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TOTALLY REAL REPRESENTATIONS AND
REAL FUNCTION SPACES

CALVIN C. MOORE AND JOSEPH A. WOLF

Let G be a locally compact group. The notion of "totally
real" unitary representation of G is defined and investigated
in §1. In particular, if K is a compact subgroup of G, it is
shown that every closed G-invariant subspace of L2(G/K) is
spanned by real-valued functions if, and only if, KgK=Kg~xK
for every geG. In §2 the coset space X=G/K is specialized
to a Riemannian symmetric space, where the double coset
condition is replaced by a simple Weyl group condition.

0* Introduction* Let X be a riemannian symmetric space of
compact type and G its largest connected group of isometries. In
his 1929 paper [1] on class 1 representations, E. Cartan showed that
the symmetry of X sends every uniformly closed G-invariant func-
tion space on X to its complex conjugate. Starting from the point
of view of algebras, Mirkil and de Leeuw [4] showed that every
rotation invariant function algebra on the sphere Sn(n ^ 2) was spanned
by real-valued functions, hence (Stone-Weierstrass theorem) that such
an algebra necessarily was all continuous functions on Sn, all con-
tinuous functions on real protective w-space, or just the constants-
that state of affairs is quite different from the case n = 1. When
the rotation group S0(n + 1) contains the symmetry of Sw, i.e. when
n is even, Cartan's result mentioned above implies reality of such
function algebras. The published Mirkil-de Leeuw argument rests
rather on the fact that the spherical harmonics are real-valued.

The Cartan and Mirkil-de Leeuw results were unified when I.
Glicksberg and one of us found a general result [12, Theorem 2.1]
on G-invariant function spaces on compact symmetric spaces, formu-
lated in terms of the double coset condition mentioned in the Abst-
ract. One of us then translated the double coset condition into an
easily-checked Weyl group condition [12, Theorem 5.1] and extended
the Mirkil-de Leeuw result on function algebras [12, Theorem 7.1].
That translation made essential use of E. Cartan's classification of
symmetric spaces, and was later freed of the classification by J. A.
Tirao [9].

We discuss this circle of problems for coset spaces X = G/K, G
locally compact and K compact. Although the idea is very much the
same, the proofs are more streamlined and are freed of many differ-
entiability and compactness restrictions. Until now, however, our
only significant applications are to Riemannian symmetric spaces.
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1. Let π be a unitary representation of a locally compact group
G on a (complex) Hubert space H. Let HR be a real form of H; that
is H = -ffβ 0 %HR as real Hubert spaces. We say that HR is invariant
if π{g)HR = HRVge G, and that TΓ is totally real relative to HR if in addi-
tion JHΓΛ Γ) F is a real form of F for every closed (?-invariant subspace
F c H. If one thinks of HR as "real" elements, the condition says
that G preserves real elements, and moreover, that every invariant
subspace is spanned by the real elements in it. Now suppose that K
is a compact subgroup of G, and that π is the natural representation
by left translation on H = L2(G/K). The real valued functions in H
constitute an invariant real form, and the circle of problems discussed
in the introduction is more or less the same as determining when π
is totally real. This we will do below. Although the ideas involved
have been known for some years in many contexts (see for instance
12L [5], [6], [8], [10], [11]), it nevertheless seems worthwhile to present
them again in the precise form needed.

Aκ will denote the convolution algebra of all continuous functions
with compact support on G which are biinvariant under K, i.e.,
f(kgk2) = f(g). Then Aκ is a subalgebra of L^G) and inherits the
involution / — > / * , f*(x) = /(aΓ1) Δ (ar1), where Δ is the modular
function of <?•

THEOREM 1. Let G be a locally compact group, K a compact
subgroup, then the following are equivalent.

(1) Every closed G-ίnvariant subspace of L2(G/K) is spanned by
real functions

(2) The representation π of G on L2(G/K) is totally real relative
to some invariant real form

(3) π is totally real relative to any invariant real form
(4) f*=fforfeAκ

(5) Kg^K = KgK,yfgeG
(6) Kg-'K = KgK for almost all geG.
Under the above conditions, G is unimodular and π is multiplicity

free.
Let 7Γ be a unitary representative of G on a Hubert space H.

If HR is any real form, there exists a unique conjugate linear
isometric involution v having HR as its fixed points, and conversely
every such v determines a real form. Evidently HR is invariant if
and only if v commutes with all the operators π(g), in which case
we say that (π, v) is real, and moreover, π is totally real relative to
HR if and only if in addition v commutes with the orthogonal pro-
jection onto every G-invariant subspace, in which case we say that
(π, v) is totally real.

C(π) denotes the commuting algebra of π; it is the von Neumann
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algebra of all bounded operators on H commuting with all the π(g).
Let (TΓ, v) be real; then A e C(τr) implies Av = vAv~ι = vAv e C(τr) and
A—>AU is a conjugate linear automorphism of C(τr).

LEMMA 1. Let (TΓ, v) be real. Then (TΓ, V) is totally real if and
only if Av = A* for all A e C(π).

Proof. If Av = A*, and if P is the projection onto any π invariant
subspace, P = P*, and so P = Pu so that TΓ is totally real. If TΓ is
totally real, then Pu = P = P* for any such P, and since every A in
C(τr) is a norm limit of linear combinations of such projections, we
evidently have A* = Av, completing the proof.

Now if (TΓ, V) is totally real, C(τr) is necessarily commutative
since £*A* = (AB)* = (AB)U = AVB* = A*£*. Thus TΓ is multiplicity
free (locally simple) by definition. Moreover if μ is another involution
such that (TΓ, μ) is real, it is immediate that μ = vU for some unitary
operator U in C(τr). Since C(τr) is commutative, a computation
shows that Aμ = Av — A* so that (TΓ, μ) is also totally real. This
shows that conditions (1), (2) and (3) of the theorem are equivalent,
and are in turn equivalent to A* = A* in C(τr) for one (all) v. These
arguments show that the notion total reality is independent of choice
of invariant real form.

Proof of Theorem 1. We now fix v to be complex conjugation
of functions on H = L2(G/K), and we embbed H as the subspace of
L2(G) consisting of right ϋΓ-invariant functions. Then if fe Aκ, the
formula p(f)h = h*f, heH, defines a bounded operator in C(τr).
Moreover p is an injective anti-homomorphism of Aκ into C(τr); and
p(f)* = p(f') where f'(x) = /(or1). (Note the absence ofthe modular
function.) A simple calculation shows that p(fY — p(f), and so if
(TΓ, V) is totally real we see that p(f) = p(f). Since p is injective,
it follows that f —f or in other words f{g) = f(g"1). Since Aκ

separates the double cosets of K we have Kg~ιK = KgK for all #, so
we have established (5).

An elementary continuity argument which we omit shows that
(5) and (6) are equivalent. Moreover if (5) holds, then we have for
every g, g~ι = kxgk2, and hence j(g)2 = 1 since the modular function is
1 on compact subgroups. Since A{Q) > 0, j(g) — 1 so G is unimodular,
and now (4) follows from (5). Conversely suppose that (4) holds; if
geG we construct feAκ such that f(g) = fig'1) Φ 0. Since /* = / ,
it follows that j(g) = 1 so that G is unimodular, and now (5) follows
from (4) so that (4), (5), and (6) are equivalent.

Finally suppose that (4) holds; since G is unimodular we have
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/ ' = /* and p(fY = p{f) = p(f*) - p{f) = p(f)*. As G is unimodu-
lar, it follows from the results in Segal [7] or Kleppner [3] that the
range of p is weakly dense in C(π). Thus we have Au = A* for a
weakly dense subset of C(π), and hence Au = A* for all A. Thus
(π, V) is totally real, completing the argument.

2* Application to symmetric spaces* We will apply Theorem
1 to a connected symmetric coset space X = G/K, say with symmetry
σ. Thus G is a Lie group, if is a compact subgroup that meets
every component of G, and σ is an involutive automorphism of G
such that K is a subgroup of finite index in the fixed point set Gσ.
Let f c g denote the Lie algebras of K c G and g = f + m the
"Cartan decomposition" into (±1) — eigenspaces of σ. Recall that
Cartan subalgebra of (g, f) means maximal object among the subal-
gebras of g contained in m, and that Cartan subalgebras are com-
mutative because [m, m] Π m = 0. Choose a Cartan subalgebra α of
(g, ϊ). Recall that the Weyl group of (G, K) relative to α is the
group

WGtK = {keK: ad(k)a = a}/{k e K: ad(k)a = a for every a e a}

of linear transformations of α; it is finite if and only if G is reduc-
tive. If α' is another Cartan subalgebra of (g, f) and WG,K the
corresponding Weyl group, then some keK satisfies ad(k)ar = α, so
ad(k)WΪ,κ= WG,K.

THEOREM 2. Let X = G/K connected symmetric coset space and
WG,K the Weyl group relative to a Cartan subalgebra a of (g, ϊ).
Then every closed G-invarίant subspace of LZ(X) is spanned by real-
valued functions if, and only if, given aea there exists w e WG,K

such that w(a) = —a.

Proof. Suppose that every element of α is sent to its negative
by an element of WG,K. Given geG decompose g = /fc^expία:)-^
where aea and k{eK. Choose we WG,K with w{a) = — a and repre-
sent w = ad(k), keK. Then KgK = Kexp(ά)K = Kkexpicήk^K =
Kexp(wa)K = iΓexp(-α) K = Kg~ιK.

Conversely suppose KgK — Kg~ιK for every geG. If a e exp(α)
now a = kxa~ιk2, kieK; write that as a = adik^a^ kjc^; for a near
1 in G it follows that a — ad{k)a~ι and kjc2 = 1. If aea is near 0
now ad(k)a = —a for some keK; the condition "near 0" may be
dropped by linearity, and ad(k) may be replaced by some w e WG,K

because ad(K)-conjugacy on α forces PP^-conjugacy. Now every
aea is sent to its negative by some w e WG>K.
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Theorem 2 now follows directly from Theorem 1.
If we WG,κ we have its (—l)-eigenspace aw on α. The criterion

of Theorem 2 is that a be the union of the aw. If WGιK is finite
then the union of the aw is a lower-dimensional set in α, unless
aw = α for some w. Thus:

COROLLARY 2.1, Le£ X = G/if connected symmetric coset space
and WG,K the Weyl group relative to a Cartan subalgebra a of (g, ϊ).
Suppose that the Lie group G is reductive. Then every closed G-
invariant subspace of L2(X) is spanned by real-valued functions if,
and only if, WG,K contains the transformation —I of a.

Let X be a Riemannian symmetric space. Given x e l w e repre-
sent X as a connected symmetric coset space G/K where G is the
largest connected group of isometries and K is the stability subgroup
at x. Then we write Wx for WQtK and call it the Weyl group of X.
Let p:X~>X be the universal Riemannian covering. Then X — Xox
Xx x x Xr (de Rham decomposition) where Xo is an Euclidean space
and the other Xt are simply connected irreducible Riemannian sym-
metric spaces. We call the Xi91 ^ i rg r, the irreducible local factors
of X. Theorem 2 and the covering space methods of [13, §8.3] give
us:

COROLLARY 2.2. Let X be a Riemannian symmetric space. G
the largest connected group of isometries of X, and {Wx, , Wr) the
Weyl groups of the irreducible local factors of X. Then every closed
G-invariant subspace of L2(X) is spanned by real-valued functions if,
and only if,

( i ) the fundamental group rc^X) is finite, and
(ii) each Wi9 1 ̂  i ^ r, contains the transformation —L
Condition (i) of Corollary 2.2 says that the universal Riemannian

covering p: X—>X does not factor through a Riemannian covering
q: Xf —»X such that Xf is the Riemannian product of a circle with
another space. In particular, (i) is automatic if the Euclidean factor
Xo of X is reduced to a point.

Condition (ii) can be checked from the list [12, Theorem 6.1(4)].
There note that if Xt is noncompact, say with compact dual Xf,
then Wx. = Wxv
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