SQUARE-INTEGRABLE REPRESENTATIONS OF NILPOTENT GROUPS

JOSEPH A. WOLF AND CALVIN C. MOORE

1. Notion of square-integrable representation. Let G be a unimodular locally compact group and Z the center of G. As usual, \hat{G} denotes the set of all equivalence classes $[\pi]$ of irreducible unitary representations π of G, and H_{π} denotes the representation space of π . So \hat{Z} is the group of unitary characters on Z. If $[\pi] \in \hat{G}$ then $\pi|_Z$ is a multiple of the central character $\zeta_{\pi} \in \hat{Z}$ of $[\pi]$. If $\zeta \in \hat{Z}$ then $L_2(G/Z, \zeta)$ denotes the space of functions on G that is the representation space for $\mathrm{Ind}_{Z\uparrow G}(\zeta)$.

If $[\pi] \in \hat{G}$ and $\zeta_{\pi} \in \hat{Z}$ one knows that the following conditions are equivalent: (1) There exist nonzero ϕ , $\psi \in H_{\pi}$ such that $\langle \pi(\cdot) \phi, \psi \rangle \in L_2(G/Z, \zeta)$. (2) If ϕ , $\psi \in H_{\pi}$ then $\langle \pi(\cdot) \phi, \psi \rangle \in L_2(G/Z, \zeta)$. (3) $[\pi]$ is a discrete summand of $\operatorname{Ind}_{Z \uparrow G}(\zeta)$. Then we say that $[\pi]$ is square-integrable. The usual case is the case where Z is compact, but the more general setting is useful for reductive and for nilpotent groups.

If $[\pi]$ is square-integrable, there is a number $d_{\pi} > 0$ such that

$$\int_{G/Z} \langle \pi(g) \phi_1, \psi_1 \rangle \langle \overline{\pi(g) \phi_2, \psi_2} \rangle d(gZ) = d_{\pi}^{-1} \langle \phi_1, \phi_2 \rangle \langle \overline{\psi_1, \psi_2} \rangle$$

for all ϕ_i , $\psi_i \in H_{\pi}$. The number d_{π} is the formal degree of $[\pi]$.

If π_1 and π_2 are inequivalent square-integrable representations with the same central character, one has the *orthogonality relations*

$$\int_{G/Z} \langle \pi(g) \phi_1, \psi_1 \rangle \langle \overline{\pi(g) \phi_2, \psi_2} \rangle d(gZ) = 0 \quad \text{for } \phi_i, \psi_i \in H_{\pi_i}.$$

2. The case of a connected, simply connected nilpotent Lie group. Let N be a

AMS (MOS) subject classifications (1970). Primary 43A80; Secondary 22E25, 43A85.

nilpotent group as just described, $\mathfrak n$ its Lie algebra and $\mathfrak z$ the center of $\mathfrak n$. Then $Z=\exp{\mathfrak z}$ is the center of N and $\log:Z\to\mathfrak z$ denotes the inverse of $\exp:\mathfrak z\to Z$. Let $\mathfrak n^*$ denote the (real) dual space of $\mathfrak n$; we denote the representation of N on $\mathfrak n^*$ by ad*. If $f\in\mathfrak n^*$ then its orbit $O_f=\operatorname{ad}^*(N)(f)$ determines a class $[\pi_f]=[\pi_{O_f}]$ by the Kirillov theory. The central character of $[\pi_f]$ is $\zeta_{\pi_f}(z)=\exp{2\pi\ if\ (\log z)}$. Here note $f|_{\mathfrak a}=f'|_{\mathfrak a}$ whenever $f'\in O_f$.

Let $\mathfrak{z}^{\perp} = \{f \in \mathfrak{n}^* : f(\mathfrak{z}) = 0\}$. Now O_f is contained in the affine hyperplane $H(f|_{\mathfrak{z}}) = f + \mathfrak{z}^{\perp}$ of \mathfrak{n}^* .

Finally recall the antisymmetric form b_f on n defined by $b_f(x, y) = f[x, y]$. Evidently b_f can be viewed as an antisymmetric bilinear form on n/3.

THEOREM 1. Let $f \in \mathfrak{n}^*$ and ζ the central character of π_f . Then the following conditions are equivalent:

- (1) π_f is square-integrable.
- (2) $\operatorname{Ind}_{Z \uparrow N}(\zeta)$ is a primary representation of N.
- (3) The orbit O_f is the hyperplane $H(f|_{\mathfrak{z}}) = f + \mathfrak{z}^{\perp}$.
- (4) The form b_f is nondegenerate on $\mathfrak{n}/\mathfrak{z}$.

The proof is an induction on dim N. If N is abelian the equivalence is routine; now suppose N nonabelian. If dim Z > 1, choose a subalgebra $\mathfrak{z}^0 \subset \mathfrak{z}$ of codimension 1 contained in kernel (f). Then $\pi = \pi_f$ is the lift of a representation $\pi^0 = \pi_{f^0}^0$ of $N^0 = N/Z^0$, $Z^0 = \exp(\mathfrak{z}^0)$. Theorem 1 applies to N^0 , π^0 and f^0 by induction on dimension, and it follows for N, π and f.

Now dim Z=1 and $f(3) \neq 0$. Choose $x \in n-3$ with $[x, n] \subset \mathfrak{z}$ and f(x)=0. Let $\mathfrak{n}_0 = \{u \in \mathfrak{n}: [u, x] = 0\}$, ideal of codimension 1 in \mathfrak{n} , and $N_0 = \exp(\mathfrak{n}_0)$. Then $f_0 = f|_{\mathfrak{n}_0}$ has $\mathrm{ad}^*(N_0)$ -orbit $O_0 \subset \mathfrak{n}_0^*$ which in turn gives $[\pi_0] \in \widehat{N}_0$. The Kirillov machine gives $\pi = \pi_f$ as $\mathrm{Ind}_{N_0 \uparrow N}(\pi_0)$. Choose $y \notin \mathfrak{n}_0$ such that f(z = [x, y]) = 1. Then $f_s = \mathrm{ad}^*(\exp(sy)) f|_{\mathfrak{n}_0}$ has $f_s(x) = s$. Let O_s be the orbit of f_s in \mathfrak{n}_0^* . From Kirillov, the projection $p: \mathfrak{n}^* \to \mathfrak{n}_0^*$, kernel $\mathfrak{n}_0^{\downarrow}$, satisfies $p^{-1}(O_s) = \{f' \in O_f : f'(x) = s\}$ and $p\{f' \in O_f : f'(x) = s\} = O_s$. Let $\mathfrak{z}_0 = (x) + \mathfrak{z}_0$. With some linear algebra and the fact that unipotent orbits are closed, one sees: $O_f = f + \mathfrak{z}^{\downarrow} \Leftrightarrow O_s = f_s + \mathfrak{z}_0^{\downarrow}$ for some real $s \Leftrightarrow O_s = f_s + \mathfrak{z}_0^{\downarrow}$ for all real s; in that case \mathfrak{z}_0 is the center of \mathfrak{n}_0 . Induction by stages and some direct integral theory then give: π is a discrete summand of $\mathrm{Ind}_{Z\uparrow N}(\zeta) \Leftrightarrow O = f + \mathfrak{z}^{\downarrow}$; in that case $\mathrm{Ind}_{Z\uparrow N}(\zeta)$ is primary. Using the results quoted above in §1, now assertions (1), (2) and (3) of Theorem 1 are equivalent. Some linear algebra proves (3) and (4) equivalent.

3. Square-integrability and the Pfaffian. Retain N, Z, etc., as in §2. Make a definite choice of Haar measure $\mu_{N/Z}$ on N/Z. That gives a volume element (alternating form of degree dim(n/3)), say α , on n/3. Let $f \in n^*$ and recall that the alternating bilinear form b_f on n/3 has Pfaffian (relative to α) defined as follows: If

 $\dim \mathfrak{n}/\mathfrak{z}$ is odd, then $Pf(b_f)=0$. If $\dim \mathfrak{n}/\mathfrak{z}=2m$ even, then the mth exterior power $b_f^m=Pf(b_f)$ α . Evidently $P(f)=Pf(b_f)$ is a real polynomial function on \mathfrak{n}^* , and $P(f)\neq 0$ precisely when b_f is nondegenerate on $\mathfrak{n}/\mathfrak{z}$. Using Theorem 1, now $P(\cdot)$ is constant on $\mathfrak{ad}^*(N)$ -orbits and P(f) depends only on $f|_{\mathfrak{z}}$. Thus we view P as a polynomial on \mathfrak{z}^* .

If $h \in \mathfrak{z}^*$ with $P(h) \neq 0$, denote $\phi(h) = [\pi_f]$ for any $f \in h + \mathfrak{z}^\perp$. Note that $\phi(h)$ is the only class in \hat{N} with central character $\zeta(\exp z) = \exp\{2\pi i h(z)\}$. We often write π_h for $\phi(h)$.

THEOREM 2. ϕ is a bijection of $\{h \in \mathfrak{F}^* : P(h) \neq 0\}$ onto $\{[\pi] \in \hat{N} : [\pi] \text{ is square-integrable}\}$. Further, it is a homeomorphism from the natural topology to the Fell (hull-kernel) topology of \hat{N} .

As polynomial function on \mathfrak{z}^* , P is in the symmetric algebra $S(\mathfrak{z})$. Let \mathfrak{Z} be the center of the universal enveloping algebra \mathscr{U} of \mathfrak{n} . Then $\mathfrak{z} \subset \mathfrak{Z}$ gives $S(\mathfrak{z}) \subset \mathfrak{Z}$, so also $P \in \mathfrak{Z}$.

THEOREM 3. N has square-integrable representations if, and only if, S(3) = 3

4. Formal degree and Plancherel measure. Formal degree and Pfaffian depend in the same way on the normalization of Haar measure on N/Z, so the following is intrinsic.

THEOREM 4. In the notation of Theorem 2, the square-integrable class $\phi(h)$ has formal degree |P(h)|.

The infinitesimal character of a class $[\pi] \in \hat{N}$ is the homomorphism $\chi_{\pi}: \Im \to C$ given by $\chi_{\pi}(z) \ v = d\pi(v)$ on C^{∞} vectors. It is related to the central character ζ_{π} by $\zeta_{\pi}(\exp z) = \exp\{\chi_{\pi}(z)\}$ for $z \in \Im \subset \Im$.

If $[\pi] \in \hat{N}$ is not square-integrable, we understand its formal degree $d_{\pi} = 0$. This is consistent with Theorem 4.

THEOREM 5. If $\lceil \pi \rceil \in \hat{N}$, then $d_{\pi} = |\chi_{\pi}(P)|$.

The fact $d_{\pi}^2 = |\chi_{\pi}(P)|^2 = \chi_{\pi}(P\bar{P})$ is in accord with the Weyl formula for the degree of a representation in terms of its highest weight. The analogy may go quite far.

Fix Haar measures μ_N on N and μ_Z on Z consistent with our choice $\mu_{N/Z}$ for N/Z: $d_{\mu_N}(n) = d_{\mu_{N/Z}}(nZ) \ d_{\mu_Z}(z)$. These choices fix Lebesgue measures dn on n, dz on a and a on a with a on a. In turn Lebesgue measures a on a on a on a and a on a on a are fixed by the condition that Fourier transforms be isometries.

THEOREM 6. If N has square-integrable representations, then Plancherel measure is concentrated in $\{ [\pi] \in \hat{N} : [\pi] \text{ is square-integrable} \}$. Then the map ϕ of Theorem 2 pulls Plancherel measure back to $c|P(h)| dz^*(h)$ where c=k! 2^k and $k=\frac{1}{2}\dim n/3$.

Theorem 4 is proved using the same inductive procedure as that sketched for Theorem 1. Theorem 5 is a corollary. In Theorem 6, the concentration of Plancherel measure comes from induction by stages and the fact that the zeroes of P have Lebesgue measure zero in \mathfrak{z}^* . The formula for Plancherel measure then comes by expressing the distribution character Θ_{π} of a square-integrable class $\pi = \phi(h)$ on a C_c^{∞} function f by

$$\Theta_{\pi}(f) = c^{-1} \int_{\Omega_h} (f \cdot \exp)^{\hat{}}(y) d_{\mu_h}(y)$$

where $\hat{}$ is Fourier transform on n^* and μ_h is the symplectic measure on $O_h = h + 3^{\perp}$.

5. Two examples. First consider the Heisenberg group N_k , simply connected group for the (2k+1)-dimensional Lie algebra n_k :

$$\{x_1, ..., x_k; y_1, ..., y_k; z: [x_i, y_i] = z, \text{ all others zero}\}.$$

Choose the measure on N_k/Z so that $n_k/3$ has volume α with $\alpha(x_1, ..., y_k) = 1$. Then $P(tz^*) = t^k$. So the infinite-dimensional classes in \hat{N}_k all are square-integrable, π_{tz^*} having formal degree $|t|^k$, and the Plancherel formula on N_k is

$$f(1) = c \int_{-\infty}^{\infty} \Theta_{\pi_{ex^{*}}}(f) |t|^{k} dt.$$

This is classical.

For the second example, let (a_{ij}) be a $k \times k$ matrix that gives a (2k+2)-dimensional Lie algebra $\mathfrak n$ with basis $\{x_1,\ldots,x_k;y_1,\ldots,y_k;z;w\}$ and $[x_i,y_j]=\delta_{ij}z+a_{ij}w$, all others zero. Then $\mathfrak z=(z)+(w)$ and we describe $f\in\mathfrak z^*$ by (u,v)=(f(z),f(w)). Now $P(u,v)=\det(u-va_{ij})$, which is v^k times the value at u/v of the characteristic polynomial of (a_{ij}) . In particular P can be any homogeneous polynomial of degree k in two variables.

Suppose k=1 and $(a_{ij})=-\lambda$ irrational; then $P(az^*+bw^*)=a+\lambda b$. Let $\Delta = \{\exp(nz+mw): m, n \text{ integers}\}$ and $\bar{N}=N/\Delta$. Then \bar{N} has compact center and \bar{N} consists of $\{[\pi] \in \hat{N}: \pi \text{ kills } \Delta\}$. Thus the square integrable classes in \bar{N} are the $\pi_{nz^*+mw^*}$, m and n integers. The formal degree of $\pi_{nz^*+mw^*}$ is $n+\lambda m$, which has 0 as limit point when (n, m) varies over $Z^2 - \{0\}$.

6. Square-integrable subrepresentations for $L_2(N/\Gamma)$. Let Γ be a discrete uniform subgroup of N. N acts on $L_2(N/\Gamma)$ by $U = \operatorname{Ind}_{\Gamma \uparrow N}(1_{\Gamma})$, and $U = \sum_{N} m_{\pi} \cdot \pi$ discrete sum.

Normalize $\mu_{N/Z}$ by: $N/Z\Gamma$ has volume 1. Then the Pfaffian polynomial P is determined up to sign. $\Gamma \cap Z$ is a lattice in Z and $\log(\Gamma \cap Z)$ a lattice L in 3. Let $L^* \subset \mathfrak{z}^*$ be the lattice dual to $L \subset \mathfrak{z}$.

THEOREM 7. Let $h \in \mathfrak{z}^*$ with $P(h) \neq 0$. Then the square-integrable representation π_h occurs in U precisely when $h \in L^*$. In that case the multiplicity $m_{\pi_h} = |P(h)|$, formal degree of π_h .

 Γ specifies a rational form \mathfrak{n}_Q of \mathfrak{n} . A subalgebra $\mathfrak{h} \subset \mathfrak{n}$ and the group $H = \exp(\mathfrak{h})$ are rational just when $H/H \cap \Gamma$ is compact. One proceeds inductively as in Theorem 1, keeping everything rational. The final induction from N_0 to N is managed by a multiplicity formula of C. C. Moore (Ann. of Math. (2) 82 (1965), 153).

7. Extension to solvable groups. Do not assume G unimodular. The classes in \hat{G} that are subrepresentations of $L_2(G)$ correspond (using results of Auslander, Kostant and Pukanszky) to the simply connected open orbits in \mathfrak{n}^* . If $f \in \mathfrak{n}^*$, we expect the associated representations to be square-integrable (in the appropriate sense) just when G_f/Z is compact.

University of California, Berkeley