SQUARE-INTEGRABLE REPRESENTATIONS
OF NILPOTENT GROUPS

JOSEPH A. WOLF AND CALVIN C. MOORE

1. Notion of square-integrable representation. Let G be a unimodular locally
compact group and Z the center of G. As usual, G denotes the set of all equivalence
classes [n] of irreducible unitary representations = of G, and H, denotes the rep-
resentation space of n. So Z is the group of unitary characters on Z. If [n]eG
then |, is a multiple of the central character {,eZ of [r]. If {e Z then L, (G/Z, )
denotes the space of functions on G that is the representation space for Indz, ().

If []eG and {,eZ one knows that the following conditions are equivalent:
(1) There exist nonzero ¢, Y € H, such that (z(-) ¢, ¥ > L,(G/Z, 0.Ifgp, yeH,
then <n (") ¢, Y>€L,(G/Z, {). (3) [n] is a discrete summand of Ind,, (). Then
we say that [7] is square-integrable. The usual case is the case where Z is compact,
but the more general setting is useful for reductive and for nilpotent groups.

If [n] is square-integrable, there is a number d, >0 such that

j (m(g) b1, V1> (n(g) ¢2, Y1) d(gZ)=d; 'y, $2) <|j/p 2%

G/Z

for all ¢, ;€ H,. The number d, is the formal degree of [n].
If =, and n, are inequivalent square-integrable representations with the same
central character, one has the orthogonality relations

f {r(g) 1, ¥ <n(g) 2 Y2 d(gZ)=0 for ¢, YieH,,.

G/Z
2. The case of a connected, simply connected nilpotent Lie group. Let N be a
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nilpotent group as just described, n its Lie algebra and 3 the center of n. Then
Z =exp3 is the center of N and log: Z—3 denotes the inverse of exp:3—Z. Let n*
denote the (real) dual space of n; we denote the representation of N on n* by ad*.
If fen* then its orbit O =ad*(N)(f) determines a class [n,]=[n,,] by the
Kirillov theory. The central character of [x,] is {, (z)=exp {2n if (logz)}. Here
note f|, = f’|, whenever f'€0;.

Let 3'={fen*:f(3)=0}. Now O, is contained in the affine hyperplane
H(f|)=/f+3" of n*.

Finally recall the antisymmetric form b, on n defined by b,(x, y)=f[x, y].
Evidently b, can be viewed as an antisymmetric bilinear form on n/3.

THEOREM 1. Let fen* and { the central character of n,. Then the following
conditions are equivalent :

(1) =, is square-integrable.

(2) Indgzyn(() is a primary representation of N.

(3) The orbit Oy is the hyperplane H(f|,)=f+3".

(4) The form b, is nondegenerate on n/3.

The proof is an induction on dim N. If N is abelian the equivalence is routine;
now suppose N nonabelian. If dim Z> 1, choose a subalgebra 3° =3 of codimen-
sion 1 contained in kernel(f). Then n=n, is the lift of a representation n°=nj
of N®=N/Z°, Z°=exp(3°). Theorem 1 applies to N°, n° and f° by induction on
dimension, and it follows for N, = and f.

Now dimZ=1 and f(3)#0. Choose xen—3 with [x, n]=3 and f(x)=0. Let
no={uen:[u, x] =0}, ideal of codimension 1 in n, and N, =exp(no). Then f, =1,
has ad*(N,)-orbit Ogcng which in turn gives [rn,]eN,. The Kirillov machine
gives n=n, as Indy, n(mo). Choose y¢n, such that f(z=[x, y])=1. Then
fy=ad*(exp(sy)) f|n, has f;(x)=s. Let O, be the orbit of f; in n§. From Kirillov,
the projection p:n*—n¥, kernelng, satisfies p~'(0,)={f"€0,:f'(x)=s} and
p{f'€0;:f'(x)=s}=0, Let 3o=(x)+3. With some linear algebra and the fact
that unipotent orbits are closed, one sees: O, = f+3" <> O,= f,+ 35 for some real
s=0,=f.+3¢ for all real s; in that case 3, is the center of n,. Induction by stages
and some direct integral theory then give: = is a discrete summand of Indz,y({)
<> O=f+3"; in that case Indz, () is primary. Using the results quoted above in
§1, now assertions (1), (2) and (3) of Theorem I are equivalent. Some linear algebra
proves (3) and (4) equivalent.

3. Square-integrability and the Pfaffian. Retain N, Z, etc., as in §2. Make a
definite choice of Haar measure py,; on N/Z. That gives a volume element (alter-
nating form of degree dim(n/3)), say a, on n/3. Let fen* and recall that the alter-
nating bilinear form b, on n/3 has Pfaffian (relative to «) defined as follows: If
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dimn/3 is odd, then Pf(b,;)=0. If dimn/3=2m even, then the mth exterior power
b} =Pf(b,) 0. Evidently P(f)=Pf(b,) is a real polynomial function on n*, and
P(f)#0 precisely when b, is nondegenerate on n/3. Using Theorem 1, now P(-)
is constant on ad*(N)-orbits and P(f) depends only on f],. Thus we view P as a
polynomial on 3*.

If he3* with P(h)#0, denote ¢(h)=[n,] for any feh+3*. Note that ¢(h) is
the only class in ¥ with central character {(expz)=exp {2mik(z)}. We often write
n, for ¢ (h).

THEOREM 2. ¢ is a bijection of {he3*: P(h)#0} onto {[n]eN:[n] is square-
integrable}. Further, it is a homeomorphism from the natural topology to the Fell
(hull-kernel) topology of N.

As polynomial function on 3*, P is in the symmetric algebra S(3). Let 3 be
the center of the universal enveloping algebra % of n. Then 3<=3 gives S(3) <3,
so also Pe 3.

THEOREM 3. N has square-integrable representations if, and only if, S(3)=3

4. Formal degree and Plancherel measure. Formal degree and Pfaffian depend
in the same way on the normalization of Haar measure on N/Z, so the following
is intrinsic.

THEOREM 4.  In the notation of Theorem 2, the square-integrable class ¢ (h) has
Sformal degree |P(h)|.

The infinitesimal character of a class [n]e N is the homomorphism y,:3— C
given by yx,(z) v=dn(v) on C* vectors. It is related to the central character {, by
{o(expz)=cxp{1,(2)} for ze3= 3.

If {[z]eN is not square-integrable, we understand its formal degree d,=0.
This is consistent with Theorem 4.

THEOREM 5. [f[n]eN, then d.=|y,(P).

The fact d? =|y, (P)|* = x.(PP)is in accord with the Weyl formula for the degree
of a representation in terms of its highest weight. The analogy may go quite far.

Fix Haar measures uy on N and p, on Z consistent with our choice py,, for
N/Z: d, (n)=d,, ,(nZ)d,,(z). These choices fix Lebesgue measures dn on n,
dz on 3 and dn on n/3 with dn=dn dz. In turn Lebesgue measures dn* on n*,
dz* on 3* and dv on (n/3)* are fixed by the condition that Fourier transforms be
isometries.
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THEOREM 6. If N has square-integrable representations, then Plancherel mea-
sure is concentrated in {[n]eN:[n] is square-integrable}. Then the map ¢ of
Theorem 2 pulls Plancherel measure back to c|P(h)| dz*(h) where c=k! 2* and
k=1dimn/3.

Theorem 4 is proved using the same inductive procedure as that sketched for
Theorem 1. Theorem 5 is a corollary. In Theorem 6, the concentration of Plan-
cherel measure comes from induction by stages and the fact that the zeroes of P
have Lebesgue measure zero in 3*. The formula for Plancherel measure then comes
by expressing the distribution character @, of a square-integrable class n=¢(h)
on a C? function f by

0,(f)=c* J (f -exp) (1) 4, ()

On

where " is Fourier transform on n* and g, is the symplectic measure on 0, =h+3*.

5. Two examples. First consider the Heisenberg group N, simply connected
group for the (2k + 1)-dimensional Lie algebra n,:

{X1seeos X5 Visewos Vs 2:[Xi yi]=2, all others zero}.

Choose the measure on N,/Z so that n,/3 has volume a with a(x,,..., y)=1.
Then P(rz*)=t*. So the infinite-dimensional classes in N, all are square-integrable,
7,,» having formal degree |f}*, and the Plancherel formula on N, is

f()=c f O () It di.

This is classical.

For the second example, let (a;;) be a k x k matrix that gives a (2k +2)-dimen-
sional Lie algebra n with basis {x;, ..., X;; ¥y, ..., Y5 z; wyand [x;, y;]1=6;;z+a;;w,
all others zero. Then 3=(z)+(w) and we describe fe3* by (u, v)=(f(2), f(W)).
Now P(u, v)=det(u—va;;), which is v* times the value at u/v of the characteristic
polynomial of (g;;). In particular P can be any homogeneous polynomial of
degree k in two variables.

Suppose k=1 and (a;;)= —41 irrational; then P(az*+bw*)=a+Ab. Let
A ={exp(nz+mw):m, n integers} and N=N/4. Then N has compact center and
N consists of {[x]eN:x kills 4}. Thus the square integrable classes in N~ are the
T+ mwrs M and n integers. The formal degree of @,y s is 7+ Am, which has 0
as limit point when (n, m) varies over Z*—{0}.
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6. Square-integrable subrepresentations for L,(N/I'). Let I be a discrete uni-
form subgroup of N. N acts on L,(N/I') by U=Indp,x(1;), and U=} g m,n
discrete sum.

Normalize uy,; by:N/ZI has volume 1. Then the Pfaffian polynomial P is
determined up to sign. I'nZ is a lattice in Z and log(I'nZ) a lattice L in 3. Let
L* = 3* be the lattice dual to L<3.

THEOREM 7. Let he3* with P(h)#0. Then the square-integrable representation
m, occurs in U precisely when he L*. In that case the multiplicity m,, =|P(h)|, formal
degree of ;.

I" specifies a rational form n, of n. A subalgebra h =n and the group H=exp(h)
are rational just when H/HNI is compact. One proceeds inductively as in Theo-
rem 1, keeping everything rational. The final induction from N, to N is managed
by a multiplicity formula of C. C. Moore (Ann. of Math. (2) 82 (1965), 153).

7. Extension to solvable groups. Do not assume G unimodular. The classes
in G that are subrepresentations of L, (G) correspond (using results of Auslander,
Kostant and Pukanszky) to the simply connected open orbits in n*. If fen*, we
expect the associated representations to be square-integrable (in the appropriate
sense) just when G,/Z is compact.
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