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REPRESENTATIONS OF SEMISIMPLE GROUPS
ASSOCIATED TO NILPOTENT ORRITS

BY LINDA PREISS ROTHSCHILD (*) AND JOSEPH A. WOLF (**)

1. Introduction

Let G be a Lie group, 9 its Lie algebra, and 9* the real dual space of 9. Then G acts
on 9* by the dual of the adjoint representation. The " orbit method " in group repre-
sentations associates unitary representations of G to certain G-orbits on g*.

Kirillov [11] was the first to use the orbit method. He applied it in the case where G
is a connected simply connected nilpotent group, giving a one-to-one correspondence
between the set of all G-orbits on g* and the set G of all equivalence classes of
irreducible unitary representations of G. Kostant [14] extended the scope of the orbit
method so that it encompassed the Bott-Borel-Weil theorem for compact Lie groups,
and then Auslander and Kostant [1] applied it to solvable Lie groups.

If G is semisimple (or, more generally, reductive), we identify Q* with 9 by the Killing
form < , > (extended to be negative definite on the center). Then the G-orbits
Ad* (G)./<= 9* go over to orbits Ad (G).x <= g. The representations of G that occur
in the Plancherel formula ([9], [10], [25]) then are associated to orbits Ad(G).x
where x is a semisimple element of 9. In this paper we discuss representations
associated to orbits Ad (G). e where e is a nilpotent element of 9.

Representations are associated to orbits by means of " polarizations ". Let G be
reductive, x e g and consider the centralizers

9' ={}^9 :[^,x]=0} and Gx =[geG :Ad(g)x=x}.

A " real polarization " for x, i. e. for the corresponding linear functional x* : y h-> < x, y >,
is a subalgebra p <= 9 of dimension 1/2 (dim g+dim c^) such that < x, [p, p] > = 0;
then ^ <= p. We call p " invariant " if it is normalized by G", i. e. if T == G\P° *->0 is
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156 I.. P. ROTHSCHILD AND J. A. WOLF

a group, where P° is the analytic subgroup of G for p. Now suppose that p is an invariant
real polarization for x and that

p9^i-^27if<x, yY

exponentiates to a character % on P°. The associated representations of G are the

7r,,^=Ind^C;),

unitarily induced, where ^ ranges over the elements of (x?)^ that extend %. In the corres-
ponding situation for solvable groups it is known [1] that the representations obtained
depend only on the orbit and not on the choice of polarization, provided that the polari-
zations are required to satisfy the (( Pukanszky condition ". We show that if 9 is reductive
then a polarization for x satisfies this condition if and only if x is semisimple (§ 2.4).
Our most striking result is an example (Theorem 4.4.1) of a nilpotent element e in the
split Lie algebra of type G^, and invariant real polarizations pi and p^ for e, such that
none of the TT^ ^^ has a subrepresentation in common with any TT^^^. The point
here is that n^ i, ?i 2in^ ne, 2, ^i ̂ ave d1^^111 infinitesimal characters. This phenomenon
does not occur for solvable2'groups ([4], [5], [6], [17], [19], [20]).

If x e g is semisimple, one studies "complex polarizations" q c: gc such that
g p> (q+q) is a cuspidal parabolic subalgebra of g. Real polarizations are not available
unless every eigenvalue of ad (x) is real, so one has to use a rather complicated
holomorphic induction procedure ([2], [14], [25]) rather than Mackey's relatively simple
unitary induction process. These complications are avoided in our study of represen-
tations associated to nilpotent orbits. Let x e 9 and let p be an invariant real polarization
that is a parabolic subalgebra of g, such that y \—> 2n ;'< x, y ) exponentiates to a
character % on P°. Proposition 2.5.4 describes the elements of (T)" that extend %, and
Proposition 2.6.6 relates the corresponding representations ^x,p,^ to certain represen-
tations induced from the parabolic subgroup of G with Lie algebra p. If p is a cuspidal
parabolic subalgebra of 9 that is an invariant polarization for a nilpotent element e e 9,
then y i-> 2 n i < e, y > exponentiates to the trivial character on P°, and Theorem 3.3.1
gives an explicit analysis of the representations ^e,p,^ including the calculation of their
infinitesimal character. Our counterexample to independance of polarization, mentioned
above, is based on this knowledge of the infinitesimal character.

2. Representations associated to real parabolic polarizations

We look at unitary representations of reductive Lie groups constructed from
polarizations that are real parabolic subalgebras.

2.1. A CLASS OF REDUCTIVE GROUPS. — Let G be a reductive Lie group. In other
words its Lie algebra 9 = c © 9' where c is the center and 9' = [9, g] is semisimple.
We assume
(2.1.1) if g e G then Ad (g) is an inner automorphism on c^'

Let G° be the identity component of G and ZQ (G°) its G-centralizer. Thus G° has
center Z^o = ZQ (G°) n G°. We will also assume that G has a closed normal abelian
subgroup Z such that
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REPRESENTATIONS ASSOCIATED TO NILPOTENT ORBITS 157

(2.1.2) Z c: ZG (G°) with G/ZG° finite and Z n G° co-compact in Z^o.
Thus our working class of groups is the class studied in [25] and [26]. While there

seems to be no special reason to restrict attention to a smaller class of groups, we mention
that, in view of (2.1.1), the case Z = { 1 } of (2.1.2) is : Z^ (G°) is compact.

2.2. POLARIZATIONS. — Let 9 be a real reductive Lie algebra, and let < , > be the direct
sum of the Killing form of the derived algebra and a negative definite bilinear form on the
center. If G is a Lie group with Lie algebra 9, and if G satisfies (2.1.1), then the non-
degenerate symmetric bilinear form < , > is G-invariant.

Every x e g now defines a linear functional x* e 9* by

(2.2.1) x * ( ^ ) = < x , ^ > for all^c.

That in turn defines an antisymmetric bilinear form

(2.2.2) b^y, z) = x*[^, z] = <x, [y, z\ > for all y , ze^.

If q c: c^ is a complex subalgebra of 9^ tnat ls maximal among the totally Z^-isotropic
subspaces of g^ we will say that q is a complex polarization for x. Here it is usual also
to require that q + q be a subalgebra of c^, and the reader is warned that we are not making
that requirement. By a real polarization for x we mean a subalgebra p c: 9 such that pc
is a complex polarization for x.

Our notation for centralizers is the usual

(2.2.3) ( f = { ^ e 9 :[x,y]=Q} and ^ = { ^ e 9 c :[x,^]=0}.

Nondegeneracy of the Killing form implies

(2.2.4) QX={yeQ :^,9)=0} and gc'-^Qc :^(^9c)=0}.

In orther words,

(2.2.5) b^ induces nondegenerate bilinear forms on g/c^ and c^/c^.
In particular the maximal totally ^-isotropic subspaces of c^ contain 9^ and have

dimension 1/2 (dim c^+ dim c^). Thus a complex subalgebra q c: c^ is a complex
polarization for x if, and only if, both

(2.2.6 a) g^ <= q and dim gc ~ dim q = dim q — dim c^,

and

(2.2.6 b) q is totally ^-isotropic, i. e. < x, [q, q] > = 0.
Note that (2.2.6 ft) is equivalent to

(2.2.6 c) x* ^ is a Lie algebra homomorphism q —^ C.
That will be the connection with representation theory.

2.3. PARABOLIC POLARIZATIONS. — Recall that the maximal solvable subalgebras
of 9c are conjugate. They are called the Borel subalgebras. A subalgebra q <= 9c ls
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158 L. P. ROTHSCHILD AND J. A. WOLF

called parabolic if it contains a Borel subalgebra. A subalgebra p c g is called parabolic
if pc ls a parabolic subalgebra of 9^.

Let x e 9. By complex (resp. real) parabolic polarization for x, we mean a parabolic
subalgebra of c^ (resp. of 9) that is a complex (resp. real) polarization for x.

Ozeki and Wakimoto have shown ([18], Theorem 2.2) that any polarization of x must
be parabolic. We shall use this fact in the sequel without explicit mention.

x e g is called semisimple if ad x is a diagonalizable operator on 9c. It is well-known
(and easy to prove) that every semisimple element of g has a complex parabolic
polarization ([18], Proposition 2.3). j ceg is called nilpotent if xe [9, 9] and ad x is
a nilpotent operator on g^. It is known that there exist nilpotents with no polarizations.
See [27], p. 63 for an example of such a nilpotent in so (2, 3).

Fix x e g and a complex (parabolic) polarization q for x. We decompose

(2.3.1 a) q = q^+q» where q^ is the nilradical and q,. is a reductive (Levi) complement,

(2.3.1 b) x = Xy + ̂  where ^ e q,. and ^ e q^.
{Here q^ <= [q, g] and ad (q,,) consists of nilpotent linear transformations}.

Using q^ = q it is easy to verify :

2.3.2. PROPOSITION. — Fix x and q as above. Then Xy is central in q^. In particular,
Xy is semisimple and ad (Xy) has the same eigenvalues as ad (x). Further (i) x is semisimple
if and only if we can choose q^ to contain x, and (ii) x is nilpotent if and only ifxe q^.

2.3.3. COROLLARY. — •x* '. c\—>C is given by y—> < x^ y \ and its kernel contains
[S\r. ^r]+^-

Proof. — Let y e q. Since < q^, q > = 0 we have

^ ( y ) = < x , y ) = ( x , + x ^ y ) = ( x ^ y ) .

I f ^ e q ^ now x* (y) e < x^, q« > = 0. If y e [q,., q,.] then x* (y) = 0 by Proposition 2.3.2
Q. E. D.

The following is the situation of our main applications

2.3.4. COROLLARY. — If x is nilpotent then x* = 0.

Proof. — Proposition 2.3.2 says x = x^ so Xy = 0, and Corollary 2.3.3
says jc* ^ = 0.

Q. E. D.

2.4. PUKANSZKY CONDITION. — Let 9 be any real Lie algebra. If/eg* then a real
(resp. complex) polarization for/is a subalgebra of 9 (resp of 9^) tnat ls maximal among
the subspaces totally isotropic for the form bj- (x, y) = ^[x, ^]. If 9 is reductive this
agrees with paragraph 2.2. Let G be the simply connected group with Lie algebra g.
If G is solvable, and if/e 9* defines representations of G by polarizations and the orbit
method [I], then the " Pukanszky condition " on such polarizations for/is the usual
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REPRESENTATIONS ASSOCIATED TO NILPOTENT ORBITS 159

irreducibility condition for the corresponding representations. If G is reductive
and/ = x* e 9*, we are going to see that the " Pukanszky condition " on a polarization
for/is equivalent to semisimplicity of x, and so it will not hold for most of the represen-
tations studied in this paper.

Let p (resp. q) be a real (resp. complex) polarization for /e 9*. In the real case
set e = b = p. In the complex case set

e = ( q + q ) n 9 and b = ( q n q ) n 9 = q n 9

where" is complex conjugation of 9^ over 9. Let D° denote the analytic subgroup of G
for b. Then (see [27], Proposition 3.3.1.) Ad*(D°)/is an open subset of the affine
subspace /+e1 c: 9*. The polarization is said to satisfy the Pukanszky condition
if Ad* (D°)/=/+e1, i. e., if Ad* (D°)/ is closed in 9*. This is equivalent to /+e1

being contained in the orbit Oy = Ad* (G)/.

2.4.1. THEOREM. — Let 9 be a reductive real Lie algebra, x e 9, and p a real (resp. q
a complex) polarization for x. Then p (resp. q) satisfies the Pukanszky condition if and
only if x is semisimple.

Proof. — In the real case set q = p^ ? so t^ Pukanszky condition for q agrees with
that for p.

If x is semisimple then q = q^+q^ with q,. = 9^. For 9^ c: q^, q is parabolic, and
dim q = 1/2 (dim 9^4-dim 9^). So

b = (q n q) n 9 = ̂ +(qn n q») ̂  9.

Set u = q,, n q^ n 9 so U = exp (u) is a unipotent subgroup of G. Then D° = U^G")0,
so Ad (D°) x = Ad (U) x, which is closed in 9 because unipotent orbits are closed.
Now Ad* (D°) x* is closed in 9*. That is the Pukanszky condition.

Choose a Cartan subalgebra I) of 9 contained in q n 9. Then q = q^+ q^ where t)^ c q^ ,
and one checks (see [24], Lemma 2.10) that b^ = q n q has reductive and unipotent
parts given by

brC =c\r^^r an(i ^C = r̂ ̂  ̂ n + ^n ̂  ̂ r + ^ n ̂ n-

Thus we have
x,.eb, and x^e(q^nq^)n 9 c b^.

Now let 0^ and <!>„ be the sets of I)c-roots such that

^r==I)c+ E 9" and q^= E 9oc-
a e Or a 6 ̂ n

ThuS C\n n ^n ls tne sum °^ ̂  9a wlt^ a e °n n °n-

Let 3 denote the center of by. Since by is reductive and algebraic in 9, we can
split 3 = t+t) where the ^-roots are pure imaginary on t and real on o. Now
let 9 <= q^ n q^ , that is a, a e <!)„. Then a and a are nontrivial, with nonzero sum, on
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160 L. P. ROTHSCHILD AND J. A. WOLF

the center of q^. This nontriviality follows on the larger subspace 3^ °^ ^c- ^ve

conclude ocj,, 7^ 0. As these a all are contained in a positive root system, now we have y e D
with a (y) > 0 whenever ^ c: q^ n q^. In particular lim Ad (exp (-ty)) x,, = 0.

f-*00

Let V be the analytic subgroup of G for x>. Then

Ad (V) x = Ad (V) (x, + x,) = x, + Ad (V) x,

using x, e b^. We just saw that 0 is in the closure of Ad (V) x^. Now ̂  is in the closure
of Ad (V) x, hence in the closure of Ad (D°) x. If x is not semisimple, we conclude that
the Pukanszky condition fails.

Q. E. D.

2.5. REPRESENTATIONS ASSOCIATED TO INVARIANT REAL POLARIZATIONS. — Here G is
a reductive Lie group that satisfies (2.1.1) and (2.1.2). Let x e 9.

A polarization for x is invariant if it is Ad (G^-stable. Now fix

(2.5.1) p : invariant real polarization for x.
As in (2.3.1), p = ?,+?„ where ?„ is the nilradical and p, is a maximal reductive subal-

gebra, and x = x^ + x^ accordingly. The parabolic subgroup of G for p is

(2.5.2a) P = { g e G : Ad(g)p = p} = [geG : Ad(g)p^ = p,}.

From p = ?,.+?„ we get a semidirect product splitting

(2.5.2 b) P = P^. P^ where ?„ = exp (?„) unipotent and P, is reductive.

Here P^ = { g e G : Ad (g) p,. = p,. } has Lie algebra p,. Identity components
satisfy P° = P,°.P».

We now require an integrality condition for x* : there is a well-defined character on P°
whose restriction to exp (p) is given by exp (y) —> e2^^. We formulate that as
(2.5.3 a) 2 7i ;x* integrates to a well-defined character exp (2 n ix^) on P°.

Since exp (2 TT ix^) is unitary and its kernel must contain [P°, P°] = [P?,P^].P^,
(2.5.3 a) is equivalent to

(2.5.3 b) In ix^ integrates to a unitary character on P?/[P^, P^].
/<

If L is a locally compact group, we write L for the set of all equivalence classes [?i]
of irreducible unitary representations X of L. If M is a closed normal subgroup
and [^i] e M we write L^ = { [?i] e L : X, ^ contains ^ }. We are especially interested
in cases arising from ZQ (G°)^ where ^ is restriction of exp (2 TT ;x*) to Z^,o.

Proposition 2.5.4 describes the extensions of exp(27T^*) from P° to -T, giving a
finite-to-finite correspondence between them and the elements of ZQ (G0)"

2.5.4. PROPOSITION. - Denote T = G-^.P0 and P+ = ZQ (G°) P°. 77^ <7/^ subgroups
of finite index in P with P+ normal and P+ c: T. 7/"[y e (^P)" then the following conditions
are equivalent.

1. exp (2 7i ^*) is weakly contained in ^ po.

4e SERIE —— TOME 7 —— 1974 —— ?2
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2. ^ |po is a multiple (type I primary) of exp (2 K ix^).
3. [^] ^ a sub representation class of a unitarily induced class

[Indp+^(y(x)exp(27ry))]

where y e Z^ (G°)^ m7/z ^ = exp (2 TT fx*) |z Q.

Proof. — The adjoint representation maps G onto the real linear algebraic
group G = G/ZG (G°). Since P/Z^ (G°) is a parabolic subgroup of G, it has only finitely
many components; so P/P+ < oo. Normality of P+ in P is clear.

Invariance of p says that x? is a subgroup of P. Evidently ZQ (G°) c= G", so P+ c^P
and P/T | < oo.

Let ^ be the Zoo-restriction of exp (2 n ix^). The group P° is of type I because it is
a central extension of the linear algebraic group ad^ (P°) = (P/Z^ (G0))0. Thus

(P+);= {[y®^°] : [y]eZe(G°)p and [v^P0);}

for every P e Z^o, and (P+)^ is the union of these (P+)p. If [v|/] e (P+)" we now have
equivalence of (i) exp (2 n ix*) is weakly contained in \|/ po, (ii) v|/ [po is a discrete
multiple of exp (2 n fx*), (iii) [\|/] = [y (x) exp (2 TT ix*)~\ for some y e Z^ (G0)^.
Let R] e CT)". Then [^] is a subclass of some [Indpf ,pW], and condition 1 (resp. 2,
resp. 3) for [^] is equivalent to condition (i) [resp. (ii), resp. (iii)] for [\|/].

Q. E. D.

The representations of G associated to x and its invariant real polarization p are the
unitarily induced

(2.5.5) 7r,,^=Ind^© where [^eCPf extends exp (2 TT fx*) e (P°)'\

The representations ^ are obtained from Z^ (G°)^ as in Proposition 2.5.4, and
thus ZQ (G°)^ gives the TT^^ ̂

2.6. RECIPROCITY FORMULA. — We express the representations 7t^^ in terms of
representations induced from the parabolic subgroup P of G.

By Carton involution of G we mean an involutive automorphism 9 such that
K = { g e G :Q(g) = g ] satisfies ZQ (G°) c K with K/Z^ (G°) maximal compact
subgroup of G/ZG (G°). Thus < , > is 9-invariant and is negative (resp. positive) definite
on the +1 (resp. - 1) eigenspace of 9. See [25], Lemmas 4.1.1 and 4.1.2 for
existence of Cartan involutions in our context.

2.6.1. LEMMA. — Let P be a parabolic subgroup of G and P,. its reductive part as
in (2.5.2 b). Then G has a Cartan involution 9 mth 9 (P,) = P,. Define

a = { y e (center of p,) : 9 (y) == - y ] and A = exp (a).

Then Py = ZQ (A), centralizer of A in G, and Py has a unique closed Q-stable subgroup M
such that Py = M x A.

A.NNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



162 L. P. ROTHSCHILD AND J. A. WOLF

Proof. - The argument for the cuspidal case ([25], Lemma 4.1.5) extends without
difficulty.

Q. E. D.

Lemma 2.6.1 gives us decompositions of P in the sense of smooth unique factorization :

(2.6.2) P = MAN where N = P^ unipotent radical.

Now- suppose that we have

(2.6.3) [r|]eM and o-ea*, i.e. [11 ® ̂ ]e(MxA)^= P,.

We view [r| ® 6?10] e P by (r( ® e10) (man) = e10 (a) r\ (ni).
Then the induced representation of G is denoted

(2-6-4) ^p,^=Indp^(Ti®^).

The various series of unitary representations of G that occur in the Plancherel
formula ([9], [10], [25]) are special cases of these TCp^^. We now express the ^^,
of (2.5.5) in terms of the n^ ̂ . ' ' .

In analogy to the splitting P = MAN we decompose

(2.6.5a) XP=XM AN where ^M^PnM

and

(2.6.5^) P+=M+AN where M+= P+n M = ZG(G°)M°.

Let ^ = exp (2 n ix^) ̂  and y e Z^ (G°)^. We are going to prove

2.6.6. PROPOSITION. - If [\|/] e (^vrT and [r|] e M, then the multiplicities

n^ = mult (y ® exp (2 n ix*) |̂ +, v|/1^+) and m^= mult (y ® exp (2 n fx*) ̂ f, r| |^f)

are finite, and
L^•'^;^,p,exp(2^*)la) = L^'^P^^nix^a'

These sums are finite.

Proof. - Let ^(p = Indpf^p (y ® exp (2 TT fx*)) and (p = Indpf p (y ® exp (2 TT ix^)).
Since y ® exp (2 TT fx*) is a finite dimensional representation, and since

P/^P I ^ P/P+ < oo,

both "(p and (p are finite dimensional. Now Frobenius' original version (block form
matrices) of Frobenius' Reciprocity applies. In particular the n^ and the m are finite,
and we have finite decompositions

'<P = E ̂ , o. ̂  ® e2^ and (p = ̂  ̂  , ̂  ® ^27tl(r

where [\|/] G ("M)", [r|] e M and CT e a*.
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Let { bj } be a system ofcoset representatives ofM modulo M+, thus also of P modulo P+.
We break up

y ® exp (2 K ix*) = TI+ (x) exp (2 TI ix* [^) where [r|+] e (M+)".
Then

<P |p+ = S (̂  ® exp (2 7i ix* [,)) o Ad (&,) = E Oi+. Ad (&,)) ® exp (2 TT fx* [,).

First, this shows q^^ = 0 unless a = x* ^ so (p = ^ (^.T| ® exp (2 TT fx* ^. Second,
Frobenius' Reciprocity gives us

^ = mult(ri, Ind^f^(Ti+))= mult^t, ̂  |^f) = m^.
We conclude

^p+^p (Y® ̂ P (2 7T lx*)) = E m^. T| ® exp (2 71; (x* [„).
Similarly

^dp+^p (Y ® exp (2 TT ix*)) = E ̂  • ̂  ® ex? (2 ̂  ̂ * |a)-

Combining these with induction by stages

E ̂ n • ̂ P, n, 2^* | a = ^dpfG (Indpf^p (j ® exp (2 n ix*)))

= Indpt^ (Y ® ̂ P (2 7l lx*)) = ^^PTG (Indpf^p (y 0 exp (2 TT zx*)))

=En^•^,p,^®exp(27^lx* | a).
Q. E. D.

3. Representations associated to nilpotent orbits

We study representations associated to real parabolic polarizations for nilpotent
elements.

3.1. GENERALITIES ON NILPOTENT ELEMENTS. — We review the basic facts on conjugacy,
centralizers and polarizations of nilpotent elements in a reductive Lie algebra. See [21],
[15], [7], [18] and [22] for proofs.

The Jacobson-Morosov embedding theorem : if e e 9 is nonzero nilpotent, then there
exist h, fe g such that

(3.1.1) [,h,e-]=2e, [h,f}=-2f, [_e,f]=h.

The real span { A, e, f }^ is a three-dimensional simple subalgebra (TDS) of 9, isomorphic
to sl(2; R) under
^ 1 ^ z f1 ° ^ ( Q ^\ f f° ^
(3•L2) ^O -l} '-^O 0} ^[l 0}

We call h a neutral element for e. Given e, any two TDS { h, e,f}^ are Int (g)-conjugate.
If e ' e g is another nilpotent element with the same neutral element /?, then e and e '
are Int (g^)-conjugate but not necessarily Int (cO-conjugate.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE 21



164 L. P. ROTHSCHILD AND J. A. WOLF

Fix a nilpotent element e e ^ and a TDS { h, e, f}^ as in (3.1.1). Decompose
9 = E 9/ where the 9, are the irreducible { h, ^,/^-modules under its adjoint action on 9.
Then 96 n 9y is the 1-dimensional space of highest eigenvectors of ad (h) on 9y. Denote
c+ (resp. c_) as the number of even (resp. odd) dimensional 9^.

Writing 9^ for the X-eigenspace of ad (/?), now

(3.1.3) c_ =dim9 / l 'o=dim9^ c+=dim^'\ c + + c _ = d i m 9 e .

Choose a Cartan decomposition 9 = ^ + 5 . Thus there is a Cartan involution 9 of
a group G with Lie algebra 9, such that t and s are the (+ l)-and (- l)-eigenspaces of 9
on 9. Fix a maximal abelian subspace a of s and choose

(3.1.4 a) {oci, . . . , a,.} : simple a-root system on 9,

(3.1.4&) { ^ i , . . . , ^ } : dual basis of a, i.e. ay(fl^)=§^.

Then A is Int (9)-conjugate to just one ̂  n^ a^ where each n^ is 0, 1 or 2. Note dim 9 -̂
even o 9^ n 9^ = 0 o 9/l'l n 9y =^ 0. Thus we have equivalence of

(3.1.5^) each ̂  is even, i. e. is 0 or 2;

(3.1.56) each irreducible { h, ^,/^-module 9 -̂ has odd dimension;

(3.1.5c) c + = 0 , i.e. 9^1 = 0, i.e. dim^^din-^.

Under conditions (3.1.5) we say that e is even.
Now let ^ e 9 be an even nilpotent element, h a neutral element for e, and p the sum of

the non-negative eigenspaces of ad h. Clearly p is a parabolic subalgebra of 9, and it
is known ([22], Proposition 2.2) that p is actually an invariant polarization for e. This
polarization, which is unique up to conjugacy, will be called the natural polarization for e.
Since the nilpotent elements whose orbits maximal possible dimension (regular nilpotents)
are all even [15], it follows that every reductive Lie algebra (with non-trivial semisimple
part) contains a non-zero nilpotent e with a real invariant polarization.

3.2. GENERALITIES ON CHARACTERS. — Let G be a reductive Lie group of the class
described in paragraph 2.1. We recall some basic facts from Harish-Chandra's general
character theory. See [25], paragraph 3.2 for more details, [23] for complete details.

If [n] e G and/e C^° (G) then n (/) = f(g) n (g) dg is a trace class operator on the
J G

representation space H^, and

(3.2.1) 0^: C,°°(G)-.C by ©,(/)= tracer/)

is a Schwartz distribution on G. 0^ is the global or distribution character of [71].
Classes [71] = [jr'] if and only if 0^ == 0^.

Let © be the universal enveloping algebra of 9^ and let 3 be the center of (5.
Hypothesis (2.1.1) says that 3 is the algebra of bi-invariant differential operators on G.
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3 acts on distributions by (z 0) (/) = © ̂ z. /) where ̂  is transpose. If [71] e G, then ©^
is an eigendistribution of 3? and

(3.2.2) x.: 3^C by ^)©n=^

is an associative algebra homomorphism called the infinitesimal character of [71].
Let 1) be a Cartan subalgebra of 9 and ^ (1)̂ ) the polynomials on ̂  invariant by the

complex Weyl group W (9^, l^). There is an isomorphism y : 3 —> ^ (^) such that
the homomorphisms 3 —> C are precisely the

(3.2.3) 7,: 3-^C by X, (z) = [y (z)] (̂ ), Xe^.

Further 5^ = 7^ iff V e W (9^, l)^) (?i). If p is half the sum of a positive root system
then /^ (Casimir) = || ^ \2 — p I j 2 .

The structure (3.2.3) for the differential equations (3.2.2) shows that O^is a locally L^
function analytic on the regular set of G, and that [71] —> 5^ is finite-to-one in
case j G/G° < oo.

3.3. CHARACTERS OF REPRESENTATIONS ASSOCIATED TO CUSPIDAL PARABOLIC POLARIZA-

TIONS. — Let G be a Lie group that satisfies (2.1.1) and (2.1.2). A parabolic subgroup
P <= G is called cuspidal if Py/Zp^ (P^) has a compact Cartan subgroup. In that case,
P,. = M x A where A is the split component of the center of P^, Z^ (G°) <= M
M/Zo(G°) has a compact Cartan subgroup T/Z^ (G°), and M inherits (2.1.1)
and (2.1.2) from G with the same group Z. We say that P is associated to the conjugacy
class of the Cartan subgroup H = T x A of G, and we write P = MAN with N = ?„.

3.3.1. THEOREM. — Let e e 9 nilpotent. Let P == MAN be a cuspidal parabolic subgroup
of G associated to the conjugacy class of a Carton subgroup H = T x A. Suppose that p
is an invariant polarization for e. Then e satisfies the integrality condition (2.5.3).

1. The representations of G associated to e* and p are the 7i:e,p,p == I11^ (0
where R] e (T/P0)", i. e. where R] e (T)" with P° in its kernel.

2. Let [r]e(Z^(G°)/Z^r = (ZG (G°) P°/P0)'. Retain (2.5.2) :

^P.n.a = I^MANfGOl ®^0).
Then

S w(y,^ L(GO)po)^,p^= ^ m(y,r| L(GO))7tp,,i,o»
[^eC-P/POr [il]e(M/MOF

finite sums with finite multiplicities

3. Each 7 t e , p p is a finite sum of irreducible representations.
4. Each ^,p,p has infinitesimal character ^p relative to I), as follows, p^ e f t * c: ̂  is

half the sum of the elements of a positive i^-root system of m^. Thus, if p is half the sum
over a positive ^-root system of 9^, Tig p ^ sends the Casimir element of (§ to
' PMiMiP 2-
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Proof. - Since e is nilpotent. Corollary 2.3.5 says e^ y = 0, so exp(2nie*) is the
trivial representation of P°. In particular, e satisfies the integrality condition (2.5.3).
Now the classes R] e (T)" with TT^^ associated to e^ and p, are just the T-lifts of the
elements of (T/P0)". That proves (1), and now (2) follows from Proposition 2.6.6.

/^
If [n] e M and a e a* then ([25], Theorem 4.3.8) Tip^ ^ is a finite sum of irreducible

representations. Now (3) follows from (2).

Let ^ be the infinitesimal character of [r|]eM relative to t. If oea* then ([25],
Theorem 4.3.8) Tip^^ has infinitesimal character ^+^ relative to I). In our case,
T| annihilates M° and CT = 0. That T| kills M° means that ̂  = ̂  kills all elements of
positive degree in the center of the universal enveloping algebra of m^. In other words,
^ would be denoted %Q in Harish-Chandra's earlier work ([8], Theorem 5). As we are
using Harish-Chandra's more recent convention ([9], [10]), now v = p^. Thus
^p,^ = ^PM as asserted-

Q. E. D.

3.3.2. COROLLARY. — Let p be an invariant cuspidal parabolic polarization for a nilpotent
element e e 9.

If [y e (T/P0)" then the representation ^,p,^ is CCR, L e. it sends every fe L^ (G) to
a compact operator.

/^
Proof. - Every class [71] e G is CCR; this is how one shows that G is of type 1. See [25],

paragraph 3.2 for a discussion. Theorem 3.3.1 shows that [^pp] is a finite sum of
irreducible classes, so it is CCR.

Q. E. D.

Corollary 3.3.2 gives examples of CCR representations associated to non-closed
Ad* (G)-orbits in 9*. This contrasts with the case of solvable groups, where one
expects [17] that the representations associated to a co-adjoint orbit should be CCR if
and only if the orbit is closed.

4. An example of dependance on polarization

In this section we give an example of a nilpotent element e with two invariant polari-
zations p { a» } which are cuspidal parabolic subalgebras, such that the representations
associated to p { oc^ } and p { o^ } respectively have different infinitesimal characters,
and in particular have no equivalent subquotients. This gives an example, in the setting
of semisimple groups, in which the representations depend very strongly on the choice
of polarization. By contrast, results of Dixmier, Kirillov, Pukanskzy and Duflo
(see [4], [5], [6], [17], [19], and [20]) show that such a phenomenon cannot occur in
the setting of solvable groups.

We also show independence of polarization for a closely related nilpotent.
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4.1. THE COUNTER-EXAMPLE. — Let g be the normal form of G^ and t) a split Cartan
ai 02

subalgebra, whose Dynkin diagram is o '———• with < oc^, oc^ > = 3, < o^, o^ > = 1.
Choose root vectors e^ and 6^+^ in the real form 9 and let e^+^ = [ ,̂ e^+^~],
^1+302 = l>a2' ^+2oJ- write a^ ^2 for the duals of 04, oc^ as in (3.1.4 Z?). Let p { a, }
be the parabolic subalgebra spanned by the positive root vectors, the Cartan subalgebra t)
(spanned by a^ a^) and the semisimple subalgebra g [ocj spanned by e^ e_^
and /^. = [ .̂, ^-aj. Let G^ be the simply connected complex group corresponding
to 9c- ^en GC ls ^^ ̂  a Ĵo111! group, ([3], § 8), and G, the connected subgroup
of Gc corresponding to 9, is the adjoint group of 9. Write P { o^ } for the parabolic
subgroup of G corresponding to p { oc^ }.

4.1.1. THEOREM. — In the notation as above, let 9 be the normal real form of G^ and

e= ^+^+^+3^eg.

Then p { o^ } and p { o^ } a^ both invariant cuspidal parabolic polarizations for e. For
any ^ e (T { o^ }/P { o^ }°)", f = 1, 2, ^ representations ^p^},^ ^m? infinitesimal
character X(i/2)a.- //z particular, the representations TC^^),^ ^^ ^,p^2},^2 ^r^
disjoint (have no equivalent subquotients) for any ^i, ^2-

The theorem will be proved in 4.2 and 4.3. Note first that h = 2 a^ is a neutral element
for ^, so that p { o^ } is the natural polarization for e and is therefore invariant. The
main part of the proof of Theorem 4.1.1 consists of showing that p { 04 } is also invariant
(see § 4.2). The claim regarding the infinitesimal character is proved in paragraph 4.3
using Theorem 3.3.1 (4).

4.2. CALCULATION OF G6. — We show that G6 normalizes p { ai }. Since (G6)0

normalizes p { oq } because p { o^ } => (f, it suffices to prove the claim for representatives
of G^G6)0. The following general lemma shows that these representatives may be
chosen in G^ n G6.

4.2.1. LEMMA. — Let g be a semisimple Lie algebra mth G a corresponding connected
group. Then ife e 9 is nilpotent and h is a neutral element for e, then

Ge=(GhnGe).(Ge)o.

Proof. - See [18], Lemma 3.2.
Since h is semisimple, G^ is connected ([13], §2, Lemma 5), and its Lie algebra

is 9^ = f?i C © Qc C^]- Therefore, G^ = G^ [a^.exp (C^i), where G^ [oc^] is the
connected subgroup of G^ corresponding to (^ C^]-

Now suppose g e G\ g = gi exp c a^ where ^i e G^ [002], c e C. Since g normalizes ̂
and therefore 9 [oc^] and expc^i acts trivially on g [oc^], gi normalizes 9 [o^]. Then

î e F.G [o^], where F is the finite group generated by exp [(TI i/2) h^~} and G [oc^] is
the subgroup of G corresponding to 9 [o^] (Matsumato [16]). So

G^ c= exp(C^).F.G[oc2].
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To find G^ n Ge it is convenient to use the Bruhat decomposition of G [o^],

G [02] = M2 A2 N2 u M2 A^ N3 s^ M^ A^ N2,

where A^ == exp R/^, N2 = exp Re^, M^ = { 1, exp TT ih^ }, and ^ ls ̂  Weyl group
reflection around 0X2. We first show that no element of the form g = hg^, where
h e exp Ca^ .F, ^i e M^ A^ N2 ^2 M^ A^ N2, can centralize e. For let

^i = m (exp ^ ̂ ) (exp ̂  ^2) ^2 (exp ^3 ^2) (ex? ^4 ^2)

where t^, t^, ^3, 4 are real constants. (Note that M^ is central in G [oe^].) Then

Ad(g).^ = Ad(/igi).(^+^+^+3j

1 + ^ 2

= Ad (hm (exp ̂  e^) (exp ̂  ^a^) ^2 (exp ^3 ^a^)) • (^1+02 + 4 ̂ ai + 202 + ——^ ^ai + 302)

by the choice of e^+^ and 6^+3^. Then

Ad (g).e= Ad (/im (exp ̂  e^) (exp ̂  ̂ ^) 5^) (r^ ̂ , +^ + ̂  e^ + 2^ + ^3 e^ +3^)

where r^ and ^3 are non-zero real numbers and r^ = 0 iff 4 = 0. Now

Ad (g). e = Ad (/im (exp ti e^) (exp ^2 ^02)) • (r! ̂ ai + 202 + r! ^1+02 + ̂ ^3 ^ai),

r^eR, ri T^ 0 7^ ^3. It is now clear that Ad (g) e will have as summand a non-zero
multiple of e^, and therefore cannot equal e.

The preceding calculation shows that ifgeGhr\ G6, then g = /^ where g^ e M2 A2 N2
and h e exp Q^ .F. Since M2, A2, N2, exp Ca^ and F all normalize p { ̂  } this already
shows that p { 02 } is invariant. For completeness, we shall find representatives for the
connected components of Ge. If Ad (g) e = e, then by the preceding we may
write g = g^ g^ where g^ = exp (c^ a^ + c^ a^) and g^ == exp t e^ where t is a real number.
[Note that M2 and A2 are contained in exp (Q^+Q^).] Then

/ t2 \
Ad(g)e=Ad(exp(Clal+C2a2)).^^+^+t^+2oc2+—^l+3a2+eal+3a2)•

Since Ad (exp (c^ a^ + c^ a^)) can only change the coefficients of the e^'s, Ad(g)e=e
implies t = 0. Now

Ad(exp(c^i+C2^2))^=exp(ci+C2)^+^+exp(ci+3c2)^+3^.

This shows c^ + c^ = 2 n in and c^ + 3 €2 = 2n im for integers ^, w. Therefore
Ci = TT fA:i, 6*2 = TT f/:2? ^i» ^2 integers, with /;i, Z:2 either both odd or even. In other
words the components of Ge are represented by 1 and (exp 71 ia^) (exp n ia^).

4.3. INFINITESIMAL CHARACTERS OF 7i^ p^],^. — By Theorem 3.3.1 (4) each ^e,p{^}^i
has infinitesimal character / where pj^ is half the sum of the elements of a positive

M^

4® SERIE —— TOME 7 —— 1974 —— ?2



REPRESENTATIONS ASSOCIATED TO NILPOTENT ORBITS 169

root system on m^ [o^]. Since
me [oij = Qc M'

p M , = ( l / 2 ) o C f as claimed. Now ^ , p { a i } , ^ i B^ ^^{02},^ can ^ave equivalent
subquotients only if p^ and p^ are conjugate under the complex Weyl group
([8], Theorem 5 and the remark at the end of the proof of Theorem 3.3.1 above).
Since < oc^, c/i > 7^ < oc^, o^ >, this is impossible, which completes the proof of
Theorem 4.1.1.

Q. E. D.

We note here that there are many other examples of pairs of parabolic polarizations of
nilpotent elements which are not conjugate, or even associated, for example in the split
Lie algebras of types B^ and F4. However, in all cases of non-associated parabolic
polarizations, other than in G^, which we checked one of the two polarizations was not
invariant. In the cases where the two parabolic polarizations are associated,
Theorem 3.3.1 shows that the infinitesimal characters of the associated representations
are the same.

4.4. AN EXAMPLE OF UNIQUENESS OF POLARIZATION. — We illustrate the delicacy of
the argument of paragraph 4.1 for e = e^+^ +^1+302 ^Y examining the nilpotent
e ' = ^1+02 — ^xi+3oE2' Both e and e ' have 2 a^ as neutral element, so they are
G^-conjugate and they have the same natural polarization p { 0x2 }. But they are very
far from being G-conjugate :

4.4.1. THEOREM. — In the notation of paragraph 4.1, let 9 be the normal real form
of G^ and let e' = e^+^ — e^+^ea. Then the natural polarization p { ̂ } for e'
is its only invariant real parabolic polarization.

The first step in the proof of Theorem 4.4.1 is

4.4.2. LEMMA. — The only real parabolic polarizations for e' are p [ oc^ } and the
Ad (g). p { oq } with geG [a^].

Proof. — Let p be a real parabolic polarization for e ' . Then p => n' => ^e where n'
is a nilpotent subalgebra of dimension 6 in g. We may assume e^ chosen so that

[^xp ^xi+soJ+E^i+o^ ^1+202] = °-

As dim ^e> = dim g201 = 4, it follows that c^ has basis

{ ^ai+a2? ^ai+3a2' ^2ai + 3oc2» ^ai+^ai+2a2 }•

Let I) be the split Cartan subalgebra relative to which our roots are determined, and n
the sum of the positive I)-root spaces. If e^ en and 0 7^ h e t) then e^-\-h is not
nilpotent, so ^^/z^n'. Now let x e n'. If the .̂.̂ a^o^)"1^1'111 °^ x were nonzero,
then [^2ai+3oc2' x} ^^Id be of the form e^-\-h with h ^- 0 as above, contra-
dicting [^2ai+3a2» x] e n/- Thus x has no ^^a^t^)'1^™' ^ne same argument now
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shows that x has no e_^^^-term, then that x has no 6^^^-term, and finally that x
has no e_^-ierm. In summary, if xen ' then x = r^ ^+^ h'+r^ e_^ with ^ e R.

If we always have ^3 = 0, then n' = n, and it follows that p is p { a^ } or p { o^ }.
Now suppose that we have x e ̂ ' with ^3 ^ 0. From [x, ^+3^3] e n' we see 6^ e n'

and ^i+2a2 e n/. so we may assume x = r^ e^+r^ h'+r^ e_^. Express

r^h' = v^ h^+v^a^ ^ e R,

so x has 9 [(^-component r^ e^+v^ h^r^ e_^. That component is nilpotent
in 9 [a^], thus nilpotent in 9, and it commutes with the semisimple element ^ ^i. As jc
is nilpotent now

^^i^+^i^+^-a^Lo^L

and so x is G [a^-conjugate to ± e^. Since G [oe^] normalizes the space

n^ = real span o f{^ , ^+,,, ^+20.. ^1+3^ ^ai+sa^}.

and since n' = n^+Cx), now n' is G [ocj-conjugate to n. It follows that p is G [02]-
conjugate to p { oci } or to p { o^ }. Thus we have g e G [aj with p = Ad (g) p { oci }
or p = Ad (g) p { oc2 } = p { oc2 }.

Q. E. D.

We will show that Ad (g) p { o^ }, g e G [(yj, cannot be G^-invariant. Let

(4.4.2) ^=exp(^/2^.S2.expf l=^yexpflog(16y2)al+log^
W32 / \ W 7

We will first check that q e G6' and then show that ^ cannot normalize any of the
Ad(g)p { a i }, geG[_^~\.

That q eG^, is a direct calculation using

(4.4.3) ad(5^) : ^+a2-,^+2a. and ^+^-^-2^+a^

To prove (4.4.3), note that the space of the 2-dimensional representation of G [oc^]
has basis { v^, v^ } in which

e^ has matrix ( ) and s^ has matrix ( ) .

Now the space of the 4-dimensional representation of G [o^] has basis { w^ . . . , ^4 },
Wj+^ = e^(Wj), where

^i = i^i ® i^i ®^i, w^ = ^2®^i ®^i+^i ® 1^2® ^1+^1 ®^i ®^2?

W3 = 2 ( t 7 2 ® ^ 2 ( x ) ^ l + ^ 2 ® ^ l ® ^ 2 + ^ l ® y 2 ® ^ 2 ) . ^4 = 6 ̂ 2 ® ^2 ® ^2-

This 4-dimensional representation is the Ad^ action on cfll+cfl+v2+cfll+2a2+aul+3a2

w, = ad (e^3-1 e^ Since s^ : w^ -> (1/2) 1̂ 3 and ^3 -> - 2 ^2 we get (4.4.3).
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The next step in our proof of non-invariance is

(4.4.4) if g e G [a,] then Ad (q) Ad (g) p { o^ } ̂  Ad (g) p { ̂  }.
This says Ad (g~1 qg) p { oci } ̂  p { oci }, hence follows from

4.4.5. LEMMA. — Let p { a i } Z^ normalized by q' e G [aj expR^i. TT^z

^' e M2 A^ N2. exp R a i.

If g e G [a^] a^J ̂  ^ gfv^/z by (4.4.2), then

g'^g^M^N^expRfli,

^0 g~1 qg does not normalize p { oci }.

Proof. — The reductive group G [a^J.exp R^i has Bruhat decomposition

M^A^N^.expRai u M^A^N^s^M^A^N^.expRa i .

If ^/ e M^ A^ N2 ̂  ^2 A2 N2. exp R^i then a direct calculation shows that Ad (q') e_^
has nonzero 6^^+3^-component. Since e,^ e p { o^ } and ^.(^+3^ ^ p { a^ },
^' does not normalize p { o^ }. Thus ^' e M2 A2 N2. exp Ra^ as asserted.

Let ^ be given by (4.4.2). Then the G [02]-component of q, in the 2-dimensional
representation used to prove (4.4.3), has matrix

( ' »y« •/; °\.^(-^ ° '^2 1A-' °A,7r2 1/ ^ o ioe'
\ 0/

-(0 l)fw2 n..̂
l-1 ^\ 2 37,; \* ^

which has trace 1. I f ^ -eG [02] now the G [c^-component of^~ 1 qg goes to a matrix
of trace 1 in the 2-dimensional representation. However, i f^~1 qg e M2 A2 N2. exp R^i

then its G [(^-component goes to a matrix q" = ( ) with

[ tracer | = a+ - ^2.
a

Thus g~1 qg ^ M2 A2 N2. exp Ra^.
Q. E. D.

Theorem 4.4.1 follows directly from Lemma 4.4.2, the fact q e G6', and Lemma 4.4.5.
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