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ON THE GEOMETRY AND CLASSIFICATION
OF ABSOLUTE PARALLELISMS. I

JOSEPH A. WOLF

1. Introduction and summary

A. General introduction

Within the context of riemannian geometry, the euclidean spaces are dis-
tinguished as the only complete simply connected manifolds in which parallel
translation of tangent vectors is independent of path. When Elie Cartan de-
veloped the general notion of affine connection he saw that this absolute sort
of parallelism was (at least locally) a matter of vanishing curvature. Then
Cartan and Schouten [3] described curvature-free connections on Lie groups,
thus exhibiting absolute parallelisms on group manifolds. This generalized
Clifford's parallelism on the 3-sphere, which had previously been an isolated
phenomenon. Cartan and Schouten [4] also gave a local description of the
riemannian manifolds which have an absolute parallelism whose parallel vector
fields have constant length and integrate to geodesies they are the products of
euclidean spaces, compact simple groups and 7-spheres. Unfortunately their
reduction to the irreducible case may have gaps, and the cause of the paral-
lelism on the 7-sphere was not too clear.

Here we extend the work of Cartan and Schouten to pseudo-riemannian
manifolds. This means that the metric form ds2 is of some nondegenerate
signature1 (p,q), but not necessarily of positive definite signature (n, 0). The
de Rham decomposition theorem fails for indefinite signatures of metric; in
fact, our example (3.7) shows that it fails for bi-invariant pseudo-riemannian
metrics on nilpotent Lie groups. Thus we adopt an algebraic curvature condi-
tion ("reductive type"; see (5.7) below) which is automatic in the riemannian
case and ensures us of a de Rham decomposition. Our main results are proved
under that condition.

Let (M, ds2) be a connected pseudo-riemannian manifold of "reductive type"
with an absolute parallelism φ which satisfies the Cartan-Schouten consistency
conditions described above. Our main result (Theorem 9.1) says that (M,ds2)
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1 Signature (p, q) means p positive squares and q negative squares in dimension p + q,
as Σ I(**)* - Σ KχUp)2 o n Rp+q



318 JOSEPH A. WOLF

is locally isometric to a globally symmetric pseudo-riemannian manifold

(M,dσ2) = (M_λ,dsU) X (M0,dsl) x (Ml9dsD X X (Mt9ds*)

with φ corresponding to a consistent absolute parallelism

φ = φ.λ X φ0 X φι X X φt ,

where the (M ί 5 ^ , d5 ?) are given as follows. M_λ belongs to a certain class of
simply connected nilpotent Lie groups of even dimension 2r, 1 Φ r Φ 2, with
center of dimension r, and ds2_λ is a flat bi-invariant metric of signature (r, r)
on M_1# Mo is a real vector group and ds2

0 is a (necessarily flat) translation-
invariant metric there. Other Mi9 say for 1 < i < u, are simply connected
real2 simple Lie groups with bi-invariant metric ds\ derived from a nonzero
real multiple of the real2 Killing form. For — 1 < i < u the parallelism φt on
Mt is the one whose parallel vector fields are the left-invariant fields on the
group Mt. Then, for u + 1 < i < t, Mi is a 7-sphere 50(8)/50(7), a certain
indefinite metric version 50(4, 4)/50(3,4) of the 7-sphere, or the complexifi-
cation 50(8,C)/50(7, C) of the 7-sρhere; there ds\ is the invariant metric
induced by a nonzero real multiple of the Killing form of 50(8), 50(4, 4) or
50(8, C), and φt is obtained in an explicit manner from the triality automor-
phism. The (Mi9 dsf), 1 < i < t, are the irreducible factors of the de Rham
decomposition of (M,dσ2). The flat factor is (M_1,ds2_1) x (M09dsl). The
parallelism φQ on Mo is the euclidean parallelism, and is the largest euclidean
factor of the parallelism φ_1 x φ0 on M_x x Mo. Here φ_1 is noneuclidean
(unless M_λ is reduced to a point) if ξ is a non-isotropic 0_rparallel vector
field on M_l9 then there is another such field η with [ξ, η\ Φ 0. The
(M_1? φ_19 ds2_^) represent a new phenomenon which starts in signature (3,3).

If (M,ds2) is (geodesically) complete, then Theorem 9.1 also provides a
pseudo-riemannian covering π: (M', dσ2) —> (M', ds2) such that φ = π*φ. All
such coverings are classified in Theorem 9.7. Thus we classify the complete
pseudo-riemannian manifolds with consistent absolute parallelism of reductive
type, picking out those which are globally symmetric or compact or riemannian.
One interesting consequence (Corollary 9.10) is that the parallelism φ is con-
sistent with a riemannian metric dr2 on M if, and only if, (M,dσ2) has a
compact globally symmetric quotient manifold on which φ induces an absolute
parallelism.

B. Summary

§ 2 is a discussion of absolute parallelism φ on a difϊerentiable manifold M,
the flat connection Γ associated to φ, and the torsion tensor T of Γ. Most of

2 The group may be a complex simple Lie group viewed as a real simple (but not
absolutely simple) Lie group. Then we use its Killing form as real Lie group.
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the results are classical [3]. Then we characterize the case where Γ is complete
and T is parallel, as M = D\G where G is a Lie group, D is a discrete sub-
group, and φ is induced from the parallelism of left translation on G. That
result is due to N. J. Hicks [6] our proof is more direct.

§ 3 is a discussion of the Cartan-Schouten consistency conditions for an
absolute parallelism φ on a pseudo-riemannian manifold (M,ds2). We show
that the Levi-Civita connection T of ds2 is given by T = Γ — JΓ, a fact
essentially due to Cartan and Schouten [4]. We also show that, if ξ, η and ζ
are ^-parallel vector fields, then ds\[ξ, η],ζ) = ds\ξ, [η, ζ]); that forms the
basis of most subsequent developments. In the case where Γ is complete and
T parallel, so M — D\G as described above, the latter fact says that ds2 comes
from a bi-invariant metric on the Lie group G, and thus from a nondegenerate
invariant bilinear form on the Lie algebra £ of G.

§ 4 is a discussion of the curvature of a pseudo-riemannian manifold (M, ds2)
with consistent absolute parallelism φ. We start by direct computation of the
sectional curvatures in terms of the torsion tensor T of φ. In the riemannian
case it follows immediately that (M, ds2) has every sectional curvature > 0 .
Next we show that every 0-parallel vector field is a Killing field of (M, ds2)
so (M, ds2) is homogeneous if it is complete and connected. Then we compute
the curvature tensor 'R of ds2, and show that its coefficients are constant in a
^-parallel frame the result is that if ξ, η and ζ are ^-parallel, then 'R(ξ, η) ζ
= — i[[f,^] ?Cl and that is ^-parallel. It follows that (M,ds2) is locally sym-
metric. Some of these results were worked out by Cartan and Schouten [4] in
the irreducible riemannian case. The arguments in the last half of § 4 follow
some ideas developed by J. E. DΆtr i and H. K. Nickerson [5] in another
context, and the riemannian case of Theorem 9.1 completes the classification
they started in [5, § 4 ] ; Corollary 4.15 gives the relation between absolute
parallelism and the D'Atri-Nickerson work.

§§ 2, 3 and 4 comprise the general theory. To go farther one needs a de
Rham decomposition. The idea is suggested by the facts that, if ξ, η and ζ are
^-parallel vector fields, then

'R(ξ,η)-ζ= -|[[f,η],ζ] , ^-parallel,

The first of these facts says that the ^-parallel vector fields form a Lie triple

system p under the composition [ξηζ] = [[ξ9η],ζ], and the second suggests

some sort of invariant bilinear form on p.
§ 10 is a summary of the theory of Lie triple systems (LTS) due to N. Jacobson

[7] (§ 10A) and W. G. Lister [9] (§ 10B). Then there is a theory of invariant

bilinear forms (§ IOC) on LTS which we develop to fit the considerations

mentioned above. By "invariant bilinear form" on a LTS m we mean a sym-

metric bilinear form b such that
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b(z, [yxw]) = b([xyz],w) = b(x, [wzy]) .

Then the pair (m, b) is said to be of "reductive type" if b is nondegenerate
both on m and on the center of m, and if every ideal t C m with [tmt] = 0
is central in m. We show that (m, b) is of reductive type if, and only if, m is
a Z>-orthogonal direct sum m0 Θ mλ Θ Θ vat where m0 is the center and
the other m* are simple ideals. If m is a Lie algebra, then this says whether m
is reductive, and even that seems to be new. Evidently this LTS information
is just what we need for a de Rham decomposition. It is separated as an ap-
pendix in order to preserve continuity of exposition, but it is used in §§ 5, 6, 7
and 8.

§ 5 is a de Rham decomposition theory for pseudo-riemannian symmetric
spaces of reductive type. Let (M, ds2) be a locally symmetric pseudo-riemannian
manifold, x e M, qx the Lie algebra of germs of Killing vector fields at x, and
Qx = ϊx + mx the Cartan decomposition under the local symmetry of (M, ds2)
at x. Then m^ is the space of germs of infinitesimal transvections of (M, ds2)
at x, and it is a LTS under the composition [uvw] = [[u, v],w]. ds2 induces a
nondegenerate symmetric bilinear form bx on mx, and we show that bx is an
invariant bilinear form on mx in the sense of LTS. If M is connected, then the
isomorphism class of (πt*, bx) is independent of choice of x and determines
(M, ds2) up to local isometry a splitting (mx, bx) ^ (m^, bx) 0 (m", b") gives
an isometric splitting of a neighborhood of x. The connection with the curva-
ture tensor 'R of (M, ds2) is that ^(w^, vx) wx = — [uvw]x for w, v, w e mx.
Now we say that (M, ds2) is of "reductive type" if the (m,, bx) are of reductive
type, except that we say it with the curvature tensor. The local and global de
Rham decompositions follow when (M, ds2) is of reductive type.

§ 6 translates the results of § 5 to a consistent absolute parallelism φ on
(M, ds2). The delicate matter is the decomposition of φ under a product decom-
position of (M,ds2); that is the gap in [4]. Let xeM,(mx,bx) be as in the
description of § 5, and p be the LTS of ^-parallel vector fields. Note
germ^. (p) c qx. If σx is the symmetry we show that ξ >-• germ^ (ξ) — σx germ^ (ξ)
is a LTS isomorphism of p onto mx. Then we characterize the submanifolds
Λ ί c M o n which φ induces an absolute parallelism. With that information it
is fairly straightforward to prove: if (M, ds2) is of reductive type, then φ induces
an absolute parallelism on each factor of the de Rham decomposition. Thus
questions of classification come down to the cases where (M, ds2) is either flat
or locally irreducible.

§ 7 is the classification of flat pseudo-riemannian manifolds (M, ds2) with
consistent absolute parallelism φ. Let p be the LTS of ^-parallel vector fields,
and T the torsion tensor of φ. We first show that T is parallel so that p is a
Lie algebra and [[p, p], p] = 0. We then classify all pairs (g, b) such that g is
a Lie algebra with [[g, g], g] = 0 and b is a nondegenerate invariant bilinear
form on g. From that we obtain local product structure (global in the complete
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simply connected case) of (M,ds2) as (M_ι,ds2_1) X (M0,dsl), with φ corre-
sponding to φ_x X φQ, where φQ is the euclidean component of the parallelism
and (M_1,φ_1,ds2_1) corresponds to elements of a certain class of metabelian
Lie algebras.

§ 8 is the classification of irreducible pseudo-riemannian manifolds (M, ds2)
with consistent absolute parallelism φ. There the LTS of φ satisfies either
[p, p] = p or [p, p] Π p = 0. If [p, p] = p, then we are in the case of a real
simple group manifold. If [p, p] (Ί p = 0, then [p, p] + p is the Lie algebra g
of all Killing vector fields thus we have two decompositions

[p, p] + P = 9 = ϊ + m , g simple,

where the second is Cartan decomposition under local symmetry σx at a point
x e M. Also, the LTS isomorphism J) -+ m extends to an automorphism εx of
g. With a bit of technical fuss we show that 1, σx and εx represent different
components of the automorphism group of g, so g is of type D4 and εx is a
triality automorphism. It then follows that the complete simply connected
symmetric space for (mx,bx) is the 7-sρhere SO(S)/SO(7), a quadric
SO(4,4)/SO(3,4), or 5(9(8, C)/5O(7, C). Conversely we use triality automor-
phisms to construct all consistent absolute parallelisms on those three spaces.

§ 9 is the synthesis of the results of §§ 6, 7 and 8, described above in the
general introduction.

C. Notes to the reader

In general we follow the conventions of [11]. As most computation is done
in the flat connection associated to the parallelism, we denote

Γ, Γ%, T, T) k, V: for the flat connection

and

T , T)k, 'R, 'R)kU Ύ: for the Levi-Civita connection.

This paper is written so that the following segments can be read separately.

§§ 2, 3 and 4 give the general theory of absolute parallelisms on differ-

entiable and pseudo-riemannian manifolds. § 10 is a summary of the general

theory of LTS and a theory of reductive LTS. §§ 10 and 5 in that order are a

de Rham decomposition theory for pseudo-riemannian symmetric spaces. § 7

with a few glances at §§ 4 and 10 is the theory of absolute parallelisms on flat

pseudo-riemannian manifolds. § 8 with a few references to §§ 3, 5, 6 and 10 is

the theory of absolute parallelisms on irreducible pseudo-riemannian manifolds.
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2. Absolute parallelism on differentiable manifolds

By absolute parallelism on a differentiable manifold M, we mean a rule φ,
for translation of tangent vectors between any two points x, y € M, which does
not depend on additional choices. More precisely, it is a system of linear
isomorphisms

(2.1a) φ = {φyx} , φyx :Mxς=LMy (for all x, y g M)

of tangent spaces, with consistency condition

(2. lb) φzy φyx = φzx , φxx = ident. (for all *, y, z € M)

and regularity condition

(2.1c) if ξx e Mx then f = {£„}, £„ = ^ ^ , is smooth.

Let ^ = {φyx} be an absolute parallelism on M. We say that tangent vectors
ξx <= Mx and f y e M y are parallel if f y = φyxξx. This is an equivalence relation
on the set of all tangent vectors to M by (2.1b), and the equivalence classes
are smooth vector fields on M by (2.1c). We call these equivalence classes the
parallel vector fields of (M, φ) or φ-parallel vector fields on M.

The following classical theorem contains the basic facts about absolute
parallelisms on differentiable manifolds.

2.2. Proposition. Let M be a connected differentiable manifold. Then there
are natural one-one correspondences between

( i ) absolute parallelisms φ on M,
(ii) smooth trivializations X of the frame bundle B —> M,
(iii) smooth connections Γ on B —> M with holonomy group reduced to the

identity.z

The correspondences are (a) X = {ξ 15 , ξn}9 n — dim M, where the ξι
are parallel vector fields of (M, φ) which are linearly independent at some {thus
every) point (b) the Γ-horizontal space at X(x) e B is the tangent space to
X(M) at X{x) and (c) φ is the Γ-parallelism.

Proof. Given φ, let Xf — {ξ'19 ••-,?„} t>e a second parallel frame on M.
Choose « M and define geGL(n,R) by X'(x) = X(x)-g. Then X' = X g
globally on M, so X' and X define the same smooth trivialization of B —> M.

Given Z the Γ-horizontal space at an arbitrary point X(x)-geB (xeM,
geGL(n,R)) is the tangent space there to X(M) g. If σ(t),a < t < b, is a
sectionally smooth curve in M based at x, then its horizontal lift to X(x) g is
t^X(σ{fj)-g. Since the lift has endpoint X(x)-g, the Γ-parallel translation
around σ is trivial. Thus Γ has trivial holonomy group.

Finally, notice that X is jP-parallel. q.e.d.

3 It follows from the Cartan structure equations that Γ is flat (i.e., has zero curvature).
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We remark that when M is simply connected, the class (iii) of Proposition
2.2 coincides with the class

(iii)' flat {zero curvature) connections Γ on B —> M.
2.3. Example. Let G be a Lie group. Define λyx: Gx —> Gv to be the

tangent space map of the left translation g »-> yx~ιg. This defines an absolute
parallelism λ = {λyx} on G. Euclidean parallelism is the case G — Rn of real
vector groups, and Clifford parallelism on the 3-sphere is the case G = SU(2)
^ S3. Similarly, pyx: Gx —> Gy from g \-+ gx~ιy defines another absolute paral-
lelism p = {pyx} on G.

Fix an absolute parallelism φ on M. By the connection associated to φ we
mean the connection Γ on the frame bundle provided by Proposition 2.2, so
that φ is the parallelism of Γ. If Γ is complete then we say that φ is complete.

Choose a parallel frame X = {ξ 19 , ξn} on M, and let θ = {01, , 0W}
be the dual coframe. Then the Vξβk) = Σ ΓJfcf< vanish identically because
the ξk are Γ-parallel, so Γ)k — 0 and the connection forms ω) — 0. Now the
equations of structure of Γ in the frame X are reduced to

(2.4a) dθ* = iΣ T)kθj Λ θk and ωj = 0 ,

where the torsion tensor of Γ is given by

(2.4b) Γ(f,,f fc) = Σ ΓJΛ = - [ £ „ £ * ]

In particular,

(2.4c) T is parallel if, and only if, the T)k are constants.

2.5. Proposition. Let M be connected. Then there exist a connected Lie
group G and a discrete subgroup D C G such that M has the structure of the
coset space D\G — {Dg: geG} with φ induced from the absolute parallelism
of left translation on G if, and only if, (i) φ is complete and (ii) T is parallel.

Proof. Let G be a connected Lie group, D C G a discrete subgroup, and
λ the parallelism of left translation on G. Then left translation by any g € D
preserves every ^-parallel vector field, so λ induces an absolute parallelism on
D\G. Choose a basis X' = {ξ[, , ξ'n} for the Lie algebra g of left invariant
vector fields on G, and let X = {ξ 19 , ξn} be the global frame induced on
D\G. Then [ξj, ξk] = Σ c%£i where the c)k are the structure constants of g,
i.e., [ξ'j,ξ'k] = Σ c%ξ'i' S o t h e Ί)k = —c)k a r e constant. Thus T is parallel,
and completeness on D\G comes from completeness of λ.

Conversely, suppose φ complete and T parallel. Then the parallel vector
fields of (M, φ) form a Lie algebra g. Let G be the simply connected Lie
group for g. If f eg and χς.M, then the 1-parameter group {exp (tξ)} acts
by: {exp (tζ) x) is the integral curve for ξ through x. This defines an action of
G on M corresponding to the action of G on itself by right translation. All
G-orbits in M are open, so the action is transitive.
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Choose xoeM and let D = {geG: g(xQ) = xQ}. D is a discrete subgroup
and M ^ D\G with the action corresponding to right translation. The paral-
lel fields of (M, φ) correspond to the fields on D\G induced by elements of cj,
from construction of the action of G. Thus φ is induced by the left translation
parallelism of G.

3. Consistent pseudo-Riemannian metrics

Let M be a difϊerentiable manifold, φ an absolute parallelism on M, and
ds2 a pseudo-riemannian metric on M. We say that φ and ds2 are consistent if
ds2 is ^-invariant in the sense

(3.1a) ds2(φyxξx, φyxηx) = ds\ξ x, ηx) (x,y ζM; ξx,ηxε Mx)

and, modulo parameterization,

(3.1b) the ί£s 2-geodesics are the ^-geodesies.

Here ^-geodesic means geodesic for the connection associated to φ.
Choose a ^-parallel frame X = {ξ 1? , ξn} on M, let θ = {θ\ , θn) be the

dual coframe, let Γ be the connection associated to φ, and recall the structure
equations (2.4) of Γ. Now denote

(3.2a) ds2 = 2 gifiιθ* 5 global expression,

and

(3.2b) T : Levi-Civita connection of ds2 .

3.3. Lemma, ds2 is φ-invariant if, and only if, the functions gtj are
constants.

Proof. Vξjc{ξi) = 0 = Pξk(ξj). If gίj is constant, then

ξ*(gij) = 0 = dsψsβd^j) + ds'iξ^P^iξj)) ,

so ds2 is ^-invariant. Conversely, if ds2 is ^-invariant, then

so the gij are constants.
3.4. Lemma. Let ds2 be φ-invariant. Then the following conditions are

equivalent.
(1) φ and ds2 are consistent.
(2) The ds2-geodesics are the φ-geodesics with the same affine parameteri-

zation.
(3) In the φ-parallel frame X, the Tijk are alternating in every pair of

indices.
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(4) fΓ — Γ — \Ύ, i.e., in some {hence every) moving frame one has

T)k = r% - γr%.
(5) // ξ, η and ζ are φ-parallel vector fields, then ds\[ξ, η], ζ) + ds2(η, [ξ, ζ])

= 0.
Proof, ds2 — Σ %iβ1^ and Lemma 3.3 say that the nonsingular symmetric

matrix {giό) is constant.
Assume (1) and let a be a ^-geodesic in affine parameter. Thus af(f) =

Σ aiζiσ{t)iaί constant, and σ(t) = σ(ί(^)) is a ώ2-geodesic with affine parameter
s. As the α* and the gtj are constant,

ώ V ( 0 y ( 0 ) = Σ 8ijaίaJ' constant.

Thus t is a d,s2-affine parameter for σ, proving (2).

Assume (2). If σ is a geodesic, then σ' = 2J «*?< with αf constant, so

0 - daηdt + Σ 'Γ)kcUak = Σ TJ^έi* .

Thus the T% + Tkj - 0. Now the Tίjk = Σ Sm*Tj} satisfy T ^ * + T i<Jfc

= 0. On the other hand,

0 = ξt(gjk) = ds\'Fζi(ξj),ξk) +

Σ TZξJ - Tίjk + Tίkj

Thus Tijk is alternating in (/,/) and in (j,k), hence also in (i,k), so (3) is
proved.

Assume (3) and consider the tensor field of type (2,1) given by S(ξ, η) =
Pξ(η) - 'Fξ(η). Then S(ξj9ξk) = — Σ ^ ί A ' s o s i s alternating. As T has
torsion 7Γ = 0 now

Thus 5 = JΓ, i.e., 'Γ - Γ = -\T, proving (4).
Assume (4), so T€ /£ t) = Fξj(ξk) - iT(ξj9ξk) = *[£„£*]. Then

0 =

proving (5).

Assume (5), so the Tίjk = Σ ffcm^ satisfy TίJk + Tikj = 0. Thus the Tijk

are alternating in every pair of indices. Let Δ be the connection with com-
ponents — \T)k, D its covariant differentiation, and S its torsion tensor. Then

= 0= -\Tijk - \Tik5 = ds\Ό,β^ξk) + ds>(gj9Du(gk))
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shows ds2 to be invariant by D, and

S(ξj,ξk) = Dξβk) - Dζβj) - [ξj,ξk]

= - i Σ ΓJA + έ Σ ilyf* + τ(ξj, £*) = o

shows J to be torsion free. Thus d = 'Γ by uniqueness of the Levi-Civita
connection for ds2. Now T)k + fΓkj — 0 so, for any constants (a\ ., an),

^- + Σ 'Vfl* = o .
at

That proves (2), thus implies (1). q.e.d.
Let g be a Lie algebra. By invariant bilinear form on g one means a sym-

metric bilinear form b on g such that

(3.5a) b([ξ, ?], 0 = 6(f, [9, CD for all f, 9, ζ e β .

If G is a connected Lie group with Lie algebra g, then G acts on the space of
symmetric bilinear forms on g by the symmetric square of the dual of the
adjoint representation, and (3.5a) is equivalent to G-invariance of b, i.e., to

( 3 . 5 b ) b(ad(g)ξ,3d(g)v) = Kξ,η) f o r a l l f ^ e g a n d geG .

The main example of an invariant bilinear form on g is the trace form

bπ(ξ, η) = trace π(ξ) π(η) ,

where π is a linear representation of g. The Killing form is the trace form of
the adjoint representation.

A Lie algebra g is called reductive if it has a faithful completely reducible
representation. It is standard that the following conditions are equivalent.

(3.6a) g is reductive.

(3.6b) The adjoint representation of g is completely reducible.

(3.6c) g = 3 0 gr where 5 is the center and g7 = [g, g] is semisimple.

(3.6d) g has a nondegenerate trace form.

It turns out that some non-reductive Lie algebras have non-degenerate in-
variant bilinear forms. In particular such a form cannot be a linear combina-
tion of trace forms. Here is an example. Let g be the nilpotent algebra with
basis {z19 z29zZ9w19w29 w3} where

{z19 z29 £3} spans the center of g and

( 3 * 7 a ) 1 r 1 r i
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Now define

b(wt, Wj) = 0 = b(Zi, Zj) for all i, /

(3.7b) b(wt, Zj) = O = Kzj9 wτ) for i ψ j

b(wi92i) = 1 = KZiiWi) for all / .

Then b is a nondegenerate invariant bilinear form on g with signature (3, 3).
Proposition 2.5, Lemmas 3.3 and 3.4, and definition (3.5) have the follow-

ing immediate consequence.
3.8. Theorem. The triples (M, φ, ds2) such that M is a connected manifold,

φ is a complete absolute parallelism on M with parallel torsion tensor, and ds2

is a pseudo-riemannian metric consistent with φ, are precisely the triples
(D\G,λ,dσ2) where

( i ) D is a discrete subgroup in a simply connected Lie group G whose Lie
algebra has a nondegenerate invariant bilinear form,

(ii) λ is induced by the absolute parallelism of left translation on G, and
(iii) da2 is induced from a bi-invariant pseudo-riemannian metric on G,

i.e., from a metric defined by a nondegenerate invariant bilinear form on the
Lie algebra.

In the positive and negative definite cases, invariant bilinear forms are trace
forms, so Theorem 3.8 simplifies as follows.

3.9. Corollary. In the riemannian case, the triples (M, φ, ds2) of Theorem
3.8 are precisely the triples (D\G, λ, dσ2) where

( i ) G = V X G' where V is a real vector group and G' is a compact
simply connected semisimple group, and D is a discrete subgroup of G,

(ii) λ is induced by the absolute parallelism of left translation on G, and
(iii) dσ2 is induced from a bi-invariant riemannian metric on G.
Remarks. Given (M, φ), Lemma 3.4 (4) shows that φ determines the Levi-

Civita connection of every consistent metric ds2. One cannot expect more
because every translation-invariant metric on Rn is consistent with the euclidean
parallelism. Also, the converse is false: (M, ds2) does not determine φ modulo
isometries of (M,ds2). For, if G is the 6-dimensional nonabelian nilpotent
group for the algebra (3.7a), and dσ2 is the bi-invariant metric of signature
(3.3) specified by (3.7b), then we will see in (4.7) that (G,dσ2) is flat, hence
isometric to the euclidean space of signature (3,3). The left translation
parallelism λ on G is not the euclidean one because [w^w^ ] Φ 0 for / ψ j .
This matter will be explored systematically in § 7.

4. Curvature and symmetry of consistent metrics

Let φ be an absolute parallelism on M, and ds2 a consistent pseudo-rieman-
nian metric. We work in a ^-parallel frame X — {ξ19 -,ξn} and the dual
co-frame θ = {θ\ , θn). Lemma 3.3 says ds2 = Σ gtβΨ with the giά con-
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stant. Lemma 3.4 says that the Levi-Civita connection fΓ for ds2 has
"components"

(4 1) 'r» — _ i τ «

where T is the torsion tensor (2.4) of the connection Γ associated to φ. Now
denote

(4.2a) 'R: curvature tensor of ds2 .

Its components in the frame X are given by the

(4.2b) 'R(ξk, ξjξ, = ([Ψlt, Ψu] - 'F t t f c t ι 3)£, = Σ '«}«f«

or, using the metric,

(4.2c) %m = Σ 'RUni

4.3. Theorem. Let xeM and a, βe Mx such that a and β span a plane on
which ds2 is nondegenerate, i.e., such that

(4.4a) || a A β|p = ds\a, a)ds\β, β) - ds\a, β)2

is nonzero. Then the sectional curvature of (M, ds2) on the plane spanned by
a and β is

(4.4b) Kaβ = \ds\T{a, β), T(a, β))/\\a A β\\2 .

Proof. Let a = aliix and β = b3ζjx (we use the summation convention).
Then

4ds\'R(a, β)a, β) = 4ds2('R(ξi,ξj)ξk,ξι)aiVaW

= 2ds2(-Ψξ.T%ζm + 'F

(interchange i, k to see that the second term vanishes)

T%Timl -

(interchange /, / to see that the first term vanishes)

= -dsXT(oc,β),na,β)) .
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Now recall Kaβ = -ds\'R{a, β)a, β)/\\a A β\\2.
4.5. Corollary. // ds2 is positive definite, then (M, ds2) has every sectional

curvature Kaβ > 0.
Let {φk(t)} be the local one-parameter group of local diffeomorphisms whose

orbits are the integral curves of ξk. Suppose x e M, xt = φk(t)>x, and

at = a<{t)ξixt , βt = bKt)ξJXt

are vector fields along {xt}. Then the Lie derivatives

Lζk(a) = ξ*(**)£* - fl*Γ(f*, f4) , Lζk(β) = ξkφ0ξj

In particular, {αj and {βt} are ̂ ^-invariant if, and only if,

ξk(ai) = π»am and

In that case,

dt

= Tkmja™V + Tkr1a*b* = (Γ f c ί, + TkJi)aW = 0 .

Hence:
4.6. Proposition. £v^ry φ-parallel vector fields is a Killing vector field of

(M, ds2). In particular, if (M, φ) is complete, and M is connected, then (M, ds2)
is homogeneous.

We go on to show (M, ds2) to be locally symmetric. Consider the tensor S of
type (1,3) given in the frame X by

« £ * , « • £ , - S%tξm = -![[£*,£<],£,] .

Lowering an index,

Sijkl = dst(S(ξk9ξι)'ξj9ξi) = -i<fa*([[£t,£J,?,•],?,) .

Evidently we have the identities

Also, as [ffcjfJ is a Killing vector field by Proposition 4.6, and as g^ is

constant,

[[f,,ίJ,?J) = 0;

so we also have the identity

Sijkl + Sjikl — 0
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If (a1) and (bj) are ̂ -tuples, then Theorem 4.3 ensures

SίjkιaWakbι = 'Rima*Va*bι ,

which implies SijU = fRίjkι in view of the identities satisfied by 5. Thus we
have proved

(4.7) '*(£*,£,)•£, = - i [ [ £ * , £ J , £ , ] and is a Killing vector field.

We need the derivations of the tensor algebra given by

(4.8a) Aζ = Lζ — 'Vξ where L is Lie derivative.

As T is torsion free they satisfy

(4.8b) Tv(ξ) = -Aζ(η) , for all vector fields £, η.

In particular, f is a Killing vector field if and only if

(4.8c) ds2(AξV, ζ) + ds\η, Aζζ) = 0 , for all fields η, ζ.

4.9. Lemma (DΆtri-Nickersori). Let ξ and η be Killing vector fields of
(M, ds2). Then ds\ξ, η) is constant if and only if Aξ(rj) + Av(ξ) = 0.

Proof. For any vector field ζ we have ζ ds\ξ, 5) = ds2('Fζξ, rj) + ̂ ( f , T # )
= -ds\Aζζ,rj) - ώ*(£,Λ,0 = ds\Z,Aξη + ̂ ,£).

4.10. Lemma. The 'Rίjkι are constants.
Proof. Let η = 'R(ξk9ξι)ξj9 so that 7* i i l ; ί = d^{η9ξ^ and 27 is a Killing

vector field by (4.7). Then

Now 2'F^O?) = [£β, ̂ ] = Lζq{η) shows^ e β( 7) = Ψφ), and T
= >4eg(£t) by Lemma 4.9. Thus

V, ξt) + ds\v, Aζq{ξτ)) = 0 . q.e.d.

As the gij are constants, Lemma 4.10 says that the /R)kl are constants. In
view of (4.7) we have

4.11. Proposition. // £, η and ζ are φ-parallel vector fields on M, then
[[£, η], ζl and 'R(ξ, η)ζ = - i [ [ £ , η], ζ] flr^ φ-parallel vector fields on M.

Let xQ e M, and {JCJ be a geodesic arc through JC0. We may assume X to be
chosen so that [xt] is an integral curve to ξq, i.e., xt = φq(t)-x where φq is the
local one-parameter group local isometries for the Killing vector field ξq. Now
let a0, β0 £ MXQ. We extend them to two pairs {at}, {βt} and {'αj, {'βt] of vector
fields along {xt} by the conditions that at = aί(t)ξίXt and βt = bj(t)ξjXt be ̂ Q-
invariant, and ' ^ = /aί{t)ξίXt and ̂  = fbj(t)ξjXt be ^-parallel. In the dis-
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cussion following Corollary 4.5 we saw that the 0g-invariance means that ??(α0
= Tι

ίmam and ξq(bj) = T{rb\ Similarly, T% = -\T)k says that ^-parallel
means that ξq(!et) = lT\m'am and ξq('b>) = \T{r'b

r. Thus

(4.12) f,(β*) = 2fg('α ί) and ξqψ) = 2f β ( '^) at * 0 .

As the φq(t) are local isometries of (M, dί2) we have

d

dt
-{'Rmιa

ιVa*b1} = 0 .

With (4.12) and Lemma 4.10 this says that

d

dt
'Rιm'ai'V'ak'bι = 0 ,

and thus that derivative vanishes for all t. Now ||'αrt Λ '|8( | |
2 is constant. Thus,

if ds2 is nondegenerate on the plane spanned by α0 and β0, then

(4-13) -^K..,,t) = 0 ,

which proves sectional curvature of (M, ds2) to be invariant under ίfo2-parallel
translation. We summarize as follows.

4.14. Theorem. Let M be a diβerentiable manifold, φ an absolute paral-
lelism on M, and ds2 a pseudo-riemannian metric consistent with φ.

1. (M, ds2) is locally symmetric.
2. If ξ is a φ-parallel vector field on M, then ξ is a Killing vector field of

(M,ds2).
3. If ξ and η are φ-parallel vector fields on M, then ds\ξ, η) is constant.
4. If ξ,η and ζ are φ-parallel vector fields on M, and fR is the curvature

tensor of (M,ds2), then /R(ξ,η)ζ and [[ξ,η]9ζ\ = -AfR(ξ,η)ζ are φ-parallel
vector fields on M.

We note that Theorem 4.14 can be turned around.
4.15. Corollary. Let (M, ds2) be a connected pseudo-riemannian manifold.

Then M has an absolute parallelism φ consistent with ds2 if, and only if, M
carries a global frame X = {ξ19 , ξn} such that

(i) each ξt is a Killing vector field of (M, ds2), and
(ii) the ds\ξi, ξό) are constants.

Then the ξι are φ-parallel, and ds2 is locally symmetric.

Proof. Given φ and ds2 consistent, the assertions are contained in Theorem
4.14.

Given X, define φ by the condition that the ξt be ^-parallel. Then (ii) is φ-
invariance (3.1a) of ds2, so we must check (3.1b) that the ds2- and ^-geodesies
agree, i.e., that Ψξ(ξ) = 0 for all ^-parallel ξ. For that, note (4.8) that Aζ(ξ)
= 0 by Lemma 4.9, so - T e ( f ) = [£,£] - Ψζ(ξ) = Aξ(ξ) = 0.
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5. Decomposition of pseudo-riemannian symmetric spaces

Let (M,ds2) be a locally symmetric pseudo-riemannian manifold. Choose
x € M, let QX be the Lie algebra of germs of Killing vector fields at x, and let
sx be the local symmetry at x. Then sx induces an involutive automorphism
Oχ of β*> and we denote

ϊx: + 1 eigenspace of σx , m x : — 1 eigenspace of σx .

As is standard, QX = ϊx + m, and

[ϊx, ϊ j c ϊΛ , [ϊX9 mx] c m x , [mX9 mx] c 1̂  .

Thus mx is a Lie triple system (LTS) under the composition mx X m x X m^
—• m^ given by

(5.1) («, v, H>) !-• [wvw] = [[w, v], w] (definition).

We say that mx with the LTS structure (5.1) is the Lie triple system of (M, ds2)
at x.

We may identify mx with the tangent space Mx under v *-+ vx. Then [11,
Theorem 8.4.1] the curvature tensor of M is given at x by

(5.2) 'R(uX9 vx)wx = — [uvw]x for u,v,wzmx .

Also, this identification carries dsx over to the real bilinear form

(5.3) bx(u, v) = ds?(μX9 vx) for M ^ ί i n , .

The main fact on bx is the following lemma.

5.4 Lemma. Viewing mx as a LTS, bx is a nondegenerate invariant
bilinear form on mx. In other words (10.11), // t, u,v,w € mx then

bx(v, [utw]) = bx([tuv],w) = bx(t, [wvu]) ,

and bx is nondegenerate as a symmetric bilinear form.
Proof. The nondegeneracy of bx on m^ follows from nondegeneracy of

ds\ on Mx.
Let t, u,v,we mx and denote r = [t, ύ] e ΐx. Then r preserves ds2

x, i.e.,

ds\[r,v]x, wx) + ds%vx, [r,w]χ) = 0 ,

which implies

bx([tuv], w) = -bx(v, [tuw]) = bx(v, [utw]) .

Let {y19 ,ym} be a basis of mx, and extend it to a moving frame on a
neighborhood of x. In that frame the curvature tensor 'R has components whose
values at x are given by
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fRίjkl =

If t = yk, u = yl9 v = ys and w = yi9 then

bx([tuv],w) = -'Rίjkι = -'Rkuj = bx([wvu],t) = bx(t, [wvu]) .

It follows that bx([tuv], w) = bx(t, [wvu]) in general, q.e.d.
Lemma 5.4 allows us to apply the theory of LTS with nondegenerate in-

variant bilinear forms to (πtj., bx). That theory is worked out in § 10 and forms
an appendix to this note. From now on we use the facts on LTS, as collected
in § 10, without much comment.

Let Cm*, bi) be LTS with invariant bilinear forms. By isomorphism of (m15 bλ)
to (m2, b2) we mean a LTS isomorphism /: m1—> m2 such that b2(u,v) =
btf-^t'v).

5.5. Lemma. // (M, ds2) is a connected locally symmetric pseudo-rieman-
nian manifold and x,zzM, then (xnX9 bx) is isomorphίc to (m2, bz).

(For there is an isometry of a neighborhood of x onto a neighborhood of z,
which sends x to z.)

We collect some standard facts in LTS formulation.
5.6. Theorem. // (m, b) is a real LTS with nondegenerate invariant bilinear

form, then there is a unique {up to global isometry) simply connected globally
symmetric pseudo-riemannian manifold (M, ds2) such that (xn,b) = (mX9 bx)
for xeM. If m = m 1 0 m 2 and b = bx®b2, then (M,ds2) = (M19dή) X
(M2, dsl) where the factors correspond to (m1? bλ) and (m2, b2).

Let (M,ds2) and (N,dσ2) be locally symmetric. Let xeM and zeN. Let
(πta , bx) and (n2, bz) be the associated LTS and invariant bilinear forms. If
f: (nts, bx) = (n2, bz) is an isomorphism, then

exp., (ux) H-> exp2 (/(w)2) , uεmx ,

gives an isometry, from a local coordinate neighborhood of x to one of z, which
carries x to z. In particular, if M is connected, then (M, ds2) is locally isometric
to the simply connected globally symmetric space corresponding to (mx, bx).

Proof. For the first assertion let g be the standard Lie enveloping algebra
of m. Then g = ϊ + m, ϊ = [m, m] in g, vector space direct sum; so g has an
automorphism σ which is + 1 on ϊ and — 1 on m. Let G be the simply con-
nected Lie group with Lie algebra g, and K the analytic subgroup for ϊ. Now
σ extends to G here K is the identity component of its fixed point set, so K
is closed in G. Thus M — G/K is a simply connected manifold whose tangent
space at x = 1 K is represented by m. As b([k, u], v) + b(u, [k, v]) = 0 for
all k e ϊ and u,vem, and as b is nondegenerate, now b defines a G-invariant
pseudo-riemannian metric ds2 on M such that (m, b) = (mx, bx). As b(σu, σv)
= b(u,v) for u,vem, σ is an isometry of (M,ds2), so (M, ds2) is globally
symmetric.
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If m = nti Θ m2 with b = b1® b2, then the corresponding g = gx 0 g2 and
ϊ = Ij 0 ϊ2 because we use the standard Lie enveloping algebra, and the product
statement follows.

The second assertion is an application [11, Theorem 1.7.20] of the polar
coordinate form of Cartan's structure equations, and gives the uniqueness in
the first assertion, q.e.d.

We say that the locally symmetric space (M, ds2) is of reductive type at x if

ds\ is nondegenerate on the subspace
(5.7a)

Zx = {ξzMx:
 fR(ξ,Mx) = 0} of Mx ,

and

US a Mx subspace such that 'R(S,MX)>MX c S
(5.7b)

and 'R(S, Mx)-S = 0 , then S c Zx .

We say that (M, ds2) is of reductive type if it is of reductive type at every
xeM.

We translate the definition (5.7) to the LTS of (M, ds2) at x. Using (5.2) we
see that

Zx = {uxeMx: ue xnx and [wm^m J — 0} .

In other words (10.8),

Zx = {ux: ue%x) where $x is the center of mx.

Thus (5.7a) says that bx is nondegenerate on the center of mx. Similarly,
(5.7b) says that if i is an ideal in mx such that [im^t] = 0 then t is central in
mx. Thus (10.15) and Lemma 5.4 say:

(M, ds2) is of reductive type at x if, and
(5.8)

only if, (mx, bx) is of reductive type.

5.9. Theorem. Let (M, ds2) be a connected pseudo-riemannian manifold
of reductive type. Then there exist simply connected globally symmetric pseudo-
riemannian manifolds {Mudsf),0 < ί < t, unique up to global isometry and
permutation of {1,2, , t}, with the following properties.

(1) (Mo, dsl) is flat (curvature = 0).
(2) // / > 0, then (Mi9dή) is irreducible (in the strongest sense: the in-

finitesimal holonomy group at each point is real-irreducible in the tangent
space).

(3) // xe M, then a neighborhood of x is isometric to an open set in
(MQ,dsl) x (Ml9ds\) X . . . x (Mt,dsl).



ABSOIUTE PARALLELISMS. I 335

(4) // (M, ds2) is complete, then there is a pseudo-riemannίan covering

( M o , dsl) x ( M 1 ? Λ D X . X (Mt, dsl) - > ( M , ds')

// (M, ds2) is complete and simply connected, then it is isometric to (Mo,
X . . . X (Mt,ds$.

Conversely, if a locally symmetric space is locally isometric to the product of
a flat and some irreducible symmetric spaces, then it is of reductive type.

Remark. If (M, ds2) is riemannian, i.e., if ds2 is positive definite, then it is
automatic that (M, ds2) be of reductive type, and the result of Theorem 5.9 is
standard.

Proof. Let x e M. Then (mx, bx) is of reductive type. Theorem 10.16 says
m^ = m0 Θ TΠx Θ Θ nt i 5 Zvorthogonal direct sum, where m0 is the center
and the other m* are the simple ideals of the derived system m£° = [ m s m Λ m J .
Let (Mi, dsl) be the simply connected globally symmetric space associated to
(nti, bt), bt = bx\miXmi> by Theorem 5.6, and (M, da2) be the one associated to
(πxx, bx). Theorem 5.6 gives a global isometry

(M, da2) = (M0,dsl) X (M^dsl) X X (Mt,dsl) .

As τu0 is central in mx we have [momomo] = 0. Now (5.2) shows that the
curvature tensor of (M0,dsl) vanishes identically, proving (1).

Let / > 0. Then mt is simple, i.e., it has no proper subspace t such that
[tπtίΐnd c t. If xt eMi, then (5.2) says that the tangent space MifX. has no
proper subspace S such that the curvature tensor satisfies 'R(S9 Mi>Xi) MitX. C S.
This implies irreducibility of the infinitesimal holonomy group, and hence (2)
is proved.

Theorem 5.6 says that (M, ds2) is locally isometric to (M, da2), which is iso-
metric to the product of the (M€, ds?). Hence (3) is proved, and (4) follows.

The converse follows from Theorem 5.6 and the converse statement of
Theorem 10.16.

6. Decomposition of absolute parallelism

Let M be a smooth manifold with an absolute parallelism φ. Suppose that
ds2 is a pseudo-riemannian metric on M consistent with φ.

Theorem 4.14 says that (M, ds2) is locally symmetric. If x e M, then we have
the Lie algebra qx of germs of Killing vector fields at x, the involutive auto-
morphism ax of QX induced by the local symmetry, the ̂ -eigenspace decompo-
sition QX = ϊx + mx, the LTS mx of (M, ds2) at x, and the nondegenerate
invariant bilinear form bx on mx. We also have

(6.1a) p: space of all ^-parallel vector fields on M.

Theorem 4.14 tells us that
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(6.1b) ξ ι-> (germ of ξ at x) injects p into qx,

and that

(6.1c) p is a LTS under [ξηQ = [[£, η\, ζ\.

6.2. Lemma. Let xzM, and consider the evaluations

π:p->Mx by π(ξ) = ξx , μ: m* -* MΛ 63; μ(u) =

words,

fx(S) = (germ of ξ at x) — σx(germ of ξ at x) .

Then fx is a LTS isomorphism of p onto m.
Proof. The curvature tensor fR of (Λf, ds2) satisfies

'R(μiu), μ{v)) - μ(w) = — ̂ [MVW] for u,v,we mx

by (5.2), and also satisfies

'R(π(ξ)Mη)) *(ζ)=-iπ[ξηζ\ f o r f>V> C ^

by (4.7). Thus

Lemma 6.2 is one of the basic ingredients in our decomposition of φ under
a product decomposition of (M, ds2). Here is the other basic ingredient.

6.3. Proposition. Let (N, dσ2) be a pseudo-riemannian submanίfold of
(M,ds2). Then the following conditions are equivalent.

(1) φ induces an absolute parallelism on N, i.e., the tangent spaces satisfy
ΦvχNx = Ny for all x,yeN.

(2) There is a subsystem q c p such that Nx = {ξx: ξ € q} for every point
xeN.

(3) (N,dσ2) is totally geodesic in (M,ds2). Further, if x<εN, then qx —
{ξep:ξxeNx} satisfies [ξ,η]x <= Nx for all ξ,ηeqx.

Proof. lίxeN, define qx = {ξ € p: ξx <ε Nx}.
Assume (1). If x, y € N, then {ξy: ξ e qy} = Nv = φyxNx = φyx{ξx: ξ e qx}

= {ξy: ξ e qx}, which says qy = qx. Thus we have a linear subspace q C p
such that each Λ^ = {ξx: ξ e q}. As iV is a submanifold of M, now Λ: € iV and
f, η € q imply [f, η]x e iVx then ζ € q further implies [f^ζ],, € Λ^ so [f^ζ] e q.
Thus q is a subsystem of p and (2) is proved.
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Assume (2). If xzN, then the geodesies of (M,ds2) tangent to N at x are
the integral curves through x of the elements of q. Those are contained in N
locally. Thus (N,dσ2) is totally geodesic in (M,ds2). By assumption (2), also
every qx = q; as in the proof that (1) implies (2), this forces [ξ9η]xeNx for
all ξ, 7] e q = qΛ. Thus (2) implies (3).

Assume (3). Let x,yeN, and p be a smooth curve in N from x to y. As
(N,dσ2) is totally geodesic in (M,ds2), ds 2-ρarallel displacement along γ sends
Nx to Λ^. The other assumption of (3) can be phrased: T(NZ,NZ) c iVβ for
all z € N. Lemma 3.4 (4) says Γ = T + \ Ί where Γ is the connection of φ
and T is that of ds2. Thus Γ-parallel displacement along γ sends N Λ to Ny,
i.e., ŷa iVa. = iVy. Now (1) is derived from (3). q.e.d.

The following is stated separately for reference in § 8.
6.4. Lemma. Let (M, dσ2) be α simply connected globally symmetric

pseudo-riemannian manifold. If ψu is an absolute parallelism on an open set
U C M consistent with dσ2\U9 then there is a unique absolute parallelism ψ on
M consistent with dσ2 such that ψ^ = ψ|^.

Proof. Let {η19 , ηn} be a basis of the space of ψ^-parallel fields on U.
Each ηt is a Killing vector field on ([/, dσ2) by hypothesis on (M, dσ2) now ηt

has a unique extension ξt to M, which is a Killing vector field of (M,dσ2).
The dσ\ξi,ξj) = dσXηi,7]j) are constant on M by real analyticity. Now
Corollary 4.15 provides an absolute parallelism ψ on M consistent with dσ2

such that ψ\u = ψU9 and uniqueness also follows from Corollary 4.15. q.e.d.
Now we can describe the general situation.
6.5. Theorem. Let M be a connected manifold, φ an absolute parallelism

on M, ds2 a pseudo-riemannian metric M consistent with φ, and (M, dσ2) the
simply connected globally symmetric space locally isometric to (M, ds2). Then
there is an absolute parallelism φ on M consistent with dσ2, which has the
following properties.

(1) Let p be the LTS of φ-parallel fields on M, and p the one for M. Then
every xeM has a neighborhood U and an isometry

h: (£/, ds2) -> (U, dσ2), U open in M ,

such that h sends φ\v to φfe, i.e., such that h^:p^p well defined LTS
isomorphism.

(2) // (M,ds2) is complete, then there is a pseudo-riemannian covering
π: (M, dσ2) —• (M, ds2) which sends φ to φ, i.e., such that π^: p = p. In that
case the local isometries h can be realized as local sections of the covering.

(3) Let p = p! 0 p2 be a ds2-orthogonal direct sum of ideals such that

xeM andξ,ηepi imply [ξ,η\x e {ζx: ζ€ pt] .

Then (M, dσ2) = (M19 dsf) X (M2, dsf) pseudo-riemannian product, and
Φ = Φ\ X Φi where φt is an absolute parallelism on Mt consistent with ds\,
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such that each of the local isometries h maps pt isomorphically onto the LTS
of φi-parallel vector fields on Mi. Conversely, any isometric product decompo-
sition of a neighborhood of a point of M, which splits φ, induces a ds2-orthogo-
nal decomposition p = pλ 0 p2 such that [pi9 pj^. c (pi)x for every xeM.

Remark. We claim neither local homogeneity of (M,φ,ds2) nor global
homogeneity of (M, φ, dσ2). In fact that seems to be a delicate matter.

Proof. Fix z e M, a normal coordinate neighborhood V of z, and an iso-
metry /: ( F , ds2) -> (W, dσ2) where W is open in M. Then / carries φ\v to an
absolute parallelism ψw on W consistent with dσ2\w. Lemma 6.4 says that ψw

extends uniquely to an absolute parallelism | o n M consistent with dσ2.
Let x € M with x Φ z. Choose a smooth curve γ from ztox such that γ has

no self intersection and γ Π V is a geodesic arc. Choose a simply connected
tubular neighborhood T of p such that Γ (Ί F is a normal coordinate neighbor-
hood of z. Then f\τnv extends uniquely to a differentiate map g:T —> M
which is locally an isometry. Let [/ C Γ be a neighborhood of x on which g
is an isometry, and h = g^. We will check that (h, U) has the parallelism
property of assertion (1).

Let ξ ep. By construction of ψ we have ζep such that f%ξy = ζfm for every
y e V. In particular, g%ζy = ζgiy) for every y e T Π F . Let 27 be the vector
field on T, which is g-related to ζ. Now η and f are Killing vector fields on the
connected manifold (T,ds2), which coincide on the open subset T (Ί V. Thus
η = f|Γ, i.e., f|Γ is g-related to ζ. Hence ξ\σ is /^-related to ζ = /̂ f, and
assertion (1) is proved.

Let (M, ds2) be complete, and define π: W —> F to be the inverse of /: F —>
ΐF. Then π continues to a pseudo-riemannian covering (M,dσ2) —> (M, ώ 2 ),
and the argument of (1) shows that π*: p = p is a well-defined LTS isomor-
phism, proving (2).

The LTS isomorphism fz:p-^mzoί Lemma 6.2 doubles lengths of tangent
vectors, so it sends ds2-orthogonal pairs to &2-orthogonal pairs. If p = pλ 0 p2

is an orthogonal direct sum of ideals, then mz = mι 0 m2 is a &2-orthogonal
direct sum of ideals where mt — fz(pi). The assertions of (3) now follow from
Theorem 5.6 and Proposition 6.3. q.e.d.

We say that the absolute parallelism φ is of reductive type relative to ds2, if
the pair (p, ds2), viewed as an LTS with nondegenerate invariant bilinear form,
is of reductive type. Thus Lemma 6.2 gives

6.6. Lemma, φ is of reductive type relative to ds2 if, and only if, (M, ds2)
is of reductive type.

Combining Theorems 5.9 and 6.5 we have the following description for
parallelisms of reductive type.

6.7. Theorem. Let (M, φ, ds2) be a connected manifold with absolute paral-
lelism and consistent pseudo-riemannian metric such that φ is of reductive type
relative to ds2. Then there exist simply connected globally symmetric pseudo-
riemannian manifolds (Mi9ds?)9 0 < i < t, unique up to global isometry and
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permutation of {1,2, -,t}, and there exist absolute parallelism φ% on Mt

consistent with dsl, which have the following properties.
1. (Mo, dsl) is flat. If i > 0 then (Mi9dsl) is irreducible (strongest sense:

infinitesimal holonomy).
2. Every xeM has a neighborhood U and an ίsometry h:(U, ds2) —•

(U, da1), U open in Mo x M1 X X Mt and da1 = ds2

0 x ds\ x x ds],
such that h sends φ\v to (φ0 x φγ x x φt)\u-

3. If φ is complete, i.e., // (M,ds2) is complete, then there is a pseudo-
riemannian covering

π: (MQ, dsl) X (Mλ, ώ j ) χ . . . χ (Mt, dsξ) -> (M, ds2)

which sends φ0 X φγ X X φt to φ.
The next two sections are a detailed examination of the possibilities for the

(Mu φu dsf) in Theorem 6.7.

7. The flat case

Let (M, ds2) be a flat connected pseudo-riemannian manifold. We will de-
scribe, locally in general and globally in the complete case, the absolute paral-
lelisms φ on M consistent with ds2. Example (3.7) sets the pattern and shows
that φ need not be the euclidean parallelism.

7.1. Lemma. Let φ be an absolute parallelism on M consistent with ds2, p
the LTS of φ-parallel vector fields on M, and T the torsion tensor of φ. Then
T is φ-parallel, p is a Lie algebra under Poisson bracket, and [ppp\ = 0.

Proof. According to Theorem 6.5 we may assume (M, ds2) to be complete
and simply connected, and then let g denote the Lie algebra of Killing vector
fields of (M, ds2) and t the subalgebra generated by p. Thus

I = q + p where q = [p,p] .

As (M,ds2) is flat, (4.7) says [ppp] = 0 so [q,p] = 0. Jacobi identity implies
[q, q] = 0. Now q is central in ί. Thus q = V the derived algebra, and ad(ί) is
a commutative Lie algebra of linear transformations of ί.

Choose a basis {/319 , βr} of ad(ϊ). As βx and /32 are commuting linear trans-
formations of I, there is a linear combination a2 of them such that a2(i) = /^(l)
+ /32(l). As <x2 and /33 commute, they have a linear combination a3 such that
«3(0 = oc2(l) + j8s(I) = ftCQ + /32(t) + ft(ί). Continuing, we get ar e ad(ϊ) such
that αr(I) = β2(ί) + + βrd) = [ί, I] = q. Choose £ <= p with α/(f) = ar;
that is possible because ί = p + q and αd(q) = 0. Now [ξ, p] — q.

As (M,ds2) is flat, Theorem 4.3 says that ^([27, ζ], [η, ζ\) = 0 whenever
η, ζ e p span a plane on which ώ 2 is nondegenerate. Such pairs (η, ζ) are dense
in p X p. By continuity now ds\[η, ζ], [η, ζ]) = 0 for all 57, ζ € p. If 37, ζ € p,
then
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= ds\[ξ, Vl [£, η\) + 2ds\[ξ,,], [£, CD + ^2([f, ζ], [£, CD

= 2ώ'([£, ,],[£, CD

As [f, p] = q, now ds\a, β) = 0 for all α, /} € q.
Choose a basis {£ 15 , ξn] of p, so the torsion tensor T(ξi9 ξj) =

- [£„ ξjl We have just seen ds2([ξu £,], [ξk, £J) = 0. Thus

0 = dsX-TTjξ^ -Ts

krξs) = y

Raising r we get TfjTr

mk = 0.
As (M,ds2) is flat, its curvature tensor has '/?(?<,£,)•£* = 0. Now (4.7)

and the just-proved fact Tf T^ — 0 give

0 - [[£„£,],£*] = [

Thus the Tf are constants, i.e., T is ^-parallel, and [p,;p] C |). q.e.d.
We now work out the algebraic classification of the pairs (p, ds2) of Lemma

7.1.
Let to be an r-dimensional vector space over a field F, let t> = ft)* dual space,

and let r e Λ3(b) alternating trilinear form on ft). We use this data to define a
2r-dimensional Lie algebra g = g(r, ft)):

(7.2a) g = ft) φ t) as vector space over F,

(7.2b) t) is central in g, i.e., [g, ύ\ = 0, and

if w19 w2 e ft) then [H^, W2] € t) defined by :

<[Wi, w2]? w> = τ(wi, w2> w) for w € ft).

Antisymmetry of [ , ] is obvious, and the Jacobi identity follows from the
observation that

(7.3a) [[g, g], g] = 0, i.e., g is abelian as a LTS,

(7.3b) g is abelian as Lie algebra if and only if τ = 0.

Observe also that g = g(τ, ft)) has a natural nondegenerate symmetric bilinear
form given by

(7.4a) b(b, ύ) = b(to, ft)) = 0 and Z>: b X ft) -* F by ft(v, w) = (v, w> .

If w19 w2, w3 e ft), then ftίt^, w 2], >v3) = τ(w19 w29 w3) = τ(w 2 , >v3, wx) =
6([w2, w 3 ], wx) = 6(w19 [w2, wj). Thus

(7.4b) ft is a nondegenerate invariant bilinear form on g.
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In the real case, b has signature (r, r). The first nontrivial example of the
real case is (3.7).

7.5. Proposition. The pairs (g, b), such that g is a Lie algebra with
[[g, g], g] = 0 and b is a nondegenerate invariant bilinear form on g, are just
the (gx 0 ^ * i θ b2) where

( i ) (flu ^i) w constructed as in (7.2) αrcd (7.4a),
(ii) g2 w ΛAi abelίan Lie algebra, and
(iii) &2 w a nondegenerate symmetric bilinear form on fa.
Proof. Let 3 be the center of g, and g' = [g, g] the derived algebra. Hy-

pothesis [[fl, fl],fl] = 0 implies g' c 3. Let _L denote fe-orthogonality. As
6(3, g') = 0 by invariance, now g; C ^ . Define

gj = 3 Π 3-1- and g2 is a complement to 3χ in 3.

The 3C are ideals in g, 5 = fa 0 g2, g' c 3^ and fc is nondegenerate on 32. As g2

is an ideal, so is 3̂ -. Define

8! = 321 so that a = βi θ fa

Now b = bλφ b2. Thus we need only check that (g15 bj is constructed as in
(7.2) and (7.4a).

We have reduced the proof to the case a = fli Thus we may assume 3 =
3 Π a1, i.e., 3 c 3 1 . If 3 ^ 3 1 , then there is an element w e 3X not central in g,
so we have x β g with [H>, *] 9̂  0, and nondegeneracy of b provides y 6 g with
K[WJ ^ ] , y) Φ 0. Invariance of 6 gives 6([w, Λ:], y) = b(w, [JC, y]), and I>, j ] e g'
C 3 J_ >v. That is impossible. Thus 3 = 3-1-.

Now we are down to the case 3 = 3X. Let r = dim 3. Then dim g = dim 3
+ dim 3-1- = 2r. Let to be a vector space complement to 3 in g such that to =
to-1-. As & pairs 3 with to, it identifies 3 with the dual space to*. Define a trilinear
form τ on to by

Then r(w15w2, w3) is visibly antisymmetric in (wl9w2)9 and is antisymmetric in
(w2> w3) because b([wl9 w2], w3) = ^(w!, [w2, w3]) now antisymmetry in (w19 w3)
follows. Thus τ e yί3(to*) and g = g(r, to) with b given by (7.4a). q.e.d.

We combine Lemma 7.1 and Proposition 7.5 with the flat case of Theorem
3.8, as follows.

7.6. Theorem. The triples (M, φ, ds2), such that M is connected, (M, ds2)

is flat, and φ is a complete absolute parallelism on M consistent with ds2, are

precisely the triples (D\G, λ, dσ2) given as follows.

1 (βi> W ^ a real Lie algebra of dimension 2r with nondegenerate invariant
bilinear form of signature (r, r), constructed as in (7.2) and (7.4a).

2. (32J b2) is an abelίan real Lie algebra of dimension p + q with a (non-
degenerate) symmetric bilinear form of signature (p,q).
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3. fl = ^Θ
4. G is the simply connected group with Lie algebra g, and D is a discrete

subgroup of G.
5. do2 has signature (p + r,q + r) and is induced by the bi-invariant

pseudo-riemannian metric on G defined by b.

6. λ is induced by the absolute parallelism of left translation on G.

One can separate the euclidean and noneuclidean parts of the parallelism λ
by observing, in the proof of Proposition 7.5, that g can be "normalized" by
the condition: the center gx of gx has gx = gf relative to bλ.

If r < 2 in Theorem 7.6, then the form τ which is used in the definition
(7.2) of gx must vanish, so gx is abelian. In particular, if n = dim G, then G
is abelian in case dσ2 has signature (n, 0) or (0, ή) (riemannian), (n — 1,1) or
(1, n — 1) (lorentzian), or (n — 2,2) or (2, n — 2).

Finally note that the (Mo, φQ, dsl) of Theorem 6.7 are just the (G, Λ, dσ2) of
Theorem 7.6, i.e., the case where D = {1} there. In particular, the automor-
phism group of (Mo, φ0, dsl) is transitive on Mo.
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