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SQUARE INTEGRABLE REPRESENTATIONS OF NILPOTENT GROUPS

BY

CALVIN C. MOORE(l) AND JOSEPH A. WOLFp)

ABSTRACT. We study square integrable irreducible unitary representations (i.e. matrix

coefficients are to be square integrable mod the center) of simply connected nilpotent Lie

groups N, and determine which such groups have such representations. We show that if TV

has one such square integrable representation, then almost all (with respect to Plancherel

measure) irreducible representations are square integrable. We present a simple direct

formula for the formal degrees of such representations, and give also an explicit simple

version of the Plancherel formula. Finally if T is a discrete uniform subgroup of N we

determine explicitly which square integrable representations of N occur in Li(N/T), and

we calculate the multiplicities which turn out to be formal degrees, suitably normalized.

1. Let G be a locally compact unimodular group with center Z; we shall say

that an irreducible unitary representation it of G on a Hilbert space H(ir) is

square integrable if there are nonzero vectors xx and x2 in H(tr) such that

(*) fa/zMs)xx,X2)\2diL(s)< CO.

This formula requires some notes of explanation; if z G Z, then by the

irreducibility of it, tt(z) = X(ir)(z) • 1 where X(tt) is a continuous homomorphism

of Zinto the circle group F.It follows then that(ir(sz)xx,x2) = X(iT)(z)('Tr(s)xx,x2)

and hence that the integrand in (*), as a function on G, is invariant under

translation by elements of Z and hence is really a function on G/Z. Finally d(i(s)

denotes integration over the group G/Z with respect to a choice of Haar measure

¡i on G/Z. The more standard notion of square integrability is that the absolute

value squared of a matrix coefficient as in (*) should be integrable over the group

G itself, and if this happens we shall say that ir is square integrable in the strict

sense. If Z is compact, this is clearly the same as the present definition, but it is

clear from our discussion that if Z is not compact, the integral (*) taken over G

could not possibly converge as the integrand is constant on the cosets of a

noncompact subgroup. There are many interesting examples such as reductive

Lie groups and nilpotent Lie groups (the subject of this paper) where this

extended definition is essential.

The usual equivalent characterizations of square integrability, together with

the orthogonality relations, and the notion of formal degree carry over without
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446 C C MOORE AND J. A. WOLF

essential change and we shall summarize these below. Our interest here is in

simply connected nilpotent Lie groups and the study of their square integrable

representations. In addition to abelian groups, the Heisenberg nilpotent groups

have square integrable representations [16], and we shall characterize those

nilpotent groups which have square integrable representations, and in those cases

we shall also be able to give a very concrete description of them. Moreover we

find an explicit formula for the formal degree of these representations (which

incidentally is a direct generalization of Weyl's classical degree formula for the

irreducible representations of a compact group, if both are viewed properly). It

further turns out that, if there is one square integrable irreducible representation,

then almost all irreducible representations (with respect to Plancherel measure)

are square integrable and we shall display the Plancherel measure quite explicitly.

In the final section we shall investigate nilpotent groups N which have square

integrable representations, and which have a discrete uniform subgroup T. We let

l/be the usual representation on ¡^(N/T) and we exhibit a direct necessary and

sufficient condition for a square integrable representation to be a summand. We

also show that its multiplicity in U is given, as one might hope, by its formal

degree. Theorem 1 is without doubt "known" to many experts, but we include it

first for completeness, and more importantly because some details of the proof

will be essential later on. The other results through Theorem 6 are to some degree

known; in particular Theorem 6 would follow from the pretty result announced

in [18]; however no proof of this has been published. This paper of Kirillov came

to our attention only after this paper had been written.

One by-product of our explicit formulas is that we are able to construct an

example of a group with compact center having square integrable representations

in the strict sense and for which there is no positive lower bound for the formal

degrees-showing that in spite of some common examples, it is not always the case

that the formal degrees are bounded from zero.

2. As in §1, let G be a unimodular locally compact group with center Z, and

let it be an irreducible representation. We associate to it a character X(ir) of the

center Z by w(z) = X(ir)(z) • 1. We denote by m(g,<f>,xp) the matrix coefficient

(ir(g)<p,xp) for <ft, xp G H(ir). We note that if X(trx) = X(ir2) and <¡>¡, xp¡ G H(ir¡),

then OKg^.iMWg)^,»^) is invariant under translation by Z and is therefore

a function on G/Z. We fix once and for all Haar measures ¡i on G, ¡iz on Z, fi on

G/Z so that dp. = dpzdp. Finally for X G Z we denote by Ux the representation

of G induced by the representation X of Z. Recall that the Hilbert space of this

representation consists of complex functions « on G satisfying h(zg) = X(z)h(g),

square integrable on G/Z, and that G operates by the formula (U*(s)h)(g)

= h(gs). We now have the following well-known facts.

Theorem A. For an irreducible representation it the following are equivalent.

(1) 3 ft, «fc * 0, K-,«h,.fc)| e ^(G/Z).
(2) |m(-,4i,tfe)| G Li(G/Z)forallh,*i E H(tr).
(3) ir is a discrete summand of l/*M.
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Theorem B. // the conditions of Theorem A are satisfied for an irreducible

representation it, there is a positive number d(ir) such that

M JG/Zm(s,<t>i^i)m(g,fa,xp2)dp.(g) = d(ir)-l(fa,<b2)(fa,fo).

If irx and tt2 are inequivalent irreducible representations satisfying the conditions of

Theorem A, such that X(itx) = X(tt2), then

(2) fG/z Mg)fa,h)(v2(g)<h,>P2)dKg) = 0.

The proofs are essentially well known and can be obtained as routine

modifications of the theorems for square integrable representations in the strict

sense. Even better we could appeal to Rieffers general theory in [15] and obtain

both as special cases.

The number d(ir) of Theorem B is called the formal degree of it. It of course

depends on the choice of a Haar measure ß in G/Z, and if p is replaced by c/i,

the formal degrees of all representations change by a factor of c~l. We now

specialize to the case when G = N is a connected and simply connected nilpotent

Lie group with Lie algebra n. Let 3 be the center of Lie algebra n, let n* be its

dual vector space, and let 3-1- be the annihilator of 3 in n*. According to the

Kirillov theory ([6], [12]) the irreducible representations are parameterized by the

space of Af-orbits in n* under the coadjoint representation. We shall write it(0)

or ir(f) for the representation corresponding to an orbit Ooran/GO. The

character X(ir(f)) of Z associated with this representation is X(ir(f))(z)

= exp(27r//(log(2))). If « is any other element of n* in the same orbit as/, then

/ = « on 3 and hence O is contained in the affine hyperplane / + s1 = h + a1.

This hyperplane depends only on the restriction y of /to 3, and we denote it by

H(y) for any y G 3* (the linear dual of 3). The following provides the key to

determine when representations are square integrable.

Proposition 1. Let f G n*, and let O be its orbit under N, and let it = ir(f)

= it(0) be the corresponding representation. Let X(tt) be the associated character of

Z and let y be the restriction off to 3. Then nr is a discrete summand of i/*W if and

only if the orbit O is equal to the hyperplane H(y). In this case, t/^M is a primary

representation.

Proof. As usual, we proceed by induction on the dimension of N, the result

being obvious for abelian groups. If the dimension of 3 is larger than one, there

is a nonzero central subalgebra 30 contained in the kernel off. Its corresponding

subgroup Z° is contained in the kernel of it. Now it becomes a representation of

ir° of N/Z" whose corresponding linear functional f is precisely / when we

regard (n/30)* as a linear subspace of n*. Moreover the orbit 0° off0 is precisely

O again viewing (n/30)* as a subspace of n*. Suppose that it is a direct summand

of t/*M; then as both of these representations vanish on Z°, the corresponding
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representation w° of N/Z" is a summand of (7x(ir» viewed as a representation of

N/Z", and as such it is the representation of N/Z° induced by the representation

Xo of Z/Z", where X°(zZ°) = X(z), we shall write this as

o = ind(Z/Z°,N/Z°,X°),

denoting the induced representation. Since this induced representation o has an

irreducible summand, it follows that Z/Z° is the entire center of N/Z" for

otherwise o would admit a continuous direct integral decomposition over a space

indexed by the dual of A/(Z/Z°) where A is the entire center of N/Z". Thus a is

the representation Ux° of N/Z" determined by the character X° of its center, and

77° is a discrete summand of it. Since the proposition is true by induction for

N/Z°, we conclude that O" is the hyperplane H(y°) wherey° = y when we view

(a/ä°)* as a subspace of 0*. Since O = 0° and H(y°) = H(y) with these

identifications, we conclude that O = H (y). Moreover since I/*" is primary, so

is U\

Conversely suppose that O = H(y). Since O = O" it follows that the center

of n/a° must be exactly 3/5°, otherwise O0, an orbit, would be too big. It follows

then that H(y) = H(y°) and hence 0° = H(y°), and then by induction ir° is a

discrete summand of Ux°. Finally we conclude that tr itself is a discrete summand

of U\ completing this part of the argument.

We are now reduced to the case when the dimension of a is one and/(a) # 0.

Let x be an element not in a such that [n,x] C a and let Hq = {u: [u,x] = 0}.

Then no is an ideal of codimension one in n. We may arrange that/ix) = 0 and

we assume this done. Now we denote by /0 the restriction of / to rig, and we let

O0 be its orbit in (no)*- If tr0 is the corresponding representation of N0 = exp(rto),

it is part of the Kirillov theory that tr = ind(N0,N,ti0). Choosey G r^ so that if

z = [x,y], then/(z) = 1. Then the one parameter subgroup (exp(jy)) is comple-

mentary to N0. Moreover (ad* (exp(sy) )/)(*) = s, and we let/ be the restriction

of ad* (exp (sy))/to n% Finally letp be the projection of n* onto n% with kernel

rtf.

Lemma 1. p'x(Os) = {/: / G 0,f(x) = s} andp{f: f E 0,f(x) = s} = Os.

Proof. This is in Kirillov [6].

Now suppose that O = f + a1 = H(y) is an affine hyperplane of dimension

/ — 1 where / is the dimension of n. Then by the lemma, Os is an affine hyperplane

for any value of s. More since ad*(exp(rA'))/ — /vanishes on no, the mappingp

restricted to O reduces dimensions by one. Therefore the dimension of the

hyperplane O,is(/-l)-2 = /-3 = /0-2 where /„ is the dimension of no-

Since x and z are both in the center of n0 and since the center cannot have

smaller index than the dimension of any orbit, it follows that the center an of no

is precisely of dimension two, and so ao = (z) + (x). Thus Os = ao" +f¡ f°T au

values of s.
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Conversely suppose that Os = 3^ + /, where a0 is the span of x and 2. Then Os

has dimension l0 - 2, and hence by the lemma, O has dimension l-l. Since O is

contained in an / - 1 dimensional hyperplane H(y) it is open in H(y), but it is

also closed in Z/(y)[12] and hence equal to H(y).

Let us summarize:

Lemma 2. O = H(y) if and only if O, = 3o- + /, /o/* o««?, or equivalently all, s.

In this case 30 is the center of iTq.

Now if O = //(y), O, = 3^ + / by the lemma, and so by induction we know

that ir„ the representation corresponding to /„ is contained as a summand in

a, = ind(Z0, AfojA,) where Xs(w) = exp(2mfs(log w)) for w G Z0, and, moreover,

as is primary for each s. Let us consider p = ind(Z, A,A) which by induction in

stages is ind(N0,N,ind(Z0,N0,ind(Z,Z0,X))); the innermost representation,

however, is rather clearly the integral

¡\ds

where ds is Lebesgue measure. Therefore the intermediate representation of N0

above is the direct integral over the parameter s of indiZo.A^.X,) which by

inductive assumption is primary and a multiple of irs. Therefore the representa-

tion C/x is a direct integral over s of multiples of vad(NQ,N,TTs). However, by

Kirillov theory, md(Na,N,'trJ) is m for all s, and so Ux is a multiple of it and is

primary, and in particular it occurs as a summand in l/\ This proves the

proposition in one direction.

Suppose now that it is a summand of the representation Ux = ind(Z,AT,A).

The restriction of it to N0 is by Kirillov theory the direct integral over the

parameter î of the representations it, described above. On the other hand, the

restriction of Ux to N0 is, by Mackey's subgroup theorem [8], an infinite multiple

of ind(Z, NQ,X). This latter representation is by induction in stages the same as

ind(Z0, A^indiZ.Zo.A)), and thus is the direct integral over the parameter 5 of

the representations p, «■ ind(Z0,N0,XS). To summarize, the direct integral overs

of representations % occurs as a summand in the integral of the representations

p, and we note that on Z0, which is central in Aq, p, and ws are both multiples of

the character X,. It follows now from direct integral theory, using crucially the

fact that Z is central, that % is a summand of p, for almost all s (Lebesgue

measure in s).

Now since there is a one parameter group tj>(t) = ad(exp(ry)) of automor-

phisms such that <f>(t) • % = %+, and <p(t) ■ p, = p,+, it follows that if % is a

summand of p, for one value of s, the same is true for all s. Let C be the center

of N0; if C t6 Z0 then indíZo.Arj.Aj) = indíCAo.indíZo.CX,)) can be dis-

played as a continuous integral over the dual group of the vector space C/Zq.

Thus Z0 is the center of N0 and w0 is a summand of ind(Z0,Z,Ao). By induction

it follows that the orbit O0 of f0 is a hyperplane H(y0) of codimension two. It
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follows now from Lemma 1  that O is equal to the hyperplane H(y) of

codimension one in n*, and this completes the proof of the proposition.

Suppose that/is any element of n*; we define a skew symmetric bilinear form

bj on n by b¡(x,y) = f([x,y]). The singular subspace of b¡ clearly contains a and

so bj may be viewed as a skew two-form on the quotient space n/a. In terms of

this we summarize our results in the following statement.

Theorem 1. For a linear functional f on n, with orbit O and corresponding

representation it, the following are equivalent.

(1) it is square integrable.

(2) ind(Z,N,X) is primary where X(z) = exp(2wi/(log z)),z E Z, the center of

N.
(3) O = / + a1 = H(y) where y is the restriction off to 3.

(4) bj is nondegenerate on n/a.

Proof. The statement 1 <=* 2 follows from Theorem A and Proposition 1 ;

2 <=> 3 also follows from Proposition 1. For the rest, it is quickest to prove 3 <=> 4.

Therefore let f) be the singular subspace of iy so f) = (x|/[x, v] = 0 V v G n} is

well known to be the Lie algebra of the stability subgroup at / in the coadjoint

representation. It follows that the dimension of O is precisely the codimension of

f). Thus if O = H(y), O has dimension equal to the codimension of a and so

dim (ft) = dim (a) and since 6 D 3, we have f) = a and ¿y is nondegenerate on

n/a. If bj is nondegenerate there, we see that dim(O) = dim(ZZ( v)) and hence by

invariance of domain and the fact that O is closed, it is equal to H(y) and we are

done.

3. We now proceed to describe in more detail the parameterization of all

square integrable representations of a group N. We need some preliminary

material about bilinear forms for this first, so let F be a vector space over R of

dimension « with a fixed volume element a (an alternating «-linear form).

Suppose that b is a skew symmetric bilinear form on V; we recall the definition

of the Pfaffian Pf(¿») of b. If « is odd, we let Pf (b) = 0, and if n = 2m is even,

the mth exterior power bm is a multiple of a, and we define Pf(6) by bm = Pf (b)a.

This of course depends on a but only up to a fixed scalar independent of b. We

may also define the determinant of b relative to a and note that det(6) = (Pf (b))2

so that Pf is a square root of the determinant on skew symmetric forms. We note

that Pf is a homogeneous polynomial of degree m on the space of skew symmetric

forms. We note that for the most part we shall only be interested in the absolute

value of the Pfaffian, and this is determined unambiguously by the measure on

V associated to the alternating « form a rather than by a itself.

The following construction will be useful presently: let a and V be as above

and let V* be the dual vector space, and let a* be a volume form so that the

Fourier transform/-*/ from L2(V) into L2(V*) is an isometry where

/(*) = f f(v)exp(2irix(v))da(v)   for x E V*.
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(Note that a* is determined up to a sign.) Let o be a nondegenerate skew two-

form on V and let t(b) be the linear isomorphism of V into V* determined by

(t(b)v)(w) = b(v,w). We transport b to V* by the formula b* (x,y) =

b(t(b)~xx,t(b)~ly) so that b* is a skew two-form on V* and we want to compare

the Pfaffian of b (relative to a) with the Pfaffian of b* relative to a* or rather their

absolute values.

Lemma 3.1. We have \Pf(b) ■ Pf(b*)\ = 1.

Proof. This is a routine calculation which we omit, and note only that if {e¡} is

a basis for V and a(e¡, ...,en) = ±1, and if {x¡} is the dual basis, a*(x¡,... ,x„)
= ±1.

We specialize these considerations to the case when V = n/s where n is a

nilpotent Lie algebra, 3 its center and where b = bj(bf(x,y) = f([x,y])) viewed

as a two-form on n/3. We define P(f) = Pf(¿y) and note that this is a

homogeneous polynomial function on n*.

Lemma 3.2. The function P(f) depends only on the restriction y off to 3, and hence

there is a homogeneous polynomial function on 3*, also denoted by P, so that

P(f) = F(y).

Proof. Suppose that P(f) # 0 so that bs is nondegenerate on n/3. Then

according to Theorem 1, the A-orbit O of / is the entire hyperplane /+ 31

= H(y) where y is the restriction of/to 3. We have to show that if g has the same

restriction to 3 as does/then P(f) = P(g). But we know that there exists n G N

with ad*(«)/ = g, and it follows that bg(x,y) = 6/(ad(«)_1x,ad(«)~Iy) so that

bg = « • bj in terms of the induced action of N on two-forms. On the other hand,

since the action of N preserves any alternating «-linear form as N is unimodular

and connected, and since Pf is an invariant polynomial, it follows that b{ and bg

have the same Pfaffian and so P(f) = P(g).

If however P(f) = 0, and if g is another linear functional whose restriction to

3 is the same as that of /, we must also have P(g) = 0. For if P(g) # 0, the

above argument would show that P(f) = P(g) ¥= 0, a contradiction. This

completes the proof of the lemma.

This lemma of course provides another criterion for the representation ir(f)

associated to a linear functional/to be square integrable, namely that P(f) ¥= 0.

To each irreducible representation ir(f) we attach to ti the restriction y of/to 2,

or equivalently the character X, X(z) = exp(27ri/(log 2)) of Z. On the other hand

if y G 3* and if P(y) ¥= 0, there is a linear functional / extending y with

P(f) # 0. If X(y) is the character of Z corresponding to y given by X(y)(z)

= exp(2my(log z)) then ind(Z,N,X(y)) is, by Theorem 1, a primary representa-

tion which is a multiple of the square integrable representation ir(f). We let ¿>(y)

be this representation tr(f). Finally let <V = {y: P(y) = 0} be the zero set of P.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



452 C. C. MOORE AND J. A. WOLF

Theorem 2. The map <¡> is a bijection of the set {y E a*, P(y) ¥* 0} = 3* — <V

onto the set of square integrable irreducible representations of N. Moreover <b(y) is

the only irreducible representation ofN whose associated character X(tr) on Z is X(y).

Finally <f> is a homeomorphism from the natural topology of 3* — <V to the Fell

topology on representations.

Proof. By Theorem 1, <J> maps 3* - «Tonto the set of all square integrable

representations. Now if v G 3* - «T^and if m is an irreducible representation with

tt(z) = exp(2777>(log z)), the associated orbit of it must lie in the hyperplane H(y),

but by Theorem 1, H(y) is an orbit, namely the orbit associated to <p(y). Thus

it = <¡>(y), and this shows that <J> is injective and establishes the second statement

of the theorem.

To see that <j> is continuous, note that v -* X(y) is a homeomorphism of 3* — <V

into Z, and that X -* ind(Z, N,X) is continuous from Z into the Fell topology on

representations of N [3]. Finally since this induced representation for X = X( v)

is a multiple of <p(y), these have the same kernel in the associated C* algebra, and

so the map ind(Z, N, X(y)) -* <p(y) is continuous. Thus <p is continuous since it is

the composition of continuous maps. On the other hand the map which

associates the character X(tt) on Z to a representation it is clearly continuous as

it is defined simply by restricting a representation to a subgroup. Finally we have

already noted that the inverse of y -* X(y) is continuous and it follows now that

<p~x is continuous, completing the proof.

Remark. The homogeneous polynomial P can be viewed in several different

ways; we have already seen that it is equivalently a function on n* or on 5*. But

also we may view it as an element of the symmetric algebra 5(3) on the center,

as S(i) can always be viewed as polynomial functions on 3*. Finally let U be the

universal enveloping algebra of n, and let 3 be its center. We note that the center

3 of n is naturally contained in 3. and hence also 5(3) is naturally contained in

3- Thus P may in addition be viewed as an element of center of the universal

enveloping algebra of n. (Of course P is only determined up to a scalar multiple.)

We shall now give a structural characterization of those N which have square

integrable representations. Theorem 1 of course does this but the following is of

a slightly different nature; recall from the above remark that S(¿) is naturally

included in 3-

Theorem 3. The group N has square integrable representations if and only if

S(i) = 3-

Proof. If N has square integrable representations, P is not the zero polynomial

and, by Theorem 1, P(f) ¥= 0 implies that the N-orbit of/is the hyperplane

/ + 3X. It is well known that by symmetrization the enveloping algebra It can be

realized as all the polynomials on n* so that 3 is realized precisely as the N-

invariant ones. Under this isomorphism S(0) is realized as those polynomials

coming from polynomials on 3* via the projection map of n* onto 3* with kernel

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



REPRESENTATIONS OF NILPOTENT GROUPS 453

3-1-. Equivalently, 5(3) may be viewed as those polynomials invariant under

translation by elements of 31. Therefore, we must show simply that any N-

invariant polynomial on n* is invariant under translations by a1. Let Q be N-

invariant and let k E 0L and consider the polynomial R(x) = Q(x + k) - Q(x).

Now if P(x) ¥" 0, x and x + k are in the same N-orbit by Theorem 1 and so

R(x) = 0. Therefore PR = 0, and since we have an integral domain and since

P # 0 by hypothesis, R = 0 and we are done.

Conversely suppose that 3 = S(a), and let dim n = n and dim a = r. If K is

the field of fractions of 3> it evidently has transcendence degree r as it is the field

of rational functions in r variables. According to [2], the dimension of the generic

orbit of N in n* is the dimension of n minus the transcendence degree of K, or

in other words « - r in this case. This says that the generic isotropy group has

dimension r, and hence, as we have argued before, it follows that this isotropy

group is the center, and then by Theorem 1, N has square integrable representa-

tions.

We pause now to consider some examples of groups that satisfy the conditions

we have been discussing.

Example 1. Let n be the 2« + 1 dimensional Heisenberg algebra with basis

xx, ..., x„,yx, .. .,y„,z with [x¡,v7] = z and all other brackets zero. Then 3 is

one dimensional and spanned by z, and let z* be the element of 3* dual to z. We

pick the volume element a on n/a so that a(xx,.. ,,y„) = 1, and then it is easy

to see that P(tz*) = /". Thus every infinite dimensional representation is square

integrable, a fact which is well known.

Example 2. Let a,j be any « by « matrix and construct a Lie algebra of

dimension 2« + 2 with basis xx, ..., xn,yx, ... ,yn, z,w such that [xt,yj]

= a08jjZ — a¡jw, a0 E R, and all other brackets zero. The center is spanned by

z and w and linear functionals may be described by f(z) = u, f(w) = v so that

functions on a* can be taken to be functions of u and v. It is not hard to verify

that P(u,v) = det(a0« - t»a,>), or in other words the characteristic polynomial of

the matrix a¡j evaluated at a0(u/v) and multiplied by v ". Evidently we may then

arrange by suitable choice of a¡j that P be an arbitrary homogeneous polynomial

in two variables.

Let us also add the remark that one can show that there is no upper bound on

the nilpotent length of a nilpotent group which has square integrable representa-

tions.

4. In Theorem 2 we gave a parameterization of the square integrable

representations of N, when there were any, by the map <p from a* - 0/ into Ñ.

The polynomial P played perhaps an auxiliary role in defining the exceptional set

<V, but we shall see that it is of fundamental importance in its own right because

it gives us the formal degree of the square integrable representations.

Theorem 4. The formal degree ofthe square integrable representation w(«) = <f>(/i)

given by Theorem 2 is d(m(h)) = \P(h)\for « G a* - <V.
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Let us defer the proof for a moment. We note that d(ir) depends on a choice

of Haar measure on N/Z, but also \P\ depends on a choice of a volume element

on n/3 which is the same thing as a measure on N/Z. It is understood in Theorem

4 that the measure used to compute d(ir) must come from the volume element in

n/8 used to define P. The statement of the theorem is therefore intrinsic and

independent of any such choice.

As we have remarked before, we may view P as an element of the center 3 of

the universal enveloping algebra of n. Then any irreducible representation it has

infinitesimal character x» which is a homomorphism of 3 into the complex

numbers. On 3 C 5(a), x* is given by XÁZ) = Hz) if ir(txp(z)) = exp(2w/n(2)).

We now have the following formulation.

Theorem 5. The formal degree d(ir) of any irreducible representation is given by

|x»(F)| where we understand the formal degree of a non square integrable represen-

tation to be zero.

Theorem 5 is true for any nilpotent group and is of course an immediate

corollary of Theorem 4. We might note that the theorem could be written as

d(ir)2 = |x»(F)|2 = Xr(PP) where a -* a is the conjugate linear antiautomor-

phism of the universal enveloping algebra extending the map x -* — x of n. As

such it is a direct extension of an observation of Harish-Chandra in [4, p. 40],

that the squares of the degrees of the representations of a compact group could

be read off in this way from an element of the center of the enveloping algebra.

Indeed the similarity with compact groups goes even deeper, for let us write

Weyl's degree formula for a representation in terms of its highest weight A

relative to a fixed Cartan subalgebra as

(•) <*(*) = IL (A + p,a)/(p,a)
o>0

where the product is taken over all positive roots and where p is half the sum of

the positive roots. Now according to general principles of Kostant, the represen-

tation it of highest weight A corresponds to a linear functional j\it) on the Lie

algebra in a fashion entirely analogous to the nilpotent case. Indeed f(ir) may be

taken to be A + p on the Cartan subgroup in question and zero on the

orthogonal complement of it, and now a moment's thought shows that the right-

hand side of (*) is a formula for the Pfaffian (relative to a fixed volume element)

of the skew two-form ¿yw which is defined in exactly the same way as above. The

analogy is then complete and Theorems 4 and 5 may be viewed as direct

generalizations of the Weyl degree formula for compact groups.

These considerations immediately suggest that such formulas for formal

degrees should have a quite general validity at least to the extent of the validity

of the Kostant principle which says that there should be some kind of

correspondence between linear functionals on the Lie algebra of a group G and

irreducible representations of G. Indeed one may plausibly conjecture when a
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representation ir(f) associated with a linear functional is square integrable as

follows: Let G¡ be the isotropy group of/ in G; then ir(f) should be square

integrable or otherwise "discrete" if and only if G¡/Z is compact where Z is the

center of G. This is precisely true for nilpotent and compact groups. It is also true

for connected reductive groups if one associates linear functionals to the known

representations of semisimple Lie groups in the usual way. The results in [13]

suggest that it should be true for solvable groups. One would also conjecture that

the formal degree of ir(f) would have something to do with the Pfaffian of b¡. For

nonunimodular groups, one has to modify the definition of square integrability

and the notion of formal degree, but this is reasonably well understood now ([7],

[10], [13], [17]). The formal degree becomes a selfadjoint operator in this case, but

that simply means that the analogue of the Pfaffian polynomial P cannot be

expected to lie in the center of the enveloping algebra in the nonunimodular case,

but rather should be a semi-invariant.

After these extended remarks of a conjectural nature, let us return to the

subject proper under discussion. Our next theorem describes in explicit terms the

Plancherel measure on N. For this we need a normalization of Haar measure pN

on N which together with our choice of measure on N/Z gives a choice of Haar

measure pz on Z. These choices give rise to a choice of Lebesgue measure dn, on

n, dz on 3 and dñ on n/3 so that dn = dridz symbolically. In turn we shall demand

that the Fourier transform of functions on n, 3 or n/3 into functions on the linear

duals n*, 3*, (n/3)* be an isometry, and this determines a normalization of

Lebesgue meausre dn*, dz* and dv on n*, 3*, and (n/3)* respectively. Symbolical-

ly we have dn* = dz*dv.

The following is just what one might expect.

Theorem 6. If N has square integrable irreducible representations, Plancherel

measure is concentrated on the set of square integrable representations and when

transported via the map <b of Theorem 2 to 3* - <V, Plancherel measure is

c\P(x)\dz*(x) where P is as before, ande = «! 2", where 2« is the generic dimension

of the orbits in n*.

The rest of this section will be devoted to the proofs of Theorems 4 and 6. For

the proof of Theorem 4 we proceed by induction on the dimension of n. First of

all, we fix a square integrable representation ir(h) of N, and if the dimension of

the center 3 of n is larger than one there is a nonzero central subalgebra 30 with

corresponding subgroup Z° such that « = 0 on 30 and ir(h)(Z°) = 1. We replace

« and w(«) by the corresponding h° G (3/30)* c 3* and ir(h°) of N/Z". We note

as in Theorem 1 that 3/30 is the center of n/3, and we apply our inductive

assumption to n°, irQi") and n/30. The desired assertion for ir(h) now follows

immediately as d(ir(h°)) = d(ir(h)) and F(«°) = P(h).

We are reduced to the case when 3 has dimension one and «(3) ¥= 0. As in the

proof of Theorem  1, we select an element x G 3 with [n,x] C 3 and let
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rio = M[k,*] = 0} and select y G rto such that [y,x] = z where z G a with

h(z) = 1. Let/be any linear functional on n restricting to « on 3 so that/(jc) = 0,

and let /0 be its restriction to n0 and w0 the corresponding representation. As in

Theorem 1, conjugation of f0 and tr0 by the one parameter group exp(sv) gives rise

to a one parameter family % of representations of N0 with linear functional /

where/(x) = s. The proof of Theorem 1 also provides the very important piece

of information that 30 = a + (x) is the center of n0. Now fix a volume element oq

on n0/ao and construct the Pfaffian polynomial %. We also choose a volume

element a on n/3 as follows: Choose a linear subspace Kof no complementary to

(x) and containing 3. Then V/¡ is naturally isomorphic via a projection map/ to

rio/30. Then n/3 « F/3 ffi (x) ffi (y) and F/3 and x are orthogonal with respect to

the form b¡. By replacing v by y + u for some ti in K we may ensure that v is

orthogonal to V with respect to b¡ and we assume this done as it does not change

anything done previously. Then V/0 is orthogonal to (x) + (y) with respect to b¡

and we define the «-linear form on n/a ^ V/i ffi (x) ffi (y) by

a(J~x(ux) • • -j~x(uk),x,y) = a0(Mi> • • • "*) where the u¡ are in rto/âo- Now since

b}(x,y) = I, and bf(j~x(«,),/-'(">)) = bfo(uhUj), it follows that Z>(/) = JJ(/0).

Moreover, since /, is conjugate to / by the volume preserving transformation

ad*(exp(jy)), P0(f0) = P0(f) for all s.

Now by our inductive assumption the formal degrees d(irs) are all equal to

^o(/o) = P(J)- We write N as the semidirect product of NQ and the one

parameter subgroup {exp(iv)} and then we may realize it = ind(/V0, N,ir0) on the

Hubert space L2(R,H(iiq)) of square integrable functions on the line with values

in the Hubert space of ir0. (This is achieved by restricting functions in the induced

representation space to the line given by the one parameter group {exp(iv)}.) The

representation it then has the form

(tr(n0 exp(ty))<p)(s) = ir0(s ■ n0)<f>(s + i) = rç(«o)<f>(s + 0

where j • «0 = exp(jy)«0 exp(-jv). We fix a m G H(tt0) and consider a function

<p in L¡,(R, H(tr0)) of the form </>(s) = q(s)u where q is a scalar function. Now the

matrix coefficient (w(«0 exp(/y))<í>,<í>) is given by

(tt0(s • n0)u,u)q(s + t)q(s)ds.
-00

This function is to be integrated over N/Z and we do so by pulling it back to

n/8. More precisely n/3 « V/0 © (x) © ( v) and define a map from n/3 to N/Z by

(v + rX + ty) \~* exp(v)exp(rx)exp(ty) where v E V/¡ and exp(v) is the ob-

vious element of exp(V)/Z C N/Z. Under this map it is clear that Lebesgue

measure goes over into Haar measure on N/Z and that our normalizations are

correct if we use dvdtdr on n/3 where dv is correctly normalized by the

isomorphism of V/i with n0/30- We have to evaluate the following integral:
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(*)    /    \Wn)*,fa)\2dñ

dvdrdt.

N/Z

= XIXI fv/i XI %(s ' (exp(¿)exp(rAr))M,«)ff(s + t)q(s)ds

The innermost integrand is for fixed s a function tf/(v, r, t), and as

s ■ (exp(v)exp(rX)) = (s • exp(v))(s • exp(rX))

= (s ■ exp(v))exp(rX)exp(rsz)

and as

ir0(exp(rsz))u = exp(2OT>í)w,

y¡i(v,r,t) = \¡^v,0,t)exp(2iTirs) is periodic. We interchange the v and r integration

and the inner part of (*) is then

/|x;
2

dr\p(v,0,t)q(s + t)q(s)txp(2iTirs)ds\

which may be evaluated by the Plancherel formula for the line and is equal to

/" \tf.v,0,t)q(s + t)qlsj\2ds.

Thus (*) is

fZfv/JZ \M^p(v))u,u)q(s + t)W)\2dsdvdt.

We interchange order of integration and perform the v integration first and the

result of that integration is recognizable as

/   \(%(exp(v))u,u)\2dv = d(%)->(u,u)2

which is independent of s as noted above and equal to |F(/)| l(u,u)2 by

induction. The entire integral is then

\p(fV(u,u)2r r \g(s+tWfdsdt
J — 00  a/-CO

which is \P(f)\~x(u,u)2(q,q)2 = \P(f)\'l(fa<t>)2 as desired. This completes the

proof.

We now turn to the proof of Theorem 6. First let us note that the Plancherel

measure on Ñ is concentrated on the set of square integrable representations,

provided that that set is nonvoid. For if « is a linear functional on 3, the center

of n, let X(h) be the corresponding character of Z, A(«)(exp(2)) = exp(27H«(2)),
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and let U(h) be representation of N induced by X(h). By the theorem on induction

in stages the regular representation w is the direct integral of the U(h) with respect

to Haar measure dz*(h) on 3*. Since the Pfaffian polynomial is nonzero, its zero

set is of measure zero and so we can replace 3* by 3* - <V = {h: P(h) ¥=■ 0} and,

for « in this set, U(h) is a multiple dim 7r(«)(w(«)) of the irreducible square

integrable representation ir(ti) corresponding to n. Then

(*) ,r=£^(dim,r(«)M«y¿*(")

is the central decomposition of it, showing that Plancherel measure is concentrat-

ed on the square integrable representations.

To compute the measure precisely, let <fo be a C°° function of compact support

on N, and let ^(n) = </>(exp(«)) be the corresponding function on n. Plancherel

measure p in this case may be viewed as a measure on 3* — <V such that

<p(0) = h(e) =¿_fvTrace(7K«)(«í»))t//t(«)

where 0^Ä) is the distribution character of ir(h). But according to [11], 0^) is

obtained as follows in this case. Let 0(h) = H(h) be the corresponding orbit

(which is an affine hyperplane). The group action of N on 0(h) gives rise to a

linear isomorphism j(h) of n/3 (3 being the isotropy algebra of f) onto the tangent

space of the orbit 0(h) — H(y). The tangent space of the hyperplane H(y) is of

course precisely a1 C n*, the annihilator of 3, which in turn can be canonically

identified to (n/3)*. The natural bilinear form b(f) on n/3 is then transported via

/(/) to 3X « (n/3)* giving rise to a bilinear form on the tangent space to the

orbit 0(h) at the point / This defines a nondegenerate two-form to on the orbit

0(h), and if 0(h) has dimension 2«, u" is a volume form on 0(h). Finally u"

defines a measure on 0(h) which we view as a measure ph on n* concentrated on

the orbit 0(h). The distribution character ©^ of the representation is then given

by

%.)(*) = c-1^,*! GO <*»*(>•)

where (fr (x) = tp(exp(x)) and where ^ is the Fourier transform of <h and where

c = n! 2" where 2« = dim 0(h) [11].

Let us examine more closely the construction of the two-form to on 0(h). From

the definition of the action of N on 0(h) we see at once that the isomorphism of

n/3 onto the tangent space to 0(h) at a point/, that is 3X ¡at (n/3)*, is given by

the map t(b(f)) of Lemma 3.1 associated to the bilinear form b(f). Therefore

the skew two-form u at the point/is precisely b(f)* of Lemma 3.1. Now Lemma

3.1 allows us to evaluate the Pfaffian of b(f)*, or in other words the ratio of a"

to the fixed volume dv on 3X =¡¿ (n/3)*. The result is that if we normalize
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Lebesgue measure dv on (n/3)* sa 31 so that the Fourier transform is isometric

on n/3 to (n/3)* where we use our preselected choice of Lebesgue measure on n/3,

and if we translate v from 31 onto 0(h) = H(y) = 31 + /, calling this measure

vh, then d\ih = \P(h)\~xdvh. Therefore

%»(*) = c-'\P(h)\~x S fa(y)dvh(y)

and so

¿.(e) = fa(0) =¿_fyc-'|F(«)|-,(/^1(y)^(y)) dp(h)

where u is Plancherel measure. But on the other hand,

fr^f b(y)<h(y)) d**(h) = X *■(/)«*•(/) - *i(°) - *W

by the Fourier inversion formula (Plancherel's theorem for the vector group n)

and by our choice of normalizations. By comparing these two formulas, we find

that Plancherel measure is given by d¡i(h) = c\P(h)\dz*(h) on 3* — <V, and this

completes the proof.

5. We discuss a short example which shows that formal degrees of the square

integrable representations of a group with compact center need not be bounded

away from zero. Indeed according to Example 2 in §3, we may find an n with 3

of dimension 2 with a basis 2, w, and dual basis 2*, w* so that the Pfaffian

polynomial P is given by P(haj,) = a + Xb where haJ>(z*) = a, haJ)(w*) = b and

where X is irrational. Indeed n could be taken to be four dimensional with

(x,y,z,w) as a basis and [x,y] = 2 + Xw and all other brackets zero. We let K be

the group (exp(«2* + mw*): n, m integers} and consider G = N/K which has a

compact center. The square integrable representations of G are precisely those of

N which are trivial on K, that is those w(«a¿) with a and b integral and not both

zero. The formal degrees of these representations are the same when viewed as

representations of N or as representations of N/K and are given by d(ir(hnym))

= I« + Xm\ which is not bounded from zero as («, m) varies over nonzero lattice

points.

6. We turn now to the following situation. Suppose N is nilpotent with center

Z, and let T be a discrete uniform subgroup of N, and let U = ind(r,A', 1) be

the natural representation of N by translations on L2(G/T). Then U decomposes

as a discrete direct sum 2 m„'n of irreducible representations of N, with finite

multiplicities mm see [1]. Our object is to determine which square integrable

representations it occur and with what multiplicity. We shall obtain a very simple

formula but in order to state it we need to normalize a volume form on n/3 up

to a sign, or equivalently a Haar measure on N/Z. We do this by simply declaring

that the quotient N/Z ■ T has volume equal to one. This determines a Pfaffian
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polynomial P (up to sign) on a*. Moreover T n Z is a lattice in Z and

log(r n Z) is a lattice L in a; we let L* be the dual lattice in a*- The condition

for a general representation it to occur in U is a kind of complicated integrality

condition ([9], [5], [14]); however, for a square integrable representation ir(h)

= <b(h), « G a* - <V, as given by Theorem 2, the condition becomes much

simpler, and moreover its multiplicity m^ is given, as one hopes for, by the

formal degree as normalized by the choice of Haar measure.

Theorem 7. The square integrable representation ir(h), « G 3* — <V, occurs in U

if and only if h E L*; moreover, its multiplicity m^ is \P(h)\.

Proof. As usual we proceed by induction on the dimension of N, the theorem

being obvious in the abelian case. Recall that the existence of the discrete

uniform subgroup V implies that n has the structure of a Lie algebra over the

rational number field with a distinguished rational form. We may speak of

rational subalgebras |Cn and the corresponding rational subgroups H

= exp(f)). Note that a subgroup H is rational if and only if T D H is cocompact

in H. We first claim that the proof of our theorem may be reduced to the case

when the center Z of N has dimension one, for suppose this dimension is larger

than one and that w = ir(h) is some square integrable representation where

« G 3*. It is clear that « must be in L* if it is to occur in the representation U

since U is trivial on the lattice exp(L) C Z. It follows then that if tr(h) occurs in

U or if « E L*, then there is a rational subgroup Z° ¥= (e) of the center Z on

which it is trivial. We replace N by N/Z" and T by T • Z°/Z° and it is evident

that w(«) occurs in L2(N/T) if and only if it occurs in L2((N/Z°)/(T ■ Z°/Z°))

and with the same multiplicity. Finally the Pfaffian polynomial for N/Z0 which

is defined on (a/a°)* G 3* is the restriction of the corresponding Pfaffian

polynomial on 3*. Thus our assertion for N would follow immediately from the

result for N/Z ° which is of smaller dimension.

Henceforth we assume that Z has dimension one; we fix a nonzero element x

not in 3 but so that [n,x] C 3. We note that it is possible to choose x to be

rational [9]. Not only that, but let z G a be chosen so that exp(z) is a generator

for T H Z, and then choose x so that exp(z) and exp(x) are generators for

T n Z0 where Z0 = exp(ao), 3o = ä + (x). As usual we form the centralizer no of

x which is of course also a rational ideal of n, and we choose our element v not

in n0 to be rational also. In fact it is wise to choose y somewhat more carefully

as follows: the group T • N0/N0 C N/N0 is a group isomorphic to the integers, and

let y G T be an element in T whose image in T • N0/N0 is a generator. Then let

y be log(y), and then [x,y] E 3 and indeed [x,y] = rz where r is a rational

number. Indeed since x, y, and z span a three dimensional rational Heisenberg

algebra b, and since r n H is a discrete subgroup generated by exp(x), exp(y)

and exp(z), one can conclude from the known structure of such groups [1] that

the rational number r is an integer.
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The square integrable representations of N are parameterized by 0 # « G 3*

or equivalently by «(2) = s which is a nonzero real number. Let tt(s) be the

corresponding representation. As we have already noted 5 must be an integer if

it(s) is to occur in U, and the tt(«), « G Z, are the representations corresponding

to points in the lattice L* C 3*. Let P be the Pfaffian polynomial on 3*

normalized as in the discussion preceding the theorem; then P can be viewed as

a function of s, and indeed is cksk for some constant ck where 2k + 1 is the

dimension of n. Thus we must show that ir(s) occurs in U if and only if í = « is

integral and that ir(n) occurs with multiplicity \ck nk | (and hence in particular that

ck is an integer).

Let us consider the group N0 and the discrete subgroup T0 = T n N0 and the

corresponding representation U0. We know from our earlier discussion that

30 = 3 +- (x) is the full center of rto, and {2, x} is a basis for ¡q such that exp(2) and

exp(x) are a basis for T (~) Z0. We may parameterize f0 G 3* by its values

/0(z) = s and/0(x) = t. The Pfaffian polynomial % for N0 is a function on 3* and

hence is really a polynomial in s and t. We have already seen that % does not

depend on t (since rto admits an automorphism fixing 2 and moving x to x + az

for any a). Thus Io(s,t) = ct_is*-1, k — 1 being the proper degree of homogene-

ity. The normalization is determined by a choice of volume form w0 on rto/30 so

that N0/Z0 • T0 has volume one. From the way x and y were chosen relative to T

it is evident that the proper normalization of a volume form w on n/3 so that

N/T • Z has volume one is achieved by setting u(x,y,Ui,...tu2k-2) =

u0(ux,... ,«it-2) with u¡ G n0/30. Now since [x,y] = rz, a simple computation

shows that P and % are related by P(s) = Bj(s,t)rs so that P(s) = rck.xsk and

hence ck = rck-X.

Now by induction our theorem is true for N0; the square integrable represen-

tations of N0 are parameterized by 3* — <V0 where <Vq is the zero set of ig, or in

other words by pairs (s, t) of real numbers with s ¥= 0. The lattice L* C 3*

consists of those (s, t) which are integral by our choices of 2 and x, and the square

integrable representation ir0(s, t) occurs in UQ if and only if s and t are integers,

and it occurs with multiplicity mo(s, t) = \ck-X s*_I |. Hence in particular ck-X is an

integer and hence so is ck = rck.x.

If m(s) is the multiplicity with which tt(s) occurs in U the argument in [9, p.

153] gives an algorithm for determining m(s) in terms of the m0(s,f). More

precisely, since ir0(s, t) induces ir(s) we have to look at the entire N-orbit of some

ir0(s, t); but this consists of the ttq(s, t) as r varies over R, with s fixed. We let A'(s)

be the set of all such representations which occur in U0 and by induction this

consists of the ir0(s, t) with t integral (if s is integral) and the void set if s is not

integral. We note then that T operates on A'(s) and we let A(s) be a set of

representatives. The formula is then

« m(s) = 2 »*o(í,0       (t G A(s)).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



462 C. C. MOORE AND J. A. WOLF

This already tells us that m(s) > 0 if and only if 5 is integral which is the first

part of the theorem telling us which representations ir(s) occur in U. Moreover,

we know precisely how T operates on this set, for r0 = N0 n T operates trivially

and so we only have to look at T/T0 which has for generator the image of exp(y).

Since [x,y] = rz, it follows immediately that the action of this generator is

iT0(s,t) -> Tto(s,t + sr). Therefore, we may pick A(s) = {(s,t) with t E Z, 0 < t

< sr} which has sr elements. Since m0(s,t) = |cJfc_1 j*-1 ) (independent of /), the

formula (*) immediately yields m(s) = \(rs)ck-Xsk~x\ which by inspection is the

absolute value of the Pfaffian polynomial P(s). This concludes the inductive step

and the proof of Theorem 7.
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