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1. Introduction

Let X, be a Hermitian symmetric space of noncompact type and X its
compact dual. We express them as coset spaces of Lie groups

Xy =Go/K and X =G/P

where G, and G are the larges‘i connected (compact-open topology) groups
of complex analytic automorphisms. Several interesting facts then emerge.

1. Gisacomplex Lie group, complexification of the real Lie group G,.

2. X s a projective algebraic variety.

3. Using G, ¢ G, one can arrange K = G, n P, so X, has a natural
embedding as an open G,-orbit on X, there, every complex analytic auto-
morphism of X, extends to an automorphism of X.

4. There is a natural complex Euclidean space n* < X, whose comple-
ment is a subvariety of lower dimension in X, such that

Xocmtc X

and the inclusion X, < m™ is a canonical realization of X}, as a bounded
symmetric domain.

As a first illustration, consider the case where X, is the unit disk in the
complex line C,

Xo={zeC:|z| <1}

Then X is the Riemann sphere, m* = C = X — {00} embedded by stereo-
graphic projection, and X, is the open lower hemisphere of X. The groups
are

a b
G={+ < ) ad — bc =1},  complex dimension 3;

Peta(] )i n,

(5 a> ~ o=
(5 2w

0 a

complex dimension 2;

«Q
o S

real dimension 3;

}, real dimension 1;

T
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they act on X and X, by linear fractional transformations

a b
i( d>:z—>(az + b)/(cz + d).

¢
Under the action of Gy, X decomposes into two open orbits
Xo = G,(0) lower hemisphere and G(o0) upper hemisphere

and one closed orbit G4(i), equator.

As a second illustration, consider the case where X, = {z e C": ||z|| < 1}
open unit ball in C". Then X is the complex projective space P*(C) with
the usual Fubini-Study metric of constant holomorphic sectional curva-
ture, m* = C" complement in X of the polar hyperplane to 0, and X, con-
sists of all elements x € X of distance less than {(diameter of X) from 0.
These facts are more easily seen by viewing X as the space of complex lines

through the origin in C"*! and choosing a basis {e;,..., €,;}, and a
n

Hermitian form {u,v) = — Y u*o* + u"*'5"*! on C"*! relative to
. k=1

the basis. Then C* = m* injects to X by z — [z, z%,..., z" 1] and X

consists of all lines x € X that are positive definite under { , ). The groups
are

G : complex general linear group of C**1, modulo scalars;
P : subgroup of G preserving the line [e,,,];
G, : complex Lorentz group (for { , >), modulo scalars;

K: {l(;l :) 12 #0,AeUn), det 4 = afl}/{/l'l}.
They act on X through their linear action on C"**, Again, X decomposes
into two open Gg4-orbits
X, = Go[e, 1] positive definite lines and G,[e, | negative definite lines,
and one closed G4-orbit
Gole, + e, ] isotropic lines.

Here, for n > 1, a new feature emerges. The open G,-orbit # X, is con-
cave and, by Hartogs” Theorem, carries no nonconstant holomorphic func-
tion. In fact it has compact subvarieties gK[e ], g € G,, for K[e,] is the
polar hyperplane to [e,, ;]. Further there is a K-equivariant holomorphic
fibration

B :Gole] > K[e,] by Bla',...,a" ] =[al,...,a" 0}
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whose fibers are unit disks. That turns out [ /7] to compensate for the lack
of holomorphic functions on the orbit.

In general we will see that if X, is an irreducible Hermitian symmetric
space of noncompact type, and if its symmetric space rank is r, then there
are precisely +(r + 1)(r + 2) distinct G,-orbits on X, r + 1 of which are
open and just one of which is closed. Each orbit turns out to decompose, in
a Gy-equivariant manner, into complex submanifolds of X that we call the
“holomorphic arc components” of the orbit. The open orbits, being com-
plex manifolds, have just one holomorphic arc component; they turn out
to be indefinite metric versions of X,. The holomorphic arc components of
the general orbit turn out to be lower dimensional versions of the open
orbits. In a given orbit G,(x), x properly chosen within the orbit, each
holomorphic darc component is fibered holomorphically over its maximal
compact subvariety, and those fibrations fit together to form a real analytic
bundle G,(x) — K(x). These matters are the subject of Part 1I.

In Part I we develop the now-standard basic material of Hermitian sym-
metric spaces (Sections 2—4). We then apply that material (Sections S and 6)
to obtain the G -orbit structure of the topological boundary of X, in X and
the configuration of the holomorphic arc components of the boundary
orbits. Those components are called the “boundary components” of X, in
X. The boundary component theory is somewhat simplified here by sys-
tematic use of the restricted root system.

In Part II, we develop the holomorphic arc component theory and orbit
configuration in general. Originally [ /6] I needed analytic machinery that
went considerably beyond the theory of Hermitian symmetric spaces just in
order to reduce these matters to the boundary component theory ([7],
[13]) that Kordnyi and I had worked out. Here, Part I sheds a little more
light on the boundary component theory, allowing development in Part II
of the holomorphic arc component theory within the context of Hermitian
symmetric spaces. That is a considerable simplification of the correspond-
ing material of [ /6, Chapter TII].

In Part 111, we apply the general theory of Parts I and II to work out the
cases where' X, belongs to one of the four series of classical domains. Of
course this is known [9] for the closure of X, in X, by ad hoc methods. Our
method is easier, works for the two spaces X, that are not classical do--
mains, and accommodates all of the G,-orbits.

In this paper, we do not study realizations of X, as a Siegel domain of
type I, I, or III; that is best done in [7], [/3] and [/6]. We do not study
the function theory of X, it is the subject of a good number of papers in
this volume. We do not consider arithmetic questions; that seems best
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done in [/]. Somewhat in the spirit of classical algebraic geometry, we
just take a close look at a pretty subject.

Part I. Boundary Component Theory

We assume acquaintance with semisimple Lie groups and Riemannian or
Hermitian symmetric spaces. The material of [/5, Chapter 8] is more
than sufficient. Parts of the more basic material are reviewed in Section 2
in order to establish notation and terminology. Section 2 ends with a short
proof of the Borel Embedding Theorem.

Sections 2-4 consist of preparatory material, divided so that readers with
various degrees of familiarity with symmetric spaces can begin at the ap-
propriate place. In general, however, the reader should at least skim
through these sections for notation and terminology.

Section 3 is the first application of Harish-Chandra’s maximal set ¥ of
strongly orthogonal noncompact positive roots for the Lie algebra g, of a
noncompact type Hermitian symmetric space X,. We construct the poly-
disk of dimension rank (Xj) that sweeps out X, under the isotropy group,
and use it to derive the Harish-Chandra Embedding Theorem.

Section 4 is the second application of ¥. The Cayley transform and par-
tial Cayley transforms are constructed, and the restricted root system is
described. We do not prove the characterization of the restricted root sys-
tem. Properties of the restricted root system are used to prove convexity of
Xo.

In Section 5 we work out the Gy-orbit structure of the topological bound-
ary of X, and also the boundary components. There is no essential change
from Wolf-Kordnyi [ /3, Section 4].

The Gy-normalizers of the boundary components are worked out in
Section 6. Originally [ /3] this was a direct, but complicated, business. Then
it was observed [ /] that those normalizers are just the maximal parabolic
subgroups of G,. Here we use the restricted root system to prove directly
that the Gy-normalizers of the boundary components are the maximal
parabolic subgroups of Gy, and use that fact to describe the normalizers
precisely. The result is an improved version of [ 13, Sections 5 and 6] which
allows further improvements in the material of Part II.

2. Borel Embedding

A Riemannian symmetric space is a connected Riemannian manifold ¥
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such that, given y € Y, there is a (globally defined) isometry s, that pre-
serves y and has differential — I on the tangent space to Y at y. Then y is an
isolated fixed point of s,, and the isometry s, is called the symmetry of Y at
y. The symmetry s, is unique.

Given a complex manifold with Hermitian metric, one obtains a
Riemannian manifold consisting of the underlying real differentiable mani-
fold and the real part of the Hermitian metric. If this Riemannian manifold
is symmetric, and if its symmetries are Hermitian isometries, then one says
that the original complex manifold with Hermitian metric is a Hermitian
symmetric space.

Let Y be a Hermitian symmetric space, ¥ — Y the universal covering
space. The complex structure, Hermitian metric, and Riemannian sym-
metries, all lift from Y to ¥. Thus ¥is a Hermitian symmetric space. Let

Y=Y, x ¥, x...x Y,

be the de Rham decomposition of the underlying Riemannian manifold,
where Y, is a Euclidean space and the other Y, are irreducible (not Eu-
clidean, not locally isometric to a product of lower dimensional manifolds).
Hermitian symmetric spaces are automatically Kaehlerian, Thus ¥ = Y,
x Y, x ... x Y,product of Hermitian symmetric spaces. We say that Y
and Yare

Euclidean if ¥ = Y,;

irreducible if Y= Y,;

strictly non-Euclidean if Y=Y, x ... x Y,;

compact type if strictly non-Euclidean with each Y, compact; and
noncompact type if strictly non-Euclidean with each Y, noncompact.

In general [7/4, Lemma 1],
Y=Y, x Y x---x Y, where Yy is the quotient of the complex
Euclidean space Y, by a discrete group of translations.
In particular,
if Y is strictly non-Euclidean, then it is simply connected,
o)

if Y is of compact or noncompact type, it is simply connected.

There is a duality between Hermitian symmetric spaces of compact and
of noncompact type, given as follows. Let X be a Hermitian symmetric
space of compact type, G, its largest connected group of (Hermitian) iso-
metries, xo€ X and K = {g e G, : g(xo) = x,} the isotropy subgroup
there. Then K = G, are compact Lie groups and
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X=~G,/K under g(x,) & gkK.

Let s be the symmetry to X at x, and decompose the Lie algebra of G, by
g. = I + m,, (+1)-eigenspaces of ad(s). That gives another algebra

go = f + mo, mo = i1nc,

with the same complexification as g,. Passing to the group level, we get a
Hermitian symmetric space X, = G,/K of noncompact type. If that con-
struction is applied to X, one obtains X. We say '

X, is the (noncompact) dual of X,
X s the (compact) dual of X,,.

This ‘duality will be of constant high importance. Section 2 ends with a
special embedding of X, in X such that the action of G extends to X and
Xy = Gy(x,) open orbit.

In the notation above, G, and G, have center reduced to {1} and

rank G, = rank K = rank G,.
Further,

X is irreducible < G, is simple <> X, is irreducible.

In the irreducible case, the fact that X and X, are Hermitian (not just
Riemannian) symmetric is equivalent to the fact that K has nondiscrete
center; then the center of K is a circle group which defines the almost com-
plex structures of X and X,,.

We establish our notation for Hermitian symmetric spaces.

X, : Hermitian symmetric space of noncompact type. 2.1)

G, : largest connected group of isometries of Xj,. 2.2)

X : fixed “base point” in Xj,. 2.3)

K : isotropy subgroup of G, at x,. (2.4)
o : Cartan involution ad(s) of G, where s is the symmetry

of X, at x,. 2.5)

f < g, : Lie algebras of K < G,,. (2.6)

Then G, is a connected centerless semisimple Lie group, the center of K
is a torus Z, whose dimension is the number of simple direct factors of G,
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and X is the centralizer of Z, in G,. Also we have the Cartan decom-
position

go = f + mg, sum of +1 and —1 eigenspaces of o. 2.7)
g=g5=1I1"+m  complexification where m = m§. (2.8)
g. =T+ m, compact real form of g where m_, = im,. 2.9)

G : adjoint grpup of g, so G, is the real analytic subgroup for g,. (2.10)
G, :real analyﬁc subgroup of G for g., compact real form of G.  (2.11)
X : G,K, Hermitian symmetric space, compact dual of X,. (2.12)
t : Cartan subélgebra of . (2.13)

As Kis the céntralizer of the torus Zg, it has maximal rank in G, thus also
in G.. So tis a Cartan subalgebra in g, and in g, and € is a Cartan sub-
algebra of g.

A : t%root system of g, so g = t€ + Y. (2.14)

Ay : compact roots, t€-root system of €. ’ (2.15)

A, : noncompact roots, i.e., roots ¢ with g¢ < m. (2.16)

z : central element of  such that J = ad(z)|,, Q.17
is the almost-complex structure of X and X,,.

m¥ : (£i)-eigenspace of J = ad(z)|s - (2.18)

p : € 4+ m~, parabolic subalgebra of g that is the sum of the
nonnegative eigenspaces of ad(iz) : g — g. (2.19)

P: parabolic subgroup of G that is the complex analytic
group for p. (2.20)

Borel Embedding Theorem. G, is transitive on the complex coset space
G/P with isotropy group G, n P = K thus

X = G/P coset space of complex Lie groups.

Let x, denote the identity coset 1P € G/P. Then Gy n P = K, so

gK — g(x,) embeds X, holomorphically as an open Gy-orbit Gy(x,) < X.

Proof. Note g, np = I, so dimgG (x,) = dimgg, — dimgf = dimpm,
= dimym* = dimg(G/P); thus G (x,) is open in G/P. Similarly G¢(x,) is
open in G/P.
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As G, is compact, G (x,) is compact, so the latter is closed (as well as
open) in the connected space G/P. Thus G (x,) = G/P. Now gK — g(x,)
defines a complex analytic covering space X = G/K — G/P. That gives
G/P the structure of Hermitian symmetric space of compact type, so G/P is
simply connected. Now X — G/P is a complex analytic diffeomorphism.
Similarly Xy — Go(x,.) is a complex analytic diffeomorphism. Q.E.D.

3. Harish-Chandra Realization

Choose an ordering of the set A of t®roots of g such that

m* = ) ¢* and m”~ = Y g% 3.1

vedy oehy

For example let iy € it be in the interior of a Weyl chamber whose closure
contains iz, and define the positive root system A™ = {p € A : ¢(iy) > 0}.

Two roots @, Y € A are strongly orthogonal, denoted ¢ L ¥, if neither of
@ + ¥ is a root. In that case ¢ L i, ordinary orthogonality. We construct
a maximal strongly orthogonal set of noncompact positive roots:

¥Y="{,..., %} where ;. is the lowest element 3.2
of Ay strongly orthogonal to each of {y/, ..., ¥}

If ¢ € A we have A, € it defined by: 20(h)/{¢,@) = {h,,h> h e t. Choose
root vectors e, € g® normalized by [e,, e_,] = h,. That choice can be made
so that mg has a real basis consisting of all the '

Xp0=¢6,+e_, and y,o=ile, —e_,), @ely, (3.3)
related to the almost-complex structure by

Jx<o,0 = [Zv xqz,o] = Vo,0> 34
Ipo = (2. Vp0] = =%4.05 [X4.00 Vo0l = —2ih,,

Then m, has a real basis consisting of all
x, =i, +e.,) and y,= —(e, —e_,), QEAy (3.5
such that
Ix, = [z, x,] = Vo5 IV, = [2, V] = — %5 [xp, ¥,] = 2ih,. (3.6)

From strong orthogonality of ¥ we have abelian subspaces a, < n,,
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iag = a, = m, = im,, defined by

ap = yx,oR  and a. = Y x,R. 3.7
¥ ¥

That provides closed abelian subgroups
Ay = exp ay = Go and A, =expa, < G.. (3.9
If ¢ € A, we have 3-dimensional simple subalgebras

gle] =h,C+g”+g%<g (3.9)

and their real forms

go[e] = go ngle] and  gfe] =g.ngle]l. (3.10)

That defines 3-dimensional simple subgroups

Glo] for g[e], Go[e] for go[e]l, and GJle] for gJfel.
(3.11)

Similarly, if I' < ¥, then we have direct sums
o[I] = ;9[ 71, gll] = ;go[v], [l = ;gc[ vl (3.12)

and local direct products as their analytic groups

G[r] = l;[G[ 7l Goll] = Il]Go[ 7l Gl = l;[Gc[.v]-(3~13)

Polydisk Theorem. If T' = ¥, then G[I'](x,) = G.[[](x,) is a holo-
morphically embedded, totally geodesic submanifold of X that is a product
of |I'| Riemann spheres, and Go[T'](x,) is a holomorphically embedded
totally geodesic submanifold of X, that is the product of the || lower
hemispheres of G, [T'](x,). K exhausts X with the polysphere G [¥](x,) by
K-G[¥](xo) = X. K exhausts X, with the polydisk Go[W¥](x,) by
K-Go[¥](xo0) = Xo.

Proof. G[I'](x,) is totally geodesic in X because a(g.[I']) = a.[T],
holomorphically embedded in X because J(g,[[] nm) = g, [['] n g,
Riemann polysphere because each G[ y](x,) is compact homogeneous,
and of complex dimension l. The same statements on Gg[I'](x,) now
follow.
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For the exhaustion, it suffices to prove that
ag is a maximal abelian subspace of m,, 3.19)
a, is a maximal abelian subspace of m,. (3.15)
For then standard symmetric space theory says
G, = KAo,K  and G, = KAK (3.16)
so that
Xo = Go(xo) = KAoK(x,) = KAo(xo) < KGo[¥](xo),
X = G(xo) = KA K(xy) = KA (x,) = KG[¥](x0)-

Note that (3.14) and (3.15) are equivalent. Now suppose (3.15) false. Then
we have € € my, nonzero and orthogonal to a, such that [£, ag] = 0. Thus
there is a set S = Aj; — ¥ such that

0#¢&=Y(s%%,0+ 1,0) each (s°)? + (t9)? > 0,

and, for every ¥ € ¥,

0 =[xy, &= Zs(s(p[xd/,m X0l + t°[Xy 00 Vpr0))

which implies ¢ L . Thus maximality of ¥ forces (3.15). Q.E.D.
Note that m* are commutative subalgebras of g consisting of nilpotent

elements. That gives us complex analytic unipotent abelian subgroups of
G, by '

M* =expm* and M- =expm~. 3.17)
Harish Chandra Embedding Theorem. The map M* x K¢ x M~ - G,

given by (m*, k, m™) - m*km~, is a complex analytic diffeomorphism
onto a dense open subset of G that contains G,. In particular,

E:mt - X =G/P by E(m) = exp(m)P
is a complex analytic diffeomorphism of m* onto a dense open subset of

X that contains X,. Furthermore, £71(X,) is a bounded domain in m*,

Proof. Let f: M* x K° x M~ — G be the map. It is holomorphic be-
cause M+, K€, and M~ are complex subgroups of G. Now we check that it
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is one to one. Suppose that
mik,m]=mbYk,m3.

Then (m*)"'m% e M* n K°M ™. Asitis unipotent, its entire 1-parameter
subgroup of M+ lies in K°M~. As m* n ( + m~) = 0, we conclude
m{ = mj; . Similarly m{ = m;. Now k, = k,. We have proved f one to
one. We see f nonsingular by viewing the Lie algebras as left-invariant
vector fields, so that, at (m™, k, m™),

St @I @m) =adk)m* + € +m” =m* + €+ m” =g

That also shows the image of f open in G.
Suppose G = G[Y]. Then G = SL(2,C)/{+ 1} and we realize

(0 1> <0 o> . ,<1 0>
e, = . é_ = 5 = .
Y\o o “\1 o0 Yo -1

In particular,
Gy e
Xyo0 = an Xy = .
YT\ o Y Nio

Thus
. 1
expltxy o) = (cosh t sinh t) = (1 tanh t><cosh ; 0 )( 1 O)
sinh ¢t cosh ¢ 0 1 0 cosht/Manht 1
= exp({tanh t}e,)-exp({ —log cosh t}h,)-exp({tanh t}e_,)
' (3.18)
and
cosh (if) sinh (if) cost isint
exp(tx,) = ( ) > = ( ' ) 3.19)
sinh (if) cosh (if) isint cost

(1 itant)(—l— 0 >( { 0)
cos t )
0 1 0 cost/ Nitant 1
0
K ={< > Breal}.
0 e—;o

Now observe
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el 0
ko will denote (0 ),

e—iO

)
ad(k,e, = e*'e,.
Note also that

&m*) = exp(e,C)P = {(:) j)P . ze C}.
As G, = KA.K, so
X = {k, exp (tx,)-P : 0,¢ real},
we now have
Emt) = {k, exp(tx,)-P : 0.t real and cos ¢ # 0}.
That exhibits £(m™) as a dense open subset of X. And

1 z
X, = {(0 1>-P :|z| = tanh ¢ for some real t}

N Gy

exhibits £~! X, as a bounded domain in m*.

Our assertions are proved for the case G = G[{]. They follow for the
case G = G[¥].

We go to the general case with the Polydisk Theorem. That says

X = {k-(expgtl,,xl,,)-P : ke K and ¢, real}, (3.20)
Em*) = {k-(expgth,,,)-l’ tkeK, t,real, cos t, # 0}, (3.21)
X, = {k'f(;z,,,e,,,) tkeKand |z, < 1}, (3.22)
Q.E.D.

4. Restricted Root Systems

Recall (3.7), (3.14), (3.15) the maximal abelian subspaces

a=Yx,0Rcmy, and a, =iq = gwa < imy = m,.
¥
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Strong orthogonality of ¥, with (3.4) and (3.6), gives

[ag, Jag] = Zyih,,,R = [a,, Ja]. 4.D)
Now

t=1tt + 1t~ orthogonal direct sum where 4.2)
t~ =[ag, Jag] and tT ={ret:[r,a,] =0} (4.3)

If T’ = ¥, we define the partial Cayley transform

o = ];[c » ¢, = exp(%y y) eG.. 4.9
That gives Cartan subalgebras b < g, by
br = gon ad(cp)t“=t* + {7 + ar, 4.5)
where
tr = Y ihyR and  ar = Yx, R 4.6)
¥Y-r r

As b, = t maximally compact Cartan subalgebra of gy, and by = t* + a4
maximally R-split Cartan subalgebra of g,, it follows that every conjugacy
class of Cartan subalgebras of g, is represented by one of the hy.

The full Cayley transform is given by

g = 1;[% so  ad(eg)tS = (t* + ap)S. @.7)

Thus its dual map ad(ceg)* sends the (1* +a,)C-root system of g to the
{Croot system A of g. Define

ag-root of g, : restriction to a, of a (t* + a,)“-root of g. (4.8)

As a, is a maximal abelian subspace of mg, the ay-roots take real values on
a4, and they are the real roots of go,. Now

ad(cy)* : ao roots — {¢]- : @ € AL 4.9 A
Combinatorial arguments of Harish-Chandra [5] and C.C. Moore [8],

which we omit here, result in

Restricted Root Theorem. Suppose that G is simple, i.e., that the
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symmetric space X, is irreducible. Let p denote restriction of roots from
1€ to t~. Identify each element of ¥ = {y, ..., ¥,} with its p-image.

1. There are just two cases, as follows.

Case 1. p(A)v {0} = {£3, + L, :1 <5, t <r}. In that case,
nonzero p-images of some subsets of A are given by

compact simple roots: 3Wr =Y 12t <r— 13,
compact positive roots: B, —yY): 15t <s=r},
noncompact positive roots: B, +) 12tz s=r}

Case2. p(A)v {0} = {3, £ Wy, +3¥,: 1 <5, ¢ < r}. Then non-
zero p-images from some subsets of A are given by

compact simple roots: 3Wer — Y, 1 St r—13
V {—4.}
compact positive roots: BW,—yY):1=2t<s=r}
{_%‘//Hlétér}

U
noncompact positive roots:  {3(Y, + ¥) 1 St < s < v}

2. The y, all have the same length.
3. The subgroup of the Weyl group of G that preserves ¥ induces all
signed permutations ¥, - +y, of V.

Using (4.9), the Restricted Root Theorem gives a description of the a,-
root system of g, in terms of V.

We use the Restricted Root Theorem to express (3.22) in an invariant
manner. Denote

u — i complex conjugation of g over g,
{, > Killing form of g, and (4.10)
(u,0) = —<u, vy positive definite Hermitian form on g.
If u € g, we have the operator norm
ladw)l| = sup{|ad(w)-v| :veg, |v)* = (v,v) = 1}. 4.11)
Also let 7, : m* — m, be the projection,

o) = $(u — ) e my, all uemt*, 4.12)
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Hermann Convexity Theorem. Let D = £-1(X,), bounded symmetric
domain in m* that is the image of X, under the Harish-Chandra Embed-
ding. Then

D = {uem?* : [ad(rou)| < 1},

unit ball in the (generally nondifferentiable) Banach space norm ||admqu||
of m*. In particular D is convex in m*.

Proof. Let a* = {Yybye,:b,€C}, so m" =ad(K)a* and D =
ad(K) (D n a*). All norms are invariant under conjugation by elements of
K. Thus we need only prove D na* = {uea™: |ad(rou)|| < 1}. Using
(3.22), which says D n a* = {Yybye,: |by| < 1}, it suffices to show

if  {t,} <R, then lad(3Y wtyxy 0l = Sup{|t;,,|}. 4.13)
Conjugating by the Cayley transform ¢y that says:

if  {} <R, then [lad3Yuryh)l = sup{|t|}. (4.14)

In terms of roots, the latter says, for {#,} = R,

lad@Y.tyh)e,| < sup{|tye |}  foralloeA

with equality for at least one root ¢ € A.
(4.15)
The equality of (4.15) comes from ¢ = y, where |1,,] = sup{|z,|}. For the
inequality it suffices to note that, for every @ € A, either ¥ has just one ele-
ment ¥ not L¢ and it has |{y,¢>| = 2, or ¥ has just two elements not L¢

and they have |(y,¢>| = 1. That comes from the Restricted Root Theo-
rem. Q.E.D.

5. Boundary Components

Suppose that V is a complex analytic space and S < V is a subset. By
holomorphic arc in S, we mean a holomorphic map
f:{zeC:lz| <1} > ¥V  withimagein S. (5.1)

By chain of holomorphic arcs in S, we mean a finite sequence {f}, . . . , fy} of
holomorphic arcs in .S such that the image of f; meets the image of f;,., for
1 £j £k — 1. That provides an equivalence relation on S ‘
v, ~ v, iff g chain {f}, ..., f;} of holomorphic arcs in S,
v, € Image f; and v, € Image f,. 5.2)
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The equivalence classes are the holomorphic arc components of S in V.

If S is an open subset of V" with topological boundary bd S, then the
holomorphic arc components of bd S are the boundary components of S.

In this section, we describe the boundary components of the domain
Xo = Go(xy) = X, via convexity of the Harish-Chandra embedding of X,
as a bounded domain in m*. The result is joint work of Wolf and Kordnyi
[Z3].

We must define certain subalgebras g = g corresponding to the subsets
TI" of our maximal set ¥ of strongly orthogonal noncompact positive roots.
They will be normalized by semisimplicity and

I is the maximal L subset of A, for gr. (5.3)

Then, in particular,
gy =g and g, = 0. (5.4)

For that, note that the centralizer of tr = Yy_rih, Ris t€ + Y, ¢_rg%;
that the centralizer of g[¥ — I'] = Yw_r(7,C + g + ¢7%) is (t* +
ty_pP¢ + Yo1w-rg%; and that those two centralizers are reductive sub-
algebras of g with the same derived algebra. Now

gr : derived algebra of 1€ + Y ¢° (5.5

ol¥Y~T

It has real forms

9r,o = 8o N I9r and Or,c = 9 O Gr- (5.6)

The analytic groups Gr, Gr 4, and Gy . for gr, gr ¢, and g . define symmet-
ric subspaces

Xt = Gr(xp) = Gr,c(xo) c X; X = Gr,o(xo) < Xo. (5.7

Boundary Orbit Theorem. Retain the notation & :m?* — X of the
Harish-Chandra Embedding Theorem. Denote my = m* ngp and

{r= élmli-

1. Xp < Xand Xr, = X, are totally geodesic Hermitian symmetric
subspaces.

2. Xr,0 < Xristhe Borel embedding of Xy 4 in its compact dual.

3. ¢:':Xro— mf is the Harish-Chandra embedding of X, in its
holomorphic tangent space at x,.

4. The G,-orbits on the topological boundary bd X, of X, in X are the
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sets
Go(cy-rxo) = kUKkC\P—rXF,Oa revy.
5. Let A=A, v -+ UA, where the A, are the root systems of the

simple ideals of g. Let I, £ & ¥. Then Gy(cy_5xo) is in the closure of
Golcy—_rxo)ifand only if S N A | S [T nA|forl £1<q.

6. Boundary orbits Gy(cy_rxo) = Golcy_sxo) if and only if |Z N At|
=|lnA|forl £t<gq.

7. Golcyxy) is the unique closed boundary orbit. It is a K-orbit and is
the Bergman-Silov boundary of X, in X.

Proof. (1) follows from stability of g under both ¢ and ad(z), whence (2)
is immediate. For (3) note that ap is maximal abelian in gy o M m.

The polydisk G,[W](x,) is the product of the lower hemispheres of the
factors of the polysphere G[ W ](x,). Thus its boundary is the product where
each factor is a lower hemisphere or an equator. Now Go[¥](x,) has
boundary | JrGo[W](cy-rxo) where I' & . So (4) follows from the Poly-
disk Theorem and the observation that Go(cy_rxo) = K Go[¥](cy_rxo)
= K-Go[Tl(cy_rxq) = K Gr o(cy_rXo) = K*cy_Gr o(Xo) = Key_r Xt o.

Let 5T « Y. If[En A £ [T nAforl £t £ g, then part (3) of the
Restricted Root Theorem provides k € K such that ad(k)*T < I'. Thus we
may assume % < I'. Now £ < T if and only if Go[¥](cy_5xo) is in the
closure of Gy[W](cw_rxo). Applying K, the latter is equivalent to
Goley_35xo) being in the closure of Gy(cy—rxg). That proves (5); now (6)
follows, as does the fact that Gy(cyx,) is the only closed boundary orbit.

Goleyxo) = KewXy o = K(cyxo) shows it to be a K-orbit.

Let B denote the Banach algebra of functions continuous on the closure
X, U bdX, of X, in X and holomorphic on X, (point multiplication, sup
norm). G acts on B by g(f) : x - f(g~'x). Let fe B not constant on any
irreducible factor of X, and x, a maximum point of | f()|. Transforming
by an element of K, we may assume x, in the polysphere G[W](x,). Itis a
maximum point of the restriction of f to the closure of the polydisk
Go[W](xo), hence in the boundary Go[¥](ceyx,) of the polydisk. Thus:
X; € Go(cyxo). By transitivity of Gy on Go(cyx,) now, the latter is the set
of all maximum points of elements of B. Q.E.D.

Boundary Component Theorem. The boundary components of X, in
X are just the sets kcy X o with ke Kand I & Y. They are Hermitian
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symmetric spaces of noncompact type and rank given by

rank kcy_rXr o = [T (5.8)

Proof. The key_ X1 ¢ are complex manifolds, so the boundary compo-
nents are unions of such sets. Now we need only show that each cy_1 Xt o
is a boundary component.

We use Hermann Convexity of ¢ 7' X, inm™ to check that each ¢y _ Xt o
is a boundary component. Define

-1 + + +
or = & ey _Xo, mg =gr nm’, er = Op + mp. (5.9

Then e is a complex affine subspace of m* that contains the boundary
point o of £~ X,. Looking at the polysphere we see that

— vi
op = £71 exp(‘—1 Yooy —€))xo=— Y e (5.10)
¥Y-r ¥Y-r
Recall the projection 7y : m* — my from (4.12). Now
no(or + my) = (%\Pzrxw’()) + Mro; Mr o = Mo N QGr. (5.10)

Let f; denote the orthocomplement of o in m*. The Restricted Root
Theorem says that {vemo(or + fp) : [ad,()| < 1} = 1Y w-_rxy0 +
{wemp o : |ad, (w)| £ 1}. By the Hermann Convexity Theorem now

5_1(X0) A (op + fp) = f_l(Xo) A (op + mi) = ‘f—](c\y—rXr,o)- (5.12)

Now let U = C unit disk and /: U - X a holomorphic arc in bd X,
whose image meets cy_r X1 0. A : U — m* is given by -1 = I Let x be
the linear functional on m™ such that the support hyperplane to £~1X; at
o hasequation Rex = 1. Now k- 4is a holomorphic function on U, whose
real part is < 1 and achieves its maximum value. Now k- 4 is constant, i.e.,
MU) « or + fr. From (5.12) now A takes values in the closure of
E ey _r Xt . Were A to take a value in the boundary of ¢ ™'y _ X7, the
same maximum argument would keep all values of 1 in that boundary.
Thus AU) = £ ey X1 0. Now I(U)  cy_rXr . That proves that
¢y_rXr o is a union of boundary components. As cy_Xr ¢ is a complex
submanifold of X, we conclude that it is a boundary component of X,.

Q.E.D.

Corollary 1. The boundary components of £~1X, in m* are bounded
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symmetric domains
& key_rXr o = ad(k){ ey rXr o = ad(k) (op + my)
in Harish-Chandra Embedding.
{Combine (5.12) and the Boundary Component Theorem.}

Corollary 2. Decompose X, = X} x --- x X% product of irreduc-
ible symmetric spaces. Let X* be the compact dual of Xgso X' = X! x ...
x X4 Then the boundary components of X, in X are the products
Yy x --- x Y& # X, where Y} is X} or a boundary component of X5,

{Everything decomposes as a product.}

Corollary 3. If X, is an irreducible Hermitian symmetric space, then
its boundary components are irreducible Hermitian symmetric spaces of
classical type.

Proof. Let Wi denote the subgroup of the Weyl group of G that preserves
¥ and acts trivially on ¥ — I'. It induces every permutation of I" by part
3 of the Restricted Root Theorem. That proves irreducibility of the
Hermitian symmetric space Xro. The fact that it is of clasical type is
contained in the classification theorem below. Q.E.D.

Corollary 4. A boundary component of a boundary component of X,
is a boundary component of Xj.

{The boundary components of cy_rXr ¢ are the kcy_pep_y X5 o With
keKnGroand Z & T}

X, is said to be of tube type if it is holomorphically equivalent to a tube
domain over a self dual cone. That is equivalent to c¢§ = 1. Momentarily
taking the latter as definition, we see that X is of tube type if and only if
each of its irreducible factors has restricted root system given by Case 1 of
the Restricted Root Theorem. That situation persists under passage from
9o t0 gr . Thus:

Corollary 5. If X, is of tube type, then its boundary components are of
tube type. If X, is irreducible and has a positive-dimensional boundary
component of tube type, then X is of tube type.
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Suppose Z = I = W. Then ad(cy)ar = gr and we define
z

gt is the fixed point set of ad(cf) on g. (5.13)

As ¢y has order 1, 4, or 8, c3 commutes with complex conjugation of g over
80, SO we have

9f.o = 80N gf,  real form of gf (5.14)
Now define
GE o @ analytic subgroup of G, for ¢f,, (5.15)
X0 = GE o(x,), Hermitian symmetric subspace of Xro. (5.16)
Also observe

X, isoftubetype <« Xq= Xg,. (5.17)

Lemma. If " < P, then [gf, gy_r] = 0, so we have

3%.0 = Qw-r.0 @ 9F,0 @ (compact ideal), (5.18)
XL o= Xg_ro x XL (5.19)

Proof. We may assume g simple and use the Restricted Root Theorem.
Let AT and Ay _r denote the respective root systems of gr and gy _r. Let
a € AT noncompact positive and f € Ay _ noncompact negative. Then

o~ =3(y+ y) forsome vy, y'el; and
Bli- =0 or —3@W +y’) or —%y forsome y,y'e¥ —T.

Now (2 + B)li-is 3(y + y)ord(y + v =¥ — ¢ ord(y + 7' = ¥),
so a + fBis not a root. Similarly, if « is noncompact negative from AL and
B is noncompact positive from Ay _r, then o + fis not a root. This proves

[mngr, mngy_r] =0.

Now m N gy_r generates the semisimple algebra gy _r, and g- = (gh)’ @ 1

where m n gf generates (gr)’ and [ < I, As [I, ay_r] = 0, we obtain

[, mngy_r] =0, and thus [I, gy_r] = 0. Now [gf, gg_r] = 0.
Q.E.D.

We now describe the boundary components explicitly.
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Classification of Boundary Components. Let X, = X be the Borel
embedding of an irreducible Hermitian symmetric space of noncompact
type and rank r. For each integer m, 0 < m < r, there is just one G,-
equivalence class {X,, o} of boundary component of symmetric space rank
m for X, in X; X, , is a single point, and the X, , are given by one of the
following series with X, = X, .

1. X,o0=SU@m, m+ k)/SUm) x Um + k)), k = 0 fixed.

2. X,.o = SO*@m)/UQ2m).

3. X,o0=S80%4m + 2)/U02m + 1).

4. X = Sp(m ; R) [ UGm).

5. X, =8S0(2, n) /| SO(2) x SO(n), n > 2 fixed; here r = 2 and X ,
is the unit disk in C!.

6. X, = E¢/S0(10):-SO(2); here r = 2 and X 4 is the open unit ball
in C°.

7. Xo = E;/E4-SO(2); here r = 3, X, , = SO(2,8)/SO(2) x SO(8),
and X, o is the unit disk in C*.

Proof. That there is just one Gy-equivalence class {X,, o} of rank m
boundary components, follows from the Boundary Component Theorem
and the part of the Restricted Root Theorem that ensures that any two
subsets of W of the same size are equivalent under the restricted Weyl
group. Thus {X,, o} is represented by any cpXy_r o with |¥ — T'| = m.

Let I' = {a} so |¥ — I'| = r — 1. Then ad(c,)* is an involutive inner
automorphism of g, so its fixed point set i’ is a symmetric subalgebra of
maximal rank. The lemma says that g§ has distinct ideals gy_r and
sl(2, C) c gf. The classification now is immediate from the Borel-de
Siebenthal classification of maximal subalgebras of maximal rank in com-
pact simple Lie algebras, and from the corollaries to the Boundary Com-
ponent Theorem. Q.E.D.

Karpelevi¢ defines boundary components, for noncompact type sym-
metric spaces, in terms of limiting behavior of geodesic rays. The following
result says that his boundary components coincide with ours.

Geodesic Ray Theorem. Let x € X, and F a boundary component of
X, in X. Then there is a unique point f€ Fsuch that some geodesic ray of
X, from x tends to f.

Proof. Some g € G, carries x to x,, and then some k e K carries g(F)
back to F,; thus we may assume x = x,. Applying an element of K, we may
also assume F = cy_rXp o for some I' < ¥,
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Let {X,}o<:<o be a geodesic ray in X, such that, in X, lim,_, .{x,} € F.
We have b € m, such that x, = exp(th)- x,.

First suppose b € ag, s0 b = Y.yb,x, o With b, real. Denote

sign(b,) = 1 if b, >0, 0 if b, =0, -1 if b, <O
Now (3.18) says that lim,_, . {x,} = & sign(b,)e,). Aslim{x,} € cy_r Xt o,
it follows that this limit is cy_(x,) = & w—re,)-

Now drop the assumption b € a,. Let k € K such that ad(k)b € a,. We
then know that lim{k(x,)} is cy_(x,) € F. As lim{x,} € F, now k(F) = F.
However cy_r(xy) is the point of £~ !(F) of least m*-distance from the
origin, and k does not change that distance. Thus k(cy_(xg)) = cy_{(xo)-
Now lim{x,} = k™! lim{kx,} = cy_r(x). Q.E.D.

6. Boundary Groups

We have seen that X, has topological boundary

bd X, = U Golcy-rXo) (6.1)
rew
where the boundary orbits are unions of boundary components
Goley-rxo) = kq(kcw—rxr,o (6.2)

which in turn are given by

Cy-rXr,o = Cg-rGr,o(*e) = Gr o(cy-rxo)- (6.3)
Here we will determine the normalizers of the boundary components and
the structure of the space of boundary components of a given type. The
results are in Wolf and Kordnyi [ /3], but the proofs here are a considerable
simplification of [13].
Recall (3.3) x, o = e, + e_, € m, for ¢ € Ay;. For each subset ® < ¥,
we define

Xp,0 = 2.Xy0€ . (6.9
Yed
We compute

ad(e,) ™ "xy.0 = ad(exp(zle, — e_y))) ey + e_)

0 1 00 :
in the model ¢, = < )and e_y = ( ) There
00 10

bid b4 01 1 1 1
exp (e, — e-y) = exp Z(——l 0> = :/=2<_1 1>,
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SO

ad[exp Z(e*" —e_y](e, +e_y) = (0 )= h,.
. Summing over the subset ® = ¥, now

ad(ce) X0 = wz:,bhw. (6.5

Use the Restricted Root Theorem to compute the eigenspaces of
ad(}Y.¢h,) on g. Let p denote the restriction to t~ as before. Now the t-root
system A is the disjoint union,

A = E,(D) U E (D) U Ey(D) v E_,(D) U E_,(D), (6.6)
where »
E (@) ={0€A:p(d) = £3W +¥') with y,y'e®}; (6.7
E, (®) is the union of the three sets:
{6eA:p(0) = +3W + ¢¥") with Yyed, y e¥ — D},
{6eA:p) = XY —yY') with Yye®, ¢y e¥ — D}, (6.8)
and {6eA:p(d) = +4¢y with Y ed};
Eo(®) is the union of
{0€A:p(0) = £3(¥ £ ¥ with ¥,y e¥ — D},
{6eA:p(d) =+t with ye¥ — @}, (6.9)
{6eA:p(6) =0}, and
{0eA:p(d) =3 —¥) with ¥,y ed}.
Applying the Restricted Root Theorem to (6.6), we have

6.10. Lemma. The eigenvalues of ad(},.0h,) on g are +2, +1,and 0.
The eigenspaces are given as follows.

(+2)-cigenspace:  Yscr, yy &
(£ 1)-eigenspace: Z&eEi 1(®) ¢’
O-cigenspace: 1 + Ysepya) 8

Combine Lemma 6.10 with (6.5) to obtain
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6.11. Lemma. The eigenvalues of ad(xe ) on g are +2, 1, and 0. The
eigenspaces are given as follows.

(+£2)-eigenspace:  ad(Co)* Yser. sy 8-
(+1)-eigenspace: = ad(Ce) Y sek. @) 8-
0O-eigenspace : ad(ce) {t€ + Ysero@ 8°F-

With the eigenspace decomposition (6.11) in mind, we define parabolic
subalgebras 1 « g and 11, o = g, by

g 1 sum of the nonpositive eigenspaces of ad(xg o) on g, (6.12a)

Mg o: sum of the nonpositive eigenspaces of ad(xg o) on go. (6.12b)

Then of course ny, , is a real form of ng. Now define parabolic subgroups
Ny < Gand Ng o = G, by

Ny is the complex analytic subgroup of G for ny, (6.13a)
Noo = No n Gy, closed subgroup with Lie algebra ng 4. (6.13b)

Boundary Group Theorem. If I' & W, then the normalizer of the
boundary component ¢y _ X o of X, in X is given by

Ny_rpo= {g €Gy 1 gcy X = Cw—rXr,o}-

Furthermore,

(1) in general, Ny _r o and Ny _y- 4 are conjugate in G, if, and only if,
each I n A,| = [T n A,| where the A, are the root systems of the simple
ideals of g;

(2) if Gissimple, then the Ny_r o, I’ & ¥, are maximal parabolic sub-
groups of G,, and every maximal parabolic subgroup of G, is conjugate to
one of them.

Proof. Let Ny = {g € Gy : gcy_rXr,g = cy_rXr,0} Mo its Lie algebra,
1t = n§, and N the complex analytic subgroup of G for n.

The unipotent radical ny _p o of y_r ¢ is the sum of the (—2)-eigenspace
and the (—1) eigenspace of ad(xy_r o) on go. We check ni_r o = 1,. Let
dbearoot. If 6 € E_,(¥ — I), then (6.7) p(6) = =3 + Y) withy, ¥’ e
¥ — T, so d is a noncompact negative root. If 6 € E_ (¥ — I'), then (6.8)
there are three possibilities. If p(6) = —3( + Y') with y e ¥ — T and
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y" €T, then ¢ is a noncompact negative root. If p(6) = — i}y — ¥') with
YeW¥ — I'and ¥’ €T, then § is a compact root. If p(6) = —L with y e
¥ — T, then 4 is a noncompact negative root. We have just shown, via
Lemma 6.11, that 1% _ < ad(cy_p) (I° + m ™), Lie algebra of the isotropy
subgroup of G at cy_rxo. Thus W _r o = go N ad(cy_r) (€ + m"), Lie
algebra of the isotropy subgroup Gy N ad(cy_p)P of G, at cgy_(x,). Thus
the analytic subgroup of G, for 1y _ ¢ preserves the holomorphic arc com-
ponent ¢y_r Xy o of Golcy_rXe) through cy_r(x,). That completes our
proof of n§_r o < 1.

The reductive part ny_r o of 1y _r o is the O-eigenspace of ad(xy_r o) on
go- We check ny_r ¢ = 1t. Looking at (6.9), we see that

E(¥Y —T)=E(¥Y —TDUE(Y —-T) disjoint (6.142)
where
oW =) ={0eE(¥ —T):p(0) =3 —y¥); ¥,y e¥ — T}
(6.14b)
That decomposes, via Lemma 6.11,
Wy_r = Ny_r + Ng_p  vector space direct sum {6.15a)
where
wy_r = ad(cy_p) {t° + )y a’} (6.15b)
SeEL(¥ —T)
and
ng_r = ad(ce_r) Y, g’ (6.15¢)
SeE}(¥—T)

Every root 6 € Ey(¥ — T) is compact; thus 1ty _ = ad(cy_r) (i€ + m7),
and it follows as above that n, contains the real form g, N ng - of
Wy . f e Ey(¥ — I, then —d e Eo(¥ — I') and ¢° + g~ centralizes
g[¥ — I']; thus ny_r < g, so the real form go M Ty_p of ng_r is
contained in gr ¢ < 1. That completes our proof that ny_r o = 1.

We have proved ng_r o < 1.

We digress to prove assertion (2). Suppose that G is simple and ¥ =
{yser s Ut Let Ty = {Uy, ¥a,..., Yy} for 0 < k < r — 1. Then the
orthocomplement of Eo(¥ — I'y) in the real dual of it~ is the span of the
element Y,..; + * -+ + ¥,, by (6.9) and the Restricted Root Theorem.
Thus the reductive part Ny_r, o has identity component whose con-
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nected center is the product of a torus and a 1-dimensional vector group. It
follows that the Ny _r, o are maximal parabolic subgroups of G,. Again by
the Restricted Root Theorem, the Ny _, o are mutually nonconjugate, so,
there being r of them, they represent every conjugacy class of maximal
parabolic subgroup of G,. Now (2) is proved, and incidentally (1) follows
without further argument.

We had proved ng_r, = 1. To prove them equal, it suffices to con-
sider the case where G is simple. There ny_r ¢ is a maximal subalgebra of
go by the fact (2) just proved. If ny = g, then G, preserves cy_pXr o,
hence acts on it by analytic automorphisms. Rendering that action effec-
tive, we obtain Gy , as a homomorphic image of the simple Lie group G,
so either Xy = X or X o is reduced to a point. As X , has rank |F| <
|\¥| that is impossible. Thus ng_p o = Mo.

We have just proved 1y = ng_r o. Thus Ny and Ny _ o have the same
identity component. The parabolic subgroup Ny _r o of G, is the normal-
izer in G, of that identity component. Now Ny, = Ny _r , open subgroup,
and to prove equality there we need only show that every topological com-
ponent of Ny _r o has an element that normalizes ¢y _ XT .

Recall the Cartan involution o of G, with fixed point set K. As 6(xy_r o)
= —Xy._r,o NOW

o(Wy_r0) = My_r0 and 8o = My_r,o + o(My_y o) (6.16a)

Let N _r gdenote the unipotent radical exp(ny _r o) of Ny_r 0,50 Ny_r o
is its Gy-normalizer. Now

Ny-ro = {9 €Go : ad(g)Xy-r,0 = Xy-r,o} (6.16b)
is a g-stable subgroup of G,, with Lie algebra ny _r o, such that
Ny_ro=Ny_ro Ne-ro semidirect product. (6.16¢)
In particular,

KN Ny-ro=KnNy_rp

and meets every component of Ny _r o. k (6.17a)

Thus the remaining assertion Ny, = Ny _r o of our theorem is reduced to
the assertion that

every element of K n Ny _r , leaves cy_(x,) fixed. (6.17b)

Let k € K N Ny_r . Recall(2.17)that T has a central element z such that
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J= ad(z)]m is the almost complex structure of X,. Now apply ad(exp(n/2)z)
to the identity ad(k)xy_r o = Xy_r 0. According to (3.4), the result is

ad(k)yg-r,0 = Ye-r.0-

Multiply by i and compare (3.3) and (3.5):

ad(k)yy-r = Yo_r-
Exponentiate r/4 times each side, using (4.4):

key thk™' = cy_ 1
Thus

k(cy-rxo) = cy-r(kXo) = cg_rXo.

That completes our proof of Ny = Ny_r . Q.E.D.

Corollary 1. Let F be a boundary component of X, in X. Then the
Gy-normalizer of F'is a parabolic subgroup of G,.

{For F =k cy_rXr, with ke Kand I' & ¥, so its Gy-normalizer is
ad(k)Nw—r,o-}

Corollary 2. Let F be a boundary component of X, in X. Then the
Gy-normalizer of F is transitive on the space X,.

{For if N, is a parabolic subgroup of G,, then KN, = G,.}

Corollary 3. The space of all boundary components of X, in X that
are contained in a given Gy-orbit on the boundary, is the set of real points
in a G-homogeneous projective variety defined over the rational number
field.

{For the boundary orbit is Go(cy_r(xo)), T & ¥, and its space of
holomorphic arc components is Go/Ng_r,o = (G/Ny_pg.}

Corollary 3 says that the space of boundary components kcy_ Xt g,
ke K, of a given type I, is a “real flag manifold” Go/Ny_r . We take a
careful look at the structure of that real flag manifold.
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Boundary Flag Theorem. Let ' & W and consider the fibration
T Goley-rXo) = Go/Ny_r o by m(gcy-rXo) = gNy-_r,o (6.182)

of the corresponding boundary orbit over the space of boundary com-
ponents of type I'.

1. K(cy_rxp) meets each n-fiber (i.e., each boundary component con-
tained in Gy(cy_rxp) ) in just one point, so it can be identified with the
base of the fibration under kNy_r o > k(cy_rx,). Thus 7 is a fibration

7 2 Golow_rXo) = K(cy_rxo) K-equivariant (6.18b)
such that

™Y (key_rxo) = key_rXro boundary component through key_rxo.
(6.18¢)

2. The space K(cy-rxo) = Go/Ny_r,0 of boundary components con-
tained in the orbit Gy(cy_rx,), is fibered

n : K(ey_rxo) = K(C&'—rxo) by n(key _rxo) = kcé—rxo (6.19)

over the simply connected complex totally geodesic submanifold K(c& _1x,)
of X, with fibers connected and totally geodesic in X. Thus the base of # is
a compact Hermitian symmetric space and the #-fibers are compact
Riemannian symmetric spaces.

3. The following conditions are equivalent:

(3a) The base K(c%_rx,) of 4 is a single point.

(3b) The total space K(cy_r-Xy) of 7 is totally geodesic in X.

(3c) The partial Cayley transform cy_r has ¢y _p = 1.

(3d) Decompose the boundary component
cy-rXro = Cy,—r; Xr; 0 X * * * X ¢y, _r Xr, 0 Where the factors are the
corresponding domains or boundary components of the irreducible factors
of X,. Then for 1 < ¢ £ g, either cy,_r,XT, o is the ¢-factor of X, or that
factor is of tube type and cy,_r,Xr o is a point on its Bergman—gilov
boundary.

Proof. Assertion (1) follows from (6.17) and the fact that K is transitive
on the set of boundary components of X, that are in the orbit Gy(cy _rXo)-

Recall the symmetry s of X, and X at x,. Now ¢ = ad(s) sends cy_r to
cylr because each yy€m. Similarly the conjugation 7 of G over G,
sends cy_r to cg !l because y, € igo. As each ¢ = 1,50 ¢} _r = 1, now

o(cy-r) = ch-r and 1(cy-p) = Cy-r- (6.20)
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Suppose that k € K leaves cy_r(x,) fixed. Then k commutes with the
symmetry of X at cy_rX,. That symmetry is ad(cy_r)s = c&_ps. Thus k
commutes with ¢&_r. Now ad(k) leaves ad(cd _p)z fixed. Thus k(c3_rx,)
= ¢%_xo. This proves 1 : K(cy_rxo) = K(c&_rx,) well defined.

The symmetry s’ of X at c3_pxo is ad(ci_ps = c3_pscg’r =
cd_rro(cg’p)s = ch_rs. Now, using (6.20),

ad(s|[x : K > K by k- ad(ci_pk. (6.21)

First, this shows that K(c3_rx,) is a (compact) totally geodesic submani-

fold of X. Second, it shows that the isotropy subgroup of K at ¢ _rx, con-
tains the center of K. Thus K(c3_x,) is a symmetric space of compact

type.
The almost complex structure on X at ¢ _px, is the transformation

J' = ad(cd_pz : ad(cd_pm — ad(ci_pm.
Let vef n ad(cd_p)m, i.e., v € Tsuch that (by (6.21) ) ad(c§_p)v = —o.
Now ofad(cd_p)z,v] = [ad(o(cy_1)*) 0z, 00]
= [ad(cg2p)z, v] = [ad(ci_p)z, v], so [ad(ci_p)z, v] et

In particular K(c3 . x,) is a complex submanifold of X. We have proved
that K(c%_px,) is a Hermitian symmetric subspace of compact type in X.
It follows that K(c3 _x,) is simply connected. This completes the proof of
the assertions of (2) concerning the base space of the fibration (6.19).

Let L be the isotropy subgroup of K at c3_rx,. Thus L(cy_rx,)
= 1" (¢4 _rx,), n-fiber. L is connected because K(c_rx,) = K/L is
simply connected. Now # has connected fibers, and the Lie algebra of L is
given (6.21) by

I[={vet: ad(cy_p) v =1}
Now observe
rad(cd I = ad(cg?) (7)) = ad(cg? )l = ad(cd_ )l
and
o-ad(cd_p)l = ad(cy2p) (o) = ad(cg? I = ad(cd _ L.
Thus

ad(ci_plc gy, nf =1
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It follows that
ad(ad(cy_p)s) :L > L by - ad(ci_pl

Now the space L(cy _x,) is totally geodesicin X. That completes the proof
of the assertions of (2) concerning the fibers of the fibration (6.19), thus
completing the proof of (2).

In proving (3) we may, and do, assume G simple.

(3a) implies (3b) because the #-fibers (6.19) are totally geodesic in X.

Assume (3b). Then K is stable under conjugation by ad(cy_p)s = ¢3_ys,
hence under ad(c? _y). Now ad(c%_)s is a central element of order 2 in K,
hence necessarily equal to s. Thus ¢ _r commutes with s, so ¢§_p =
c&_r-ad(s)ci_r = c&_rcy’r = 1. Now (3b) implies (3c).

(3¢) implies (3a) by a glance at the symmetry to X at cq_ p(Xo).

Now (3a), (3b), and (3c) are equivalent.

(3d) implies (3c) rather trivially. Now assume (3c). Then (5.19), with
roles of I and ¥ — T interchanged, says X, = Xy_r o x X o However
we have assumed G simple, thus X, irreducible; so either I" or ¥ — I' is
empty. If ¥ — I' is empty, then cy_rXr,o = Xo. If I is empty, then
Cy_rXo = Cy_rXr,p point on the Silov boundary, and X, is tube type
by (3¢). Now (3¢) implies (3d), so (3c) and (3d) are equivalent. This com-
pletes the proof of (3). Q.E.D.

Part 11. Holomorphic Arc Component Theory

Suppose that X, is irreducible and of rank r. In Section 5, we saw that
the topological boundary bd X, of X, in X is the union of r distinct G,-
orbits, say Go(x,) for 1 < k < rwhere x, = crx,and || = k, and that the
holomorphic arc components of Gy(x;) are noncompact type irreducible
Hermitian symmetric spaces of rank r — k which are transitively permuted
by K. In Section 6 we saw that the Gy-normalizers of these boundary com-
ponents are just the maximal proper parabolic subgroups of G, and that
K(x;) represented the space of boundary components contained in Gg(x).
In Part I, we extend those results to arbitrary Gy-orbits on X.

The G,-orbit structure of X is worked out in Section 7, simplifying the
methods of Takeuchi [70] and Wolf [/6]. The idea is to use the  whole
polysphere G[W](x,) rather than the polydisk Go[¥](x,).- The problem
comes down to that of distinguishing open orbits, and we do that by using
results of Section 6.

The holomorphic arc components of a Gy-orbit are worked out in Sec-
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tion 8. They turn out to be the K-translates of the open Gy_r , -orbits on
a certain translate of X1. The method here eliminates a lot of machinery
from my original method [ /6], relying on the results of Sections 5-7.

The general open G,-orbits are indefinite metric versions of X, but may
have compact subvarieties. See the example of the ball in C" in the Intro-
duction. Takeuchi [ /0] showed that an open Gy-orbit is holomorphically
fibered over a certain maximal compact subvariety, and T showed [ 16] that
the corresponding fibrations of the holomorphic arc components of a G-
orbit fit together. That material is worked out in Section 9 with a few
simplifications. For the full story, however, one should see Section 11
of [16].

7. Orbit Structure

The Boundary Orbit Theorem of Section 5 gives the G,-orbit structure of
the topological closure of X, in X. There the main trick was the use of the
polydisk Go[¥1(x,). Here we use the whole polysphere G[¥](x,) to obtain
the Go-orbit structure of X. The result is in Takeuchi [/0] and Wolf [16],
but we avoid most of the heavy machinery used in the arguments of [/0]
and [16].

To see the idea, let X be a complex Grassmannian, consisting of all k-
dimensional linear subspaces of C". The group GL(n,C) of all invertible
linear transformations of C" acts on X. The kernel of the action consists of
the scalar transformations. Dividing out that kernel, we obtain

G = GL(n,C)/ (scalars) : complex group of automorphisms of X.
Consider the nondegenerate Hermitian form on C” given by
k n
buyp) = — Y u'v/ + Y wipl.

j=1 j=k+1
The subgroup of GL(n,C) preserving b is the indefinite unitary group
usually denoted U*(n) or U(k, n — k). Dividing out the kernel of its action
on X, we obtain

G, = U*(n) / (scalars) : real group of automorphisms of X.

Witt’s Theorem says: two k-dimensional subspaces of C* are Uk(n)-
equivalent if, and only if, the restrictions of b to those subspaces have the
same rank and same signature. That gives the G,-orbit structure of X. The
noncompact Hermitian symmetric space X, consists of the (using b) posi-
tive definite subspaces of C*; its boundary orbits are the sets consisting of
all positive semidefinite subspaces on which bhasrankt,n — k — r £ ¢t <
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n — k where r = min(k, n — k) is the symmetric space rank of X, and X.
The open G, orbits are the sets of k-planes on which b has a fixed non-
degenerate signature; there are r + 1 of them. There are 1(r + 1) (r + 2)
orbits in all.

We now return to the general case.

To minimize notation, we denote

A, 1 £t £ q :root systems of the simple ideals of g. (7.1)

Xpg = €rciXo whenever T, X < V. (7.2)

Orbit Structure Theorem. The G,-orbits on X are just the Go(xp )
where I' and X are disjoint subsets of ¥. Furthermore, Go(xr- z) is in the
closure of Gy(xr 5) if, and only if, for 1 £ ¢ < g,

| =THnAJZ|E-T)NA| and [EuDNA|L|E UT)NA).

In particular,

(i) Golxr 5) = Golxry) if, and only if, for 1 < ¢ < g,
& =T)nA|=|E-DnA|l and |I"nA|=|TnAl;

(11) the number of Gy-orbits on X is Y% ,(r, + 1) (r, + 2) where

=|¥ Al

(111) Go(xrz) is open in X if, and only if, I" is empty; so there are
Yii(r, + 1) = |¥| + g open orbits;

(iv) the boundary of a typical open orbit Gy(x, 5) is the union of the
Golxprx), L' —T'cZ a2 Ul

(v) the Bergman—Sllov boundary Gy(xy ) of X, in X is in the closure
of every orbit and is the unique closed Gy-orbit on X.

Proof. Let ¢ be a noncompact positive root, g[¢] = ,C + g* + ¢~°
three-dimensional complex simple algebra, go[@] = go N g[¢] noncom-
pact real form; G[¢] = G and Gy[¢] = G, analytic subgroups for g[¢]

and go[¢]; S[e] = G[@](xo) Riemann sphere and So[¢] = Gol@](xo)
lower hemisphere. Then the G, ¢]-orbits on S[¢] are

lower hemisphere: Go[¢@] (exp( (n/4)y,) V'xo, n = 0 mod 4,
equator Gol @] (exp((z/4)y,) )"xo, n=1mod 2,
upper hemisphere: Go[ @] (exp( (7/4)y,) )"xo, n = 2mod 4.

Let S[¥] = G[¥](x,), product of the |¥| Riemann spheres G[/](x,) =
S[¥], ¥ € ¥. The Go[¥]-orbits on S[¥] are the products of the form
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[lyce D, where D, is a Go[y]-orbit on S[¥]. Given such an orbit, define

I' = {y e ¥ : D, is the equator of S[y]}, and
L = {y €¥ : D, is the upper hemisphere of S[y]}.

Then I, £ < V¥ disjoint, and the orbit is Go[¥](xr x).
Recall (3.8) and the corresponding decomposition G, = KA K of the
compact real form of G. Now

X = G(xo) = KAK(x,) = KA[xo) = K- S[¥].

If xe X, now x = k(x') where k € K and x’ e S[¥]. We have disjoint T,
L ¥ such that Go[V](x") = Go[¥](xrn). Now Go(x) = Go(x') =
Go' Go[Y](x") = Gy Go[W](xr 5) = Gol(xr5). This proves the first asser-
tion of the Orbit Structure Theorem.

We now prove that an orbit Go(xr 5) is open in X if, and only if, T’ = ¢
empty set. First suppose Go(xrs) open in X. Then Go(xr5) N S[¥] is an
open G,[ ¥ ]-invariant subset of S[W], hence a union of sets Go[W](xr 5/)
that are open in S[¥]. In particular Go[¥](xrz) is open in S[¥]; thus
each of its factors along the S[y/], Y € ¥, is a hemisphere; that proves
I'-= ¢ empty. Conversely consider an orbit Go(x, ). The isotropy sub-
group of G at x5 is ad(c?)P, so G, has isotropy G, n ad(cZ)P there. That
isotropy subgroup of G, has Lie algebra g, n ad(ci)p which contains
t = ad(c)t and is stable under the complex conjugation t of g over g,.
From the latter, g, N ad(c2)p = go N [ad(cZ)p N 7 ad(cf)p], real form of

ad(c)hp ntad(cdp =1+ Y g° (7.3a)
EntE

where E is the set of all t°roots ¢ such that g* < ad(c2)p. As 1%¢ = —¢
for every root ¢, this says

ad(cpp N ad(cD)p = (ad(cp)p)” = ad(cHp” = ad(cHE". (7.3b)

Thus dimg Gy(x, ) = dimg g, — dimg go N ad(cd)p
= dimg g, — dim¢ ad(c2)f¢ = dimg go — dimgt = dimy X, proving
Go(xy,p) open in X.

Next, we prove that open orbits Go(x,5) = Go(X, 5) if, and only if,
|2~ Al =|Z A for 1 ¢ < g. For that we may, and do, assume G
simple. Then if [£’| = ||, the Restricted Root Theorem provides a Weyl
group element ad(k)|,., ke K, that carries ' to I; so Go(Xss) =
Go(Xg aaqyz) = Gok(xy5) = Go(xy 5)). Conversely suppose that Go(xs 5)
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= Go(x,,5-)- Then some g € G, sends x, 5 to x, 5. Replacing g by an element
of g-[G, N ad(cZ)P] if necessary, we may also assume that ad(g) preserves
ad(cZ)t = t. Now the computation (7.3) says

ad(g) ad(cd)E€ = ad(c2)tC, ad(g)t = t.
In other words, we have Weyl group elements w,, w, € Wy such that
ad(‘é')lt = W1'ad(C§:)lt'W2-

Let z denote the central element (2.17) of f that gives the almost complex
structure of X, and X. If @ < P, then ad(c§)z — z = Y ih,, s0 wy(z) =
z = w,(2) says

=Y h, = i{ad(c2)z — z} = i{w,-ad(cd)w,z — z}
Yel’

= i{wad(cd)z — wyz} = wl(_.pr hy).

Now (6.12) and Lemma 6.10 say that the parabolic subgroups Ny o and
N; o of G, are conjugate, and then the Boundary Group Theorem ensures
T o= |Z.
| ll\Iote| tl11at we have proved assertion (iii) on open orbits in the Orbit
Structure Theorem.

We return for a moment to the Go[W]-orbit structure of S[W]. The
equator of S[W] had descriptions Go[¥](c,xo) = Go[¥] (cjxo). If
I, X < Y, it follows that

Xr,y = Cr—z'cls'nz'c)%—rxo € GO[IP] (xrz-1) (7.4a)

In other words,

Go[¥](xr ) = Go[¥](xrz-1)- (7.4v)
IfT, 2, T, & < ¥, it follows that Go[¥](x z) is in the closure of
Go[¥](xry) if, and only if,
) 'eI”
i E-Dc@Eul). and
Gi) (¥ - EuD}c{¥-Eul)lull.
In other words,
Go[¥] (xr-5-) isin the closure of Go[¥] (xr5) if and only if
E -T)c(E-T) and TuDc @ ul’). (1.5
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Now consider an open orbit Go(x, ). Its intersection with S[¥] is
Go[¥] invariant and open in S[¥], hence is the union of all sets
Go[W](x4,5) such that Gy(x, 5) = Go(x,,5). Thus

Go(xg,3) N S[¥] = Us Go[¥](x4,5) (7.6a)
where
B={BcV¥:|BonA|=|EnA|for1<t=<gq}. (7.6b)

Now an orbit Gy(x¢- z) is in the closure of Gy(x, ;) if and only if xp. 5. is in
that closure. Thus (7.5) with I" = ¢ gives us

Golxr 5) is in the closure of Go(x,y) iff some
Be# has X'—-T'YcBc(E ul). (7.6¢)
Now we reformulate (7.6) as
Go(xr 5 is in the closure of Go(x, ) iff,for 1 =1 =g,
& -TY)nA|SZnA|S|EUT)nAl (7.7

Now consider arbitrary orbits Go(xry) and Go(xp.s.). From (7.7),
Gy (xrg) is in the closure of an open orbit Go(x, ¢) if and only if

E-DnA|L[@nA|=S|EuD)nA)
In particular
Go(xr 5) is in the closures of Go(x,z-r) and Go(x,5.r). (7.82)

Again using (7.7),

if Go(xprz-) is in the closure of Go(x, z—1),

then | —=T)nA|S|E-T)nA] for 1<t=g, (7.8b)
and

if Go(xr3) isin the closure of Go(xy yor)

then [CUD)NA|S|EUT)nA| for 1<r<q (7.80)

If Go(xr-,5) is in the closure of Gy(xr 5) then (7.8a) says that it is in the
closures of Go(x, z—r) and Go(x4 5, r), Wwhence (7.8b) and (7.8c) say that it
satisfies
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& -T)nA|Z|(E-T)nA] and
CuD)nA|S|EUT)nA,| for 1St<qg.

Conversely, if Go(xr- 5/) satisfies those numerical conditions, then some
ad(k)|t € WgsendsX' — I'"intoX — 'and £ U ["into 2’ U I'’, so we may
assume X' —-I")c @ ~T) and Cul) < & vT’), whence (7.5
shows that Gy(xr y) is in the closure of Gy(xr ). This proves the second
assertion of the Orbit Structure Theorem.

Orbits Gy(xr- 5) = Go(xr p) if and only if each is in the closure of the
other. Now that is the same as

& =TYnA|=[E-T)n4A| and
EvI)nA|=|EuD)nA)]

for 1 £ ¢ £ g, which is equivalent to the condition of the particular asser-
tion (i). Now enumerate

‘P N At = {lpt,h L] ‘pt,rt}‘

Then the choices of (I',X) leading to distinct Gy-orbits are given by

FmAr:{‘/’z,u“-a‘pt,j}a 0=sj=r
Z"(-\At = {‘//t,j+19"'9¢t,k}3 JE k< Iy

The number of such partitions is
q re ) q 2 re . q
Z Z(rt+1_])=2{(rt+l) - Z]}=%Z(rt+1)(rt+2)'
t=1 j=0 t=1 i=0 t=1

That proves the particular assertion (ii). Recall that we have already proved
(iii). (iv) and (v) follow easily. Q.E.D.

8. Holomorphic Arc Components

The Orbit Structure Theorem of Section 7 says that the G-orbits on X
are the Gy(xr 5), where xp 5 = crc3xo and I, Z < ¥ are disjoint. It also
gives the relative position of those orbits. Here we work out the decomposi-
tion of an arbitrary orbit Gy(xr ;) into holomorphic arc components, due
to Wolf [/6]. This is done in Section 5 for the boundary orbits Go(xr ),
and the method of [16] is a rather complicated reduction to the boundary
orbit case. Here we simplify the reduction, substituting some specific infor-
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mation about Hermitian symmetric spaces for the general theory [/6,
Chapter I1] of holomorphic arc components.

Recall that the boundary components of X, = Gy(x,) in X are the
holomorphic arc components of the topological boundary bd X,. They are
the

kGy_rolcrxo) = kGy_r o(Xr ¢); 'Y, kek

as described in Section 5. Thus the boundary components of X, in X are
the holomorphic arc components of Gy-orbits on bd X,. The general idea
of the reduction is to show that the holomorphic arc components of an
arbitrary orbit Go(xr 5), I and Z disjoint in ¥, are the

kG‘Y—F,O(xF,E)a keKk,

by comparing Go(xr ) = Go(cixr 4) With Go(xr ,).

Holomorphic Arc Component Theorem. Let I', £ < W disjoint. Then
the holomorphic arc components of Gy(xr 5) are the k* Gy _r o(xr 5), k€ K.
Furthermore, they have the following structure.

(1) Gg-r(xrs) = crXy_r complex totally geodesic submanifold of X
that is a Hermitian symmetric space of compact type and rank |‘I’ - F].

(2) Gy_ro(xrz) is an open Gy_rg-orbit on Gy_p{xrs) and is an
indefinite-Kaehler symmetric space of Gy_r ; the isotropy subgroups of
Gy-r,o at xrz and x4, have complexifications isomorphic under ad(c3).

(3) The Gy-normalizer of the holomorphic arc component Gy _ - o(Xr 5)
is Nr o, independent of Z; the action of N, on Gy_p o(xrs) factors
through the action of Gy _r 4 there.

Proof. Using the definition of xp 5, then ¢y € Gy_r (because I' and Z are
disjoint), then the fact that ¢ centralizes Gy _, and finally the definition of
Xy _r»wecompute Gy _r(xr 5) = Gy_r(czerxo) = Gy rlerxo) = crGy - r(xo)
= ¢rXy_r. That proves (1).

Apply the Orbit Structure Theorem of Section 7 to ¢ Xy _ . It shows that
Gy _r o(xrz) is an open Gy_r o orbit there. Now (7.3) says that the com-
plexified isotropy groups of Gy_r o at xp 5 and xp 4 are ad(cf)-conjugate.
As the boundary component Gy _r o(Xr 4) of X, in X is a Hermitian sym-
metric space of Gy_r o, the assertions of (2) on Gy _r o(xr z) follow.

We may, and do, assume G simple. Thus the normalizer Ni, of the
boundary component Gy _r o(Xr 4) is @ maximal parabolic subgroup of G,,.
From its action on the boundary component,
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Nro=Gw_roZrp semidirect product, (8.1a)

Zr o leaving fixed every point of Gy_r o(Xr 4)- (8.1b)
Now by complex analyticity,

Zr, acts trivially on - Gy_r(xr4) = crXy_r. 8.1¢c)
In particular Z , preserves Gy _r o(xr ). Thus

Nro < {g € Gy 3gGw—r,o(xr,z) = Gw—r,o(xr,):)}-

If that inclusion is strict, then maximality of N 4 in G, implies G,-stability
of Gy_ro{xry), hence of its Zarisky closure ¢ Xy_r, and thus of the
interior of bd X, n crXy_r. That interior being Gy _y o(Xr 4), its Go-
stability implies I' = ¢, so then Gy_r o = Gy = Ny . Now we have
proved that

Nrpo = {ge G, 19Gy_rolxry) = G\P—r,o(xr,z)}- (8.2)

Thus (3) is proved, subject to completion of the proof that Gy _r o(xr y) is
a holomorphic arc component of Gy(xr 5). ‘

Let D be the unit diskin Cand f': D — X a holomorphic arcin Go(x 3).
We will prove f(D) « kGy_r o(xr ) for some k € K. For that it suffices to
show that every ze D has a neighborhood U, such that A(U,) <
k.Gy_r o(xr z) where k, € K; for then every compact connected subset of
D has image in some kGy_r o(xr y), and we exhaust D by an increasing
sequence of compact connected subsets. Preceding f by a linear fractional
transformation of D, we may assume the given z € D to be 0. Observe (8.2)
that the Gy-normalizers of the gGy _ o(xr 5) are real parabolic subgroups,
hence self-normalizing in G, so the action of G, permutes them; thus we
may follow f'by an element of G, and assume f(0) = xr 5. Now the proof
that f(D) is in some kGy_(xr y) is reduced to: if f(0) = x5 then f(U) =
Gy _r o(xr 5) for some neighborhood U of 0 in D.

f:D - X is a holomorphic arc in Go(xr ;) such that f(0) = xp ;. If
0 < r £1, then

D, ={zeC:lz|<r}, so D=D,. (8.3)
We will check that there exist r > 0 and holomorphic maps
fi:D,» K and f,:D,—> Nr (8.4a)
such that
@) = f1(2) fo(2) xry  for zeD, (8.4b)

f1(0) = 1= £,(0) and f,(D) = K-(K° n Ny). (8.4¢c)
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First recall that g = g(xr ;) defines a holomorphic fiber bundle G - X.
For r, sufficiently small, f(D,,) lies in a locally trivializing open set of X for
the bundle. Thus the restriction of flifts to a holomorphic map,

f':D,>G with f(@©=1 and f)=rf @) xrs

Next observe G, = KN 4 as N ¢ is parabolic in Go. Thus g = T + 1,
so g = I¢ 4+ np. Using canonical coordinates on G, that gives us neighbor-
hoods U of 1 in K¢ and V¥ of 1 in N, and a nonsingular subvariety W
through 1 in U, such that W x Vis holomorphically equivalent to a neigh-
borhood of 1 in G under (w, v) = wv. For r £ r, and sufficiently small,
f'(D,) lies in that neighborhood of 1 in G. Thus z € D, gives unique factori-
zation f'(z) = f1(2)f>(z) with f, : D, - W and f, : D, = V holomorphic.
Now f; and f, satisfy (8.4a), (8.4b), and f,(0) = 1 = £,(0). But f{(D)
Golxr;s) = KNr o(xrs) = KNp(xry) implies f'(D,) = KNr. Thus f5(D,)
c Ny implies f1(D,) = K¢ n KNy = K-(K€ n Nyp), completing the proof
of (8.4c). Now (8.4) is proved.

Using (8.4) we will find a number s, 0 < s £ r, such that f(D,) =
Gy _r o(xr 5). Define '

f*:D,— X holomorphic by f*(z) = fi(2)f2(2)xr,4. (8.5a)
From (8.4), we have
f*D,) = KNr(xr,¢) = KGw-r(xr,¢)- (8.5b)

AsGy_r o(xr,4) is open in Gy _r(xr 4), and as f*(0)=xr 4, (8.5b) says that
for s, sufficiently small f*(D;,) = KGy_r o(xr,4) = Go(xr ). Thus we have
0 < s, < r such that

f*:D,, — X isa holomorphic arcin Gy(xr 4). (8.6a)

As Gy_ro(xr ) is @ holomorphic arc component of Go(xr ) now (8.6a)
says that

S*(Dy,) & Gyr,ol¥r,g)- (8.6b)
Now, from (8.4c) and (8.5a), we see that
fi(D,) = K°n Ny. (8.6¢)
Combine (8.4) with (8.6¢c); the result is that

S(Dy) = Nr(xr5) = Gy_r(xr 5)- (8.72)
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As Gy_r o(xrz) is open in Gy _(xr ), now for s < s, small but positive,
we have

J(Dy) = Gy_r o(xr3)- (8.7b)

We have just proved that every holomorphic arc f: D — X in Go(xr 5)
has image contained in kGg_r(xry) for some keK. As the
k- Gy_r o(xr x) are connected complex submanifolds of X by (1) and (2), it
follows that they are the holomorphic arc components of Gy(xr 5). That
completes the proof of the Holomorphic Arc Component Theorem.

Q.E.D.

Corollary. Let I', £ = W disjoint. Then there is a K-equivariant fibra-
tion
[ Go(xr,z) - K(xr,¢)

whose fibers are the holomorphic arc components of Go(xr 5).

Proof. We combine the Holomorphic Arc Component Theorem for
Go(xr,5) with the Boundary Flag Theorem for Go(xr 4). First we have

T Go(xr,z) = Go/Nro by mn(gxrs) = gNr,o,

fibration whose fibers are the holomorphic arc components of Gy(xy 5).
Then we identify the base of 7 with K(xr 4), under kNt o & k(xr 4). Now 7
is given by
n(gxrz) = k(xr4) where gekNr, kek
Q.E.D.

9. Compact Subvarieties and Structure of an Orbit

The Holomorphic Arc Component Theorem of Section 8 describes the
decomposition of an arbitrary orbit Gyo(xr z) = X as a fiber bundle over a
real flag manifold Go/Nr o = K(xr 4). The fibers, which are the holomor-
phic arc components of the orbit, are indefinite-Kaehler symmetric spaces
isomorphic to the open orbit Gy _r o(x4z) = Xy_r. Here we factor that
fibration 7 as

/B/ K(xr,):)
Go(xr,5) l nft
\TC‘ Go/Nr,o = K(xr,¢)
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such that the restriction of § to a holomorphic arc component of Gy(xr 5)
is a holomorphic fiber bundle over a maximal compact subvariety of that
arc component. The result is due to Takeuchi [ /0] for the case T’ = ¢ of
open Gy-orbit, where the notion of a holomorphic arc component is ir-
relevant, without identification of the fiber. The general result is due to
Wolf [ 16]; his identification of the S-fibers as certain bounded symmetric
domains is important for applications [ /7] to the theory of unitary repre-
sentations of groups locally isomorphic to G,.

To formulate the description of § : Go(xr 5) = K(xr5), I' and X disjoint
subsets of W, we need some notation, part of which was established in
Section 5. First, we have

8v-1,0 = Sy-r N do real form of gg_r (9.1a)
stable under o, so that

Gw-_ro = by_r + My_rpo vector space direct sum  (9.1b)
where

fyr=fngy_r and My_ro = My N Gy_r. (9.1¢)

As ad(ct) commutes with complex conjugation T over g, commutes with o,
and preserves gy _, now we define

Qy-r = {PEgyr 1ad(chv = v}; (9.2a)
then

9%-ro =80 N gy_r Iisarealformof g§_r, (9.2b)
and

9%-ro=Tty_r + my_ro  vector space direct sum  (9.2c)
where

B r=fngh_r and mi_po=mengh_r. (9.2d)

Now denote the missing pieces of gy_r o by
Gh-r = {vely_r:adcy = —v}, (9.3a)

th-ro = {vemg_ro:ad(cd = —v}. (9.3b)
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That gives us symmetric decompositions under ad(c$):
Tyor=%_r+q¥_r and Qy-r,o0 = Qé—r,o + (4%-r + r\f'—r,o)-
(9.3¢)
Also, as ad(c2) preserves gy_r and satisfies
c-ad(ci) o™ = ad(cg %) = vad(cd)t !,
we have
ad(c)a%r = it@—r,o and ad(c))ty_r,o = igg_r.  (9.3d)
Finally, we denote
Ky_r: analytic subgroup of K for f,_r, (9.4a)
K% _.:  analytic subgroup of K for 5 _, (9.4b)
Gy_ro: analytic subgroup of G, for gy_r o,  (9.40)
Gy_ro:  analytic subgroup of G, for gy_ro.  (9.4d)

We collect some information on the groups (9.4).

9.5. Lemma. Ky _ = K n Gy_ o and is a maximal compact subgroup
of Gy _r,0.

Proof. Gy_r,o(x0) = Gy_r,o/ (KN Gg_r ) is the Hermitian sym-
metric space Xy_r o of noncompact type. Thus X n Gy_r  is connected
and is a maximal compact subgroup of Gy_r o. Now Ky _ = KN Gy_r
because they are connected and they have the same Lie algebra. Q.E.D.

9.6. Lemma. K3 _ = K n G§_r o and is a maximal compact subgroup
of G4 _r 0. Both K _r and G%_r. , are stable under ad(crcf). K§_ris the
isotropy group of G%_r ¢ at x,, and also at xp ;. In particular

G@—r,o(xr,z) = Crc§G§l—r,o(xo) = Gé—F,O/Kﬁ‘—r- (9.7a)
Further

G:;v—r,o(xo) = G‘y—(rux),o(xo) X G;;:,o(xo)a (9.70)
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totally geodesic Hermitian symmetric subspace of noncompact type and
rank |¥ — T'|in X,. Thus

G\zv—r,o(xr,}:) = G\y—(ruz),o(xr,z) X Gg,o(xr,):)a (9.7¢)

totally geodesic Hermitian symmetric subspace of noncompact type and
rank |¥ — T in creiXo.

Proof. In the Lemma following (5.17), we replace ¥ by ¥ — I'and T" by
%, thus obtaining (9.7b). That proves the isotropy subgroup K n Gy_r o
of G§_r,o at x, to be connected and to be a maximal compact subgroup;
now K% _r =K nGy_r, and is a maximal compact subgroup of G%_r o.

As cp centralizes Gy_p, both K5 _ and G%_r o are trivially stable under
ad(cp).

As ¢y € Gy_r, the latter is stable under ad(cg). Thus gy _ - is stable under
ad(cy), hence also under ad(c), so g5 _ is ad(cZ)-stable. On g% _y, ad(c?)
is equal to its own inverse, so

ad(c?) commutes with ¢ and with 7 on g5 _.

That proves ad(c$)-stability of both ¥ _r and m§_r o, hence of Kj_r
and G§_r o.

Now K% _rand G _r ¢ are stable under ad(cp) and ad(c3), hence under
ad(crc?). As K§_r was seen to be the isotropy subgroup of G§_r o at X,
it also is the isotropy subgroup at cpcZxo = xr 3. (9.7a) follows. Now
(9.7¢) follows from (9.7a) and (9.7b). Q.E.D.

9.8. Lemma. K§ __ is the isotropy subgroup of Ky _r at x5, and the
orbit Ky_p(xrz) = Ky_/Ky_r is a totally geodesic Hermitian sym-
metric subspace of compact type in X.

Proof. In the part of the Boundary Flag Theorem of Section 6, concern-
ing the base space of the fibration (6.19), we replace ¥ by ¥ — I"'and I" by
%, and then apply c¢r; that shows Ky_r(xrs) to be a totally geodesic
Hermitian symmetric subspace of compact type in X. Thus the isotropy
subgroup of Ky _r at xr 5 is connected and has Lie algebra equal to

{vety_r : ad(cred)-o-ad(crcd) v = v}
= {vely_r : ad(cHad(cy)ov = v}
= {vefy_r:adlchy = v} = H_.

Thus K% _r is the isotropy subgroup of Ky_ratxry.  Q.E.D.
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9.9. Lemma. The isotropy subgroup of Gy_r o at xp s is the analytic
subgroup with Lie algebra f%_r + t4_r o = ad(credis_r 0 Gy—r o-

Proof. Gy_r o has isotropy subgroup Ky _y at cpx, = xr 4. Statement
(2) of the Holomorphic Arc Component Theorem now says that the
isotropy subgroup of Gy_r o at xp y has Lie algebra

ad(cé)fg—r N 9y-r,0
= {ad(c%)f&c_r + ad(c)ag=r} O Sw-T,0
= {8 + 510} N Gw-ro = fo-r + th_ro.

That algebra being o-stable, there is a deformation retraction of
Gy -r o(xr ) onto Ky_r(xr5), which is simply connected by Lemma 9.8.
Thus the isotropy subgroup of Gy _r ¢ at xr 5 is connected; so it must be the
analytic subgroup for ,_ + t§_ro.  Q.E.D.

9.10. Lemma. Define f: Ky r X My o X tg_ro— Gy_ro by
Sk, vy, v;) = k-exp(v,)-exp(v,). Then fis a diffeomorphism onto Gy _r .

Proof. Xg_r g = Gy_r o(¥0) is a Riemannian symmetric space of non-
compact type, and hence is a complete simply connected Riemannian
manifold of nonpositive sectional curvature. Xy_r o = Gy_r o(Xo) is a
complete totally geodesic submanifold. Let | — X§ _r , be the normal
bundle in Xy_r o; the fiber 9N, over x € X§_r o consists of all real tangent
vectors to Xy _r o at x that are orthogonal to the tangent space of X§_r o
there. Then as in the classical Cartan-Hadamard Theorem,

Exp: M - Xy_r, is a diffecomorphism (9.11a)
where Exp is defined from the Riemannian exponential map:
if £e N, then Exp(£) = expy(&) € Xy—r.0- (9.11b)

We will translate (9.11) into the statement of the Lemma.

Identifying the infinitesimal transvections of Xy _r 4 at x, (i.e., the ele-
ments of 1my_r o) With the real tangent vectors which are their values at
Xo, We have my_ro L t§_ro because they are orthogonal under the
Killing form of g,. Thus

me = rx\y_r’o. (9.12&)
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It follows that
Exp N, = {exp(v)X, v e r§_r o} (9.12b)

As G§_r o acts by isometries on Xy_r oand that action preserves X% _r o,
now

N

oo = 9, and  Expg, =g ExpR, for geGy_r,.
In other words,
Exp R, = ¢Exp M,, for geGy_r,. (9.12¢)

Every x € Xy _r o has unique expression x = gx, where g € exp(my _r o)
< GY_r,o. Combining this fact with (9.11) and (9.12), we see that

F'(u,p) = exp(u)-exp(v) - x,

defines a diffeomorphism F’ of m§_r o X t§_r ¢ onto Xy_r o. Replacing
the isometries exp(u)-exp(v) by their inverses, we obtain another map

Fith_ro X My_ro— Xy_ro diffeomorphism  (9.13a)
defined by
F(v,u) = exp(—v)-exp(—u)- x,. (9.13b)

Note that exp(—v)-exp(—u)- Ky_r is the set of all elements of Gy_r g
that send x, to F(v,u). Thus F “lifts” to a map

flit§_ro X My_ro X Ky_r > Gy_ro diffeomorphism (9.14a)
defined by
f(vuk) = exp(—v)-exp(—u) k1. (9.14b)
The Lemma follows on observing that

Slk,v,0) = f/(02,01,k)” L
Q.E.D.

- We remark that our proof of Lemma 9.10 is based on the same general
idea as the corresponding proofs in [70] and [76].

Orbit Fibration Theorem. Let I' and £ be disjoint subsets of . If
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g € Gy_1,0, Use Lemma 9.10 to factor

g =9k 9Im 9r (9.152)

where

9k € Ky-r, Im € exp(mﬁ’—r,o), gr € eXP(ri—r,o)- (9.15b)
If k € K, define

B 1k Gyrolxrs) = k* Ky_r(xr5) by Bilkgxry) = kggxr s
(9.16a)
Further define .

B : Golxry) = K(xrx) by ﬂlk'Gw—r,u(xr,x) = B (8.16b)

1. By 1k Gy_rolxrs) = kKy_r(xr5) is a well defined holomorphic
fiber bundle with

(la) structure group: the connected reductive complex Lie group
K¥r;

(1b) total space: the holomorphic arc component k*Gy_r o(xr5) of
Go(xr 5) that contains k(xr 5);

(Ic) base space: the maximal compact subvariety k* Ky _(xr 5) of the
total space, which is a totally geodesic Hermitian symmetric subspace of
compact type in X; and

(1d) fiber over kk'(xp ), k' € Ky_r: the totally geodesic Hermitian
symmetric subspace

kk“GFy-r,o(Xr,z) = kk’crcf:'Gé—r,o(xo)
= kk’crc,z;{Gq/_(ruz),o(xo) x GE,O(XO)}

of noncompact type and rank |¥ — I'| in kk'crciX,.

2. Letv, : k5 _— k:Ky_r(xr5) denote the holomorphic normal
bundle in k- Gy_r o(xr ). Then v, is the homogeneous holomorphic vector
bundle over the compact Hermitian symmetric coset space Kg_ /Ky _r =
k:Ky _r(xr 5) defined by the representation of K% _r on the holomorphic
tangent space of Gf‘,,_l-yo/Kﬁ_r & k'Gy _r o(xr 5). The bundle B, is holo-
morphically fiber-equivalent to the relatively compact tubular neighbor-
hood of the zero-section of v,, whose intersection with the fiber over
kk'(xrs), k' € Ky_r, is the image of the Harish-Chandra embedding of
G%_r o/K%_r as a bounded symmetric domain in m§~ N ad(cref)m*.
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3. B : Golxry) = K(xry) is a well-defined real analytic fiber bundle
whose fibers and structure group coincide with those of its restrictions f8;
to the holomorphic arc components k:Gy_r o(xrs) of Go(xry). The
bundle f is real analytically fiber-equivalent to the homorgeneous complex
vector bundle over K(xr ), whose fiber is the holomorphic tangent space
my—r A ad(cpedyin® to Gy _r o(xr 5)-

Proof. The factorization (9.15) of Gy is smooth and well defined by
Lemma 9.10. Fix k € K. Now the map S, of (9.16a) is smooth and well
defined. Its total space k* Gy _r o(xr z) is the holomorphic arc component
of Gy(xr 5) through k(xr 5), by the Holomorphic Arc Component Theorem
of Section 8, and the base space k- Ky _r(xr 5) is a totally geodesic Hermit-
ian symmetric subspace of compact type in X by Lemma 9.8. As
k-Ky_(xrs) = Kgy_r/K§-r by Lemma 9.8, now B, is a real analytic fiber
bundle with structure group K§_r. We extend the structure group to
K3 ..

Let k'€ Ky_r. Then B; '(kk'xpy) consists of all kgxpy such that
g€Gy_r,o and kggxry = kk'xrs. The latter condition is gx(xrs) =
k'(xr5), which just says gge k'K _r by Lemma 9.8. Thus the fiber
over kk'(xry) consists of all kk'k;gygrxrs such that k, e K§_p,
gu € eXp(mE'—r,o)a and gg € exP(r‘)il—r,o)- As ggp(xrs) = xryby Lemma9.9,
and as kK gyxr s = ad(k )gy'Xr s € exp(mﬁ,_r,o)'xr,z by Lemma 9.9, now

ﬂk_l(kk’xr,):) = kk’eXP(mi—r,o)'xr,x-

Lemma 9.6 now says that the B,-fiber over kk'(xry) is kk'-G§ _r o(Xr5)
= kk’ch§G§'—r,o(xo) = kk'crcé{G\v—(ruz),o(xo) X Gg,o(xo)},totally geode-
sic Hermitian symmetric subspace of noncompact type and rank I‘P — I‘\
in kk'cpciX,.

To complete the proof of (1), it now suffices to show that f, has holo-
morphic K5 -valued transition functions. For that, it suffices to prove (2).

In order to discuss holomorphic tangent spaces, we introduce the nota-
tion

mg_r = m§_ronms, (9.17a)
mytr = Mo nm, (9.17b)
i = nomT, (9.17¢c)

a5t = ad(c)rii . (9.17d)
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Thus we have
my_r = myip + 5E L (9.18a)
and
ad(cre)mi_r = ad(cHhmEip + oSt (9.18b)

In the notation (9.17), the holomorphic tangent space to Gy _r o(x,) at
Xois mg_r, and my" - is the subspace that is holomorphic tangent space to
G¥% _r o(x0). Now Lemma 9.6, Lemma 9.8, and (9.18) say that, at Xr 5

Gy _r o(xr z) has holomorphic tangent space ad(c))m§™ + q%" 1,

(9.19a)
G% —r o(xr x) has holomorphic tangent space ad(cz)my" p, (9.19b)
Ky _{xr 5) has holomorphic tangent space q§" . (9.19¢)

Now the holomorphic normal space to Ky_r(xr5) in Gy_ro(xr 5) at xrx
is ad(c2)ym%* . That space is KEC -stable, the representation being that of
K%% ¢ on the holomorphic tangent space to G _r o(xrs) at xry. Now
Vi 1 kIR > k- Ke_(xr ) is identified as stated in (2), and the total
space of B, is injected into k9% _r, as stated, by the Harish-Chandra
embeddings of the kk'Gy_r o(xr5) into the ad(kk’)-images of the
ad(cHhmitc = i< 0N ad(cl-cz)m Now (1) and (2) are proved.

We check that the map 8 : Gy(xr 5) — K(xr 5) of (9.16b) is well-defined.
In other words, given k, k' € K with k-Gy_r o(xr5) = k' Gy_r,o(¥r 1)
we show that 8, = f,.. For that, suppose

kg(xr,z) =X= k'g'(xr,2)§ k,k'eK and 9,9 € Gy-r,o-

Then k~'k’ preserves the holomorphic arc component Gy_r o(xr5) of
Go(xry), i.e., k 'k’ € KA Np g, 50

k™K' = kik,, kyeKy_pr, Kk, triviallon Gg_r o(xrs)-
Thus we may ignore k, and assume that
k' = kk, with k; € Ky_r.
As in (9.15), we factor

g =9gxgudr and g’ = gxgugr-
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Using gr(xr;s) = xrx = gr(xr z), we now have

kgxguxrz = x = kkxg}(gj,wxr,x-
Thus k,gxgy = gxgmh where h e Gy _r o leaves x5 fixed. Lemma 9.9 says
h = hyhg with hy € K§_r and hg € exp(ty-r o). Now
(k1g)9u = gxguhxhr = (gxhy) (hg lthK)hR'

Uniqueness of the factorization (9.15) thus says

klg;( = gKhKa g;t{ = hEIthK, 1= hR'

Thus we compute

Bu(x) = kgx(xrs) = kgKhK(xr,z) = kk;gx(xr5)
= k,g;((xr,z) = B (x).

Now f is proved well defined.

Now that § is well defined, it also is real analytic. If x € Go(x ), then x
and B(x) are in the same holomorphic arc component of Go(xr z). This
proves that B : Go(xrz) = K(xr5) is a real analytic bundle whose fibers
coincide with those of its restrictions f,.

The structure group of § may be taken to be the isotropy subgroup of K
at xp y. That isotropy group preserves the holomorphic arc component
Gy_r o{xrs), hence is in K n Ny g, so its every element has factorization

= kk,, kyeK§y_r, k, trivialon Gy_r o(xr3z)

Now we may reduce the structure group of § to K% _r, then increase it to
the structure group K3< p of the restrictions f,.  Q.E.D.

Mostly for reference later, we write down the case I' = ¢ of an open
orbit for the Orbit Fibration Theorem.

Corollary. Every open Gy-orbit on X has a holomorphic fibration
B: GO(qu,Z) - K(x¢,):) by ﬁ(gxd,,z) = GkXp 5 (9.20a)
where

g = gxk9ImIr> gx€K, gue eXP(mi,o), gr € CXP(Y‘)I:',O)- (9.20b)

This fibration has structure group, the connected reductive complex Lie
group KziC. The total space is the open orbit Go(x4,5); the base space is the
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maximal compact subvariety K(x, y) of Go(x, ), which is a totally geodesic
Hermitian symmetric subspace of compact type in X, and the fiber over
k(x4 5), k € K, is the totally geodesic Hermitian symmetric subspace

k'Gé,o(%,z) = kc>2:'G§v,o(xo) = kc%{le—z,o(xo) X G%,O(Xo)}

of noncompact type and equal rank |¥| in kcZX,.

For further details on the bundles f, and 8 see [ 16, pp. 1213-1223].

Part III. Examples: The Classical Domains

Hermitian symmetric spaces were first studied by E. Cartan [4], who
classified them by means of his classification [3] of Riemannian symmetric
spaces. See [2], [12], [1]], and [I4] for increasingly direct proofs of
Cartan’s classification. The result is that the irreducible Hermitian sym-
metric spaces X = G./K of compact type are

(i) the Grassmannian SU(m + n) / [SU(m + n) n {U(m) x Un)}] of
n-dimensional linear subspaces of C*™™, 1 < m < n;

(iiy the subvariety Sp(n)/U(n) of SU(2n)/[SU(2n) n {U(n) x U(n)}]
consisting of the n-dimensional linear subspaces of C*" annihilated by a
nondegenerate antisymmetric bilinear form, n = 1;

(iit) the subvariety SO(2r)/U(n) of that same Grassmannian consisting
of the n-dimensional linear subspaces of C" annihilated by a nondegener-
ate symmetric bilinear form, n > 3;

(iv) the nonsingular quadric hypersurface SO(n + 2)/SO(n) x SO(2)
in complex projective (n + 1)-space, n = 3;

(v) an “exceptional” space E,/E4-SO(2); and

(vi) an “exceptional” space E¢/SO(10)-SO(2).

In the next four sections we work out the material of Parts I and II for the
four series just described. The method is: use the general theory, first to
guess the matrix and then to check the guess. It’s quite efficient.
Without the general theory, however, most of the facts would be extremely
difficult to see, much less to prove; thus the books of Hua L.-K. [6] and
Pjateckii-§apiro [9] remain all the more impressive.

10. Complex Grassmann Manifolds

We work out the Gy-orbit structure, the holomorphic arc component
structure of an arbitrary G,-orbit, and the orbit fibration, for the case
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where X is a complex Grassmannian. The reader should noticeé that our
method is that of constant application of the general theory, and he might
enjoy working out some ad hoc proofs of those applications. The less
energetic reader should at least glance at Pjateckii-§apiro’s ad hoc determi-
nation of the boundary components of X, in X for the case of the complex
Grassmannian [9, Section 6].

Let X be the complex Grassmann manifold consisting of n-planes
through the origin in complex number space C*"*" (m = 1, n = 1). If
{vyy ..., 0} © C™*"islinearly independent, then

Uy A+ Av, € X is the linear span of {v, ..., v,}.
The complex general linear group
GL(m + n,C) = {g : C™*" > C""" : g is linear and invertible}
acts on X by
glogn - AD) =g A - A g(o,)

An element g € GL(m + n, C) acts trivially on X if, and only if, it is a
scalar multiplication. Thus GL(m + n, C) induces the complex Lie trans-
formation group

G=GLm+nC)/{al:0 #aecC}

of complex dimension (m + n)> — 1 on X.
We can almost normalize representing matrices for elements of G by
choosing them in the complex special linear group

SL(m + n,C) = {ge GL(m + n, C) : det g = 1}.
That realizes G as the quotient,
G = SL(m + n, CQ)/{e*™ /™. 1.0 <1< m + n}

of SI{m + n, C) by a cyclic group of order m + n. In particular, now, the
Lie algebra g of G consists of all complex (m + n) x (m + n) matrices of
trace zero.

Choose a basis of C"*" and denote it by {e;, ..., e,4,}. That gives us

Xg = €pse1 A * * * A€, ,€X  base point.

The linear transformations of C™*" will be written in matrix form relative
to the basis {e;}. Thus every linear transformation of C"*" is represented
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A B
by a complex matrix (C D> where the blocks have size

A is mxm, B is mxn C is nxm, D is nxn
In particular,
P ={geG:g(xp) = xo}
is represented by

A B
{( ):B = 0 and (det A) (det D) = 1}.
C D

Thus P is a connected complex Lie subgroup of dimension m? + n? +
mn — 1in G, and

X = GJP compact complex (smn)-manifold.

G has maximal compact subgroup G, which is its compact real form,
given by

G, is the image of the unitary group U(m + ») in G.
The isotropy subgroup of G, at x, is the group
K=G,nP
which consists of all elements of G represented by matrices

A0
<0 D) with AeU(m), DeU(n), (det A)(detD) = 1.

Now G (x,) is open in X because it has the same real dimension, closed in
X because it is compact, so

X = GJ/K compact presentation.

This exhibits X as a Hermitian symmetric space of compact type; the sym-
metry at x, is the element of G, represented by any

(—Im 0 > (— 1yan :
s=a —1)"a" " = 1.
0o 1)

Consider the Hermitian form on C™*" given by

m n
upy = — Y wie) + ¥ umthmh
=1 K=1
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That defines an indefinite unitary group
U™(m + n) = U(m,n)
= {g e GL(m + n, C) : {g(u), g(v)) = {u,w), all u, ve C"*"}
and an indefinite special unitary group
SU"(m + n) = SU(m,n) = U(m,n) n SL{m + n, C).
Those two groups have the same image
U(mn)f{al : |a| = 1} = Go = SUmn)/{al : a"*" = 1}
in G. That group G, is a real form of G, so
GS = G = G,
and it is readily checked that
GonP =K S0 Go/K = Go(xg) open in X.
This exhibits
Xo = Go(xg) = X open G,-orbit

as a Hermitian symmetric space of noncompact type, with the same sym-
metry s at x,, inside its compact dual under Borel Embedding.

We work out the Harish-Chandra embedding of X, as a bounded do-
main in the holomorphic tangent space at x,. In our block form matrix
representations, e; is the column vector, i.e., (m + n) x 1 matrix, with all
entries zero except for a 1 in the jth place. SL(m + n, C) - G has finite
kernel, so we identify Lie algebras there; now G has Lie algebra

g = {(A B>: trace (4) + trace (D) = 0}.
C D

Now
A 0
€= {( >: trace (A4) + trace (D) = 0}
0 D

and

A 0
p= {( >: trace (A) + trace (D) = 0}.
C D
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o S

/0 Z
Z-Z= <0 0> maps (m x n matrices) = m*,

Harish-Chandra’s map £ : m* — X, given by é(Z) = (exp Z) (x,), now
may be viewed as a map from the complex vector space of all m x n

matrices. Compute
1(0 Z>k <1 Z>
okN\o o/ \o 1/

Z
&Z) = (exp Z) (xo) = vy A *** Av, where (vy,...,0,) :<I>'

Thus

In particular,

exp Z =

18

k

]

Thus

The condition é(Z) € X, is, by Witt’s theorem, that { , > be positive defi-
niteon v A * -+ + AU, i.e., that the matrix

Kvo)=1,—-"Z-Z, 'Z = transpose (Z),

be positive definite, i.e., such that its complex conjugate I, — Z*-Z, Z*='Z,
be positive definite. Thus

E71(X,) = {m x nmatrices Z : I, — Z*-Z > 0}.

For comparison with more classical work on that domain, we work out the

A B
action of Gy on £ ~1(X,). Let g € G, be represented by( c >e SL(m+n,C).
D

N A AZ + B
Then g-exp Z is represented by ), so
CZ+ D

N AZ + B
(gexp Z) (xg) = Wi A+ AW, where (wy,...,w,) = :
CZ+ D

AZ + B (AZ + BY(CZ + D)™ !
)and(

The columns of ( > have the same
CZ+ D 1 |
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span, the inverse there existing because (g -exp Z) (x,) € X,. Thus

A B
T <C D) implies  g(Z) = (AZ + B)(CZ + D)™".

Finally, we note that the operator norm of the Hermann Convexity
Theorem, i.e., the Banach space norm on the m X » matrices for which
¢71(X,) is the open unit ball, is given by

|Z||* = max {eigenvalues of Z*-Z}.
The common rank of the symmetric spaces X and X, is
r = min(m,n).
The partial Cayley transforms ¢; e G, 1 < j < r, are given by
ciey) = J'l_ri(iej + enstj)s clems;) = \/_1__3(31 + ieny ),
cile) = e, for j#£k#m+j.
Now define

‘e 2 2 .. .2
X5 = €1€2 CCs+1Cs+2 Ci Xo, 0=s=t

IIA
IIA

r.

These points will play the role of the xr ;.

To x € X, we associate the triple (a, b, ¢) where { , > hasranka + bon
x with a positive squares and b negative squares, and ¢ = n — (a + b) is
the nullity of ( , > on X. The only restrictions are that a, b, ¢ be integers
and

a+b+c=n, 0ZLagn 0Zbn 0Lcsr.
For example,
to x, ,, we associate (n — f, ¢ — s, 5).
Thus

each admissible triple is associated to just one of the x; ,.

If y € Gy(x), one associates the same triple to x and y. If x and y give the
same triple, then Witt’s Theorem says y € Go(x,,,). Now

the Gy-orbits on X are the Go(x, ), 0ss=stsr
In particular,

there are precisely 4(r + 1) (r + 2) Gy-orbits on X,

the r + 1 orbits Gy(x, ,), 0 < ¢ £ r, are the open orbits;

the orbit Gy(x, ) is the unique closed orbit.
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Note that £(m™) consists of all x € X whose orthogonal projection to x,
is surjective, i.e.,

Em*)y={xeX:e, A" - Ae, A x#0}
In other words, the complement
X—tm)y={xeX:e, A" Aey, Ax=0}
which exhibits it as a proper subvariety of X. Now consider the sets
D, = E7'Gy(x,,) = m™.

Continuing to view m™ as the space of all m x n complex matrices, we
checked

Doo=¢1(Xp) ={Zem" : [, - Z*-Z > 0}.

Let us agree that an # x n Hermitian matrix H has “signature” (a, b, ¢) if
it has a positive eigenvalues, b negative eigenvalues, and ¢ zero eigenvalues.
Then H and H have the same signature. Now, as in the proof of the char-
acterization of £~1(X,), we see that

D,,={Zewm" : 1, — Z* Z has signature (n — t,t — s, 5)}.
Recall that (n — ¢, ¢ — s, 5) is the triple associated to x, ,. Thus
if x € £(m*), say x = &(Z), then the triple
associated to x is the signature of I, — Z*Z.
The topological boundary of X, in X is given by
bd Xy = Go(xy,1) U Golxz,0) U - = - W Gylx, ).

The boundary orbit Gy(x, ) is the union of those boundary components
that are symmetric spaces of rank r — 5. To obtain one boundary compo-
nent of rank r — s, define, for0 < s < r,

X(m—s.n-s) 18 the set of all elements x € X such that

() xiscontainedineg, ; A ey A * " A €pusy,
(ii) x contains e, 1, €pias-- - Cmis
To x € Xy _s,n_s), We assign its interior product with e, A+ * * A €,

That gives an isomorphism of X, _, ,_ onto the complex Grassmannian
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of (n — s)-planes through the origin in the C™ 97"~ with basis
{es+1> cet em; em+s+17 e em+n}' Let

Xon—sn-5,0 = Xo N Xpn—sn-s)
Thenfor1 £ s <y,
€1€2 * * * € Xim-sn-s5),0 15 @ boundary component of rank r — s
)
Go(xs,s) = Ukechch © 0 X m—s,n—s),0

By Witt’s Theorem, two totally {, M-isotropic subspaces of C"*" are
SU(m,n)-equivalent if, and only if, they have the same dimension. The
possible dimensions are {0, 1, ..., r}. The span

Vs = (el -+ iem+1)/\ v A(es + iem+s)

is an s-dimensional totally ¢ , Y-isotropic subspace of C™*", and for
15,

Ns,O = {g € GO g(Vs) = Vs}
is a maximal parabolic subgroup of G,. Further, for 1 £ s < r
Ns,O = {g € GO :gcl e ch(m—s,n—s),O =C ch(m—s,n—s),O}'

We pull the boundary components of X, in X back, by ¢!, to the
boundary components of

EN(Xo) = {m x n matrices Z : I, — Z*-Z > 0}.

The result is that

I, 0
EMeyer € X msm—s),0) Consists of all Z = (0 >where
'Z

'Zisan (m — s) x (n — s) matrix such that I,_; — 'Z"- z > 0.
Thus, as indeed we see from our discussion of D, ,
K-EYewey » v ¢ Xmosm-sy,0) = £ 'Go(x, ;) consists of all m x n
matrices Z such that I, — Z*-Z has signature (n — s, 0, s).

Here K = {U(m) x Um)}/{al : |a| = 1} acts by (k..k,):Z - k,Zk3".
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From the general theory, we now see that the holomorphic arc compo-
nents of an arbitrary orbit Gy(x; ) are the

k-{cic; = " ¢ Xinogmog N GolXs,0)}, k€K,
and that '
N; o is the Gy-normalizer of ¢ ¢; * * * € X s s N Gol(Xs,0)-
We describe the K-equivariant holomorphic fibration
B :Golxo,) > Klxo,), O0=t=r,
of an open orbit over its maximal compact subvariety. Decompose
C"""=U@®V where U=¢e; A-"rne, and V =¢, 1 A" Aepip
K consists of all transformations of X represented by block matrices of
shape
A4 0
( ) with AeU(m) and D e U(n).
0 D ‘ \
Thusxo, =€ A" A€ Aepiiyt A * " A €y, implies
K(xo ) = {y Az :yisatplanein U, zis an (n — t)-plane in. Vi

To accomodate ¢;¢, * - * ¢, we break (m + n) x (m + »n) matrices into
refined block form, four blocks by four, with diagonal blocks of indicated
size:

t Xt
(m—1)x(m—1)
t Xt
(n—1t)x@m—1)
Let
i, correspond to fy _y, m; to My_y;
f, correspond to f, m, to mZ.

Then the support of representing matrices for the algebra corresponding to
gw ~ gy-x @ of is indicated by

i, m,
|3 my
m, f,
my f
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From this and the general theory we see that f7(x, ,) is the product of the
manifold

{e, A - -+ Ae A z:zisa positive definite (n — £)-plane in

L N N P NN -
corresponding to Gy _g o(x,,z), With the manifold

{¥ A eprrer A" A €y, yisanegative definite z-plane in

ELA T NG A Gyl A A Eyay)

corresponding to Gi o(x, ). By K-equivariance all B-ﬁbefs are described.
Now we can specify the map f as follows. Define unit quadrics

Q={ueC™" :{uuy = —1} and S={veC"™":{vw) = +1}
and orthogonal projections
ny:C""">U and @, :C"T" V.

Let x € Go(Xo ). Thus x is an n-dimensional linear subspace of C"*” on
which ¢ , ) has ¢ negative eigenvalues and n — ¢ positive eigenvalues,
Define {u;,..., u,} cxby:u,=0and, for 1 £j<t,u;eQ@nxisa
maximum point for the negative function

fit0nxn{ug...,umyt >R by fiw) = <mp(w), mp(w)).

Then u; A * + - A u,is the t-dimensional negative definite subspace of x
that is “nearest” to U. Define {v,,...,v,_,} < x by: v, = 0 and, for
1£k£n—t veS nxisaminimum point for the positive function

he:Snxo{vg, ..., -1}t >R by k() = (ay(v), T (v)).

Then v, A- * - A v,_,isthe (n — t)-dimensional positive definite subspace

of x that is “nearest™ to V. Now
x=@ A AUIA@ A AV e Glxo,)
and we have
Bx) =my(uy A - - Au) ATp(vg A 20 A vm) € K(Xo )

Note that this construction simply imitates the proof of Lemma 9.10.
The K-equivariant partially holomorphic fibration

ﬁ : GO(xs,t) g K(xs,t): 0 é § é t é r,
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of an grbitrary orbit, is specified by its restrictions to the holomorphic arc
components of the orbit. We have described the holomorphic arc compo-
nents, and the restrictions f, there iterate the open orbit case.

11. Manifolds Corresponding to the Siegel Half Planes

We work out the Gy-orbit structure, holomorphic arc components, and
orbit fibration, for the case where X, — X is the Borel Embedding of the
“Siegel upper half plane” in its compact dual. That is the case where
Harisli-Chandra’s map ¢ : m* — X satisfies

' icgXy = {n x nmatrices Z : Z = ‘Zand Im Z > 0}.

X is a subvariety in the complex Grassmann manifold of »-planes in
C?, given as follows. Let us fix

J : nondegenerate antisymmetric bilinear form on C?",
Then
X = {n-planes x = C*" : J(x, x) = 0}.

A different choice of J would alter X only by an automorphism of the
Grassmannian, for any two nondegenerate antisymmetric bilinear forms on
C?" are GL(2n, C)-equivalent.

The complex symplectic group is
Sp(n, C) = {g : C*" - C*" linear : g preserves J}.
The latter condition is
J(u,v) = J(gu,gv)  forall u, ve C*.

Itimplies det g = +1, so g is nonsingular and g~ ! also preserves J. Sp(#,C)
visibly preserves X and acts there by holomorphic diffeomorphisms. The
center of Sp(n,C) is { +1,,}, which is the kernel of its action on X, so

G = Sp(n,C)/{+1,,}

is a complex Lie transformation group on X.
Choose a basis {e;, . . . , e,,} of C*" in which

0 I
J =< E O), ie, J(u,v) = ‘v for u,pe C*.
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In that basis, Sp(n,C) consists of all transformations with (n x n)-block

: A B
form matrix < >such that
C D
(e o) o)E -0 )
c p)\-1 o/\c b/ \-1 o,

‘A-C ='C- 4, ‘B-D = 'D-B, and ‘A-D - 'C-B=1L

ie.,

The matrix form of J shows e, ;A - - - Ae,, € X. Define
Xo =€y 1N " NeyjeX base point.
The isotropy subgroup
P ={geG:g(x,) = xo}
now consists of all linear transformations of C*” with matrix
A 0
( ) where 'A'C ='C'A and '4'D=1.
C D
Witt’s Theorem proves G transitive on X. Thus
X = C/P compact complex Ln(n + 1)-manifold.

The maximal compact subgroups of G are the conjugates of its compact
real form

G. = Spm)/{£ 1.},
image in G of the unitary symplectic group
Sp(n) = Sp(n,C) n U(2n) < SU(2n).
The isotropy subgroup of G, at x; is
K=G,nP;

it consists of all

A 0

+ < _ such that A eU(n).
0 A4

Now G.(x,) is open in X by dimension, closed in X by compactness, so

X =G /K compact presentation.
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This exhibits X as the Hermitian symmetric space Sp(n)/U(n) of compact
type. The symmetry at x, is

il 0
s = + >
0 -—il

Consider the Hermitian form on C?" given by

n n
dupy = = Y wle! + Y unrtRpr T
j=1 k=1

It specifies the indefinite unitary group U(n,n), hence the group
Sp(n,C) n U(n,n). Define

G, : transformation group on X from Sp(n,C) n U(n,n).
As U(n,n) is a real form of GL(2r,C), we can see that
G, is a noncompact real form of G.
Furthermore
GonP=K so Go/K = Go(xy) open in X.
Thus
X, = Go(xo) = X open G,-orbit

is the Hermitian symmetric space of noncompact type, dual to G,/K = X
with the same symmetry s at x,, inside X under Borel Embedding. Note
now X, & Sp(n,R)/U(n) and G, = Sp(n,R)/{+1,,}.

Now we come to the Harish-Chandra embedding of X, in its holomor-
phic tangent space. Identify the Lie algebra g of G with the Lie algebra of
Sp(n,C) under G = Sp(n,C)/{=1}. Then

A B /4 B 0 I 0 I\ /A B
R B O G B (RO K G E S
C D c b/ \=1 0 -1 0/ \c D

In other words,

A B 1
g={< ):‘A:—D,‘B:B,and‘C=C.
C D j

A 0
p={< >:‘A=—Dand‘C=C}
C D

Thus
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and

In particular,
0 Z
Z->27= 0 maps (n x n symmetric matrices) & m*,
0

We now view Harish-Chandra’s map & : m* — X, given by &(Z) =
(exp Z) (x,), as a map from the complex vector space of all # x n symmetric

matrices. As
(o o))
exp =
0 O 0 I

V4
EZ) = (exp Z) (xo) = v, A =+ * A, where (v(,...,0,) = ( I>'

now

By Witt’s Theorem, &(Z) € X, if and only if { , > is positive definite on
vy A+ Av, That condition is that (v, v,>) = I — 'Z-Z be positive
definite. Thus

EY(X,) = {n x nsymmetric Z : I — Z*-Z > 0}.
If

then

- A AZ+ B
gexpZ =+ ,
C CZ+D

AZ + B
which sends x, to the span of the columns of < LAs(CZ + D)7
CZ+ D

(AZ+B)(CZ+D)“1>

exists, that is the same as the span of the columns of| <
1
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Thus G, acts on £~1(X,) by
‘ A B
i( >:Z—>(AZ+B)~(CZ+D)“,
C D

as expected. Finally, note that the Banach norm on m™, for which £~ 1(X,)
is the unit ball, is

|Z||* = max {eigenvalues of Z*-Z}.
The symmetric spaces X, and X have rank #n. The partial Cayley trans-
forms c;e G, 1 £ j £ n, are given by
1, 1 .
ciey) = 3_=2(lej + €,4 ), cile,;) = \/__2(31' + Qe ),
ciley) = ¢ for j#k#n+]j,

because X has equal rank and is totally geodesic in the ambient Grassmann
manifold. As before, define

Xop = €€ " " CCay 1Clygt "t €1 X, 0 =s=s1t=2n,
same centers as for the ambient Grassmannian of n-planes in C2". Again,
the Gy-orbits on X are the Gy(x;,,), 0ss=t=Zn
In particular,
there are precisely 4(n + 1) (n + 2) Gy-orbits on X,
the n 4 1 orbits Go(x4 ), 0 £ ¢ < n, are the open orbits, and
the orbit Gy(x, ,) is the unique closed orbit.

The orbit Gy(x; ) consists of all elements of X on which { , >hasn — ¢
positive eigenvalues, ¢ — s negative eigenvalues, and s eigenvalues zero.
Again as in the ambient Grassmannian,

X—-tmYH={xeX:e,n - AeAx=0}
and
Ds,t = é—lGO(xs,t) cm*

consists of all # X »n symmetric matrices Z such that the Hermitian matrix

I — Z*-Z has n — ¢ positive eigenvalues, ¢ — s negative eigenvalues, and s
eigenvalues zero.

The topological boundary of X, in Xis bd X, = Go(x; ;) U Golx; ) U

© U Go(x, ). Here Go(x, ) is the union of those boundary components
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that are symmetric spaces of rank n — 5. For 0 < s < n, define
X (s is the set of all elements x € X such that
net N ° T T NG g © X TSy AN AT A €y

The interior product with e,,; A = -+ A e,  maps X,_, isomorphically
onto the subvariety of the complex Grassmannian of (# — s)-planes in
C*) = (e Av  AeYA(Cuysii A * * Aey,) defined by J(y,y) = 0.
The Borel-Embedded noncompact dual of X,_;, is

Xin-9,0 = Xo N Xa—g)
Forl1 £s<n,
ciCy * ¢ € X(y_g),0 1S @ boundary component of rank n — s,

SO
GO(xs,s = UkeK kCICZ e ch(n—s),O'

As in the case of the Grassmannian, the maximal parabolic subgroups of
G, are the

Ns,() = {g eGO g(Vs) = Vs}
where the

Vs=(61+ien+1)/\ T /\(es+ien+s)’ Oésén,

represent the Gy-equivalence classes of totally { , )-isotropic J-isotropic
subspaces of C2"; and

Ns,O = {g € GO :gcl e ch(n—s),O =01 CsX(n—s),O}'

We locate the ¢~ !-images of the boundary components of X, in X; they
are the boundary components of

{n x n symmetric matrices Z : I — Z*Z > 0}

in the space of n x n symmetric matrices. The result is that

E7Meyen v vt € X (yms),0) consists of all n x n symmetric matrices

I, O
z =< ) such that I,_.,—'2*-"Z » 0.
0 'z

<

A A 0
K={i<0 ): AeU(n)} actsonm™ by + (

_>: Z—AZA ' =AZ"A.
0 A

A
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Thus

K& eyey  + 0 ¢ Xu-sy,0) = E71Go(x,,,) consists

of all n x n symmetric matrices Z such that

I, — Z*-Z is positive semidefinite and of rank n — s.

We know from general theory that the holomorphic arc components of
an arbitrary orbit Gy(x, ,) are the

k. {CICZ T ch(n—s) N GO(xs,t)}, k € K9
and that
N,

5,0 is the Go-normalizer of ¢;c;  * * ¢, X5 N Go(Xg,,)-
We describe the K-equivariant holomorphic fibration
B : Go(xo,0) = K(xo,0), 0=s1<n

of an open orbit over its maximal compact subvariety. As before,

C*"=U@V where U=¢e; A" -re, and V =¢,. A" * * Aegp
As

Xoe=(er A Ae)A (@urrsr A" " " A€y,
now

K(xo)={x=yAz:xeX yistplanein U, zis (n — t)-plane in V'}.
Our refined matrix block form is

Xt

m—t)yxm-—1)

m—t)yxm—1)
Let
f, correspond to fy_g, m; to My _y,
f, correspond to T, m, to m.
Then representing matrices for the algebra corresponding to g% ~ gy _s@aE
have support
[ m,

m, i,
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Thus B~ '(x, ;) is the product of the manifold
{eqn s neAziz (@A A A (EuprriA " 0 Aey)ls
a positive definite (n — t)-plane with J(z,z) = 0}
corresponding to Gy_y o(X4 x), With the manifold
{(y Alprrs1A = Aeg iy (e A o m Ae) Al A 0 Aeyyy)is
a negative definite z-plane with J(y,y) = 0}

corresponding to Gﬁ,o(x4,,z). Via K-equivariance, this describes all f-fibers.
We can now describe the map B, as before, by a minimax construction
from the unit quadrics

Q={u€C2”:<u’u>= -—1} and S={UGC2":<U,U>= +1}
and the orthogonal projections
ny:C*" > U  and n, 1 C*" > V.

Let x € Go(xo ,)- In other words, x is an n-dimensional subspace of C*", on
which ¢ , ) has ¢ negative eigenvalues and » — ¢ positive eigenvalues, such
that J(x,x) = 0. Within the ambient Grassmannian of X, we decompose

x=@ A AUu)A@ A AV

where {u;, ..., u;} = Q n x are mutually orthogonal, spanning the z-
dimensional negative definite subspace of x closestto U, and {v, . . ., v,_,}
< S n x are mutually orthogonal, spanning to the (n — ¢)-dimensional
positive definite subspace of x closest to V. As Gy(x, ) is totally geodesic
in the open subset SU(n,n) (x, ,) of the ambient Grassmannian, it follows
that

Bx) = my(uy A - - - Au) A my(og A A D, ) € K(xg )
As before, the K-equivariant partially holomorphic fibration
AB : GO(xs,t) - K(xs,t)a 0 é N é t é n,

of an arbitraty orbit, is now specified by our knowledge of the holomorphic
arc components and the open orbit case.

12. Subvarieties of Grassmannians Defined by Symmetric Forms

We work out the G,-orbit structure, the holomorphic arc components,
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and the orbit fibrations, for the symmetric spaces corresponding to X =

SOQ2n)/U(n). They differ from the Siegel Half Plane case in that J is

replaced by a symmetric bilinear form. That change does not destroy the

simplifying feature that X be totally geodesic in an ambient Grassmannian.
Fix a nondegenerate symmetric bilinear form S on C?" and define

X = {n-planes x = C*" : S(x,x) = 0}.
Then X is homogeneous under the complex orthogbnal group
0(21,C) = {g : C*" -» C?" linear : g preserves S}.

That orthogonal group has two topological components; the identity com-
ponent is

S0(2n,C) = {ge O(2n,C) : det g = +1}
and the other component is
{ge0@2nC) :detg = —1}.

From now on assume » > 1. Then the centers of SO(2#,C) and O(2r,C)
are {+ I,,}, which is the common kernel of their actions on X, so

G =S0(2n,C)/{£I} and G = 0(QnC)/{+Il}

are complex Lie transformation groups on X, of complex dimension
2n* — n, with G connected and of index 2 in G.
Choose a basis {e}, . . . , e,,} of C*" in which

0 I n
S =< >, ie., S(u,v) = Z (ukvn+k + un+kuk)_
I 0 =1

In that basis, using » x » matrix blocks,

_ A B
G={+ (c ): ‘4C +'C-A=0="BD + 'DB,'AD + 'C-B = I}
D

and

Now define

Xo = €41 A *** Aey€eX base point.



340 Joseph A. Wolf

The isotropy subgroup P = {g e G : g(xo) = x,} is

A0
P={+< D):'A-C+‘C-A=O,‘A~D=I}.

~\C
A 0
C D

A0
det (C D) — (det A) (det D) =det (‘"4 D) =det [ = 1.

If

we compute

Now
PcG so X =G/P  hastwo components.
Now define
X = G(xo), component of X that contains x,.
Thus
X = G/P - compact complex in(n — 1)-manifold
and

Xg=€+1 A" " AeyueX base point.

The maximal compact subgroups of G are the conjugates of its compact
real form

G, = {S0(2n,C) n URn)}/{ £ L,,}.

That group obviously is compact. To check that it is a real form observe

that
1 /1 il 0 1
T =— >eU(2n) and tT-T=< ),
V2i\ir 1 I 0

so that
771-8S0(2n)-T = SOQ2n,C) n U(2n)

where SO(2n) denotes the group of all real orthogonal matrices of deter-
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minant 1 and degree 2n. The isotropy subgroup of G, at x, is
K=G,nP {(AO)AU()}
=G, N = i _ I € n);.
0 4

Now G (x,) is open in X by dimension and closed in X by compactness, so
X =G/K  compact presentation.

This exhibits X as the Hermitian symmetric space SO(2r)/U(#) of compact
type; the symmetry at x, is

il 0
s = i( >
0 —il

We again use the Hermitian form on C?" given by
up) = — Y uled + Y urtRprt,
=1 k=1
It specifies the indefinite unitary group U(n,n) and thus specifies
SO(2n,C) n U(n,n). Define

G, : transformation group on X from SO(2#,C) n U(n,n).

Then
G, is a noncompact real form of G
and
GonP=K so Go/K = Go(xg) open in X.
Thus

Xo = Go(xg) = X open Gy-orbit

is the Hermitian symmetric space of noncompact type dual to X = G_/K,
with the same symmetry s at x,, in X under Borel Embedding. In particu-
lar, X, = SO*(2n)/U(n) and G, = SO*(2n)/{+1,,}.

Now we work out the Harish-Chandra embedding. Identify the Lie
algebra g of G = SO(2n,C)/{ £+ I} with that of SO(2n,C). Thus

o= {le o) D oG ole )=t
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That says
A B
g={< ):B+‘B=0,C+‘C=O,andD=—‘A}.
C D
It follows that
A 0
p={< :C+‘C=0,andD=—‘A}.
C D

and

0 B
m*:{( ):B+‘B=0}.
0 0

In particular,
Pt 0 Z . .
Z-7-= 0 o maps  (antisymmetric n x n matrices) = m*.

We view Harish-Chandra’s map & :m™ — X as the map &(Z) =
(exp Z) (x,) from the space of antisymmetric complex » x » matrices. Then

&Z) = (exp Z)(xo) = vy A ... A v, Where (v, ...,v,) :<f)

and we use Witt’s Theorem to see that
ETY(Xo) = {n x n antisymmetric Z : [ — Z*-Z > 0}.

The same calculations as in Sections 10 and 11 show that G, acts on
E71(Xo) by

A B
i( ):Z—»(AZ+B)(CZ+D)‘1
C D

and that the Banach norm on m™, for which £~ 1(X,) is the unit ball, is
IZ||* = max{eigenvalues of Z*-Z}.
The symmetric spaces X, and X have the same rank r given by

2r=n for neven, 2r+1=mn for nodd.



Fine Structure of Hermitian Symmetric Spaces 343

Observe that the matrix

10 01 0 01
1 01 -1 0 . 5 0 -1 0
¢ == satisfies: ¢* = ,
J21 o0 1 10 1 0
-1 0 01 -1 0 0

so we can check that
ceSO0@4,0)nU@ and c¢*= -1,
Now, the partial Cayley transforms ¢;€ G, 1 £ j £ r = [n/2], are given
by
1 1
cfezj-1) = ﬁ(er—l = €ri2j)s ciez;) =ﬁ(e2j + €yr25-1);

L 1

cj(en+2j—1) = \/2(—921' + en+2j-—1), Cj(en+zj) = \/2(321'—1 + en+2j)§
cile) = e for k¢{2j—1,2,n+2j—1,n+ 2j}.

These do not coincide with the partial Cayley transforms on the ambient
Grassmannian of n-planes in C2"; for although X is totally geodesic there,
it has lower rank r < n. Now our centers for Gy-orbits are the

PN 2 2,02 —
X5 = €1C2 CsCs+1C542 Cr Xo, 0=<s=st=r=[n?2]

and
the Gy-orbits on X are the Gy(x; (), 0s=st=sr
In particular,
there are precisely +(r + 1) (r + 2) G4-orbits on X,
the r 4+ 1 orbits Gy(x,,,), 0 < ¢ < r, are the open ones, and
the orbit Gy(x, ) is the unique closed orbit.

The orbit Gy(x, ,) consists of all elements x € X on which { , > hasn — 2¢

positive eigenvalues, 2(+ — s5) negative eigenvalues, and 2s eigenvalues zero.
As before,

X—(m)={xeX:egA- " re, Ax=0}
and ’
Ds,t = é_lGO(xs,t) cm?
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consists of all » x n antisymmetric matrices Z such that the Hermitian
matrix [ — Z*-Z has n — 2t positive eigenvalues, 2(+ — s) negative
eigenvalues, and 2s eigenvalues zero.

The topological boundary of X, in X is Gy(x; 1) Y Golx, ) Y - -
U Gy(x,,,) where Go(x, ;) is the union of those boundary components that
are symmetric spaces of rank r — 5. For 0 £ s < r, define

X, is the set of all elements x € X such that

Entt N T T N Cias © X SO g A Egera AT A €y

Interior product with e,y A * * * Ae,,,,maps X|,_ isomorphically onto
the component of e,,,,41 A * * * A €,, in the two-component sub-
variety of the complex Grassmannijan of (n — 2s)-planes in C¥*™* =
(€241 A " " " A€) AlCrasst A * * * A ) defined by S(y,y) = 0. The
Borel-Embedded noncompact dual of X|,_j, is

Xo—9,0 = Xo N Xp_g)-
Forl1<s<r,
€1¢; * * * ¢sXn_g,0 I8 a boundary component of rank r — s,
s0

GO(xs,s) = Ukclcl Tt CsX(r—s),O'
keK

The even dimensional G,-equivalence classes of totally S-isotropic { , >-
isotropic subspaces of C" are represented by the 2s-dimensional spaces
V,0 £ 5 £ r, defined by

Ve={(—e; + €s1) Aleg +e42)} A -
A {(—exs + €rizg-1) A (€251 + €412}
The maximal parabolic subgroups of G, are the
Neo=1{9€Go:g(V) =V}
and
Noo=1{9€Go:gcic5 + » e Xpmgyo = €162 * * * ¢ X(p-g) .0}

We locate the ¢~ !-images of the boundary components of X, in X; they
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are the boundary components of
{n x n antisymmetric matrices Z: I — Z*-Z > 0}
in the space of n x n antisymmetric matrices:

ENeyea €, X(p—g).0) consists of all n x n

. . J 2s 0
antisymmetric matrices Z = , Wwhere
0 'Z

—- o

Jyo= and I, ,,—'Z*-'Z » 0.

-1 0

A 0
< _): Ae U(n)} actson m* by
0 A

>§
(]
——
I+

o 1
Thus K-E7Yeyey + -+ ¢ X(p—gy0) = € Golx,) consists of all n x n
antisymmetric matrices Z such that I, — Z*-Z is positive semidefinite and
of rank n — 2s.

The general theory ensures that the holomorphic arc components of an
arbitrary orbit Gy(x; ,) are the

k{clcl e ch(r—s) N GO(xs,t)}a kG Kn

A0 B
+<— ‘Z > AZA7' = A-Z A

and that their normalizers are:

N,

s

.0 18 the Gy-normalizer of ¢;c, -+ + ¢, X(,_5 N Go(X,,).
We describe the K-equivariant holomorphic fibration
B 1 Go(Xo,0) = K(x0,1), 0st=r=[n2],

of an open orbit over its maximal compact subvariety. As before, C** =
U® Vwhere U=e;, A - Areand V=e¢e,,., A" A ey Now

Xop=1(eg A - - Aey) Aot AT A €yy)
gives us
K(xog)={x=yAz:xeX,yis 2tplane in U, z is (n — 2t)-plane in V}.

We use refined block form 2n x 2n matrices divided as follows.
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2t x 2t
(n—2t) x (n— 2r)
2t x 2t
(n— 2t) x (n — 2¢)
As before, let
f, correspond to fy_;, m, to My _g;
t, correspond to T, m, to mi.

Then matrices representing the algebra corresponding to g5 ~ gy_z @ 9%
have support

i, m,
|3 my
m, i,
my f,

Thus B~ !(x, ) is the product of the manifold
fexn - nepnziz ey A Ae) A(Eraair A T Aeyy)
is a positive definite (# — 2¢)-plane with S(z,z) = 0}
corresponding to Gy _y o(¥,,5), with the manifold
(VA enraes i A s neg iy Clerns s Ae) Alers 1 At Alyya)
is a negative definite 2¢-plane with S(y,y) = 0}

corresponding to G (x4 5)- By means of K-equivariance, this describes all
p-fibers.

As X is totally geodesic in the ambient Grassmannian of n-planes in C?*,
and as the center x, , of an open Gy-orbit on X is the center of an open
SU(n,n)-orbit on the Grassmannian, we now can use the minimax construc-
tion of Section 10 to describe the map f. Denote the unit quadrics

Q={ueC”:(uuy=—-1} and L={veC?”:{vv)=+1}
and the orthogonal projections
1y, :C*>U and @ :C*" V.
If x € Gy(x,,,), we construct, as in Section 10,

{uy, ..., uy} = Q nx mutually orthogonal,

{vi,..., 0,_2 © L nx mutually orthogonal,
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with

Xx=(ug A A A (UL A A U,ma) € GolXo,)-
That construction is such that #; A - - - A u,, is the negative definite 2¢-
dimensional subspace of x nearest to U and v, A - - - A v,_,, is the

positive definite (n — 2¢)-dimensional subspace of x nearest to V. Thus, as
described in the first sentence of this paragraph,

B(x) = my(uy A 0 0 Auy) ATyp(vy A0 0 A Dns,) € K(Xo,).

Now, in the case of an arbitrary orbit G(x,,), the K-equivariant par-
tially holomorphic fibration

B: GO(xs,t) - K(xs,t)’ 0=ss=st

A

r,

is specified because we know the holomorphic arc components and the
open orbit case.

13. The Complex Quadrics

In this section we work out the Gy-orbit structure, holomorphic arc
components, and orbit fibration for the remaining classical series of ir-
reducible Hermitian symmetric spaces. That is the case where X is a
quadric in complex projective space P"*1(C), n > 2, which is not con-
tained in a hyperplane. Here matters are rather more complicated than in
Sections 11 and 12 because X is not totally geodesic in its ambient Grass-
mannian P"*!(C), and because G, is properly contained in its real algebraic
hull.

Given an integer n = 0, the complex projective space of complex dimen-
sionn + 1 is

P"*1(C) : complex Grassmannian of lines through 0 in C"*2,
Fix a nondegenerate symmetric bilinear form S on C**2 and define
X = {xeP"*(C) : S(x,x) = 0}.

That is the complex quadric. It is homogeneous under the complex
orthogonal group O(r + 2, C) associated to S. Thus X carries complex
Lie transformation groups

G=0n+20/{+I} and G=S80n+2 C)-{+I}{+I}
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of complex dimension £(n + 1)(n + 2), with G connected. If n is odd, so
det (—I) = —1, then G = G. If nis even, then G has index 2 in G.

As we do not use exterior products in expressing elements of X by their
bases, we adopt the convention

if 0#veC"?  then [v] e P""1(C) is the span vC.

Now choose a basis {ej, ..., €,4,} of C**2in which S(u,p) = 3%} u*vt.
Then

G = {+M: Misacomplex (n + 2) x (n + 2) matrix and ‘M- M = I}.
Now choose base point

Xo = [€ns1 + l€,42]€ X.
The isotropy subgroup P = {ge G : g(x,) = xo} is

A B

a b
P‘:{i( )eG:B=(B/,iB’),D=< >,ia—b=0+id}
C D c d

where the matrix blocks are of size given by

Aisn x n, Bisn x 2, B'isn x 1, Cis2 x n, Dis2 x 2.

0

-1
As P contains the transformation ;I_—( ) represented by a matrix

n+t1
of determinant — 1, it meets every component of G. Thus

X = G(x,) @ G/P  connected where P = G n P.

The maximal compact subgroups of G are the conjugates of its compact
real form

G. = {SO(n + 2, C) " U(n + }-{X1}/{£I}.
Here note that
SO(n +2,C)nUm + 2) =SOm + 2)
where the real special orthogonal group

SO(n + 2) = {ge SO(n + 2,C) : g preserves real span of {e,, ..., €,,5}}.
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The isotropy subgroup of G, at x, is
A 0
K=G,nP= {i(o D):AeSO(n) and D e SO(2)}.

Now dimension and compactness of G (x,) gives us
X =G/K  compact presentation.

That exhibits X as the Hermitian symmetric space SO{n+ 2)/SO(n) x SO(2)
of compact type. The symmetry at x; is

I, 0
=<y )
0 —1I,

We use the indefinite Hermitian form on C"*2 given by
up) = =Yroy u's* + @5 + u"t25"*2). That defines the in-
definite unitary group U(n,2) and thus the intersections

O(n,2) = O(n + 2,C) nU(n,2) and
0*(n,2) = SO(n + 2,C) n U(n,2).

The indefinite orthogonal group O(»,2) has 4 topological components and
0%(n,2) has 2 components. Define

SO(#,2) : common identity component of O(#,2) and O* (n,2);
that is our indefinite special orthogonal group. Now define

G, : connected transformation group on X from SO(xn,2).

Then
G, is a noncompact real form of G
and
GonP=K so Go/K = Gy(xo) open in X.
Now

Xy = Gylxg) = X open Gy-orbit

is the Hermitian symmetric space of noncompact type dual to X, inside X
by Borel Embedding. Note X, = SO(#,2) / SO(n) x SO(2).
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We come to the Harish-Chandra embedding. The Lie algebra g of G is
identified with the Lie algebra of SO(r + 2, C). Thus, in block form,

A B 1
g={< ):‘A:—A,‘D=—D,‘B=—C.
C D J

A B / 0 b
p={ >:‘A=—A,‘B=—C,B=(B’,iB’),D=< )}
c D —b 0

0 B
mt = {( > : B = (iB”, B") where B" is n x 1}.
—'B 0

Now, viewing the elements of C* as column vectors (# x 1 matrices),

- 0 z

-Z' 0

View Harish-Chandra’s map ¢ : m* — X as a map from C". Now com-
pute

>, Z' = (Z,Z), mapsC"'=m'.

7
Z'-'Z7' = (iZ, Z)<t >-= -ZZ+Z'Z=0
Z
and
iz -'z2-Z i'Z-Z
2z ()i - ;
4 i‘2-Z ‘Z2-Z
thus also

-'z-zZ i'Z-Z
= 0.

Z'(Z2"-2") = (iZ, Z) <
i'z-z ‘z-Z

That gives us
- 0 0 ‘z-Z —i'Z-Z
Z =< where Z" = <
0o Z" __l‘!Z.Z _"Z.Z

Z¥ =0, so (D=0 for k=3.

R
expZ = — = .
P k=ok!( ) -z 1+ 1z

and

Now
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As &Z) = (exp Z) (xo) and xo = [€,41 + i€,1,] now
2iZ
&2Z) =[v] wherev =| 1 + 'ZZ
i1 —'Z2-2)

In order to locate £~ 1(X,) = m™, we consider the open set
Q = {ZeC" : &Z) = [v] with (v,p) > O},
The formula for £(Z) says
Q={ZeC:1+ |22z’ -22*Z>0}.
Thus
Q={ZeC:(1-2*2Z)? > 2Z*2) - |Z-Z|*.
As Z*-Z = |‘Z -Z | = 0, we take positive square roots, thus expressing
Q=0,0Q, disjoint union
where Q, is the nonempty bounded domain star-shaped from O given by
Q ={ZeC":1-2%Z>[Z*2z) - |Z-Z|'}]'*}
and Q, is the nonempty unbounded domain star shaped from oo given by
Q,={ZeC :2*Z - 1> [(2*2)* - |Z-Z|"]'*}.

From Witt’s Theorem, &~ !(X,) is the topological component of Q contain-
ing 0, thus is Q,:

ENXp) ={ZeC :1 —Z*Z > [(Z*2)* — |'Z-Z|*]"/?}
={ZeC:1+|Z-Z* —2Z*Z>0and 1 — Z*-Z > 0}.

Recall that G, is the image in G of the identity component of O*(1,2) =
SO(n + 2, C) n U(n,2). Thus we have a subgroup of G in which Gy has
index 2, given by

GR = Go U CZGo, Cz = i
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The notation ¢* comes from ¢ = ¢y in the Cayley transform theory. Here
the point is that £~ '(c?X,) = Q, and that ¢*>Gy(x,) = Go(c?x,) open G-
orbit on X. This explains the occurrence of Q2,. Compare with the special
casen = l.

The action of G, on &7 1(X,) is also a bit of a mess. Denote

q:C'>C by qZ2)="2Z; solgZ) <1 on & X,).

Now the formula for £(Z) says that
2
T-gq
if g=gq(Z),|q|#1, then &Z)=[z] where z= —ilﬂ .
l—gq
1

Now we invert & : ¢~ 1(X,) = X,. First note from our new formula for ¢
that

Z

Vv
if [v] € Xo, say v = |v, |, then v, # 0 # (iv,fv,) + 1.
vy
Using that notation and the identity p = —il + ¢)/(1 — q) =
g = (ip — 1)/(ip + 1), the new formula for & says ¢~ '[v] = {(1 ~ ¢)/2v,}V
Hvyfvy) — 1

where = . Substituting ¢ into ¢~ [v] now
1= ooy T 1 g g into £~ '[v]
v 1
. _ -1 —
if [v]e X, v=10v,], then {7 [v] = ——
(%)
The action of G, on ¢~ 1(X,) is, of course,
9(Z) = £ 19¢(2).
If we write
4 B 2iZ z,
g== and 1+ q(2)) = ,
C D A )
i—iq(Z)
the inversion formula for ¢ says
1
9(Z2) = (AZ, + BZ,).

(L) (CZ, + DZ,)
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The symmetric spaces X, and X are of rank r = 2 provided n = 2,
r = 1 in the degenerate case n = 1 where X is the Riemann sphere P*(C).
If n = 2, then X = P}(C) x P!(C);if n > 2, then X is irreducible.

X, is of tube type. Except for the reducible case (n = 2), now Go(c3x,)
= ¢4 X, is the only orbit # X, but = X,. As [e,4; + i€ 4] = X, that
says

C@Xo = GO([en+1 - ien+2]) =R4(97))

That consideration suggests the condition, which defines the partial Cayley
transform in the case n = 1 (where r = 1 and ¢y = ¢;), that

Cy i€ = —€yin, €r1 ™ €4, e — e for 1#k#n+ 1.
Note that this definition implies that

cg represents the nonidentity component of Gg,
i.e., that
Q, = ﬁ_lGo(qu'xo) =& legXo

Ifn > 1,s0r = 2, we define the partial Cayley transforms ¢, ¢, € G, such
that ¢y = ¢,c, by

c—exf 0 B, 'B—IOOH'O
1= p4~—1310, 1= 10 --- 0
and
. —expn< 0 Bz> B (1 00 --- 0)
2= 4 ’ 2= .. :
4 -B, 0 0 -1 0 0
Thus
1
ci(ey) = \/——(31 — €1, ci(e;) = \/—(ez = €y12),
ci(enr1) = \/2(91 + €,41)s ci(ensr) = ?/—i(ez + €,42)s
and ci(e) = ¢ for 2<k=n;
and

cy(e) = \/-(31 — €yr1)s cy(e;) = %(ez + €,12),

c(eps1) = \/—2(31 + s 1), c€niz) = \/—( €; + €,12),

and c{e) = ¢ for 2<k=<n
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Note that the c; have order 4if n = 2, order 8 if n > 2.
We now assume # > 2. Then Xis irreducible and of rank r = 2, so there
are six orbits Gy(x,,,), 0 £ s £ ¢ £ 2 with centers as follows.

Xo0 = Xo = [€+1 + i€yi2] positive
Xo,1 = cfxo = [81 + iez] negative
Xo 4 = €2¢c2xy = [e,4, — i€ ositive
0,2 1“240 n+1 n+2

Xy = C1Xg = [ey + iey + €,0q + i€42] isotropic

X5 = Ci¢oxg = [€, — ie; — e,.1 + i€ isotropic
1,2 1v240 1 2 n+1 n+2

Xy = €1C2Xg = L€y + ie,in] isotropic

The six orbits are the

3 open orbits Go(x0,0)» Golxo,;), and Go(x,,,),
2 intermediate orbits Go(x 1) and Go(xy,2),
1 closed orbit Go(x3,2).

Now
(ZeC:1+|'Z-Z| = 2Z*Z > 0} = &£ (Go(x0,0) Y GolXo,2) ),
{ZeC":1 +|'Z2-Z| = 2Z*-Z < 0} = £ N (Go(xo,,) ), and
(ZeC":1+|'Z-Z| - 2Z* Z = 0} = £~ 1(Go(xy,1) U Go(x; 1) U Go(x3 2))-

The topological boundary of X, in X is Go(x; 1) U Go(x, ). There
Go(x, ;) is the union of those boundary components that are symmetric
spaces of rank 1 (in fact, unit disks in C') and Go(x, ,) is the Bergman—
Silov boundary. Define compact totally geodesic submanifolds of X by
X0y = {Xo} point, X,y = X, and

X1y = {[ale, + ie)) + ble,; + ie,i ;)] : (a,b) # (0,0)}
={xeX :x < (e +ie)) A (eyq; + i)}

Note that X,,, is a Riemann sphere. The Borel Embedded noncompact
dual of X, is

X0 = Xon Xy = {[z(e; + ie;) + (e,41 + iey13)] :lz| < 1}
Now

{ci¢3x0} and ¢, X, , are boundary components of X,

£
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and

Go(xz,z) = K-c1¢3%0 and Go(xy,1) = K'C1X(1),o-
The maximal parabolic subgroups of G, are Ny o = Gy,

Nio = {g € G, : g preserves the 2-plane (e; + ie,) A (e,41 + i€,12)}
N,.0 = {9 € G, : g preserves the line [e; + ie,,,]}.
The boundary components of X, have normalizers
Nio=1{9€G, 1gey Xiy,0 = C1X(1),o}>
Nyo = {g€Gy:gcicoxg = ¢1¢3%0}

We locate the ¢ ~!-images of the boundary components of X, in X; they
are the boundary components of

{ZeC':1-2*Z >0 and 1+ |Z-Z]* - 22*Z > 0}
in C":
E ey Xy0) ={ZeC" ' Z = (z,iz,0,...,0) with Im z < 0}

and
EYeie0x0) = (—1,0,...,0).

H

A 0O
K ={ <0 D): A €SO0(n) and D € SO(2)} acts on m* by

A O
i(O D> :Z—> W  where (iW, W)= A-(iZ, Z)D™!;

thus
cos 6 sin 8 A 0 )
if D =< _ >, then -i_-( > 1 Z > €%4Z.
—sin 6 cos 0 0 D
Now
K& eeax0) = i_lGo(xz,z)
= {ZeC":Z*Z = 1 and €*Z € R” for some 6}
and
K'f_I(C1X(1),0) = f_lGo(xLl)
={ZeC":Z=U+ iVwithU,VeR, U*U = V*V # 0 = U*V}.
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The general theory ensures that the holomorphic arc components of
Go(x,,)arethe k-{c, « + + ¢, X2_5 N Go(x,,)}, k € K, and that N, 4 is the
normalizer of ¢; * * * ¢, X5 _5 N Golx,,,)- ‘

We describe the K-equivariant holomorphic fibrations

B Go(xo,) — K(xo,), t=20,1,2,

of an open orbit over its maximal compact subvariety. If £ = 0 or ¢t = 2,
then K(x, .} is reduced to a point; thus

if t=0 or t=2, then f(gxy,.) = Xg,.
Now suppose ¢ = 1. We note
Xo,1 = [, + ie,]
Denoting real span by Re,
K(xo,) = {[u+iv]:upeRele,, ..., e,), (uuy = (v,p> = —1, (u,v) = 0}.
Note also that
Go(xo,1) = {[z.(u + v) + zy(e,e + i€447)] tuveRe(ey, ..., e,),
Cuuy = (o) = =1, up) =0, |z,| < 1, |z,| < 1}
Now
Blz,(u + iv) + zy(e,51 + i, )] = [u + iv]

and the f-fibers are products of two unit disks.

The holomorphic arc components of Gy(x, ;) and Gy(x, ,) are unit
disks; their maximal compact subvarieties are reduced to points. Thus the
K-equivariant partially holomorphic fibrations

ﬁ : GO(xl,t) - K(xl,t)! t= 1’ 27
are given by
ﬁ(k'{ch(l) N GO(xl,t)}) = k(x; ).

Finally, of course, f: Go(x, ,) = K(x; ,) has fiber reduced to a point.
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