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L O C A L  A N D  G L O B A L  E Q U I V A L E N C E  F O R  F L A T  

A F F I N E  M A N I F O L D S  W I T H  P A R A L L E L  

G E O M E T R I C  S T R U C T U R E S *  

0. I N T R O D U C T I O N  

Euclidean space forms are usually studied under considerations of affine 
equivalence ([2], [3], [4], [8], [10]). In dimensions 2 and 3, one easily 
contrives ad hoc methods for refining the affine classification to an isometric 
classification [10, pp. 77-79 and pp. 123-124]. In this regard also see [5]. 
Here we give a general method for the isometric classification of complete 
flat riemannian manifolds in a fixed affine equivalence class. We then extend 
the method to a study of the similar question for complete fiat affinely con- 
nected manifolds with parallel torsion tensor and an arbitrary family of 
parallel tensor fields. The latter could be a riemannian or pseudo-riemannian 
structure, a kaehler structure, a product structure, an absolute parallelism, or 
some combination. 

1. E U C L I D E A N  SPACE FORMS 

Fix a connected n-dimensional complete flat riemannian manifold M. It 
has universal riemannian covering p:En~M where E n is euclidean space, 
and this identifies M with D ~ E  n where D is a properly discontinuous group 
of rigid motions acting freely on E n. 

Identify E" with real number space R" by choice of an origin 0 and an 
orthonormal frame at 0. As usual, GL(n, R) denotes the group of all invert- 
ible linear transformations of R ", and O(n) is the orthogonal group. The 
affine group of R" is the group A(n) = R n. GL(n, R) consisting of all 

( t ,g) :x-~t+g(x) ,xeRn;  here t eR"  and g~GL(n,R). 

The euclidean group is the subgroup E(n)= R". O(n); it consists of all the 
rigid motions. 

Recall M=D~E ~ and note DcE(n)cA(n). We denote normalizer by 
NA(,)(D)={aEA(n):aD~-I=D}. For example, let Z n denote the integer 
lattice in R" and let GL(n, Z) denote the group of integral matrices of determi- 
nant __+_ 1 ; then NA(~)(Z ~) = R~. GL(n, Z). 
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THEOREM 1. The subset E(n)~{ysA(n):  7DT-lcE(n)}/NA(,)(D) of  the 
double coset space E(n)~A(n)/NA(n)(D), is in bijective correspondence with 
the set of  all isometry classes of  riemannian manifolds that are affinely equiv- 
alent to M = D ~ E " .  The double coset E(n).7.NA(,)(D ) corresponds to 
the isometry class of  (Th?- X )~E, .  

Every flat riemannian n-torus is affinely equivalent to Z " ~ E  ". If  y = (t, g) 
~A(n) then yZ" 7-1 = g (Z .) c E(n). Thus the special case D = Z" of  Theorem 
1 is as follows; this is equivalent to [10, Lemma 3.5.11]. 

COROLLARY. The double coset space O(n)~GL(n,  R)/GL(n, Z) is in 
bijective correspondence with the set of  all isometry classes of  flat riemannian 
n-tori. The double coset O(n)'a'GL(n, Z) corresponds to the class of  
g ( Z n ) \ E  n. 

Proof. Let tceE(n), yeA(n) with 7 Dy - l~E(n ) ,  and fi~NA(,)(D ). Then 
the manifolds ( y O ? - l ) ~ E "  and (~vf iD~- ly -~c-a )~E"  inherit complete 
flat riemannian structure from E n, and ~c induces an isometry of the first 
onto the second. Thus the correspondence of  Theorem 1 is well defined. 

Let M i be a riemannian manifold and f : M - + M  1 and affine equivalence 
(connection preserving diffeomorphism). Then 3/1 is connected, flat and 
complete, so E" is its universal riemannian covering manifold. Let D~ be 
the group of deck (covering) transformations. Then D i ~ E(n) because the 
covering is riemannian. Now f l  lifts to an affine transformation 72 EA(n) 
such that ylOyl- 1 = 3 2  =E(n),  so E(n)" Yl "NA(,)(D) corresponds to the 
isometry class of  M2. Our correspondence is proved surjective. 

Let M2 be another riemannian manifold, f2:  M ~ M E  an affine equivalence, 
D 2 c E ( n )  the group of  deck transformations of the universal riemannian 
covering En-*M2, and ]J2~A(n) a lift off2. Now suppose that there is an 
isometry k: M2 ~/1//2. Then klifts to a rigid motion ~ ~ E(n) with ~Dllc- 1 = D2" 

Thus so Now 
• NA(,)(D) = E(n). 72 "NA(,)(D), so our correspondence is bijective. 

Q.E.D. 

2. FLAT AFFINE MANIFOLDS 

Let G be a Lie group. We view its Lie algebra g as the set of  all tangent 
vector fields on G invariant by all left translations t : x ~ t x  (t, x~G). There 
is a unique affine connection Fa of G such that the fields ~ f l  all are parallel. 
Fa  is complete, is flat (curvature tensor zero,) and has parallel torsion tensor 
given by T(~, t/) = - [~, ~/]. A tensor field S on G is F~-parallel if and only 
if it is invariant by every left translation. We refer to F~ as the left translation 
connection on G. For example, Fit, is the euclidean connection. 
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Let Aut(G) denote the Lie group of all continuous automorphisms of G. 
The semidirect product A(G)= G.Aut (G) is the manifold G x Ant (G) with 
the group law (t, g)(u, h)=(t.g(u), gh). A(G) acts on G by (t, g ) :x~t .g(x) .  
A(G) is the affine group of G in the sense that it consists of all connection- 
preserving diffeomorphisms of (G, FG). For example, Aut(Rn)= GL(n, R) 
and A(Rn)=A(n). Compare [1] and [9]. 

Let D be a subgroup of A(G). Suppose that D acts freely and properly 
discontinuously on G, i.e. that G ~ D \ G  is a covering space. Then D \ G  
inherits a connection FD\ a from Fa. Evidently ( D \ G ,  F m ~) is a complete 
affinely connected manifold with vanishing curvature and parallel torsion. 

Let (M, F) be any connected, complete fiat affinely connected manifold 
with parallel torsion tensor. Using the Lie algebra structure obtained from 
the negative of the torsion tensor, one obtains a simply connected Lie 
group G, a subgroup D c A(G) that acts freely and properly discontinuously, 
and an affine equivalence (M, F ) ~ D \ ( G ,  F~)= (D~G, Fz~\~). This follows 
directly from the Cartan-Ambrose-Hicks theorem ([6]; or see [10, §1.9]). 
A slightly complicated derivation is given in [7]. The method of [10, § 1.9] 
also gives us 

THEOREM 2. Let p,: (G,, Fo,)-~D,\(G,, to,)= (M,, r~) be universal 
affine covering spaces where the G i are simply connected Lie groups. 

(1) Some open set in (M1, F1) is affinely equivalent to some open set in 
(3/'2, F2) if, andonly if, G1 ~ G2. 
(2) Let xi~Gi, rni=pi(xi), and (0:G1 ~ G2. I f  U is a small connected neigh- 

borhood of 1 in G1 then f(pl(xl.z))=pz(x2.dp(z)) , z~ U, is an affine equiv- 
alence of  a neighborhood of rn 1 to a neighborhood of  m2. Every affine equiv- 
alence (U1, m~)~(U2, m2) of connected neighborhoods is obtained this way. 
Finally f extends to an affine equivalence (M1, F1)~(M2, F2) i f  and only if, 
viewing xi = (x,, 1)eA(G,), x z 1Dzx 2 = ¢x'~ 1Dl xl ~)-1. 

3. P A R A L L E L  GEOMETRIC S T R U C T U R E  

We are going to study triples (M, F, P) where 
(3.1) Mis a connected manifold, 
(3.2) F is a flat complete connection with parallel torsion, and 
(3.3) P is a family {~}i~ i ofF-parallel tensor fields on M. 
Complete connected fiat riemannian manifold is the case where P consists 

of a riemannian metric and F is Levi-Civit/t connection. 
Let (M', F', P') and (M", F", P") satisfy the conditions (3.1) through 

(3.3) with the same index set L By local equivalence we mean an affine 
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equivalence 

f : (u ' ,  -+ (u",  

of I open sets such that for every ieI. By equivalence or 
global equivalence we mean (of course) that, in addition, U' = M' and U" = M'. 

Now fix a triple (M, F, P) that satisfies (3.1.) through (3.3). Express 
(M, F)=D~(G, FG) as in §2, where G is simply connected Lie group and 
DcA(G).  For i~I let ~i denote the Fa-parallel (i.e., left-invariant) tensor 
field on G that projects to rc,; denote Pa = {~, :iel}. Now 

(M, F, P) = D\(G, F6, P~) 

with D contained in 

A ( G : P ) = ( ? e A ( G ) : ? ( ~ , ) = ~ i  forall ieI} .  

In the flat riemannian case, A(G :P) is E(n). 

THEOREM 3. The subset A(G:P)~(yeA(G):?D?-* cA(G:P))/NA,a)(D) 
of the double coset space A(G:P)\A(G)/Nxto)(D), is in bijective correspon- 
dence with the set of all equivalence classes of triples that O) satisfy (3.1) 
through (3.3), (ii) are affinely equivalent to (M, F), and (iii) are locally 
equivalent to (M, F, P). The double coset corresponds 
to the equivalence class of ( ? D?- ~ ) \ ( G, F o, Po ). 

Proof We imitate the proof of Theorem 1. Let x~A(G:P), yeA(G) with 
?D?-IcA(G:P), and ~eNxto)(D). Then (?D?-I)\(G, Fo, P~) and 
(~c?c5D6-1?-1 x-  1)~(G ' F~, P6) have the required structure and are equiv- 
alent by re. Thus the correspondence is well defined. 

Let (M', F', P') satisfy (3.1) through (3.3) and be locally equivalent to 
(M, F, P). As (M', F') is complete, connected and locally affine equivalent 
to (3//, F), we have (M', F')=D*~(G, FG) for appropriate D 'cA(G) .  
Define P*=(~'i:i~I) where ~'i is the lift of n'i from M' to G. According to 
Theorem 2, the local equivalence of (M', F', P') with (M, F, P) has lift 
F~A(G) such that each F(~'i)=~i. Now F induces an equivalence of (M', 
F', P') with (FD*F-I)\(G, F~, P6). Thus we have expressed (M', F', P ' )=  
=D'~(G, F a, P6) where, necessarily, D'=A(a:e). Now let f ' : (M, F)~ 
~(M' ,  F') affine equivalence. Thenf '  has lift ?'~A(G) such that ?'D~,'-I = 
= D' c- A(G :e). Now A(G :e)" )," NA(G)(/9) corresponds to the equivalence 
class of (M', F', P'). Our correspondence is proved surjective. 

Let (M", F", P") be another triple that satisfies (3.1) through (3.3), is 
affinely equivalent to (M, F), and is locally equivalent to (M, F, P). As 
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above,  (M", F", P" )=D"~(G,  Fo, Po),  and we have y"eA(G), such tha t  

7"D7"- ~ = D" c A(G :P). Suppose  tha t  we have an equivalence 

k: (M', F', P') --+ (M", F", P"). 

Then  k lifts to an element  ~: e A(G :P) such tha t  xD ' tc -  1 = D". N o w  y"D7" - 1 = 
=D"=tcT'Dy'-~tc -~, so y" etcy" NA(~)(D ). N o w  A(G:P)'y"'Nx(G)(D)= 
= A(G:P)"  y "  NA(~)(D), so our  correspondence  is bijective. 

Q.E.D.  

The  flat connect ion F on M =  D ~ G  is derived f rom an absolute  paral lel ism 
precisely when D acts by  pure  t ranslat ions ([-11, Propos i t ion  2.5]; or  see 
[-6]). In  tha t  case D c G c A(G),  we compu te  

(t, g) (d, 1) (t, g ) - i  = (t.g (d), g) (g-1 ( t - l ) ,  g - l )  = 
= ( t . g ( d ) . t  -1, 1) 

and see (t, a)D(t, g)-  ~ = t'O (D). t - ~ c G c A(O :e). Now define Aut ( G : P )  = 
{g e A a t  (G):  O(~)  = ~, for  every ieI} ,  so tha t  A(O:e)= O.Aut(~: P) semi- 

direct product ,  Then  T h e o r e m  3 specializes as follows. 

C O R O L L A R Y .  Suppose that F is the connection of an absolute parallelism 
on m.  Then the double coset space Aut(G:P)~Aut(G)/NAut(~)(D) is in 
b(iective correspondence with the set of  all equivalence classes of triples that 
(i) satisfy (3.1) through (3.3), (ii) are affinely equivalent to (M, F), and (iii) 
are locally equivalent to ( M, F, P ). The double eoset Aut(G : P ) . 9 . N A.t ( G) ( D ) 
corresponds to the equivalence class of  g (D)~(G,  F~, Po). 

In  case G = R", T h e o r e m  3 and  its Corol la ry  specialize to T h e o r e m  1 and 
its Corol lary.  
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