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| THE SPECTRUM OF A REDUCTIVE
-LIE GROUP

JOSEPH A. WOLF

Harish-Chandra’s constructions of various series of representations, and his
Plancherel formula, apply (roughly speaking) to those reductive Lie groups G
such that the analytic subgroup for the derived algebra [g, g] has finite center.
See Peter Trombi’s summary just preceding. Here I want to indicate the extension
of that work to a class of reductive groups which includes all semisimple groups
and is stable under passage to the reductive part of a cuspidal parabolic subgroup.
The extension is definitive for construction of the various series. However, it is
provisional for the Plancherel theorem; when the details of Harish-Chandra’s
work become available his method should extend to give a sharper result with
less effort.

1. Relative discrete series

1.1. Notion of relative discrete series. Let G be a unimodular locally compact
group and Z a closed normal abelian subgroup. Given a unitary character { eZ
we have the representation space

L,(G/z, C)={f: G—C: f(92)={(z)" ' f(9),Vz€Z, geG and J If(g)lzd(gZ)<oo}

G/Z

for l;=Ind;;¢((). Evidently L,(G)={;L,(G/Z,¢)d and G has left regular
representation [ I d(.

G is the set of equivalence classes of irreducible unitary representations of G.
If (e Z denote G,={[n]€G:{ is a summand of n|}. A class [7]eG is {-discrete
if = is equivalent to a subrepresentation of I The {-discrete classes form the
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{-discrete series G}_disc c G;C G. The relative (to Z) discrete series is Gy =
U;e‘z GC-disc' .

Suppose Z central in G. If [n]€ G, the following are equivalent:

(1) There exist nonzero ¢, ¥ in the representation space H, such that

<(P’ n( ) |p> ELZ (G/Zs C)

() If o,y H, then <o, n(-) y>€L,(G/Z, ).

(3) [m]eGpaise-
Under those conditions there is a number d, >0 such that

J o1, nlg) V1) @2 7l(g) YD d(gZ):d;l @1, 020 Y1, ¥2)

6/z
for all ¢;, ;€ H,. The number d,, is the formal degree of n.

1.2. Exact working hypotheses. From now on, G is reductive Lie group, i.e.
its Lie algebra g=c@®g, with ¢ central and g, =[g, g] semisimple. We suppose

(1.2.1) if ge G then ad(g) is an inner automorphism on gc.

We also suppose that the closed normal abelian subgroup Z = G has the following
properties:

(1.2.2a)  Z centralizes the identity component G° and |G/ZG° < .
(1.2.2b) Z G is cocompact in the center Zg of G°.

Two comments. 1f |G/G®| < oo then Z g, satisfies (1.2.2). And G, is indepen-
dent of choice of subgroup ZcG that satisfies (1.2.2).
Without comment we use the notation

(1.2.3a) G'={geG: ad(g) is an inner automorphism on G°}.
Then evidently
(1.2.3b)  G'=2Z;(G°) G° where Z;(GP) is the G-centralizer of G°.

Note Z<=Z(G°) with Z;(G®)/Z compact. So ZG°<G*.

1.3. Discrete series for connected groups with compact center. The Harish-
Chandra analysis of discrete series for connected reductive acceptable groups
extends without change to the groups G° of §1.2 for which Z g, is compact. We
state the result.

If G° has no compact Cartan subgroup then (G°)j;,. is empty.
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Let H° < G° compact Cartan subgroup. Denote L={ieih*:e* is well-defined
on H°}. Choose a positive root system =+ and make the usual definitions:

(131) o=} Y 0. aw)=1T] <@, 4>, 4= T] (eo2—e*?).

Qe peZt pelt

We arrange ge L by passing to a 2-sheeted ““cover” of G if necessary; then 4 is
well defined on H®. Let L'={leL:w(1)#0}, the regular set in L. If AeL’ then

g()={peZ™ compact:{p, 1) <0}/ +|{peZ* noncompact:{p, A)>>0}|.

Suppose AeL’ and {=e*"?|,.0. Then there is a unique class [x,]=w()

€(G°);.aisc Whose distribution character has restriction to the regular elliptic set
given by

(1.3.2) O,,|wone=(=1P 471 ¥  det(w)e"*.

W(G°, HO)
Every class in (G°)g;, is one of these [x,], and [n,]=[r,] precisely when 1’ is
in the Weyl group orbit W(G°, H°) (). Dual class [n*]=[x_,]. The infinitesimal
character of [n,] is y;, so the Casimir element goes to |42 — ||| Finally, for
appropriate normalization of Haar measure, [r,] has formal degree |@(4)|.

1.4. Relative discrete series for connected groups. In §1.4 we suppose Z cen-
tral in G. In particular, our considerations apply to ZnG° in G°.

Let §={seC:|s|=1}, the circle group. 1€ S is defined by 1 (s)=s. Given { e Z we
have the quotient group

(1.4.1) G[{]1={SxG}/{l()"*, 2):zeZ}.

It is the Mackey central extension 1+ S—G[{]-G/Z—1 for 8{eZ*(G/Z; S).
Anyway, G[{] is a reductive Lie group with Lie algebra s@®(g/3), with identity
component of compact center, and with |G[{]/G[{]° < c0. Projection SxG
— G[{] restricts to a homomorphism

(14.2) p:G-G[{] where f—f pmaps L,(G[(]/S, 1)=L,(G/Z, {).

1.4.3. PROPOSITION.  ¢[y]=[y p] defines a bijectione:G[(]; — G, that carries
Plancherel measure to Plancherel measure and maps G[(];_gi; 0nto Gy .. Distri-
bution characters satisfy ©,,,=0,p.

We know G[({]] 4. (for connected G) from §1.3. Apply Proposition 1.4.3.
Then (G°)y;, is given as follows:
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If G°/Z N G° has no compact Cartan subgroup then (G°)y;,, is empty.

Let H°/Z ~ G° be a compact Cartan subgroup of G°/Z G°. Define L, g, 4,
@, L’ and g as in §1.3. Replace G by a 2-sheeted cover if necessary, Z by a
subgroup of index 2 if necessary, so that ¢® is well defined on H°/ZAGO. If
AeL'and =e*"¢|, ,, then there is a unique class [,] €(G°)q;, whose distribution
character
(1.4.4) O, lone=(—1P 4"1 Y det(w) e,

W(G9, HO)

Every class in (G%y;,, is one of those [n,]. Classes [n,]=[=,] just when
A'eW(G°, H®) (A). [x¥]=[r- ] The infinitesimal character of [r,] is x, and the
formal degree d,, =|@(4)|.

1.5. Relative discrete series in general. One passes from (G°)g;, t0 (G")iec BY
(1.2.3b) and a ® construction, then up to G by (1.2.1), (1.2.2) and Indgy;¢-

Suppose that G/Z has a compact Cartan subgroup H/Z. Let Ale L', ¢ = e""| 260
and []€Z¢(G°);. Note [x®m;]€(G");_4isc Where {€Z is a summand of |,. Then

(1.5.1) [”1, J= [IndGHG(X®nl)] is in GC-disc .

Further, every element of G,_y;, is one of these [x, ;].

Choose {x,,..., x,} representatives of G modulo G' with ad(x;) H=H. Let
w;€ W(gc, ) be the element specified (using (1.2.1)) by x;. Then the distribution
character @, _, has support in G, where it is given by
(1.5.2) 0,,..(xg)= Y {trace x(x7'xx))} O, (9)

15isr

for xe Z4(G°) and ge(G°)'.

Classes [7, ;]=[7, ;-] just when there is an x; with [ ]=[x-ad(x;)”'] and
A eW(G® H®) (wd). Also [=, ,] has dual [r,. _,;], and infinitesimal character
X

2. The nondegenerate series

2.1. Cuspidal parabolic subgroups. Let K/Z be a maximal compact subgroup
of G/Z. In other words, K is the fixed point set of a Cartan involution 6 of G.
Now choose

(2.1.1) {H,,..., H}:0-stable Cartan subgroups of G

such that every Cartan subgroup is conjugate to just one of the H;. Stability
under 0 gives splittings

(2.1.2) h;=t;®q; and H;=T;x 4;
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where T;=H;n K, a;={xebh;:0x= —x} and 4;=exp(a)).
The a;-roots of g are the nonzero real linear functionals ¢ on a; such that

g°={xeg:[a x]=¢(x) x for all xeq;} 0.

Let X, be the a;-root system and choose a positive subsystem X . That specifies
a; J aj

(2.1.3) =) g° and N;=expg(n),
peXt

and N

(2.1.4) P;={geG:ad(g) N;=N}}.

Then P; is a (real) parabolic subgroup of G with unipotent radical P¥=N,. Also
P;=Pj- P} (semidirect) = M ;4 ;N; where

(2.1.5) Pj={geG:ad(g) a=aall xea;} =M;x 4;.

The P; are cuspidal parabolic subgroups of G. They are characterized by the fact
that M;/Z has a compact Cartan subgroup T;/Z.

2.1.6. LEMMA. M, inherits (1.2.1) and (1.2.2) from G : Every ad(m) is inner on
e, Z centralizes M} and |M;/ZM}| < 0, and Z~ M} is cocompact in the center
of Mj.

2.2. The series for a Cartan subgroup. The relative discrete series of M is
given as in §1.5. Denote L;={veit}:e” well defined on T7}. Choose a positive
tjc-root system X, on mc. Define g, , @, (v) and 4,, as in (1.3.1). We may assume
¢,€L; thus is in its myregular set Li={vel;:w, (v)#0}. Let vel], ¢
=exp(v—0;,) | centerof meand [yleZ Mj(M}’);. That gives the relative discrete classes
[7.] of M7, [x®n,] of M]=Z,, (M) M3, and [n,,,]=[Indy] 101, (x®1,)] of M.

(P}aise consists of the [, ,® €'’], x and v as above and se a¥. Extend 1, ,® €
to P;=M;A;N; by (1, ,®€*) (man)=n,_,(m)-€(a). Then we have the (unitarily)
induced representations

(2.2.1) Ty ve=Indp 1611, , ®€”).

By Hj-series of G we mean the set of all unitary equivalence classes of representa-
tions (2.2.1). The H-series depends only on the conjugacy class of H ;- The various
H -series are the nondegenerate series. Two cases are the relative discrete series
(H;/Z compact) and the principal series (P; minimal parabolic).
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2.3. Nondegenerate series characters. Here are the basic facts. Let 7, , ,] be
an Hseries class. Then m, , , is a finite sum of irreducible classes, and is irre-
ducxble itself whenever (g, @) #0 for every b;c-root ® of gc such that (p| #0.
Every irreducible summand of =, , , is in G, where {eZ and [¢]eZ M, (M ). The
class [n,, , ,] has infinitesimal character x,.,, relative to b;. The dlstribution
character @,  _ exists and is a locally integrable function with support in the
closure of

(2.3.1) U U gHg '=G" (Hisany Cartan subgroup of M;4;).

ge Gt HCMj A,

Finally that character is given on H;nG’ by

232 6,,..(@)=|4,0)4,@)| T [N (T) ()| ¥, (w(1) € w(a)

where teT; and a€ 4;. Here Ng(H;) is the G-normalizer of H;, the sum runs over
the finite set of all w(ta) in Ng(H;) (ta), Ny (T;) is defined s1m11arly, and ¥, | is
the character of 5, ,.

3. Plancherel measure
3.1. Statement of result. Fix {eZ. Define
(3.1.1) L ,={veL;:e’e(T});} and Lj,=L, L]

Given ve L], and gea?, the corresponding H-series classes that transform by {
are the [n, , ,] with [x]eZM ,(M?);. They give us discrete sums

(3.12) n;,,=) (dimy)n,,, and O;,,=6, =) (dimy)O,

where A=v+ig and [x] runs over the appropriate subset of Z,,,(M?);. Here is our
extension of a weak form of Harish-Chandra’s Plancherel formula.

3.1.3. THEOREM. There are unique measurable functions m; .,
with these properties.
1. m;  , is invariant by the Weyl group W(G, A;).

2. If feL,(G/Z, {) is C*™ with support compact modulo Z, then

(3.14a) )Y thj(v)|f|@j,¢.v+ia(f ) m;,¢, (o)l do < oo

15jslvelj;

* ”
on a¥yel’,,

%
aj

and
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(3.1.4b) fO=% ¥ lo,0) j O;.iv+iolf) Miv(0) do.
’ 12jglvel] ;

3.2. Reduction from G to ZG°. Denote G' =ZG°, M} =M;nG", etc. Define
7} 2asin (3.1.2) on G*. Then ; ; ;=1Ind g1, ¢(n}, ;). If Theorem 3.1.3 holds for
G' with functions m; ; , now it holds for G with functions m; , ,=|G/G'|'m} ..

3.3. Reduction from ZG° to (ZG°) [(]. For simplicity now let G=ZG°. En-
large Z to that |Z;/Z| < co. The considerations of §1.4 apply. Define b:L;[(],
—L;, by ¢ q=(® V. If A=v+ic let b(4)=b(v)+io. In Proposition 1.4.3 we
haVC [ﬂl.l‘l‘p]=[1'l?l,;_bu)] and @j.l,l‘p=@j‘{.b(l)‘ If Theorem 3.1.3 hOldS fOI'
(G[£], S, 1) with functions m; , , then it holds for (G, Z,{) with functions

Mo =M1+ P,

3.4. The function E. As seen above, the proof of Theorem 3.1.3 reduces to
the case where G is connected, Z;; is a finite extension of the circle group S, and
{=1e8. We may also assume K=Zp x [K, K]. Then one can construct a class
function E:G—S, analytic on the regular set, with the following properties.
E(g)=E(g.) where g is the semisimple part. If se.S and geG then E(sg)=sE(g).
Each E [,,jeﬁ ; with A4 in its kernel. And E | x€K. In effect S is a direct factor of
K F ]K is projection of K to S, and then E is specified by the other properties.

3.5. Reduction from (ZG°) [(] to G°/ZNG°. We take (G, Z, {)=(G, S, 1) as
in §3.4. Denote L; ,={veL;:e’(s)=s" for seS} and Lj,=L;, L]. Define
geL;, by exp(ej)=ElT9, so L; o={v—¢;:veL;;}. Arguing from Harish-
Chandra’s Plancherel formula, and from the explicit form of G’ and the ®;  ,,
one can prove

3.5.1. PROPOSITION. Let feL,(G/S, 1) be continuous at 1, C* on G’, and
bounded by a rapidly decreasing function. Let B; ,c af be sets of Lebesgue measure
zero. Suppose ©; | ;(f)=0whenever 1 <j<I, A=v+io withveL] ,,andocea* —B,.
Then 0; o, ,(Ef)=0 whenever 1<j <1 and ieL] o+ ia}.

Proposition 3.5.1 and Harish-Chandra’s formula on G/S give absolutely con-
tinuous Borel measures y; , , on a¥ such that

1551 veL’,’-,l

f()= Z Z |U7(V)lJ@j,l,wia(f)dﬂj,x,v(“)

in C?(G)NL,(G/S, 1). Theorem 3.1.3 follows for (ZG®) [{], then finally for
(G, Z,0)
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3.6. Two consequences. For realization of nondegenerate series representa-
tions on partially holomorphic cohomology spaces one needs

3.6.1. COROLLARY. Suppose that Gg, is not empty. If [n]eG let T, be the dis-

tribution f— trace [ f(k) n(k) dk on K.If (e Z then {[n]€G,— G, yise: To|xn o #0}
has Plancherel measure zero in GA;.

For realization of nondegenerate series representations on spaces of partially-
harmonic-spinors one needs

3.6.2. COROLLARY. Let Qe® be the Casimir element. If ¢ is a number and
LeZ then {[n]€G,— Gy gise: 2:(R) =c} has Plancherel measure zero in G,.
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