THE SPECTRUM OF A REDUCTIVE LIE GROUP

JOSEPH A. WOLF

Harish-Chandra's constructions of various series of representations, and his Plancherel formula, apply (roughly speaking) to those reductive Lie groups G such that the analytic subgroup for the derived algebra [g, g] has finite center. See Peter Trombi's summary just preceding. Here I want to indicate the extension of that work to a class of reductive groups which includes all semisimple groups and is stable under passage to the reductive part of a cuspidal parabolic subgroup. The extension is definitive for construction of the various series. However, it is provisional for the Plancherel theorem; when the details of Harish-Chandra's work become available his method should extend to give a sharper result with less effort.

1. Relative discrete series

1.1. Notion of relative discrete series. Let G be a unimodular locally compact group and Z a closed normal abelian subgroup. Given a unitary character $\zeta \in \widehat{Z}$ we have the representation space

$$L_2(G/Z,\zeta) = \left\{ f: G \to C: f(gz) = \zeta(z)^{-1} f(g), \forall z \in Z, g \in G \text{ and } \int_{G/Z} |f(g)|^2 d(gZ) < \infty \right\}$$

for $l_{\zeta} = \operatorname{Ind}_{Z \uparrow G}(\zeta)$. Evidently $L_2(G) = \int_{\mathcal{Z}} L_2(G/Z, \zeta) d\zeta$ and G has left regular representation $\int_{\mathcal{Z}} l_{\zeta} d\zeta$.

 \hat{G} is the set of equivalence classes of irreducible unitary representations of G. If $\zeta \in \hat{Z}$ denote $\hat{G}_{\zeta} = \{ [\pi] \in \hat{G} : \zeta \text{ is a summand of } \pi|_{Z} \}$. A class $[\pi] \in \hat{G}$ is ζ -discrete if π is equivalent to a subrepresentation of l_{ζ} . The ζ -discrete classes form the

AMS (MOS) subject classifications (1970). Primary 43A80; Secondary 22E45, 43A85.

 ζ -discrete series \hat{G}_{ζ -disc} $\subset \hat{G}_{\zeta} \subset \hat{G}$. The relative (to Z) discrete series is $\hat{G}_{disc} = \bigcup_{\zeta \in \hat{Z}} \hat{G}_{\zeta$ -disc}.

Suppose Z central in G. If $[\pi] \in \hat{G}_{\xi}$ the following are equivalent:

- (1) There exist nonzero φ , ψ in the representation space H_{π} such that $\langle \varphi, \pi(\cdot) \psi \rangle \in L_2(G/Z, \zeta)$.
- (2) If $\varphi, \psi \in H_{\pi}$ then $\langle \varphi, \pi(\cdot) \psi \rangle \in L_2(G/Z, \zeta)$.
- (3) $[\pi] \in \hat{G}_{\zeta\text{-disc}}$

Under those conditions there is a number $d_{\pi} > 0$ such that

$$\int_{G/Z} \langle \varphi_1, \pi(g) \psi_1 \rangle \overline{\langle \varphi_2, \pi(g) \psi_2 \rangle} d(gZ) = d_{\pi}^{-1} \langle \varphi_1, \varphi_2 \rangle \overline{\langle \psi_1, \psi_2 \rangle}$$

for all $\varphi_i, \psi_i \in H_{\pi}$. The number d_{π} is the formal degree of π .

- 1.2. Exact working hypotheses. From now on, G is reductive Lie group, i.e. its Lie algebra $g = c \oplus g_1$ with c central and $g_1 = [g, g]$ semisimple. We suppose
- (1.2.1) if $g \in G$ then ad (g) is an inner automorphism on g_C .

We also suppose that the closed normal abelian subgroup $Z \subset G$ has the following properties:

- (1.2.2a) Z centralizes the identity component G^0 and $|G/ZG^0| < \infty$.
- (1.2.2b) $Z \cap G^0$ is cocompact in the center Z_{G^0} of G^0 .

Two comments. If $|G/G^0| < \infty$ then Z_{G^0} satisfies (1.2.2). And \hat{G}_{disc} is independent of choice of subgroup $Z \subset G$ that satisfies (1.2.2).

Without comment we use the notation

(1.2.3a)
$$G^{\dagger} = \{g \in G : \operatorname{ad}(g) \text{ is an inner automorphism on } G^{0}\}.$$

Then evidently

(1.2.3b)
$$G^{\dagger} = Z_G(G^0) G^0$$
 where $Z_G(G^0)$ is the G-centralizer of G^0 .

Note $Z \subset Z_G(G^0)$ with $Z_G(G^0)/Z$ compact. So $ZG^0 \subset G^{\dagger}$.

1.3. Discrete series for connected groups with compact center. The Harish-Chandra analysis of discrete series for connected reductive acceptable groups extends without change to the groups G^0 of §1.2 for which Z_{G^0} is compact. We state the result.

If G^0 has no compact Cartan subgroup then $(G^0)^{\hat{}}_{disc}$ is empty.

Let $H^0 \subset G^0$ compact Cartan subgroup. Denote $L = \{\lambda \in i\mathfrak{h}^* : e^{\lambda} \text{ is well-defined on } H^0\}$. Choose a positive root system Σ^+ and make the usual definitions:

$$(1.3.1) \quad \varrho = \frac{1}{2} \sum_{\varphi \in \Sigma^+} \varphi, \qquad \varpi(\lambda) = \prod_{\varphi \in \Sigma^+} \langle \varphi, \lambda \rangle, \qquad \Delta = \prod_{\varphi \in \Sigma^+} (e^{\varphi/2} - e^{-\varphi/2}).$$

We arrange $\varrho \in L$ by passing to a 2-sheeted "cover" of G if necessary; then Δ is well defined on H^0 . Let $L' = \{\lambda \in L : \varpi(\lambda) \neq 0\}$, the regular set in L. If $\lambda \in L'$ then

$$q(\lambda) = |\{\varphi \in \Sigma^+ \text{ compact: } \langle \varphi, \lambda \rangle < 0\}| + |\{\varphi \in \Sigma^+ \text{ noncompact: } \langle \varphi, \lambda \rangle > 0\}|.$$

Suppose $\lambda \in L'$ and $\xi = e^{\lambda - \varrho}|_{Z_{G^0}}$. Then there is a unique class $[\pi_{\lambda}] = \omega(\lambda) \in (G^0)^{\circ}_{\xi-\text{disc}}$ whose distribution character has restriction to the regular elliptic set given by

(1.3.2)
$$\Theta_{\pi_{\lambda}}|_{H^{0} \cap G'} = (-1)^{q(\lambda)} \Delta^{-1} \sum_{W(G^{0}, H^{0})} \det(w) e^{w\lambda}.$$

Every class in $(G^0)_{\mathrm{disc}}^{\hat{}}$ is one of these $[\pi_{\lambda}]$, and $[\pi_{\lambda}] = [\pi_{\lambda'}]$ precisely when λ' is in the Weyl group orbit $W(G^0, H^0)(\lambda)$. Dual class $[\pi_{\lambda}^*] = [\pi_{-\lambda}]$. The infinitesimal character of $[\pi_{\lambda}]$ is χ_{λ} , so the Casimir element goes to $\|\lambda\|^2 - \|\varrho\|^2$. Finally, for appropriate normalization of Haar measure, $[\pi_{\lambda}]$ has formal degree $|\varpi(\lambda)|$.

1.4. Relative discrete series for connected groups. In §1.4 we suppose Z central in G. In particular, our considerations apply to $Z \cap G^0$ in G^0 .

Let $S = \{s \in \mathbb{C} : |s| = 1\}$, the circle group. $1 \in \hat{S}$ is defined by 1(s) = s. Given $\zeta \in \hat{Z}$ we have the quotient group

(1.4.1)
$$G[\zeta] = \{S \times G\} / \{(\zeta(z)^{-1}, z) : z \in Z\}.$$

It is the Mackey central extension $1 \to S \to G[\zeta] \to G/Z \to 1$ for $\delta \zeta \in Z^2(G/Z; S)$. Anyway, $G[\zeta]$ is a reductive Lie group with Lie algebra $\mathfrak{s} \oplus (\mathfrak{g}/3)$, with identity component of compact center, and with $|G[\zeta]/G[\zeta]^0| < \infty$. Projection $S \times G \to G[\zeta]$ restricts to a homomorphism

(1.4.2)
$$p: G \to G[\zeta]$$
 where $f \to f \cdot p$ maps $L_2(G[\zeta]/S, 1) \cong L_2(G/Z, \zeta)$.

1.4.3. PROPOSITION. $\varepsilon[\psi] = [\psi \cdot p]$ defines a bijection $\varepsilon: G[\zeta]_1 \to \hat{G}_{\zeta}$ that carries Plancherel measure to Plancherel measure and maps $G[\zeta]_{1-\text{disc}}$ onto $\hat{G}_{\zeta-\text{disc}}$. Distribution characters satisfy $\Theta_{\varepsilon[\psi]} = \Theta_{\psi} \cdot p$.

We know $G[\zeta]_{1-\text{disc}}$ (for connected G) from §1.3. Apply Proposition 1.4.3. Then $(G^0)_{\text{disc}}$ is given as follows:

If $G^0/Z \cap G^0$ has no compact Cartan subgroup then $(G^0)_{\text{disc}}$ is empty.

Let $H^0/Z \cap G^0$ be a compact Cartan subgroup of $G^0/Z \cap G^0$. Define L, ϱ, Δ , ϖ , L' and q as in §1.3. Replace G by a 2-sheeted cover if necessary, Z by a subgroup of index 2 if necessary, so that e^ϱ is well defined on $H^0/Z \cap G^0$. If $\lambda \in L'$ and $\xi = e^{\lambda - \varrho}|_{Z_{G^0}}$, then there is a unique class $[\pi_{\lambda}] \in (G^0)^{\widehat{d}_{isc}}$ whose distribution character

(1.4.4)
$$\Theta_{\pi_{\lambda}}|_{H^{0} \cap G'} = (-1)^{q(\lambda)} \Delta^{-1} \sum_{W(G^{0}, H^{0})} \det(w) e^{w\lambda}.$$

Every class in $(G^0)_{\mathrm{disc}}^{\hat{}}$ is one of those $[\pi_{\lambda}]$. Classes $[\pi_{\lambda}] = [\pi_{\lambda'}]$ just when $\lambda' \in W(G^0, H^0)$ (λ). $[\pi_{\lambda}^*] = [\pi_{-\lambda}]$. The infinitesimal character of $[\pi_{\lambda}]$ is χ_{λ} and the formal degree $d_{\pi_{\lambda}} = |\varpi(\lambda)|$.

1.5. Relative discrete series in general. One passes from $(G^0)_{\text{disc}}$ to $(G^{\dagger})_{\text{disc}}^{\hat{}}$ by (1.2.3b) and a \otimes construction, then up to \hat{G}_{disc} by (1.2.1), (1.2.2) and $\text{Ind}_{G^{\dagger\uparrow}G}$.

Suppose that G/Z has a compact Cartan subgroup H/Z. Let $\lambda \in L'$, $\xi = e^{\lambda - \varrho}|_{Z_{G}O}$ and $[\chi] \in Z_{G}(G^{0})_{\xi}^{2}$. Note $[\chi \otimes \pi_{\lambda}] \in (G^{\dagger})_{\zeta-\text{disc}}^{2}$ where $\zeta \in \hat{Z}$ is a summand of $\xi|_{Z}$. Then

$$[\pi_{\chi,\lambda}] = [\operatorname{Ind}_{G\uparrow\uparrow G}(\chi \otimes \pi_{\lambda})] \text{ is in } \widehat{G}_{\zeta-\operatorname{disc}}.$$

Further, every element of \hat{G}_{ζ -disc} is one of these $[\pi_{\chi,\lambda}]$.

Choose $\{x_1, ..., x_r\}$ representatives of G modulo G^{\dagger} with $ad(x_i) H = H$. Let $w_i \in W(g_C, h_C)$ be the element specified (using (1.2.1)) by x_i . Then the distribution character $\Theta_{\pi_{X_i,\lambda}}$ has support in G^{\dagger} , where it is given by

(1.5.2)
$$\Theta_{\pi_{\chi,\lambda}}(xg) = \sum_{1 \le i \le r} \{ \operatorname{trace} \chi(x_i^{-1} x x_i) \} \Theta_{\pi_{w_i(\lambda)}}(g)$$

for
$$x \in Z_G(G^0)$$
 and $g \in (G^0)'$.

Classes $[\pi_{\chi,\lambda}] = [\pi_{\chi',\lambda'}]$ just when there is an x_i with $[\chi'] = [\chi \cdot \operatorname{ad}(x_i)^{-1}]$ and $\lambda' \in W(G^0, H^0)$ $(w_i \lambda)$. Also $[\pi_{\chi,\lambda}]$ has dual $[\pi_{\chi^{\bullet}, -\lambda}]$, and infinitesimal character χ_{λ} .

2. The nondegenerate series

2.1. Cuspidal parabolic subgroups. Let K/Z be a maximal compact subgroup of G/Z. In other words, K is the fixed point set of a Cartan involution θ of G. Now choose

(2.1.1)
$$\{H_1, ..., H_l\}: \theta$$
-stable Cartan subgroups of G

such that every Cartan subgroup is conjugate to just one of the H_i . Stability under θ gives splittings

$$(2.1.2) h_j = t_j \oplus a_j \text{ and } H_j = T_j \times A_j$$

where $T_j = H_j \cap K$, $a_j = \{x \in \mathfrak{h}_j : \theta x = -x\}$ and $A_j = \exp(a_j)$.

The a_j -roots of g are the nonzero real linear functionals φ on a_j such that

$$g^{\varphi} = \{x \in g : [\alpha, x] = \varphi(\alpha) x \text{ for all } \alpha \in a_i\} \neq 0.$$

Let Σ_{a_j} be the a_j -root system and choose a positive subsystem $\Sigma_{a_j}^+$. That specifies

(2.1.3)
$$n_j = \sum_{\varphi \in \Sigma^+ \atop g_j} g^{\varphi} \quad \text{and} \quad N_j = \exp_G(n_j),$$

and

(2.1.4)
$$P_{i} = \{g \in G : ad(g) \ N_{i} = N_{i}\}.$$

Then P_j is a (real) parabolic subgroup of G with unipotent radical $P_j^u = N_j$. Also $P_j = P_j^r \cdot P_j^u$ (semidirect) $= M_j A_j N_j$ where

(2.1.5)
$$P_j^r = \{g \in G : \operatorname{ad}(g) \ \alpha = \alpha \text{ all } \alpha \in \mathfrak{a}_j\} = M_j \times A_j.$$

The P_j are cuspidal parabolic subgroups of G. They are characterized by the fact that M_j/Z has a compact Cartan subgroup T_j/Z .

- 2.1.6. LEMMA. M_j inherits (1.2.1) and (1.2.2) from G: Every ad(m) is inner on m_{jC} , Z centralizes M_j^0 and $|M_j/ZM_j^0| < \infty$, and $Z \cap M_j^0$ is cocompact in the center of M_j^0 .
- **2.2.** The series for a Cartan subgroup. The relative discrete series of M_j is given as in §1.5. Denote $L_j = \{v \in it_j^* : e^v \text{ well defined on } T_j^0\}$. Choose a positive t_{jC} -root system $\Sigma_{t_j}^+$ on m_{jC} . Define ϱ_{t_j} , $\varpi_{t_j}(v)$ and Δ_{t_j} as in (1.3.1). We may assume $\varrho_{t_j} \in L_j$, thus is in its m_j -regular set $L_j'' = \{v \in L_j : \varpi_{t_j}(v) \neq 0\}$. Let $v \in L_j''$, $\xi = \exp(v \varrho_{t_j}) \big|_{\text{center of } M_j^0}$ and $[\chi] \in Z_{M_j}(M_j^0)_{\widehat{\xi}}$. That gives the relative discrete classes $[\eta_v]$ of M_j^0 , $[\chi \otimes \eta_v]$ of $M_j^+ = Z_{M_j}(M_j^0)$ M_j^0 , and $[\eta_{\chi,v}] = [\operatorname{Ind}_{M_j^+ \uparrow M_j}(\chi \otimes \eta_v)]$ of M_j . $(P_j')_{\text{disc}}$ consists of the $[\eta_{\chi,v} \otimes e^{i\sigma}]$, χ and v as above and $\sigma \in \mathfrak{a}_j^*$. Extend $\eta_{\chi,v} \otimes e^{i\sigma}$ to $P_j = M_j A_j N_j$ by $(\eta_{\chi,v} \otimes e^{i\sigma})$ $(man) = \eta_{\chi,v}(m) \cdot e^{i\sigma}(a)$. Then we have the (unitarily) induced representations

(2.2.1)
$$\pi_{\chi,\nu,\sigma} = \operatorname{Ind}_{P_j \uparrow G} (\eta_{\chi,\nu} \otimes e^{i\sigma}).$$

By H_j -series of G we mean the set of all unitary equivalence classes of representations (2.2.1). The H_j -series depends only on the conjugacy class of H_j . The various H_j -series are the nondegenerate series. Two cases are the relative discrete series $(H_j/Z \text{ compact})$ and the principal series $(P_j \text{ minimal parabolic})$.

. 과 · ·

2.3. Nondegenerate series characters. Here are the basic facts. Let $[\pi_{\chi, \nu, \sigma}]$ be an H_j -series class. Then $\pi_{\chi, \nu, \sigma}$ is a finite sum of irreducible classes, and is irreducible itself whenever $\langle \sigma, \varphi \rangle \neq 0$ for every \mathfrak{h}_{jc} -root φ of \mathfrak{g}_c such that $\varphi|_{\mathfrak{a}_j} \neq 0$. Every irreducible summand of $\pi_{\chi, \nu, \sigma}$ is in \hat{G}_{ζ} where $\zeta \in \hat{Z}$ and $[\chi] \in Z_{M_j}(M_j^0)_{\zeta}$. The class $[\pi_{\chi, \nu, \sigma}]$ has infinitesimal character $\chi_{\nu + i\sigma}$ relative to \mathfrak{h}_j . The distribution character $\Theta_{\pi_{\chi, \nu, \sigma}}$ exists and is a locally integrable function with support in the closure of

(2.3.1)
$$\bigcup_{g \in G^{\dagger}} \bigcup_{H \subset M_{j}A_{j}} gHg^{-1} \subset G^{\dagger} \qquad (H \text{ is any Cartan subgroup of } M_{j}A_{j}).$$

Finally that character is given on $H_i \cap G'$ by

(2.3.2)
$$\Theta_{\pi_{x,v,\sigma}}(ta) = |\Delta_{t_j}(t)/\Delta_{b_j}(ta)| \sum_{j} |N_{M_j}(T_j)(w(t))|^{-1} \Psi_{\eta_{x,v}}(w(t)) e^{i\sigma}(w(a))$$

where $t \in T_j$ and $a \in A_j$. Here $N_G(H_j)$ is the G-normalizer of H_j , the sum runs over the finite set of all w(ta) in $N_G(H_j)$ (ta), $N_{M_j}(T_j)$ is defined similarly, and $\Psi_{\eta_{\chi, \nu}}$ is the character of $\eta_{\chi, \nu}$.

3. Plancherel measure

3.1. Statement of result. Fix $\zeta \in \hat{Z}$. Define

(3.1.1)
$$L_{j,\zeta} = \{ v \in L_j : e^v \in (T_j^0)_{\zeta}^{\zeta} \} \text{ and } L''_{j,\zeta} = L_{j,\zeta} \cap L''_{j}.$$

Given $v \in L''_{j,\zeta}$ and $\sigma \in \mathfrak{a}_j^*$, the corresponding *H*-series classes that transform by ζ are the $[\pi_{\chi,v,\sigma}]$ with $[\chi] \in Z_{M_j}(M_j^0)_{\zeta}^{\hat{}}$. They give us discrete sums

(3.1.2)
$$\pi_{j,\zeta,\lambda} = \sum_{\lambda} (\dim \chi) \pi_{\chi,\nu,\sigma}$$
 and $\Theta_{j,\zeta,\lambda} = \Theta_{\pi_{j,\zeta,\lambda}} = \sum_{\lambda} (\dim \chi) \Theta_{\pi_{\chi,\nu,\sigma}}$

where $\lambda = v + i\sigma$ and $[\chi]$ runs over the appropriate subset of $Z_{M_j}(M_j^0)_{\zeta}^{\hat{}}$. Here is our extension of a weak form of Harish-Chandra's Plancherel formula.

- 3.1.3. Theorem. There are unique measurable functions $m_{j,\zeta,\nu}$ on $\mathfrak{a}_j^*, \nu \in L''_{j,\zeta}$, with these properties.
 - 1. $m_{j,\zeta,\nu}$ is invariant by the Weyl group $W(G, A_j)$.
 - 2. If $f \in L_2(G/Z, \zeta)$ is C^{∞} with support compact modulo Z, then

(3.1.4a)
$$\sum_{1 \leq j \leq l} \sum_{v \in L''_{j,\zeta}} |\varpi_{t_j}(v)| \int_{\mathfrak{a}_j^*} |\Theta_{j,\zeta,v+i\sigma}(f)| m_{j,\zeta,v}(\sigma)| d\sigma < \infty$$

and

$$(3.1.4b) f(1) = \sum_{1 \leq j \leq l} \sum_{v \in L''_{j,\zeta}} |\varpi_{t_j}(v)| \int_{\alpha_j^*} \Theta_{j,\zeta,v+i\sigma}(f) m_{j,\zeta,v}(\sigma) d\sigma.$$

- **3.2. Reduction from** G to ZG^0 . Denote $G^1 = ZG^0$, $M_j^1 = M_j \cap G^1$, etc. Define $\pi_{j,\zeta,\lambda}^1$ as in (3.1.2) on G^1 . Then $\pi_{j,\zeta,\lambda} = \operatorname{Ind}_{G^1 \uparrow G}(\pi_{j,\zeta,\lambda}^1)$. If Theorem 3.1.3 holds for G^1 with functions $m_{j,\zeta,\nu}^1 = |G/G^1|^{-1} m_{j,\zeta,\nu}^1$.
- **3.3. Reduction from** ZG^0 to $(ZG^0)[\zeta]$. For simplicity now let $G = ZG^0$. Enlarge Z to that $|Z_G/Z| < \infty$. The considerations of §1.4 apply. Define $b: L_j[\zeta]_1 \to L_{j,\zeta}$ by $e^{\nu} \cdot q = \zeta \otimes e^{b(\nu)}$. If $\lambda = \nu + i\sigma$ let $b(\lambda) = b(\nu) + i\sigma$. In Proposition 1.4.3 we have $[\pi_{j,1,\lambda} \cdot p] = [\pi_{j,\zeta,b(\lambda)}]$ and $\Theta_{j,1,\lambda} \cdot p = \Theta_{j,\zeta,b(\lambda)}$. If Theorem 3.1.3 holds for $(G[\zeta], S, 1)$ with functions $m_{j,\zeta,b(\nu)} = m_{j,1,\nu} \cdot p_{\star}$.
- **3.4.** The function E. As seen above, the proof of Theorem 3.1.3 reduces to the case where G is connected, Z_G is a finite extension of the circle group S, and $\zeta = 1 \in \hat{S}$. We may also assume $K = Z_K^0 \times [K, K]$. Then one can construct a class function $E: G \to S$, analytic on the regular set, with the following properties. $E(g) = E(g_{ss})$ where g_{ss} is the semisimple part. If $s \in S$ and $g \in G$ then E(sg) = sE(g). Each $E|_{H_j} \in \hat{H}_j$ with A_j in its kernel. And $E|_K \in \hat{K}$. In effect S is a direct factor of K, $E|_K$ is projection of K to S, and then E is specified by the other properties.
- 3.5. Reduction from (ZG^0) $[\zeta]$ to $G^0/Z \cap G^0$. We take $(G, Z, \zeta) = (G, S, 1)$ as in §3.4. Denote $L_{j,n} = \{v \in L_j : e^v(s) = s^n \text{ for } s \in S\}$ and $L''_{j,n} = L_{j,n} \cap L''_{j}$. Define $\varepsilon_j \in L_{j,1}$ by $\exp(\varepsilon_j) = E|_{T_j^0}$, so $L_{j,0} = \{v \varepsilon_j : v \in L_{j,1}\}$. Arguing from Harish-Chandra's Plancherel formula, and from the explicit form of G' and the $\Theta_{j,\zeta,\lambda}$, one can prove
- 3.5.1. Proposition. Let $f \in L_2(G/S, 1)$ be continuous at $1, C^{\infty}$ on G', and bounded by a rapidly decreasing function. Let $B_{j, \nu} \subset \mathfrak{a}_j^*$ be sets of Lebesgue measure zero. Suppose $\Theta_{j, 1, \lambda}(f) = 0$ whenever $1 \leq j \leq l$, $\lambda = \nu + i\sigma$ with $\nu \in L''_{j, 1}$, and $\sigma \in \mathfrak{a}_j^* B_j$. Then $\Theta_{j, 0, \lambda}(Ef) = 0$ whenever $1 \leq j \leq l$ and $\lambda \in L''_{j, 0} + i\mathfrak{a}_j^*$.

Proposition 3.5.1 and Harish-Chandra's formula on G/S give absolutely continuous Borel measures $\mu_{i,1,y}$ on \mathfrak{a}_i^* such that

$$f(1) = \sum_{1 \leq j \leq l} \sum_{v \in L''_{j,1}} |\varpi(v)| \int_{\mathfrak{a}_{j}^{*}} \Theta_{j,1,v+i\sigma}(f) d\mu_{j,1,v}(\sigma)$$

in $C_c^{\infty}(G) \cap L_2(G/S, 1)$. Theorem 3.1.3 follows for $(ZG^0)[\zeta]$, then finally for (G, Z, ζ) .

<u>ئ</u>ر . . . ك

- **3.6. Two consequences.** For realization of nondegenerate series representations on partially holomorphic cohomology spaces one needs
- 3.6.1. COROLLARY. Suppose that \hat{G}_{disc} is not empty. If $[\pi] \in \hat{G}$ let T_{π} be the distribution $f \mapsto \operatorname{trace} \int_{K} f(k) \, \pi(k) \, dk$ on K. If $\zeta \in \hat{Z}$ then $\{[\pi] \in \hat{G}_{\zeta} \hat{G}_{\zeta-disc} : T_{\pi}|_{K \cap G'} \neq 0\}$ has Plancherel measure zero in \hat{G}_{ζ} .

For realization of nondegenerate series representations on spaces of partially-harmonic-spinors one needs

3.6.2. COROLLARY. Let $\Omega \in \mathfrak{G}$ be the Casimir element. If c is a number and $\zeta \in \widehat{Z}$ then $\{[\pi] \in \widehat{G}_{\zeta} - \widehat{G}_{\zeta-\mathrm{disc}} : \chi_{\pi}(\Omega) = c\}$ has Plancherel measure zero in \widehat{G}_{ζ} .

University of California, Berkeley