PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 29, No. 2, July 1971

REMARK ON DISCRETE SUBGROUPS¹

JOSEPH A. WOLF

To A. A. Albert on his sixty-fifth birthday

ABSTRACT. One wants to know the extent to which a locally compact group G is determined by the isomorphism class of a discrete uniform subgroup Γ . Among other things, we show that if G has only finitely many components and K is a maximal compact subgroup then Γ determines the dimension of the space G/K. We then specialize our results to the case where G/K is a riemannian symmetric space.

THEOREM. Let G_1 and G_2 be locally compact groups each with only finitely many components. Let K_i be a maximal compact subgroup in G_i , let $X_i = G_i/K_i$ coset space, and let Γ_i be a discrete subgroup of G_i .

(1) X_i , has a unique G_i -invariant structure of finite dimensional manifold.

(2) If Γ_i is uniform in G_i (i=1, 2), and if Γ_1 and Γ_2 have subgroups of finite index that are isomorphic, then dim $X_1 = \dim X_2$.

(3) If dim X_1 = dim X_2 , Γ_1 is uniform in G_1 , and Γ_1 and Γ_2 have subgroups of finite index that are isomorphic, then Γ_2 is uniform in G_2 .

PROOF. Let U_i be an open neighborhood of 1 in G_i and L_i maximal among the compact normal subgroups of G_i contained in U_i . Then G_i/L_i has no small subgroups, hence is a Lie group, and $X_i = (G_i/L_i)/(K_i/L_i)$. Statement (1) follows.

 U_i may be chosen so that $U_i \cap \Gamma_i = \{1\}$. Then Γ_i projects isomorphically onto a discrete subgroup of the Lie group G_i/L_i . In proving (2) and (3) now we may assume that the G_i are Lie groups. We may also replace G_i by its identity component G_i^0 and Γ_i by $\Gamma_i \cap G_i^0$. We may further cut the Γ_i down to their subgroups of finite index that are isomorphic.

Now G_i is a connected Lie group, Γ_i is a discrete subgroup, and $\Gamma_1 \cong \Gamma_2$.

Assume Γ_1 uniform in G_1 . Then Γ_1 , hence also Γ_2 , is finitely generated. Let π_i denote the adjoint representation of G_i , so $\operatorname{Ker}(\pi_i)$ is the center of G_i and $A_i = \Gamma_i \cap \operatorname{Ker}(\pi_i)$ is a discrete central subgroup of G_i .

Copyright @ 1971, American Mathematical Society

423

Received by the editors October 13, 1970.

AMS 1970 subject classifications. Primary 22E40.

Key words and phrases. Discrete subgroup, locally compact group, Lie group, symmetric space.

¹ Research partially supported by NSF Grant GP-8007.

Now A_i is a finitely generated abelian subgroup of Γ_i that is central in G_i . $\Gamma_i/A_i = \pi_i(\Gamma_i)$ is a finitely generated real linear group; so [2, Lemma 8] it has a torsion free subgroup of finite index. Cut the Γ_i down to isomorphic subgroups of finite index so that the Γ_i/A_i are torsion free. Now A_i is a finitely generated central subgroup of Γ_i that contains every torsion element. Thus the torsion elements of Γ_i form a finite abelian group Σ_i that is central in G_i . Note $\Sigma_1 \cong \Sigma_2$ and $\Gamma_1/\Sigma_1 \cong \Gamma_2/\Sigma_2$. Now replace G_i by G_i/Σ_i , K_i by K_i/Σ_i and Γ_i by Γ_i/Σ_i . In summary, we may assume the Γ_i torsion free.

 Γ_i is discrete in G_i and torsion free, and K_i is compact; so Γ_i acts freely and properly discontinuously on $X_i = G_i/K_i$. Thus we have covering spaces $X_i \rightarrow Q_i = \Gamma_i \setminus X_i$. X_i is acyclic so $X_i \rightarrow Q_i$ is a universal Γ_i -bundle. As $\Gamma_1 \cong \Gamma_2$ now Q_1 and Q_2 are homotopy equivalent. Also, the Q_i are manifolds.

Let n_i be the smallest integer such that $H^q(Q_i; Z_2) = 0$ for $q > n_i$. Then $n_1 = n_2$ because the Q_i are homotopy equivalent. Q_1 is compact because Γ_1 is uniform in G_1 ; thus also $n_1 = \dim Q_1$.

If Γ_2 is uniform in G_2 then Q_2 is compact and $n_2 = \dim Q_2$. In that case dim $X_1 = \dim Q_1 = n_1 = n_2 = \dim Q_2 = \dim X_2$. Statement (2) is proved.

If dim X_1 = dim X_2 then dim Q_2 = dim X_2 = dim X_1 = dim $Q_1 = n_1 = n_2$. Whenever Q is a noncompact *n*-manifold we know (put q = 0, A = Q, $B = \emptyset$ and $G = Z_2$ in [3, Theorem 6.4]) that $H^n(Q; Z_2) = 0$. Thus Q_2 is compact; so Γ_2 is uniform in G_2 . Statement (3) is proved. \Box

REMARK. The following fact was seen in the proof. Let G be a locally compact group with only finitely many components and Γ a finitely generated discrete subgroup. Then Γ has a subgroup Δ of finite index, and Δ has a finite central subgroup Σ , such that Δ/Σ is torsion free.

We specialize to the semisimple case. The dimension statement in the following corollary is a special case of a forthcoming result of G. D. Mostow [1]. It is useful by itself and we supply an independent short proof.

COROLLARY. Let G_i (i = 1, 2) be connected semisimple Lie groups with finite center, K_i a maximal compact subgroup of G_i , and Γ_i a discrete uniform subgroup of G_i . Suppose that Γ_1 and Γ_2 have subgroups of finite index that are isomorphic. Then the symmetric spaces $X_i = G_i/K_i$ of noncompact type satisfy

rank $X_1 = \operatorname{rank} X_2$ and $\dim X_1 = \dim X_2$.

In other words, real ranks and dimensions satisfy

 $\operatorname{rank}_{R} G_{1} = \operatorname{rank}_{R} G_{2}$ and $\dim G_{1} - \dim K_{1} = \dim G_{2} - \dim K_{2}$.

INDEPENDENT SHORT PROOF. Passing to subgroups of finite index we may assume [2, Lemma 8] that the Γ_i are torsion free and isomorphic. As the X_i are acyclic now the $p_i: X_i \rightarrow Q_i = \Gamma_i \setminus X_i$ are universal Γ_i -bundles, and $\Gamma_1 \cong \Gamma_2$ shows the Q_i homotopy equivalent. But the Q_i are compact, so dim X_i =dim Q_i is the smallest integer n_i such that $H^q(Q_i; Z_2) = 0$ for $q > n_i$. Thus dim X_1 =dim X_2 .

We know [4, Theorem 4.2] that $r_i = \operatorname{rank}_R G_i$ is the maximum of the ranks of the free abelian subgroups of Γ_i , so $\operatorname{rank}_R G_1 = \operatorname{rank}_R G_2$. However rank $X_i = \operatorname{rank}_R G_i$, so rank $X_1 = \operatorname{rank} X_2$.

References

1. G. D. Mostow, Results announced at the International Congress of Mathematicians, Nice, 1970 (to appear).

2. A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Internat. Colloq. Function Theory, Contributions to Function Theory (Bombay, 1960), Tata Inst. of Fundamental Research, Bombay, 1960, pp. 147–164. MR 24 #A188.

3. E. Spanier, *Duality in topological manifolds*, Colloque de Topologie (Brussels, 1964), Librairie Universitaire, Louvain, 1966, pp. 91-111. MR 36 #3363.

4. J. A. Wolf, Discrete groups, symmetric spaces, and global holonomy, Amer. J. Math. 84 (1962), 527-542. MR 26 #5523.

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720