GEOMETRIC REALIZATIONS OF
REPRESENTATIONS OF REDUCTIVE
LIE GROUPS

JOSEPH A. WOLF

1. General idea. Let G be a reductive Lie group, H= Ty X Ay a Cartan sub-
group, and Py=MAN a cuspidal parabolic subgroup associated to H. We find
complex manifolds X on which G acts, and certain orbits Yy =G (xgz)<= X, such
that Py is the G-stabilizer of the maximal complex analytic piece S|, ,; of Y that
passes through xg. This is done so that the isotropy subgroup of G at xy is UAN
with T Uc M, and a certain quotient U/Z is compact. If [u] € U and ¢ e 4 then
[1®e“]e(UAN)” defines a G-homogeneous Hermitian vector bundle ¥, ,— Yy
that is holomorphic over the complex analytic pieces. Then G acts on the space
HYY(¥",,,) of L, partially harmonic (0, g)-forms with values in ¥, ,, by a unitary
representation n} ,. Roughly speaking we realize every H-series representation
of G by the 7 ,. The relative discrete series, which is an interesting special case,
plays a key role.

2. The flag manifold orbits. We work under the following fixed hypotheses.
G is a reductive Lie group, i.e., its Lie algebra g= ¢ @ g, with ¢ central and g, semi-
simple. Further
(2.1 if ge G then ad(g) is an inner automorphism on g.

Finally, G has a closed normal abelian subgroup Z such that
(2.2a) Z centralizes the identity component G° and |G/ZG°| < oo,
(2.2b) ZNG° is cocompact in the center Zgo of G°.

Let G =G%/Z g and G its complexification. If P is a parabolic subgroup of G
then by (2.1), G acts on the complex flag manifold X =G¢/P by: g(xP) is the point
at which G has isotropy group ad(g) ad (¥) P. This action is holomorphic.

Fix a Cartan subgroup H<=G. One can construct pairs (X, xg) such that
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xyeX complex flag, with the following properties: The G-normalizer N, of
the holomorphic arc component (maximal complex analytic piece) S;,,,; of G(xy)
through xp has the same Lie algebra as a cuspidal parabolic subgroup Py=MAN
associated to H. Further Si,,,; has an N, -invariant positive Radon measure.
Finally G has isotropy group UAN at xg with T« U< M and U/Z compact. For
example, one could take P to be a Borel subgroup of G.

We remark that G permutes the holomorphic arc components of G(xg), and
that the component through gx, (which is Sy, =¢S[,;) has G-normalizer

ad(g) Niyy-

3. Partially harmonic L, forms. Let [u]eU and cea*. Denote g(a)
=%.tracen (ada). Define a representation of UAN on the space V, of [u] by v, ,(uan)
=e'"*?(a) u(u). Then we have

(3.9 PV, .—G/UAN=G(xy) associated complex vector bundle.

There is a unique assignment of complex structures to the pieces p~ ! Sy, stable
under G, such that ¥ mﬂ'%m] is a holomorphic vector bundle.

Let 7 —G(xy) be the complex G-homogeneous bundle such that each 7| Stgpy1
is the holomorphic tangent bundle there. By partially smooth (p, q)-form with
values in ¥°, , we mean a measurable section of ¥, , ® A*T * ® A%T * that is C®
over each holomorphic arc component. Let 4™9(¥", ,) denote the space of all
such forms. The Dolbeault operator of X specifies operators 0:479(¥", ,)
—>AP** (¥, ). Using K-invariant metrics, where K is the fixed point set of a
Cartan involution that stabilizes H, we get Hodge-Kodaira maps

AP, B aera (v ) B ara(y, )
where n=dim¢S,,;. That specifies a pre-Hilbert space
Ag,q(’Vu,a)={wEAp,q(Vu,q): J\ < Jv OA #(D) d(kZ)< OO}
K/Z Slkxm} ‘

L59(v",,,) is the Hilbert space completion. The partial Hodge-Kodaira-Laplace
operator,

(3.2) O=(0+0%2=30*+0%*3, 0*=—#0#,

is essentially selfadjoint from domain {weA™(¥", ,):supp(w) compact}. Its
kernel

(33 HE (Y, o) ={we 8 (¥, o): O0*(w)=0}
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is the space of square-integrable partially harmonic (p, q)-forms with values in
¥ ... G acts there by a unitary representation =2 4. We write nZ , for 32

4. Main theorem. Following the notation used in the preceding article, ' de-
notes the elements that give rise to inner automorphisms: G'=Z4(G% G°,
M'=2Z,,(M°) M° and U'=Z,(U®) U°. Let L} denote {veit*:e’ defined on T°
and m-regular]. We are interested in the classes of the u, ,=Indy+y(x® p,)
where p1,€ U° has highest weight v and yeZ,(U°);, & =e"|center(vo)- Note that p,
is irreducible if veL;.

4.1. THEOREM. Let [y, ,]€ U as above where v +g,e L;. Let cea* and nl ., . be
the representation of G on HY (", ).

1. The irreducible subrepresentations of T , , are just its constituents equivalent
10 irreducible subrepresentations of H-series representations of G. Let ©% , , , de-
note the sum of their distribution characters. Then, in the notation of the preceding
article,

42) T (10, =(~Ipteera @

q20

Rx,v+et, o

2. There is a constant by 20 dependent only on [m, m] such that if |{v+ o, Y|
>by for all YeZ, and if q#qu(v+0,), then HY (¥, ;)=0.

3. If qq is an integer such that q# q, implies HY (¥, . ,)=0, then [n%, ] is
the H-series class [7, 44, o] '

The rest of this article is a brief sketch of the idea of proof of Theorem 4.1.

5. Reduction to discrete series. Let #? , denote the (unitary) representation
of M on H}*(¥", )where ¥, =7 One can prove

Hy, By, v+ @ l M(xm)

(5'1) n?{, v,o=IndPHTG(’1;1(,v® eid)'

The Plancherel theorem (3.1.3) of the preceding article combines with (5.1) to
prove the assertion on the irreducible constituents of n} , , in Theorem 4.1. If one
knows the corresponding discrete series result for the #% ,, then Theorem 4.1 fol-
lows by standard H-series considerations.

6. Idea of proof for discrete series. Considerations are reduced to the case
where H/Z is compact. Thus G(xy) is an open submanifold of X with a G-
invariant Hermitian metric, and n , , is properly written nd .

One checks that n¢ | is induced from the corresponding representation of G'.
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This reduces Theorem 4.1 from G to G'. There n? ,=y ® n? where n? is the cor-
responding representation of G°. In summary we may assume G connected and
examine its action 7% on HY4(¥, ).

We may assume xz=1-PeG¢/P=X. Root orderings give a Borel subgroup
Bc P of G.. Let yy=1-BeG/B=Y. The holomorphic fibration Y—X gives a
proper holomorphic fibration G(yy)— G (xy). Let £,~G(yg) be the holomorphic
line bundle for e’cH. An L,-version of the Leray spectral sequence, using the
Borel-Weil theorem extended to U/H, gives Hy (& ,)~ HY>4(¥", ) unitary equiva-
lence. These reduce Theorem 4.1 further to the case X=G¢/B and U= H.

In the case to which we are reduced, cohomology consisting of the elements
of HY'9(%,) can be compared with Lie algebra cohomology. The alternating sum
formula (4.2) can then be extracted.

The vanishing theorem (part 2 of Theorem 4.1) is a Lie algebra computation
of Griffiths and Schmid.

In the case considered (after our reductions) in part 3 of Theorem 4.1, the
alternating sum formula shows that % has relative discrete series component
T,+o A consequence of the Plancherel Theorem (see Corollary 3.6.1 of the pre-
eeding article) eliminates other constituents from the direct integral expression of
n¥. Thus nd°=m,,,.

7. Remark on harmonic spinors. One can also follow these considerations
with L, spinors killed by Dirac operators. The vanishing theorem (Parthasarathy)

is better, but the result is not so geometric.
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