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1. If G is a reductive Lie group, then its Plancherel formula ([1], [2], [8])
involves a series of representations for each conjugacy class of Cartan subgroups.
These "nondegenerate series" are realized [8] by the action of G on square
integrable cohomology of partially holomorphic vector bundles over certain
G-orbits on complex flag manifolds. That is similar to their realization by the
Kostant-Kirillov orbit method using semisimple orbits. The differences occur
when G has noncommutative Cartan subgroups, and also for representations with
singular infinitesimal character, i.e. when the semisimple orbit is not regular.
Recently Wakimoto [6] used possibly-nonsemisimple orbits to realize the principal
series, which is the series for a maximally noncompact Cartan subgroup H, when
G is a connected semisimple group and H is commutative (e.g. when G is linear).
Here we use our method [8] to extend Wakimoto's procedure and realize all
but a few members of every nondegenerate series of unitary representation classes
for a reductive group. In the case of regular infinitesimal character there is no
essential change from [8]. But in the case of singular infinitesimal character we
rely on results of Ozeki and Wakimoto ([4], [6]), using nonsemisimple orbits
in an interesting way.

To avoid repetition we assume some acquaintance with [8].

2. G will be a reductive Lie group of the class studied in [8] and [9]. Thus
its Lie algebra

(2.1a) 9 = c + 9! with c central and 9ι = [9, g] semisimple,

we assume

(2.1b) if g E G then Ad(g) is an inner automorphism on cjc,

and we suppose that G has a closed normal abelian subgroup Z such that

(2.2a) Z centralizes the identity component G0 of G,

(2.2b) ZG0 has finite index in G, and

(2.2c) Z n GO is co-compact in the center ZGo of G0.

Then the adjoint representation maps G to a closed subgroup G = G/ZG(G0) of
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the inner automorphism group Gc=Int(gc), where ZG(G0) is the G-centralizer of

GO-
By "Cartan involution" of G we mean an involutive automorphism θ whose

fixed point set K = GΘ is the inverse image (under G-»G) of a maximal compact
subgroup of G. If f) is a Cartan subalgebra of g and

H = {g eG9 Ad(#)|^ is the identity transformation of I)}

denotes the corresponding Cartan subgroup of G, then there is a Cartan involu-
tion 0 of G with Θ(H)=H. This splits

(2.3a) ί) = t + α where t = {h e I) : Θ(Λ) = h} and

α = {/ieI>:0(/0 = -h} and

(2.3b) H = Tx A where T = H Π K has Lie algebra t and A = exρ(α),

and the G-centralizer of A splits as

(2.4) ZG(A) = M x A where Θ(M) = M and M satisfies (2.1) and (2.2).

Let Γ+ be a positive α-root system on g and denote

(2.5) n = Σ 9α and AT = exp(n).
«6lJ

The corresponding "cuspidal parabolic" subalgebra peg and subgroup PcG
are given by

(2.6) p = m + α + n and P = MAN.

T is a Cartan subgroup of M with T n M 0 = T0. The object acting as
weight lattice is

(2.7a) At = {ve it*: v exponentiates to a character exp(ί)-» eυ(ί) on T0} .

We replace G by a Z2-extension if necessary so that, for all H and all choices
If of positive tc-root system on mc,

(2.7b) pt = -7̂ - Σ φ is contained in Λi .

The relative discrete series (M0)disc of unitary representation classes of
M0 is parameterized by

(2.8a) Λ'l = {v 6 Λi : v is m-regular, i.e. < v, φ > Φ 0 for all φ e ΣJ

as follows. If v E A'{ denote
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(2.8b) sM(v) = I {compact φeΣ{ : <v, φ><0}| +

+ |{noncompact φeΓJ": <v, φ> >0}| .

Then the class [f/v] 6 (M0)disc for v e Λ'{ is the one whose distribution character
satisfies

(2.9) Ψη

where M" is the regular set and W(M0, T0) is the Weyl group. The relative
discrete series of

(2.10) M1" = {m e M: Ad(m) is an inner automorphism of M0}

= ZM(M0)M0

consists of the [χ®fyv] where MeZM(M0)
Λ and [τyv] e (M0)aisc both restrict

to the same unitary character on ZMo=ZM(M0) Π M0. The relative discrete

series Mdisc of M consists of the classes

(2-11) D^v] = CIπdMtt M(χ ® ι,v)] where [χ ® ι/v] 6 (M t)d

Λ

lβc.

Finally, the H-series of unitary representation classes of G consists of the

(2.12) C^ )u) f f] = [IndptoO/*,* ® ̂ ί<τ)]» [»//,»] e Mdlte and σ e α* .

This series depends only on the conjugacy class of H in G, and not on the choice
of ΣJ. The Plancherel measure on 6 is concentrated on the union of the various
H-serίes.

3. Fix a semisimple element x e g. Then x is contained in some Cartan
subalgebras of g, and we choose

(3.1) I): maximally split among the Cartans of g that contain x.

With f) fixed, we choose θ and obtain the splitting (2.3) and (2.4). Now choose

(3.2a) ΣJ: any positive α-root system on g, and

(3.2b) If : positive tc-root system on mc with φ(ix) ^ 0 for φ e Σ? .

These specify a positive ί)c-root system Σ+ on gc such that

(3.2c) Σ+ = {γ\a:γεΣ+ and yα | ^ 0} and

Σ = {y\t:yeΣ+ and y | α = 0 } .
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Evidently the centralizer of x in g is

(3.3) g* = g n g £ where g£ = t)c + Σy eι+,y(*)=o(

Ozeki and Wakimoto [4, Lemma 4.4 and its proof] proved

(3.4a) if φ e If with φ(x) = 0, and if γ e Σ+ with φ = γ\ t , then g£ c: Ic

where I = gβ, Lie algebra of K = Gθ. In other words

(3.4b) u = g* n m is contained in f .

This says

(3.5) e = Σeα, 0 + eΛe$x n gα, is regular-nilpotent in g*

where the sum runs over {simple αe!^: α=y| f l with y(x)=0}. Now, according
to Wakimoto [6, Theorem 3.6],

(3.6) q = (tc + Σφβit.»<*)>ofl?) + αc + nc

is a complex polarization of g for x-fe. If τ denotes complex conjugation of
gc over g then we note

(3.7) q + τq = mc + αc + nc = pc and q n τq =

In case x is regular, gx = ί), so e=0 and q n τq = tc-f αc + nc.

LEMMA 3.8. The polarization q/0r x + e is Δd(Gx+e)-invariant.

PROOF. We may replace G by Ad(G) = G/ZG(G0) = G for the proof, thus
assuming GcInt(gc) = Gc.

Since Λ: is semisimple, e is nilpotent, and [x, e]=0, the centralizers satisfy
G*+*=G*ΠG e = (G*)β.

Observe that q Π gg = Px, which is a minimal parabolic subalgebra of
g*. It follows ([3] see [5]) that q n g* is an invariant polarization of g*
for e. Writing P, Pc and Q for the parabolic subgroups with respective Lie
algebras p, pc and q, Gx+e= (Gx)e<=.Px^Px

c= Gc n Q^Q. Thus Gx+e nor-
malizes Q. Q.E.D.

4. We briefly recall the orbit method as it would apply to G. Let y e g
corresponding to the linear functional y*: z-*<y, z> on g, and let q be a Gy-
invariant polarization of g for y. Then one has groups

E = Gy E0 where £0 is the analytic group for e = (q + τq) n g ,

D = Gy-DQ where D0 is the analytic group for b = (q n τq) Π g .
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Suppose that y is integral in the sense that

βy = {unitary characters ξ on D:dξ(z) = i<y,z> for zeb}

is not empty. Every ξ e Dy specifies a G-homogeneous complex line bundle.

&ξ->G/D associated to ξ ® ep where ρ(z) =-=- traceg/ead(z)

which is holomorphic over every fibre of G/D-+G/E. One looks for a cor-
responding Hodge-Dolbeault theory which will produce Hubert spaces H%>s(&ξ)
that are square integrable cohomology groups for the cochain complex
{A°>s(^ξ); d} where

A°>s(&ξ): C°° objects that are ^-valued (0,s)-forms on each gE/D,
d : operator whose every &ξ \ ^£/D-restriction is the usual 9 there.

If this is done correctly, the natural action of G is
π y ι q f ξ t S : unitary representation of G on H% '(&ξ).

In fact we will modify this general pattern as in [6] and [8], enlarging D and
E to contain Cartan subgroups of G. Then the results of [8] will apply directly.

5. We describe our modification of the orbit method as applied to the
element y=x+ee§ of §3, and we prove the lemma that allows one to apply
the results of [8].

Retain the setup and notation of § 3. Using (3.7) and Lemma 3.8, we
consider the groups E and D of §4 for y=x + e, but we replace them by their
respective finite extensions

(5.la) Pt = M^AN where Aft = ZM(M0)M0 as in (2.10), and

(5.1b) L = VAN where 17 = G* n Aft is in K by (3.4b).

Notice that Pτ = EH0 = TE0 and L = HD0 = TD0.
Recall G = G/ZG(G0)<=Int(gc) = Gc. Using the terminology ([7], [8]) of

real group orbits on complex flags,

LEMMA 5.2. Let Q denote the parabolic subgroup of Gc with Lie algebra

q = adQc(q)9 and let X be the complex flag manifold GC/Q. Then there is a
measurable integrable orbit Y=G(x0)c:X such that P1" is the G-normalizer of
the holomorphic arc component of Y through x0 and L is the isotropy subgroup

of G at x0.

PROOF. Let Πi be the simple tc-root system on mc 9orresponding to Σf
(3.2b) and let Π be the simple ί)c-root system on gc corresponding to Σ+ (3.2c).

Define
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Φt = {φeΠt:φ(x) = 0} and Φ = Φt U (Π\Πt)c:Π .

Using this data, the construction [8, 6.7.6] gives our algebra q and so the asser-
tions follow directly from [8, Proposition 6.7.4] and [8, Corollary 6.7.7].

Q.E.D.

6. We examine the representations of L that give the bundles to which we
apply our variation on the orbit method. Those are the elements of

(6.1) Lx+e = {[A] e £ : for / e ϊ, dλ(ϊ) is multiplication by i < x 4- e, I > }

Since I = u + α + ncp and

if u e u , aea and n e n then <x + e , w - f α + n> = <x,w> + <x9 a> .
Thus we define

(6.2a) σx e α* by the property σx(a) = <x,a> for all a e α ,

(6.2b) vx e u* by the property vx(ύ) = i < x, u > for all u e u .

Then of course

(6.3) Ux = {[μ] e U: dμ(u) is multiplication by vx(u)}

is nonempty just when v^ integrates to a character

(6.4) eVχe UQ given by eVχ(e\pu) = eVχ(u) for u E u .

LEMMA 6.5. U=ZM(M0)U0 and l70 = l / n M 0 , so Ux = {[χ® ev*]: [χ] e

ZM(M0Γ and χlz M (Mo)nt/ 0

 ίs Λ multiple ofev*}.

PROOF. Recall(5.1). As x e m + α we have ZM(M0) c Gx so ZM(M0)c:Gx n
Λf r = L/. The holomorphic arc component mentioned in Lemma 5.2 is Pτ(x0)^

pt/L=Mt/l/=Mo/ί/nM 0 . Since G(x0) is of flag type [7, Theorem 9.2 (ii)],
its holomorphic arc components are simply connected [7, Theorem 5.4]. Thus

UQ = U n MO and it follows that U = ZM(M 0)l/0 Q.E.D.

If [A] etx+e9 then ίU(n)=0, so 1 annihilates N, and thus A is a representa-
tion of UA = 17 x A lifted to L. Now (6.2), (6.3), (6.4) and Lemma 6.5 give us

PROPOSITION 6.6. Lx+e is nonempty just when eVχeU0 is defined, and

Since ZM(M0) has a co-compact central subgroup, ZM(M0)~ consists of
finite dimensional classes. If H is commutative, so is Γ={meM: Ad(m)|t
is the identity on t}, which evidently contains ZM(M0), so further ZM(M0)~
consists of 1 -dimensional classes. Thus
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COROLLARY 6.7. The representation classes in Lx+e are finite dimensio-
nal. If H is commutative, e.g. if G is a connected linear group, then Lx+e

consists of unitary characters.

7. We produce the bundle, the cohomologies and the representations
corresponding to a class [A] = [μ®eί<τ*]==[χ(χ)eVχ®eίσ*] e Lx+e. Retain the
notation of §§3, 5 and 6.

Let pa = -—- £ (dimgα)α where the sum runs over Σ+. Then I acts on

9/1 with trace — 2p0. Now consider the G-homogeneous complex vector
bundle

(7.1) <%λ = <%μ >σχ -> G/L associated to λ® ef>a = χ ® eυχ ® epa+ίσχ .

Every fibre of G/L-»G/PT has a complex structure specified by

(7.2a) q/I c is the holomorphic tangent space to 5 = P^/L at l L

and, viewing gS as the fibre of G/L->G/Pr over #PT,

(7.2b) if #, #' e G then #: #'S -> (gg')S is holomorphic.

Just as in [8, Lemma 8.1.5], now

(7.3a) each <%μί(Tχ\gS is an Ad(όf)Pt-homogeneous holomorphic bundle

in such a way that

(7.3b) if g, g'eG t h e n g f : Vμt<,x\g s^Wμ,ax\gg si* holomorphic.

It also defines a G-homogeneous vector bundle

(7.4) F -> G/L such that F \ gS is the holomorphic tangent bundle of gS.

We now have G-homogeneous bundles ^μ,σχ® Ar(^*)® Λ5^*), 0<r,
s<n=dimcS', whose sections are the "$rμ>σχ-valued partial (r, s)-forms on

G/L." The 9-operators of the <%μ,σχ\gs fit together to give first order ope-
rators on the spaces of C°° ̂ ^ valued partial (r, s)-forms, which we denote

(7 ^} d Ar>s(<9/ }-> Ar>s+1(<% )V i J) (J . si \ u μ,σx) ^ V «* μ,σxJ

The representations πx+esqtλtS of G are supposed to be unitary representations of
G on square integrable cohomology spaces of the complex {A°'s(<%μ>σχ); 9}.

Comparing our spaces, bundles and complex structures with those of [8,

§8], we identify G/L with the orbit y=G(x0)<=* of Lemma 5.2 and the fibres
gS of G/L-»G/Pr with the holomorphic arc components of Y, with complex
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structures on the gS induced by X and partial holomorphic structure on ^lμ^x

the same as that of [8, Lemma 8.1.5]. Thus, square integrable cohomology
spaces of the cochain complex [AQ's(<%μfσχ); 9} are provided by the Hubert
spaces

\<% σ -valued square integrable partially
(7.6) HW»μ..J:

[harmonic (0, s)-forms on G/L as in [8, § 8. 1].

on which G has a natural action [8, 8.1.10],

(7.7) πμ,σχ

: unitary representation of G on H%>s(WμtσJ.

Now the desired nx+e^tλtS for our modification of the orbit method, are just
the π^ of [8, §8.1]. "'

8. We recall the main result of [8], which more or less identifies the nx+em^tλtS

= ns

μ>σχ in terms of the //-series classes described above in §2.
Let x e g and retain the notation of §§3 through 7. Suppose that eVχ

exists. As <p(z'jc)>0 and <φ,pt> >0 for all φeΣ+, we have

(8.1) vx + pteΛ'{ with

SM(V

X + Pi) — I (ψ e Σ~t : 9 is noncompact} | .

Since v^-f pt eΛ"9 [8, Theorem 8.3.4] applies. It says that the sum Hπs

μt(fχ

of the //-series constituents of πs

μt(Tχ is the (discrete) direct sum of the irreducible
subrepresentations of ns

μ)ffχ, that it has a well-defined distribution character
Θ ( H π s

μ t < f χ ) and that the alternating sum of those characters is an //-series
character

(8.2) Σo(-Ds0("π*μ><rJ = (

Further, [m, m] determines a constant bH^Q such that

ί if \<vx + pt9φ>\>bH for all φeΣ^

(8.3) I then //§>s(^μ>(TJ = 0 for s Φ sM(vx + pt) and

In other words, [π/jVχ+PtjσJ always is a subrepresentaion of the [̂
M=[#®eux®ei(rx] eLx+e, obtained from our variation on the orbit method.
And if <vx4-p t, φ> >bH for all φeΣ^9 then

(8 4) [^+e,>A,SM] = C^,v,+p,σJ where
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SM = I {φ e ̂ t" : 9 is noncompact} | .

9. We reformulate the discussion of § 8, realizing the various nondegenerate
series of G by the modified orbit method.

THEOREM 9.1. Let H be a Cartan subgroup of G and [πχjV+Pt>σ] an
H-series representation class such that

(9.2) if φ is a noncompact tc-root ofmc then <φ,v> ^0.

Define x e I) by v = vx and σ=σx, that is

(9.3) v(ί) = i<x, t> for tet and σ(a) = <x, a> for a eα.

Then ί) is maximally split among the Cartan subalgebras of g that contain x.
Let e be a regular-nilpotent element of g* and consider the representations

of §§6 and 7.

1. [ft f .v+pt.σ] is implicitly realized on the orbit of x + e as a sub-

representation of an [πλ-+ί?,qjλ,s]5 0<,s<-^- dimKMT /£/.

2. // ί/ie roots are ordered as in (3.2), and if for every φeΣf ί/ie non-
negative number <v + pt, φ> is >bH, then [nXyV+pttσ] is explicitly realized on
the orbit of x + e by

(9.4) [^ f V + /, t f f f] = [^+ e f q p A i 5 M

SM = K^ e ^"ί" : Ψ is noncompact}| .

In the case of the principal series, every tc-root of mc is compact, so (9.2)
is automatic and sM=0. Also, there b#=0. Thus we recover Wakimoto's
result [6, Theorem 6.6] as the case where G is a connected semisimple Lie group
and H is commutative in

COROLLARY 9.5. Let [πX j V + p t > σ] be a principal series representation
class of G, that is an H-series class where H is a maximally split Cartan sub-
group of G. Define xeί) by (9.3), let e be a regular-nilpotent element of g*,
and suppose that the roots are ordered as in (3.2). Then [π/>v+Pt>σ] is
realized on the orbit of x + e as the representation \_nx+e><]>χ<^eV^)eiσ>Q} of G
on square integrable partially holomorphic sections of <%x

Finally we note that if H is not maximally split, i.e. if the //-series is not the
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principal series, then ΓJ" does contain a noncompact root, so the //-series classes

[πχ,pt,<r] do not satisfy (9.2) and thus are not realized by the procedure of
Theorem 9.1.
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