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TOTALLY REAL REPRESENTATIONS AND
REAL FUNCTION SPACES

CALVIN C. MOORE AND JosepH A. WOLF

Let G be a locally compact group. The notion of ‘‘totally
real’’ unitary representation of G is defined and investigated
in §1. In particular, if K is a compact subgroup of G, it is
shown that every closed G-invariant subspace of Ly(G/K) is
spanned by real-valued functions if, and only if, KgK=Kg'K
for every g€ G. In §2 the coset space X=G/K is specialized
to a Riemannian symmetric space, where the double coset
condition is replaced by a simple Weyl group condition.

0. Introduction. Let X be a riemannian symmetric space of
compact type and G its largest connected group of isometries. In
his 1929 paper [1] on class 1 representations, E. Cartan showed that
the symmetry of X sends every uniformly closed G-invariant func-
tion space on X to its complex conjugate. Starting from the point
of view of algebras, Mirkil and de Leeuw [4] showed that every
rotation invariant function algebra on the sphere S*(n = 2) was spanned
by real-valued functions, hence (Stone-Weierstrass theorem) that such
an algebra necessarily was all continuous functions on S», all con-
tinuous functions on real projective m-space, or just the constants-
that state of affairs is quite different from the case » =1. When
the rotation group SO(n + 1) contains the symmetry of S, i.e. when
7 is even, Cartan’s result mentioned above implies reality of such
function algebras. The published Mirkil-de Leeuw argument rests
rather on the fact that the spherical harmonies are real-valued.

The Cartan and Mirkil-de Leeuw results were unified when I.
Glicksberg and one of us found a general result [12, Theorem 2.1}
on G-invariant function spaces on compact symmetric spaces, formu-
lated in terms of the double coset condition mentioned in the Abst-
ract. One of us then translated the double coset condition into an
easily-checked Weyl group condition [12, Theorem 5.1] and extended
the Mirkil-de Leeuw result on function algebras [12, Theorem 7.1].
That translation made essential use of E. Cartan’s classification of
symmetric spaces, and was later freed of the classification by J. A.
Tirao [9].

We discuss this circle of problems for coset spaces X = G/K, G
locally compact and K compact. Although the idea is very much the
same, the proofs are more streamlined and are freed of many differ-
entiability and compactness restrictions. Until now, however, our
only significant applications are to Riemannian symmetric spaces.
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1. Let @ be a unitary representation of a locally compact group
G on a (complex) Hilbert space H. Let H; be a real form of H; that
is H= H,@ tH; as real Hilbert spaces. We say that H is invariant
if m(g)Hy = Hyp Vg€ G, and that 7 is totally real relative to Hy if in addi-
tion H, N V is a real form of V for every closed G-invariant subspace
V < H. If one thinks of H.; as “real” elements, the condition says
that G preserves real elements, and moreover, that every invariant
subspace is spanned by the real elements in it. Now suppose that K
is a compact subgroup of G, and that 7 is the natural representation
by left translation on H = L,(G/K). The real valued functions in H
constitute an invariant real form, and the circle of problems discussed
in the introduction is more or less the same as determining when =
is totally real. This we will do below. Although the ideas involved
have been known for some years in many contexts (see for instance
[2], [5], [6], [8], [10], [11]), it nevertheless seems worthwhile to present
them again in the precise form needed.

A, will denote the convolution algebra of all continuous funections
with compact support on G which are biinvariant under K, i.e.,
Slkgk)) = f(9). Then A, is a subalgebra of L,(G) and inherits the
involution f— f*, f*@) = f@ ") 4(x"), where 4 is the modular
function of G.

THEOREM 1. Let G be a locally compact group, K a compact
subgroup, then the following are equivalent.

(1) Ewery closed G-invariant subspace of Ly,(G/K) is spanmed by
real fumnctions

(2) The representation w of G on L,(G/K) s totally real relative
to some invariant real form

) 7 s totally real relative to any itnvariant real form

(@) f*=1Ffor fe A

5) K¢g'K =KgK,VgeG

6) Kg'K = Kg K for almost all geG.

Under the above conditions, G is unimodular and 7 is multiplicity
ree.
! Let 7 be a unitary representative of G on a Hilbert space H.
If Hp is any real form, there exists a unique conjugate linear
isometric involution vy having Hj, as its fixed points, and conversely
every such v determines a real form. Evidently H, is invariant if
and only if vy commutes with all the operators z(g), in which case
we say that (z, v) is real, and moreover, 7 is totally real relative to
H, if and only if in addition vy commutes with the orthogonal pro-
jection onto every G-invariant subspace, in which case we say that
(7, v) is totally real.

C(m) denotes the commuting algebra of x; it is the von Neumann
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algebra of all bounded operators on H commuting with all the x(g).
Let (w, v) be real; then Ae C(n) implies A* = vAv™ = vAve C(r) and
A — A” is a conjugate linear automorphism of C(z).

LEmMMA 1. Let (w,v) be real. Then (w,v) is totally real if and
only if A* = A* for all AeC(xn).

Proof. If A* = A*, and if P is the projection onto any 7 invariant
subspace, P = P*, and so P = P* so that 7 is totally real. If 7 is
totally real, then P* = P = P* for any such P, and since every A in
C(r) is a norm limit of linear combinations of such projections, we
evidently have A* = A*, completing the proof.

Now if (w,v) is totally real, C(z) is necessarily commutative
since B*A* = (AB)* = (AB)* = A*B* = A*B*. Thus 7 is multiplicity
free (locally simple) by definition. Moreover if ¢ is another involution
such that (z, p) is real, it is immediate that ¢ = vU for some unitary
operator U in C(n). Since C(m) is commutative, a computation
shows that A* = A* = A* so that (m, ) is also totally real. This
shows that conditions (1), (2) and (3) of the theorem are equivalent,
and are in turn equivalent to A* = A* in C(n) for one (all) v. These
arguments show that the notion total reality is independent of choice
of invariant real form.

Proof of Theorem 1. We now fix v to be complex conjugation
of functions on H = L,(G/K), and we embbed H as the subspace of
L,(G) consisting of right K-invariant functions. Then if fe Ak, the
formula p(f)h = hxf, he H, defines a bounded operator in C(x).
Moreover p is an injective anti-homomorphism of A into C(x); and
o(f)* = o(f’") where f'(x) = f(x). (Note the absence of the modular
function.) A simple ecalculation shows that o(f)” = o(f), and so if
(m, v) is totally real we see that p(f’) = o(f). Since p is injective,
it follows that f'=f or in other words f(g9) = f(¢"). Since A,
separates the double cosets of K we have Kg—'K = KgK for all g, so
we have established (5).

An elementary continuity argument which we omit shows that
(6) and (6) are equivalent. Moreover if (5) holds, then we have for
every ¢, g—' = k,gk,, and hence g4(g9)* = 1 since the modular funection is
1 on compact subgroups. Since 4(g) > 0, 4(g9) = 1 so G is unimodular,
and now (4) follows from (5). Conversely suppose that (4) holds; if
g€ G we construct fe Ag such that f(g) = f(97") = 0. Since f* =f,
it follows that 4(9) = 1 so that G is unimodular, and now (5) follows
from (4) so that (4), (56), and (6) are equivalent.

Finally suppose that (4) holds; since G is unimodular we have
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S = 7% and o(f) = o(f) = o(f*) = p(f') = p(f)*. As G is unimodu-
lar, it follows from the results in Segal [7] or Kleppner [3] that the
range of o is weakly dense in C(r). Thus we have 4 = A* for a
weakly dense subset of C(r), and hence A* = A* for all A. Thus
(m, v) is totally real, completing the argument.

2. Application to symmetric spaces. We will apply Theorem
1 to a connected symmetric coset space X = G/K, say with symmetry
o. Thus G is a Lie group, K is a compact subgroup that meets
every component of G, and o is an involutive automorphism of G
such that K is a subgroup of finite index in the fixed point set G°.
Let t < g denote the Lie algebras of K< G and g =1*f -+ m the
“Cartan decomposition” into (1) — eigenspaces of o¢. Recall that
Cartan subalgebra of (g, f) means maximal object among the subal-
gebras of g contained in ni, and that Cartan subalgebras are com-
mutative because [m, m] N m = 0. Choose a Cartan subalgebra a of
(g, f). Recall that the Weyl group of (G, K) relative to a is the
group

Wex = {ke K: ad(k)a = a}/{ke K: ad(k)a = a for every «a e a}

of linear transformations of a; it is finite if and only if G is reduc-
tive. If o' is another Cartan subalgebra of (g, f) and W/ the
corresponding Weyl group, then some ke K satisfies ad(k)a’ = a, so
ad(k) WGCK = WG,K'

THEOREM 2. Let X = G/K connected symmetric coset space and
Wex the Weyl group relative to a Cartan subalgebra a of (g, f).
Then every closed G-invariant subspace of L,(X) is spanned by real-
valued functions if, and only if, given «aea there exists we Wg,x
such that w(a) = —a.

Proof. Suppose that every element of a is sent to its negative
by an element of W, .. Given gec G decompose g = k,-exp(a)-k,
where aca and k;e K. Choose we W,  with w(a) = —a and repre-
sent w = ad(k), ke K. Then KgK = Kexp(®)K = Kkexp(a)k'K =
Kexp(wa)K = Kexp(—a) K = Kg™'K.

Conversely suppose KgK = Kg—'K for every geG. If acexp(q)
now a = ko 'k, k;e K; write that as a = ad(k)a'-kk,; for a near
1 in G it follows that a = ad(k)a™" and kk, =1. If a¢eca is near 0
now ad(k)a = —a for some ke K; the condition “near 0” may be
dropped by linearity, and ad(k) may be replaced by some we Wi
because ad(K)-conjugacy on a forces W, x-conjugacy. Now every
aca is sent to its negative by some we W .
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Theorem 2 now follows directly from Theorem 1.

If we Wy,x we have its (—1)-eigenspace a, on a. The criterion
of Theorem 2 is that a be the union of the a,. If W, is finite
then the union of the a, is a lower-dimensional set in a, unless
a, = a for some w. Thus:

COROLLARY 2.1. Let X = G/K connected symmetric coset space
and Wy the Weyl group relative to a Cartan subalgebra a of (g, f).
Suppose that the Lie group G is reductive. Then every closed G-
wmvariant subspace of L,(X) is spanned by real-valued fumctions if,
and only if, Wsx contains the transformation —I of a.

Let X be a Riemannian symmetric space. Given z ¢ X we repre-
sent X as a connected symmetric coset space G/K where G is the
largest connected group of isometries and K is the stability subgroup
at . Then we write W, for W, and call it the Weyl group of X.
Let p:X — X be the universal Riemannian covering. Then X = X, x
X, X +++x X, (de Rham decomposition) where X, is an Euclidean space
and the other X; are simply connected irreducible Riemannian sym-
metric spaces. We call the X;, 1 < ¢ < 7, the wrreducible local factors
of X. Theorem 2 and the covering space methods of [13, §8.3] give
us:

COROLLARY 2.2. Let X be a Riemannian symmetric space, G
the largest comnected group of isometries of X, and {W, «-+, W,} the
Weyl groups of the irreducidble local factors of X. Then every closed
G-tmvariant subspace of LX) is spanned by real-valued functions if,
and only if,

(i) the fundamental group w(X) is finite, and

(ii) each W, 1 < i < r, contains the transformation —I.

Condition (i) of Corollary 2.2 says that the universal Riemannian
covering p: X — X does not factor through a Riemannian covering
q: X' — X such that X’ is the Riemannian product of a circle with
another space. In particular, (i) is automatic if the Euclidean factor
X, of X is reduced to a point.

Condition (ii) can be checked from the list [12, Theorem 6.1(4)].
There note that if X, is noncompact, say with compact dual X%,
then WX«; = WX;E'
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