GEOMETRIC REALIZATIONS OF REPRESENTATIONS OF REDUCTIVE LIE GROUPS

JOSEPH A. WOLF

- 1. General idea. Let G be a reductive Lie group, $H = T_H \times A_H$ a Cartan subgroup, and $P_H = MAN$ a cuspidal parabolic subgroup associated to H. We find complex manifolds X on which G acts, and certain orbits $Y_H = G(x_H) \subset X$, such that P_H is the G-stabilizer of the maximal complex analytic piece $S_{[x_H]}$ of Y_H that passes through x_H . This is done so that the isotropy subgroup of G at x_H is UAN with $T \subset U \subset M$, and a certain quotient U/Z is compact. If $[\mu] \in \hat{U}$ and $e^{i\sigma} \in \hat{A}$ then $[\mu \otimes e^{i\sigma}] \in (UAN)^{\hat{}}$ defines a G-homogeneous Hermitian vector bundle $\mathscr{V}_{\mu,\sigma} \to Y_H$ that is holomorphic over the complex analytic pieces. Then G acts on the space $H_2^{0,q}(\mathscr{V}_{\mu,\sigma})$ of L_2 partially harmonic (0,q)-forms with values in $\mathscr{V}_{\mu,\sigma}$, by a unitary representation $\pi_{\mu,\sigma}^q$. Roughly speaking we realize every H-series representation of G by the $\pi_{\mu,\sigma}^q$. The relative discrete series, which is an interesting special case, plays a key role.
- 2. The flag manifold orbits. We work under the following fixed hypotheses. G is a reductive Lie group, i.e., its Lie algebra $g = c \oplus g_1$ with c central and g_1 semisimple. Further
- (2.1) if $g \in G$ then ad (g) is an inner automorphism on g_C . Finally, G has a closed normal abelian subgroup Z such that
- (2.2a) Z centralizes the identity component G^0 and $|G/ZG^0| < \infty$,
- (2.2b) $Z \cap G^0$ is cocompact in the center Z_{G^0} of G^0 .

Let $\bar{G} = G^0/Z_{G^0}$ and \bar{G}_C its complexification. If \bar{P} is a parabolic subgroup of \bar{G}_C then by (2.1), G acts on the complex flag manifold $X = \bar{G}_C/\bar{P}$ by: $g(\bar{x}\bar{P})$ is the point at which \bar{G}_C has isotropy group ad (g) ad (\bar{x}) \bar{P} . This action is holomorphic.

Fix a Cartan subgroup $H \subset G$. One can construct pairs (X, x_H) such that

 $x_H \in X$ complex flag, with the following properties: The G-normalizer $N_{[x_H]}$ of the holomorphic arc component (maximal complex analytic piece) $S_{[x_H]}$ of $G(x_H)$ through x_H has the same Lie algebra as a cuspidal parabolic subgroup $P_H = MAN$ associated to H. Further $S_{[x_H]}$ has an $N_{[x_H]}$ -invariant positive Radon measure. Finally G has isotropy group UAN at x_H with $T \subset U \subset M$ and U/Z compact. For example, one could take \overline{P} to be a Borel subgroup of \overline{G}_G .

We remark that G permutes the holomorphic arc components of $G(x_H)$, and that the component through gx_H (which is $S_{[gx_H]} = gS_{[x_H]}$) has G-normalizer ad (g) $N_{[x_H]}$.

3. Partially harmonic L_2 forms. Let $[\mu] \in \hat{U}$ and $\sigma \in \mathfrak{a}^*$. Denote $\varrho(\alpha) = \frac{1}{2} \operatorname{trace}_{\mathfrak{n}}(\operatorname{ad} \alpha)$. Define a representation of UAN on the space V_{μ} of $[\mu]$ by $\gamma_{\mu,\sigma}(uan) = e^{i\sigma + \varrho}(a) \mu(u)$. Then we have

(3.1)
$$p: \mathcal{V}_{\mu,\sigma} \to G/UAN = G(x_H)$$
 associated complex vector bundle.

There is a unique assignment of complex structures to the pieces $p^{-1}S_{[gx_H]}$, stable under G, such that $\mathscr{V}_{\mu,\sigma}|_{S_{[gx_H]}}$ is a holomorphic vector bundle.

Let $\mathcal{F} \to G(x_H)$ be the complex G-homogeneous bundle such that each $\mathcal{F}|_{S_{l\sigma \times_H 1}}$ is the holomorphic tangent bundle there. By partially smooth (p,q)-form with values in $\mathscr{V}_{\mu,\sigma}$ we mean a measurable section of $\mathscr{V}_{\mu,\sigma} \otimes \Lambda^p \mathcal{F}^* \otimes \Lambda^q \overline{\mathcal{F}}^*$ that is C^{∞} over each holomorphic arc component. Let $A^{p,q}(\mathscr{V}_{\mu,\sigma})$ denote the space of all such forms. The Dolbeault operator of X specifies operators $\bar{\partial}: A^{p,q}(\mathscr{V}_{\mu,\sigma}) \to A^{p,q+1}(\mathscr{V}_{\mu,\sigma})$. Using K-invariant metrics, where K is the fixed point set of a Cartan involution that stabilizes H, we get Hodge-Kodaira maps

$$A^{p,q}(\mathscr{V}_{\mu,\sigma}) \stackrel{\#}{\to} A^{n-p,n-q}(\mathscr{V}_{\mu,\sigma}^*) \stackrel{\cong}{\to} A^{p,q}(\mathscr{V}_{\mu,\sigma})$$

where $n = \dim_{\mathbb{C}} S_{[x_H]}$. That specifies a pre-Hilbert space

$$A_2^{p,q}(\mathscr{V}_{\mu,\sigma}) = \left\{ \omega \in A^{p,q}(\mathscr{V}_{\mu,\sigma}) : \int_{K/Z} \left(\int_{S[kx_H]} \omega \wedge \#\omega \right) d(kZ) < \infty \right\}.$$

 $L_2^{p,q}(\mathscr{V}_{\mu,\sigma})$ is the Hilbert space completion. The partial Hodge-Kodaira-Laplace operator,

$$(3.2) \qquad \Box = (\overline{\partial} + \overline{\partial}^*)^2 = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}, \qquad \overline{\partial}^* = -\widetilde{\#}\overline{\partial}\#,$$

is essentially selfadjoint from domain $\{\omega \in A^{p,q}(\mathscr{V}_{\mu,\sigma}): \operatorname{supp}(\omega) \text{ compact}\}$. Its kernel

(3.3)
$$H_2^{p,q}(\mathscr{V}_{\mu,\sigma}) = \{ \omega \in L_2^{p,q}(\mathscr{V}_{\mu,\sigma}) : \square^*(\omega) = 0 \}$$

is the space of square-integrable partially harmonic (p, q)-forms with values in $\mathscr{V}_{\mu,\sigma}$ G acts there by a unitary representation $\pi^{p,q}_{\mu,\sigma}$. We write $\pi^{q}_{\mu,\sigma}$ for $\pi^{0,q}_{\mu,\sigma}$.

- 4. Main theorem. Following the notation used in the preceding article, † denotes the elements that give rise to inner automorphisms: $G^{\dagger} = Z_G(G^0) G^0$, $M^{\dagger} = Z_M(M^0) M^0$ and $U^{\dagger} = Z_U(U^0) U^0$. Let L''_t denote $\{v \in i \, t^* : e^v \text{ defined on } T^0 \}$ and m-regular). We are interested in the classes of the $\mu_{\chi,\nu} = \operatorname{Ind}_{U^{\dagger} \uparrow U} (\chi \otimes \mu_{\nu})$ where $\mu_{\nu} \in \hat{U}^0$ has highest weight ν and $\chi \in Z_U(U^0)_{\xi}$, $\xi = e^{\nu}|_{\text{center}(U^0)}$. Note that $\mu_{\chi,\nu}$ is irreducible if $v \in L_t''$.
- 4.1. THEOREM. Let $[\mu_{x,y}] \in \hat{U}$ as above where $v + \varrho_t \in L_t^{\alpha}$. Let $\sigma \in \mathfrak{a}^*$ and $\pi_{x,y,\sigma}^q$ be the representation of G on $H_2^{0,q}(\mathscr{V}_{\mu_{\chi,\nu},\sigma})$.
- 1. The irreducible subrepresentations of $\pi^q_{\chi, \nu, \sigma}$ are just its constituents equivalent to irreducible subrepresentations of H-series representations of G. Let $\Theta_{x,v,\sigma,q}^H$ denote the sum of their distribution characters. Then, in the notation of the preceding article,

(4.2)
$$\sum_{q \geq 0} (-1)^q \Theta_{\chi, \nu, \sigma, q}^H = (-1)^{n+q_H(\nu+\varrho_t)} \Theta_{\pi_{\chi, \nu+\varrho_t, \sigma}}.$$

- 2. There is a constant $b_H \ge 0$ dependent only on $[\mathfrak{m}, \mathfrak{m}]$ such that if $|\langle v + \varrho_t, \psi \rangle|$
- > b_H for all $\psi \in \Sigma_1^+$, and if $q \neq q_H(v + \varrho_t)$, then $H_2^{0,q}(\mathscr{V}_{\mu_\chi, v, \sigma}) = 0$. 3. If q_0 is an integer such that $q \neq q_0$ implies $H_2^{0,q}(\mathscr{V}_{\mu_\chi, v, \sigma}) = 0$, then $[\pi_{\varphi^0, v, \sigma}^{q_0}]$ is the H-series class $[\pi_{\chi, \nu+\rho_t, \sigma}]$.

The rest of this article is a brief sketch of the idea of proof of Theorem 4.1.

5. Reduction to discrete series. Let $\eta_{x,y}^q$ denote the (unitary) representation of M on $H_2^{0,q}(\mathscr{V}_{\mu_{\chi,\nu}})$ where $\mathscr{V}_{\mu_{\chi,\nu}} = \mathscr{V}_{\mu_{\chi,\nu},\sigma} |_{M(\chi_H)}$. One can prove

(5.1)
$$\pi_{\chi, \nu, \sigma}^{q} = \operatorname{Ind}_{P_{H} \uparrow G} (\eta_{\chi, \nu}^{q} \otimes e^{i\sigma}).$$

The Plancherel theorem (3.1.3) of the preceding article combines with (5.1) to prove the assertion on the irreducible constituents of $\pi_{x, y, \sigma}^q$ in Theorem 4.1. If one knows the corresponding discrete series result for the $\eta_{\chi,\nu}^q$, then Theorem 4.1 follows by standard *H*-series considerations.

6. Idea of proof for discrete series. Considerations are reduced to the case where H/Z is compact. Thus $G(x_H)$ is an open submanifold of X with a Ginvariant Hermitian metric, and $\pi_{\chi,\nu,\sigma}^q$ is properly written $\pi_{\chi,\nu}^q$.

One checks that $\pi_{x,v}^q$ is induced from the corresponding representation of G^{\dagger} .

This reduces Theorem 4.1 from G to G^{\dagger} . There $\pi_{\chi,\nu}^q = \chi \otimes \pi_{\nu}^q$ where π_{ν}^q is the corresponding representation of G^0 . In summary we may assume G connected and examine its action π_{ν}^q on $H_2^{0,q}(\mathscr{V}_{\mu_{\nu}})$.

We may assume $x_H = 1 \cdot \bar{P} \in \bar{G}_C / \bar{P} = X$. Root orderings give a Borel subgroup $\bar{B} \subset \bar{P}$ of \bar{G}_C . Let $y_H = 1 \cdot \bar{B} \in \bar{G}_C / \bar{B} = Y$. The holomorphic fibration $Y \to X$ gives a proper holomorphic fibration $G(y_H) \to G(x_H)$. Let $\mathcal{L}_v \to G(y_H)$ be the holomorphic line bundle for $e^v \in \hat{H}$. An L_2 -version of the Leray spectral sequence, using the Borel-Weil theorem extended to U/H, gives $H_2^{0,q}(\mathcal{L}_v) \cong H_2^{0,q}(\mathcal{V}_{\mu_v})$ unitary equivalence. These reduce Theorem 4.1 further to the case $X = \bar{G}_C / \bar{B}$ and U = H.

In the case to which we are reduced, cohomology consisting of the elements of $H_2^{0,q}(\mathcal{L}_{\nu})$ can be compared with Lie algebra cohomology. The alternating sum formula (4.2) can then be extracted.

The vanishing theorem (part 2 of Theorem 4.1) is a Lie algebra computation of Griffiths and Schmid.

In the case considered (after our reductions) in part 3 of Theorem 4.1, the alternating sum formula shows that $\pi_{\nu}^{q_0}$ has relative discrete series component $\pi_{\nu+\varrho}$. A consequence of the Plancherel Theorem (see Corollary 3.6.1 of the preceding article) eliminates other constituents from the direct integral expression of $\pi_{\nu}^{q_0}$. Thus $\pi_{\nu}^{q_0} = \pi_{\nu+\varrho}$.

7. Remark on harmonic spinors. One can also follow these considerations with L_2 spinors killed by Dirac operators. The vanishing theorem (Parthasarathy) is better, but the result is not so geometric.

University of California, Berkeley