}_c -root system on \mathfrak{g}_c corresponding to Σ^+ (3.2c). Define

$$\Phi_t = \{ \varphi \in \Pi_t : \varphi(x) = 0 \}$$
 and $\Phi = \Phi_t \cup (\Pi \setminus \Pi_t) \subset \Pi$.

Using this data, the construction [8, 6.7.6] gives our algebra q and so the assertions follow directly from [8, Proposition 6.7.4] and [8, Corollary 6.7.7].

Q.E.D.

6. We examine the representations of L that give the bundles to which we apply our variation on the orbit method. Those are the elements of

(6.1)
$$\hat{L}_{x+e} = \{ [\lambda] \in \hat{L} : \text{ for } l \in I, d\lambda(l) \text{ is multiplication by } i < x+e, l > \} \}$$

Since $l = u + a + n \subset p$ and $e \in n = p^{\perp} \subset l^{\perp}$,

if $u \in u$, $a \in a$ and $n \in n$ then $\langle x + e, u + a + n \rangle = \langle x, u \rangle + \langle x, a \rangle$. Thus we define

(6.2a) $\sigma_x \in \mathfrak{a}^*$ by the property $\sigma_x(a) = \langle x, a \rangle$ for all $a \in \mathfrak{a}$,

(6.2b)
$$v_x \in \mathfrak{u}^*$$
 by the property $v_x(u) = i < x, u > \text{ for all } u \in \mathfrak{u}$.

Then of course

(6.3)
$$\hat{U}_x = \{ [\mu] \in \hat{U} : d\mu(u) \text{ is multiplication by } v_x(u) \}$$

is nonempty just when v_x integrates to a character

(6.4)
$$e^{v_x} \in \widehat{U}_0$$
 given by $e^{v_x}(\exp u) = e^{v_x(u)}$ for $u \in \mathfrak{u}$.

LEMMA 6.5. $U = Z_M(M_0)U_0$ and $U_0 = U \cap M_0$, so $\hat{U}_x = \{[\chi \otimes e^{\nu_x}] : [\chi] \in Z_M(M_0)^{\circ}$ and $\chi|_{Z_M(M_0)\cap U_0}$ is a multiple of $e^{\nu_x}\}$.

PROOF. Recall (5.1). As $x \in \mathfrak{m} + \mathfrak{a}$ we have $Z_M(M_0) \subset G^x$ so $Z_M(M_0) \subset G^x \cap M^{\dagger} = U$. The holomorphic arc component mentioned in Lemma 5.2 is $P^{\dagger}(x_0) \cong P^{\dagger}/L = M^{\dagger}/U = M_0/U \cap M_0$. Since $G(x_0)$ is of flag type [7, Theorem 9.2 (ii)], its holomorphic arc components are simply connected [7, Theorem 5.4]. Thus $U_0 = U \cap M_0$ and it follows that $U = Z_M(M_0)U_0$. Q.E.D.

If $[\lambda] \in \hat{L}_{x+e}$, then $d\lambda(\mathfrak{n}) = 0$, so λ annihilates N, and thus λ is a representation of $UA = U \times A$ lifted to L. Now (6.2), (6.3), (6.4) and Lemma 6.5 give us

PROPOSITION 6.6. \hat{L}_{x+e} is nonempty just when $e^{v_x} \in \hat{U}_0$ is defined, and $\hat{L}_{x+e} = \{ [\mu \otimes e^{i\sigma_x}] : [\mu] \in \hat{U}_x \}.$

Since $Z_M(M_0)$ has a co-compact central subgroup, $Z_M(M_0)^{\circ}$ consists of finite dimensional classes. If H is commutative, so is $T = \{m \in M : \operatorname{Ad}(m)|_t$ is the identity on t}, which evidently contains $Z_M(M_0)$, so further $Z_M(M_0)^{\circ}$ consists of 1-dimensional classes. Thus

624

COROLLARY 6.7. The representation classes in \hat{L}_{x+e} are finite dimensional. If H is commutative, e.g. if G is a connected linear group, then \hat{L}_{x+e} consists of unitary characters.

7. We produce the bundle, the cohomologies and the representations corresponding to a class $[\lambda] = [\mu \otimes e^{i\sigma_x}] = [\chi \otimes e^{\nu_x} \otimes e^{i\sigma_x}] \in \hat{L}_{x+e}$. Retain the notation of §§ 3, 5 and 6.

Let $\rho_a = \frac{1}{2} \sum (\dim g^{\alpha}) \alpha$ where the sum runs over Σ_a^+ . Then I acts on g/I with trace $-2\rho_a$. Now consider the G-homogeneous complex vector bundle

(7.1) $\mathscr{U}_{\lambda} = \mathscr{U}_{\mu,\sigma_{x}} \to G/L$ associated to $\lambda \otimes e^{\rho a} = \chi \otimes e^{\nu_{x}} \otimes e^{\rho a + i\sigma_{x}}$.

Every fibre of $G/L \rightarrow G/P^{\dagger}$ has a complex structure specified by

(7.2a) q/l_c is the holomorphic tangent space to $S = P^{\dagger}/L$ at 1·L

and, viewing gS as the fibre of $G/L \rightarrow G/P^{\dagger}$ over gP^{\dagger} ,

(7.2b) if
$$g, g' \in G$$
 then $g: g'S \to (gg')S$ is holomorphic.

Just as in [8, Lemma 8.1.5], now

(7.3a) each $\mathscr{U}_{\mu,\sigma_x}|_{gS}$ is an Ad $(g)P^{\dagger}$ -homogeneous holomorphic bundle in such a way that

(7.3b) if
$$g, g' \in G$$
 then $g: \mathscr{U}_{\mu,\sigma_x}|_{g'S} \to \mathscr{U}_{\mu,\sigma_x}|_{gg'S}$ is holomorphic.

It also defines a G-homogeneous vector bundle

(7.4) $\mathcal{T} \to G/L$ such that $\mathcal{T}|_{gS}$ is the holomorphic tangent bundle of gS.

We now have G-homogeneous bundles $\mathscr{U}_{\mu,\sigma_x} \otimes \Lambda^r(\mathscr{T}^*) \otimes \Lambda^s(\bar{\mathscr{T}}^*)$, $0 \leq r$, $s \leq n = \dim_C S$, whose sections are the " $\mathscr{U}_{\mu,\sigma_x}$ -valued partial (r, s)-forms on G/L." The $\bar{\partial}$ -operators of the $\mathscr{U}_{\mu,\sigma_x}|_{gS}$ fit together to give first order operators on the spaces of $C^{\infty} \mathscr{U}_{\mu,\sigma_x}$ -valued partial (r, s)-forms, which we denote

(7.5)
$$\bar{\partial} \colon A^{r,s}(\mathscr{U}_{\mu,\sigma_x}) \to A^{r,s+1}(\mathscr{U}_{\mu,\sigma_x}).$$

The representations $\pi_{x+e,q,\lambda,s}$ of G are supposed to be unitary representations of G on square integrable cohomology spaces of the complex $\{A^{0,s}(\mathscr{U}_{\mu,\sigma_x}); \bar{\partial}\}$.

Comparing our spaces, bundles and complex structures with those of [8, §8], we identify G/L with the orbit $Y=G(x_0) \subset X$ of Lemma 5.2 and the fibres gS of $G/L \rightarrow G/P^{\dagger}$ with the holomorphic arc components of Y, with complex

structures on the gS induced by X and partial holomorphic structure on $\mathscr{U}_{\mu,\sigma_x}$ the same as that of [8, Lemma 8.1.5]. Thus, square integrable cohomology spaces of the cochain complex $\{A^{0,s}(\mathscr{U}_{\mu,\sigma_x}); \bar{\partial}\}$ are provided by the Hilbert spaces

(7.6)
$$H_2^{0,s}(\mathscr{U}_{\mu,\sigma_x}): \begin{cases} \mathscr{U}_{\mu,\sigma_x} \text{-valued square integrable partially} \\ \text{harmonic } (0,s) \text{-forms on } G/L \text{ as in } [8, \S 8, 1]. \end{cases}$$

on which G has a natural action [8, 8.1.10],

(7.7)
$$\pi^{s}_{\mu,\sigma_{x}}$$
: unitary representation of G on $H^{0,s}_{2}(\mathscr{U}_{\mu,\sigma_{x}})$.

Now the desired $\pi_{x+e,q,\lambda,s}$ for our modification of the orbit method, are just the π_{μ,σ_x}^s of [8, § 8.1].

8. We recall the main result of [8], which more or less identifies the $\pi_{x+e,q,\lambda,s} = \pi_{\mu,\sigma_x}^s$ in terms of the *H*-series classes described above in §2.

Let $x \in g$ and retain the notation of §§ 3 through 7. Suppose that e^{v_x} exists. As $\varphi(ix) \ge 0$ and $\langle \varphi, \rho_t \rangle > 0$ for all $\varphi \in \Sigma_t^+$, we have

(8.1)
$$v_x + \rho_t \in \Lambda_t''$$
 with

$$s_M(v_x + \rho_t) = |\{\varphi \in \Sigma_t^+: \varphi \text{ is noncompact}\}|.$$

Since $v_x + \rho_t \in A_t^{"}$, [8, Theorem 8.3.4] applies. It says that the sum ${}^{H}\pi_{\mu,\sigma_x}^{s}$ of the *H*-series constituents of π_{μ,σ_x}^{s} is the (discrete) direct sum of the irreducible subrepresentations of π_{μ,σ_x}^{s} , that it has a well-defined distribution character $\Theta({}^{H}\pi_{\mu,\sigma_x}^{s})$ and that the alternating sum of those characters is an *H*-series character

(8.2)
$$\sum_{s\geq 0} (-1)^s \Theta({}^H \pi^s_{\mu,\sigma_x}) = (-1)^{|\Sigma^+_t| + s_M(\nu_x + \rho_t)} \Theta(\pi_{\chi,\nu_x + \rho_t,\sigma_x})$$

Further, [m, m] determines a constant $b_H \ge 0$ such that

(8.3)
$$\begin{cases} \text{if } |\langle v_x + \rho_t, \varphi \rangle| > b_H \text{ for all } \varphi \in \Sigma_l^+ \\ \text{then } H_2^{0,s}(\mathscr{U}_{\mu,\sigma_x}) = 0 \text{ for } s \neq s_M(v_x + \rho_t) \text{ and} \\ [\pi_{\mu,\sigma_x}^{s_M(v_x + \rho_t)}] = [\pi_{\chi,v_x + \rho_t,\sigma_x}]. \end{cases}$$

In other words, $[\pi_{\chi,\nu_x+\rho_t,\sigma_x}]$ always is a subrepresentation of the $[\pi_{x+e,q,\lambda,s}]$, $[\lambda] = [\chi \otimes e^{\nu_x} \otimes e^{i\sigma_x}] \in \hat{L}_{x+e}$, obtained from our variation on the orbit method. And if $\langle \nu_x + \rho_t, \varphi \rangle > b_H$ for all $\varphi \in \Sigma_t^+$, then

(8.4)
$$[\pi_{x+e,\mathfrak{q},\lambda,s_M}] = [\pi_{\chi,\nu_x+\rho_{\mathfrak{t}},\sigma_x}] \text{ where }$$

$$s_M = |\{\varphi \in \Sigma_t^+: \varphi \text{ is noncompact}\}|.$$

9. We reformulate the discussion of $\S 8$, realizing the various nondegenerate series of G by the modified orbit method.

THEOREM 9.1. Let H be a Cartan subgroup of G and $[\pi_{\chi,\nu+\rho_t,\sigma}]$ an H-series representation class such that

(9.2) if φ is a noncompact \mathfrak{t}_{c} -root of \mathfrak{m}_{c} then $\langle \varphi, v \rangle \neq 0$.

Define $x \in \mathfrak{h}$ by $v = v_x$ and $\sigma = \sigma_x$, that is

(9.3)
$$v(t) = i < x, t > for \ t \in t \ and \ \sigma(a) = < x, a > for \ a \in \mathfrak{a}.$$

Then \mathfrak{h} is maximally split among the Cartan subalgebras of \mathfrak{g} that contain x. Let e be a regular-nilpotent element of \mathfrak{g}^x and consider the representations

$$\pi_{x+e,q,\lambda,s}, \qquad [\lambda] = [\chi \otimes e^{\nu} \otimes e^{i\sigma}] \in \hat{L}_{x+e}$$

of §§ 6 and 7.

1. $[\pi_{\chi,\nu+\rho t,\sigma}]$ is implicitly realized on the orbit of x+e as a subrepresentation of an $[\pi_{x+e,q,\lambda,s}], 0 \le s \le \frac{1}{2} \dim_R M^+/U.$

2. If the roots are ordered as in (3.2), and if for every $\varphi \in \Sigma_t^+$ the non-negative number $\langle v + \rho_t, \varphi \rangle$ is $\rangle b_H$, then $[\pi_{\chi, v+\rho t, \sigma}]$ is explicitly realized on the orbit of x + e by

(9.4)
$$[\pi_{\chi,\nu+\rho_{t},\sigma}] = [\pi_{x+e,q,\lambda,s_{M}}] where$$
$$s_{M} = |\{\varphi \in \Sigma_{t}^{+}: \varphi \text{ is noncompact}\}|.$$

In the case of the principal series, every t_c -root of m_c is compact, so (9.2) is automatic and $s_M = 0$. Also, there $b_H = 0$. Thus we recover Wakimoto's result [6, Theorem 6.6] as the case where G is a connected semisimple Lie group and H is commutative in

COROLLARY 9.5. Let $[\pi_{\chi,\nu+\rho_t,\sigma}]$ be a principal series representation class of G, that is an H-series class where H is a maximally split Cartan subgroup of G. Define $x \in \mathfrak{h}$ by (9.3), let e be a regular-nilpotent element of \mathfrak{g}^x , and suppose that the roots are ordered as in (3.2). Then $[\pi_{\chi,\nu+\rho_t,\sigma}]$ is realized on the orbit of x+e as the representation $[\pi_{x+e,\mathfrak{q},\chi\otimes e^\nu\otimes e^{i\sigma},\mathfrak{o}}]$ of G on square integrable partially holomorphic sections of $\mathscr{U}_{\chi\otimes e^\nu,\sigma} \to G/L$.

Finally we note that if H is not maximally split, i.e. if the H-series is not the

Joseph A. WOLF

principal series, then Σ_t^+ does contain a noncompact root, so the *H*-series classes $[\pi_{\chi,\rho_t,\sigma}]$ do not satisfy (9.2) and thus are not realized by the procedure of Theorem 9.1.

References

- [1] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529-551.
- [2] —, On the theory of the Eisenstein integral, Springer-Verlag Lecture Notes in Mathematics 266 (1971), 123-149.
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
- [4] H. Ozeki and M. Wakimoto, On polarizations of certain homogeneous spaces, Hiroshima Math. J. 2 (1972), 445–482.
- [5] L. P. Rothschild and J. A. Wolf, *Representations of semi-simple groups associated to nilpotent orbits*, Ann. Sci. Ecole Norm. Supér., to appear in 1974.
- [6] M. Wakimoto, Polarizations of certain homogeneous spaces and most continuous principal series, Hiroshima Math. J. 2 (1972), 483–533.
- [7] J. A. Wolf, The action of a real semisimple group on a complex flag manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.
- [8] _____, The action of a real semisimple group on a complex flag manifold, II: Unitary representations on partially holomorphic cohomology spaces, Memoirs Amer. Math. Soc., Number 138, 1974.
- [9] —, Partially harmonic spinors and representations of reductive Lie groups, J. Functional Analysis 15 (1974), 117–154.

Department of Mathematics, University of California, Berkeley, California 94720 U. S. A.