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REMARK ON DISCRETE SUBGROUPS1

JOSEPH A. WOLF

To A. A. Albert on his sixty-fifth birthday

Abstract. One wants to know the extent to which a locally

compact group G is determined by the isomorphism class of a

discrete uniform subgroup T. Among other things, we show that

if G has only finitely many components and if is a maximal com-

pact subgroup then T determines the dimension of the space G/K.

We then specialize our results to the case where G/K is a rieman-

nian symmetric space.

Theorem. Let Gi and G2 be locally compact groups each with only

finitely many components. Let K, be a maximal compact subgroup in

Gi, let Xi = Gi/Ki coset space, and let Vibe a discrete subgroup of Gi.

(1) Xi has a unique Gi-invariant structure of finite dimensional

manifold.
(2) If Ti is uniform in Gi (i=i, 2), and if Ti and Tt have subgroups

of finite index that are isomorphic, then dim Xi = dim X2.

(3) If dim Xi = dim Xt, Ti is uniform in G\, and Ti and T2 have

subgroups of finite index that are isomorphic, then T% is uniform in G2.

Proof. Let t7< be an open neighborhood of 1 in G< and Lt maximal

among the compact normal subgroups of G, contained in ¿7,-.

Then d/Li has no small subgroups, hence is a Lie group, and Xi

= (Gi/Li)/(Ki/Li). Statement (1) follows.
Ui may be chosen so that t7<nr¿= {l}. Then T( projects iso-

morphically onto a discrete subgroup of the Lie group G,/Z,-. In prov-

ing (2) and (3) now we may assume that the G< are Lie groups. We

may also replace G, by its identity component G? and T< by r,nG°.

We may further cut the r, down to their subgroups of finite index

that are isomorphic.

Now Gi is a connected Lie group, T, is a discrete subgroup, and

ri^r2.
Assume Ti uniform in Gi. Then Ti, hence also T2, is finitely gener-

ated. Let 7T,- denote the adjoint representation of G,, so Ker(x,) is the

center of Gi and Ai = Tii\Ker(iri) is a discrete central subgroup of G¡.
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Now At is a finitely generated abelian subgroup of Tt that is central

in Gi- Ti/Ai = iri(Ti) is a finitely generated real linear group; so

[2, Lemma 8] it has a torsion free subgroup of finite index. Cut the

Ti down to isomorphic subgroups of finite index so that the Tt/Ai

are torsion free. Now Ai is a finitely generated central subgroup of T¿

that contains every torsion element. Thus the torsion elements of T,-

form a finite abelian group 2¿ that is central in G,-. Note 2i=22 and

ri/Si^r2/S2. Now replace G< by G</2<, Ki by 2^/2,- and T.- by r</2,-.
In summary, we may assume the T¿ torsion free.

Ti is discrete in G,- and torsion free, and Ki is compact; so T< acts

freely and properly discontinuously on Xí = Gí/Kí. Thus we have

covering spaces X,—>Qi = T,\Xi. Xi is acyclic so X,—►()< is a universal

r ¿-bundle. As Fi=r2 now Qi and Q2 are homotopy equivalent. Also,

the Qi are manifolds.

Let ni be the smallest integer such that Hq(Qt; Z2) = 0 for q>n(.

Then «i = n2 because the Qi are homotopy equivalent. Qi is compact

because Ti is uniform in Gi; thus also «i = dim Qi.

If T2 is uniform in G2 then Q% is compact and «2 = dim Q2. In that

case dim Xi = dim Qi = rai = w2 = dim £2 = dim X2. Statement (2) is

proved.

If dim Xi = dim X2 then dim Q2 = dim X2 = dim Xi — dim Ci = «1 = n2.

Whenever Q is a noncompact w-manifold we know (put q = 0, A=Q,

5 = 0 and G = Z2 in [3, Theorem 6.4]) that Hn(Q; Z2)=0. Thus Q2
is compact; so T2 is uniform in G2. Statement (3) is proved.    □

Remark. The following fact was seen in the proof. Let G be a

locally compact group with only finitely many components and T a

finitely generated discrete subgroup. Then T has a subgroup A of

finite index, and A has a finite central subgroup 2, such that A/2 is

torsion free.

We specialize to the semisimple case. The dimension statement in

the following corollary is a special case of a forthcoming result of

G. D. Mostow [l]. It is useful by itself and we supply an inde-

pendent short proof.

Corollary. Let G i (*' = 1, 2) be connected semisimple Lie groups with

finite center, Kt a maximal compact subgroup of Gi, and Ti a discrete

uniform subgroup of Gi. Suppose that Ti and Tt have subgroups

of finite index that are isomorphic. Then the symmetric spaces X{ = d/Ki

of noncompact type satisfy

rank Xi = rank X2    and   dim Xi = dim X2.
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In other words, real ranks and dimensions satisfy

rank« Gi = rank« G2    and   dim Gi — dim Ä'i = dim G2 — dim K2.

Independent short proof. Passing to subgroups of finite index

we may assume [2, Lemma 8] that the Y i are torsion free and isomor-

phic. As the Xi are acyclic now the pi'.X—>Qí = Tí\Xí are universal

r ¿-bundles, and Fi=r2 shows the Qi homotopy equivalent. But the Qi

are compact, so dim A\ = dim Qi is the smallest integer «¿ such that

H*(Qí; Z2) = 0 for q>n{. Thus dim Xi =dim X2.
We know [4, Theorem 4.2 ] that r< = rank« Gi is the maximum of the

ranks of the free abelian subgroups of T,, so rank« Gi = ranks G2.

However rank Xt = rank« G„ so rank Xi = rank X2.    D
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