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§1. Introduction. Let X be a complex manifold homogeneous under a Lie
group G. Choose a base point z, ¢ X and represent X = G/H under g(x,) = gH,
where H = {ge G : g(xo) = 2,}. A vector bundle V — X is called G-homogeneous
if the action of G on X lifts to an action of G on V by bundle automorphisms.
Homogeneous vector bundles are usually obtained as associated bundles V, — X
to the principal H-bundle G@ — X where x is a continuous representation of H
on a finite dimensional complex vector space V. The real analytic structure
of V, — X is easily described, but questions of existence and uniqueness of
holomorphic vector bundle structures for V, — X have only been understood
when X is an open G-orbit in a complex manifold G°/L for which G° is a com-
plexification of G and L is a closed complex Lie subgroup. Here we drop the
stringent requirement that G have a complexification, giving general criteria
(Theorem 3.6) for V, — X to have a holomorphic structure, and in that case
a parameterization (Theorem 5.11) of all such structures by a certain cohomology
set. Applications will appear in [3] and [5].

§2. Real analytic structure. Here X is any homogeneous space G/ H relative
to a base point x, , where @ is a Lie group that is not assumed to act effectively
on X. Let x be a continuous representation of H on a (finite dimensional)
vector space V. We recall the associated G-homogeneous vector bundle V, — X.

Its total space G X, V consists of all equivalence classes [g, v] of elements (g, v) e
G X V under

2.1) (gh, v) ~ (g, x(h)v); all geG heH,veV.

The projection [g, v] — g(x,), so the fibre over g(x,) is {[g, v] :ve V} = V, and
G acts by ¢’ : [g, v] — [¢'g, v]. If U C X is open and we denote

(2.2) GY = {ge G :gx) e U},

then it follows that the sections of V, over U are precisely the continuous maps
s: U — G X,V of the form

(2.3) s(gzd) = lg, fu(@)], f.:G" =V,
where f, satisfies the “functional equation”
15
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(2.4) folgh) = x(W)7f.(9); all geGY heH.

Let ® denote the Lie algebra of G. Let $ be the subalgebra for H. If £ ¢ &
we view ¢ as a left-invariant vector field on G, 7.e.

@.5) €D = | Ha-exp @)

whenever f is a differentiable veetor valued function on a neighborhood of ¢ in G.
x denotes the representation of $ on V that is the differential of x: x(§)v =
(d/d?) |i-0 x(exp ).

2.6. Lemme. Let U C G be an open set whose intersection with every coset
gH is connected. Let U = {gx, : ge U} open set in X. Then a function f : U — V
is of the form {, |U for a continuously differentiable section s of V, over U, if and
only if f 1s continuously differentiable and

2.7 Ef+x®Of =0 onU; alte D.

Proof. If f = f, |U then f(gh) = x(h)‘f(g) for h e H near the identity 1¢ H.
Thus for £ e 9,

0=5| Uo-exn ) — xew 7@} = (&1 + KON

Conversely let f be a C* solution to (2.7) on U. Let L(V) be the vector space
of linear transformations of V, x* the representation of H on L(V) by x*(h) : A —
x(h)-A, and V,. — X the associated G-homogeneous vector bundle. Given
¢’ ¢ U we choose a neighborhood W C U of ¢(2,) that carries a C" local section
of V,. represented by a function F : G — L(V) whose values all are nonsingular
transformations of V. That is just a local trivialization of V, around g¢’(x,).
Now F(gh) = x(h)™'F(g) for all g ¢ G¥ and all h ¢ H. As above, now ¢-F +
%x@®F = 0on G¥ for all £ ¢ &.

Represent f = FA on U M G”. Thus 4 : U N\ G¥ — V is the C" function
defined by A(g) = F(9) f(g). As f satisfies (2.7) on U,

A+ FEA) +xOFA =0 on UNG”; all te$.

Now - F + x(¢)F = 0 on G” implies that F(¢-4) = 0on U N G¥ forall £ .
As the values of F are invertible that says

A =0 on UNGY; all te 9.

As A is continuously differentiable, and as each U N gH is connected, it follows
that

A(gh) = A(g) for heH and g¢,ghe U N G".
Now we compute that, for g and ghin T N G7,

f(gh) = F(gh)A(gh) = F(gh)A(g) = x(W)"'F(9)A(g) = x(W)7'f(9).
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In particular, if h e H with g’h e U, then

1@'h) = x(W)7f(g".

We have proved that any C* solution f to (2.7) satisfies f(gh) = x(h)"'f(g)
for ge U and h e H such that ghe U. Now f extends to a C* function f, : G —» V
by f.(gh) = x(h)*f(g) for he H and g ¢ U, defining a C" section s of V,, over U
such that f = f, |7 . Q.E.D.

§3. Holomorphic structure. We now assume that X has a G-invariant
complex structure. Thus @, hence also its complexification ®°, acts as a Lie
algebra of holomorphic vector fields on X. If £ e ®° then § = (Re §) + (—1)*-
(Im £) with Re ¢, Im £ e ©; if 2 ¢ X then & = (Re &), + (—1)*(Im £), holo-
morphic tangent vector at x. Now define
3.1 2= {£e®°:£, = 0}

Then ¢ is a complex subalgebra of & such that
(3.2) ®°=2+4+¢ and $°=2NEL
Furthermore, by definition (3.1),
3.3) ad(h)te®; all heH,te Q.
Now let x be a continuous representation of H on a (finite dimensional)

complex vector space V. By extension of x from H {o & we mean a representation
M of & on V such that

(3.4) Mo =% ie MO =x® forall fe;
and
(3.5) x(WNEx(R)™ = Nad(h)g) forall heH,teQ.

If x(H) is connected, in particular if H is connected, then (3.4) implies (3.5).
Then if £ has an ideal €~ complementary to $° we can construct an extension by

AE+ 1) = x(Red + (=1)"’x(Im ), £e9® and nel”.
In general, however, x need not have an extension from H to L.
3.6. Theorem. The structures of G-homogeneous holomorphic vector bundle
on V, — X are in one-one correspondence with the extensions \ of x from H to L.

The structure corresponding to \ 1s the one for which the holomorphic sections s
over any open set U C X are characterized by the following equation on G°:

We first suppose that A is given and prove a sequenee of lemmas. The basic
existence theorem for the system (3.7) is

3.8. Lemma. If v ¢ V then there exist an open meighborhood U’ of 1 in G
and a solution f' : U’ — V of (3.7) such that f'(1) = ».
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For continuity of exposition we postpone the proof of Lemma 3.8 to §6.
‘We modify Lemma 3.8:

3.9. Lemma. Let ge G, 2 = g(x) ¢ X and v e V. Then there exist an open
nesghborhood U of x in X and a section s of V, over U, such that f, satisfies (3.7)
and f.(9) = .

Proof. In Lemma 3.8 we may cut U’ down so that every U’ N ¢’H, ¢’ ¢ G,
is connected. Now let U = gU’, and f(gg’) = '(¢) for all ¢’ ¢ U’. Then f satisfies
(3.7), so it satisfies (2.7), and now Lemma 2.6 provides a section s of V, over
U = {§(xo) :je U} such that f = f, |U . Let e 2, let ¢’ ¢ G” and express g"’ = §h
with e U and h e H. Then we calculate that f, satisfies (3.7) on G¥:

{£-f. + 20130 = E1)(@Gh) + 2O = x(®B) (ad®)E-1.)(G)
+ x(0) " XxNOXR) () = x®) {adR)g-f + Mad®E)f}(G) = 0.
Note the essential use of both (3.4) and (3.5). Q.E.D.

Proof of Theorem 3.6. Let L(V) denote the vector space of linear transforma-
tions of V. Then x defines a continuous representation x* of H on L(V) by
x*(h) : A — x(h)-A. Let X be an extension of x from H to &. It defines an ex-
tension A* of x* from H to by A*(¢) : A — A(¢)-A. We use \* to apply Lemma
3.9 to V,. — X. Given z ¢ X, choose ¢, ¢ G with g.(z,) = z, and then « has a
neighborhood U, such that there is a function F, : GY* — L(V) with the properties

(i) F.(gh) = x(R)7'F.(g), all heH and geG”;
(i) &F,+NOF., =0 on G, all teg;
@iii) F.(g9.) = I identity transformation of V.

‘We use property (iii) to refine the open cover {U.} of X to an open cover {U.,},
and restrict certain of the F, to functions ¥, , such that

F,:G — GL(V) and F, satisfies (i) and (ii).

Note that {(U, , F.)} specifies a local trivialization of V, . We must check
that it is holomorphic.

Let g(xo) e U, N Up . If he H then F,(gh) *Fs(gh) = F.(9) ' x(h)x(h) "Fs(g) =
F,(g9)"'Fp(g). Thus, given « and B, there is a well defined function

$ap 1 Ua N Up — GL(V) with Fg(gh) = Fa(gh)-¢as(g(20)).

To check that the transition function ¢,z is holomorphic at g(z,) we may left-
translate by ¢, 7.e. may assume ¢ = 1. Let T be an antihomomorphic tangent
vector to X at o . Then T is a holomorphice tangent vector, hence of the form
{., for some { ¢ ®° As®° = 2 + g, and as £, = O for { ¢ &, we may assume
{ e Q Let & be the lift of ¢,5 to GY*"Y2. Now
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T(a) = $aaltar) = (F- V) = [{-FLFIV)
= [—FJ (- F)FFy + F (- FI(D)
But ¢ e € implies { ¢ , so that
§Fu + NOFe =0 = §-Fg + MOF,
Now
T@us) = [FNOFFFg — FINOF(1) = 0.

That shows the transition function ¢,5 to be holomorphie.

We have shown that an extension \ of x from H to £ provides V, — X with
a G-invariant holomorphic vector bundle structure for which the local holo-
morphic trivializations, and thus the local holomorphic sections, are char-
acterized by (3.7). Suppose that A’ is another extension that provides the same
complex structure on V, . Then a section s of V, over an open set U C X
has the property that f, satisfies (3.7) with ), if and only if s is holomorphic,
if and only if f, satisfies (3.7) with A If f : G" — V now &-f + A®f = 0 (all
te®) if and only if &-f + N(@E)f = 0 (all £e 2). Let v e V. Lemma 3.9 provides
U3 a,and f: GY = V such that f(1) = v and ¢-f + NE)f = 0 (all £ £). Now
MN@Ev = NEIQ) = —¢ENA) = MOfQ) = M&v. Thus » = N. Now our
construction (3.7) is a one to one map from the set of all extenstions of x from
H to f, into the set of all G-invariant holomorphic vector bundle structures
onV, .

Finally suppose that we start with a holomorphic structure on V,, . Then &°
acts as a Lie algebra of holomorphic vector fields on the total space G X, V of
V, , and g is the subalgebra of fields tangent to the fibre V., over z, . Let U
be a neighborhood of z, and F’, F : G’ — GL(V) holomorphic local trivializa-
tions of V, over U. If & ® then £,, = 050 &, (F'F’) = 0. Thus (¢-F)F' =
(&-F)F'™ at 1 ¢ G. Define A\(¢) = [(¢-F)F"], independent of choice of F. Then
\ : @ — L(V) is linear and every local holomorphic section s of V, satisfies (3.7).
In the proof of Lemma 3.8, it is seen that the integrability condition for (3.7)
is that the linear map X be a Lie algebra representation; so \ is a representation
of 2 on V. Lemma 2.6 implies A | = x. If £e &, he H and ve V, we choose &
holomorphic section s of V, over a neighborhood of z, such that f,(1) = »;
then

x(MAEQx(B) v = x(WANRf.(B) = —xB[-1.1(R) = —[(ad(®)E)-1.](1)
= Mad(®)f.(1) = Nad(h)dw.
Thus A is an extension of x from H to L. Q.E.D.

We remark that we have arranged our proofs so that Theorem 3.6 remains
true with dim¢ V = o, provided that Lemma 3.8 remains true. As will be
seen in §6, the latter condition is that ¥ be a Banach space and that A(®) consist
of bounded operators. In particular, x($) must consist of bounded operators.
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That is very close to the finite dimensionality of V. For example, if H is compact,
then x(9) consists of bounded operators if and only if x has only finitely many
inequivalent irreducible subrepresentations.

§4. Complementary ideal. In this section we give some applications of
Theorem 3.6 involving particular types of extensions X of x from H to L.

4.1. Theorem. Let X be a complex homogeneous space G/H, x, the base
point, and

2= {£e®°:&, = 0}.

Suppose that { has an ideal R complementary to H€ and invariant under ade(H).

Let x be a continuous representation of H on a complex vector space, V, — X
the associated G-homogeneous complex vector bundle. Then V, — X has a G-
homogeneous holomorphic vector bundle structure for which the holomorphic sections
s over an open set U C X are characterized by

section 8 f.+x@®f, =0 forall Ee D;
holomorphic : ¢-f, = 0 forall £e @ .

{For we define an extension \ of x from H to by A(®") = 0, and we then
apply Theorem 3.6.}

If A is a complex semisimple Lie group, then parabolic subgroup of A means
a complex Lie subgroup B C A such that A/B is compact and connected.
The coset spaces F = A/B, where A is a complex semisimple Lie group and B
is a parabolic subgroup, are the complex flag manifolds. It is understood that F
carries the A-invariant complex structure whose holomorphic functions lift
to holomorphic functions on A.

4.2. Corollary. Let F = A/B complex flag manifold. Suppose A = &°
and let G denote the real analytic subgroup of A for ®. Let # : G — G be a Lie
group covering, so G acts on F by g : f — =w(g)f. Let X = G(x,) be an open G-
orbit on F and represent X = G/H. Suppose that X has a G-invariant Radon
measure (automatic if =(H) is compact).

If x is a continuous complex representation of H, then V, — X has a natural
structure of G-homogeneous holomorphic vector bundle.

{We may assume z, = 1-B ¢ F. Existence of the G-invariant measure says
[4, Theorem 6.3] that 8 = H° + B* where B* is an ideal stable under every
automorphism that extends to . Let & = B* and apply Theorem 4.1}.

4.3. Corollary. Let X be a bounded symmetric domain, G a covering group
of the group of holomorphic automorphisms of X. Represent X = G/H and let
x be a continuous representation of H. Then V, — X has a natural structure of
G-homogeneous holomorphic vector bundle.
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{For the Borel embedding of X in its compact dual provides the hypotheses
of Corollary 4.2}.

A variation on Theorem 4.1 and its corollaries shows that our method includes
the known method:

4.4. Theorem. Let X = G/H where G is a complex Lie group and H s a
closed complex subgroup.

L =0@Owith® = {(,£)e®° :5 =L} and ° = S D P as
real Lie algebras, and @ = § D ©. Thus € = {1, £) e ®° 15 =0} = ©
s a natural choice of adg(H)-tnvariant ideal in & complementary to & @ 0 =

{(t1,8) e ®° it e D and & = 0}.

2. Let x be a holomorphic representation of H on a complex vector space V.
Then x maps ° by (& , &) = x (). In particular there is a natural extension \
of x from H to & given by

(4.5) M, E) = xE) for (1,E8)e?=9D6.

3. The product complex structure on G X V induces a complex structure on
G X, V, and the latter is the complex structure on the total space for the G-homo-
geneous holomorphic vector bundle structure on V, — X defined by the extension
A of x.

Remark. Theorem 4.4 shows that the construction of Theorem 3.6 contains
the usual construction (complex groups) as a special case.

Proof. That 8° = O D & DO & @ $ = H¢ with scalar multiplication
alt , &) = (af , a&,) and with complex conjugation given by (¢, &) = (&, &),
is standard. Then if we view the diagonal algebra & as an algebra of real valued
vector fields on X, and & @ 0 as an algebra of fields of type (1, 0), the assertion
on ¢ is immediate and statement (1) follows.

For statement (2) let (¢, , &) ¢ $°. It has complex conjugate (¢ , &), hence
real and imaginary parts

2Re(tr, £2) = (En, 80) + oy 8) = G+ &, 8+ &),
2Im@E, &) = 1, 6) — G k) = G — &, & — &),
2Imy, &) = (—i — &), —iE — &))-
Thus x is given on $° by x(, £) = x(¢) and
X1, &) = x[Re(ty, &) + x(Im(Ey, £))

2+ b 8+ 8 + Sx(—i — £, —iG — &)

2
1) + ) + 16 — %) = %@.

That proves (2).
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Let f be a C' complex vector valued function on an open subset of G. Then
f is holomorphic if and only if ¢-f = 0 for every £ ¢ &° of the form ¢ = (0, &).
If f takes values in V, in particular if f = f, for some smooth local section s of
V, , we note that the latter can be written

G) &f+AOf =0 forall (¥ =0D 6.
On the other hand, f = f, as above, says
@) &f4+2N@®f =0 foral tePO.

If f = f, for a local section s, now s is holomorphic relative to the complex struc-
ture on G X, V induced by the product structure, if and only if

(i) &f+NOf =0 forall (e =HDG.

Theorem 3.6 says that (iii) is the condition that s be holomorphic for the G-
homogeneous holomorphic vector bundle structure on V, — X defined by the
extension \. That proves (3). Q.E.D.

4.6. Corollary. Let F = A/B complex flag manifold. Suppose % = @&,
let G be the analytic subgroup of A for ®, and assume that & has a compact Cartan
subgroup. Let = : G — G covering group, X = G(x,) open orbit on F, and H =
{ge@G:g(@) = 2} s0 X = G/H homogeneous complex manifold.

Let x be a continuous representation of H on a complex vector space V that
factors through w(H). Then there is a unique holomorphic representation 8 of B
on V such that x = B-7 |z and V,, — X (holomorphic structure specified [See note]
by Corollary 4.2) is the restriction to X of Vz — F (holomorphic structure induced
from A X V).

Note. It is automatic here [4, Corollary 6.4] that X has a G-invariant Radon
measure.

Proof. B = 9° @ L = ¢ as in the proof of Corollary 4.2, with the holo-
morphic structure on V, determined by the extension A that annijhilates €.
As @ has a compact Cartan subgroup and x factors through = | , now X = 8
where g represents B on V holomorphically and x = 87 |z . Now V, = V; |
as G-homogeneous complex vector bundles, and the correspondence is holo~

morphic by Theorem 4.4. Q.E.D.

§5. Galois cohomology. In this section we start with an arbitrary fixed
extension A of x from H to ® and construct a noncommutative cohomology
set H} (2, ; €)F that describes all A-equivalence classes of extensions of x
from H to & There € = E(V) endomorphism algebra of the representation
space of x and A, and A is an arbitrary subgroup of the group of invertible
elements of the commuting algebra C(x) = {a : V — V linear: ax(k) = x(h)a
for all he H}. The case A = {1} = H has been studied by Nijenhuis and Rich-
ardson [2] from the viewpoint of deformations of \.

Our cohomology set will be an equivariant Lie algebra version of a relative
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Galois cohomology set. We recall the latter in order to motivate our definitions.

Let L be a group, H C L a subgroup, and X : L — GL(V) a representation
on a vector space V. Then L acts on GL(V) by ‘g = A(Dg\(™"). By l-cocycle
for L on GL(V) in that action, one means a map z : L — GL(V) such that

2(Ll) = Yz(,)-2(,) forall 1,,l e L.

The set of all such 1-cocycles is denoted Z;(L; GL(V)). It is straightforward
to check that a map u : L — GL(V) is a representation of L on V, if and only
if u() = 2()7'\(Q), all I ¢ L, with z £ Z}(L, GL(V)). Then we denote p = A, ,
result of “twisting” A by 2. Note u |» = X |z if and only if 2(h) = I for all he H.
Now the relative set

Z\(L, H; GL(V)) = {ze Z)\(L; GL(V)) : 2(H) = I}

consists of all z such that \, |z = X [z .
Cocyecles z, 2’ ¢ Zy(L; GL(V)) are cohomologous if there exists a ¢ GL(V) such
that

Z() = 'a-2()-a”* forall lelL.

It is straightforward to check that z and 2’ are cohomologous if and only if the
representations A, and \,. are equivalent. In particular this is an equivalence
relation. The equivalence classes are the 1-cohomology classes for L on GL(V);
they form a set denoted H;(L; GL(V)); now the cohomology set Hi(L; GL(V))
parameterizes the equivalence classes of representations of L on V. The classes
represented by elements z ¢ Z;(L, H; GL(V)) form a relative cohomology set
H)(L, H; GL(V)). Note that if z, 2/ ¢ Z;(L, H; GL(V)) are cohomologous by
ae GL(V) then ae C(\ |z). Thus H}(L, H; GL(V)) parameterizes the representa-
tions of L on V that agree with A on H, modulo equivalence by invertible ele-
ments of C(\ |z).

We now describe the equivariant Lie algebra version of the Galois cohomology
set Hy(L, H; GL(V)).

Let & be a Lie algebra, $ a subalgebra, and B a group that acts on £ by
automorphisms preserving 9. Suppose that B also acts by automorphisms on
a Lie algebra €. Now fix an equivariant homomorphism N ¢ Hom; (2, ).

By equivariant 1-cocycle from & to € (relative to \) we mean a linear map
f : € — € such that

(5.1) f(bg) = bf(¢) for beB, tef;
and
(52) [ﬁ:l ’ f&] = _D\£1 ) f&] + [>‘E2 ) f&l] + f[fx ) 22] fOl‘ 51 ’ 52 € 8

The set of all such cocycles forms a set denoted Z}(; €)®. The relative equivari-
ant 1-cocycles form the subset

(5.3) Zx(®, $; €)” = {feZ3(%; €)” : {($) = 0}.
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It is quite straightforward to check that

(5.4) f— X+ f bijects Zy(®; )" onto Hom, (8; €),

and

(5.5) weHomg (2, €) with u|g =N]|s iff pw— NeZi(®, ©;6)".
Now let 4 be a group of automorphisms of € such that

(5.6) ab =ba and a(\§)) = N§) forall aeA,beB,te D.

We say that cocycles f, f € Z;(2, ©; €)” are cohomologous if there is an element
a ¢ A such that

(6.7 F'® = al\® + f¢#) — ME) for fel.
That is an equivalence relation because, as is easily checked,

f, f e Zi(&, ©; )" are cohomologous if and only if
(5.8)
N+ f, A+ ¢ Homy (2, €) are A-equivalent.

The equivalence classes are the equivariant relative 1-cohomology classes. They
form a cohomology set Hy(%, ©; €)% . In summary

5.9. Proposition. The map [f] — (A + )4 bijects Hy(R, ; €)% onto the set
of all A-equivalence classes of elements u ¢ Homp (8, €) such that p |g = N g .
Now suppose & = E(V), Lie algebra of endomorphisms of a vector space V,
and that A and B act on & by conjugation through representations on V.
Thus viewing elements a e A and b e B as linear transformations of V, we re-write

6.1 f) = bf(e)d™!, beB and fe¥
(5.6)" aba”'b™' scalar and a\()a' = \§), aed,beB,te P;
6.7 f®) = @@ — AHa)a™' + ofa”’, fel

Then Proposition 5.9 specializes to

5.10. Proposition. [f] = (N + f)a bijects Hy(®, ©; €)% onto the set of all
A-equivalence classes of B-equivariant representations u of & on V such that p |z =
Mg .

‘We apply Proposition 5.10 to homogeneous vector bundles.

5.11. Theorem. Let X = G/H homogeneous complex manifold, & C &°
the subalgebra defined by (3.1), and x a conttnuous representation of H on a complex
vector space V. Suppose that x has an extension N\ from H to {. Let € = G(V).

1. Let H act on Rby adg , on V by x. Then f — \ + f is a bijection of Z1(8, ©; )7
onto the set of all extensions of x from H to R In particular (Theorem 3.6)
Z) (2, ©; € parameterizes the set of all G-homogeneous holomorphic vector bundle
structures on V, — X,
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2. Let A be the group of invertible elements in the commuting algebra of x.
Then two extensions of x from H to & are A-equivalent tf and only if the correspond-
ing holomorphic structures on V, — X are related by a G-bundle equivalence,
inducing the identity transformation of X. In particular Hy (8, ; €)% parameterizes
the set of all G-bundle equivalence classes of G-homogeneous holomorphic vector
bundle strunctures on V,, — X.

Proof. By definition, u is an extension of x from H to { if and only if u e
Homy (8, €) with u |g = x. Thus A e Homy (&, §), and u is an extension of x
from H to f if and only if u e Homy (8, €) with u |[¢ = N\ |[s . Now (5.5) shows
that f — X\ + f bijects Z1(, ©; €)¥ onto the set of extensions of x from H to L.
That proves (1).

Let 8 : V, — V, be a G-bundle equivalence. Then 8 commutes with the
action of G and 8 is a linear transformation on each fibre. Thus 8 is specified by
an invertible linear transformation « on the fibre over z, that commutes with
every h e H on that fibre, and any such « specifies an equivalence 8, by 8 = gag™
on the fibre over g(x,). Now @8 is specified by an arbitrary a ¢ A via 8[g, v] =
[9, a(w)]. The first assertion of (2) is proved, and the second now follows from
(1) and Proposition 5.10. Q.E.D.

Remark. If we could find a Lie group L with Lie algebra &, such that H
is a subgroup of L that meets every component, then we could manage a version
of Theorem 5.11 with ordinary equivariant relative Galois cohomology. But
if such a group L exists, we more or less have G contained in its complexification,
and that is far from the case when X is the unit disc and @ is the universal
covering group of SL(2, R). Thus we need the Lie algebra version of the Galois
cohomology.

§6. Proof of Lemma 3.8. We obtain Lemma 3.8 as a consequence of the
following Cauchy—Kowalewski-Lie type theorem on local solutions of uniformly
bounded first order quasi-linear systems. As we could not find the statement
or proof in the literature we include them for the convenience of the reader.

6.1. Theorem. Let & be a complex Lie albegra of holomorphic vector fields
on an open set W C C~ such that

if weW and 0= £e® then £, #0.

Let V be a complex Banach space, L(V) the algebra of bounded linear transforma-
tions of V, and X : & — L(V) a linear map. Consider the system

(6.2) Ef+MOf =0, all £e®

for functions f : W — V. Choose wy, ¢ W. Then the following conditions are equiv-
alent.

1. \ s a Lie algebra representation, i.e. NE , &] = ME)AE) — MEIN(E)
for all £1 , Ez € 8.



26 J. A. TIRAO & J. A. WOLF

2. Given v e V there is an open neighborhood W, of w, in W that carries a holo-
morphic solution f : Wo — V of (6.2) such that f(w,) = v.

3. There are complex local coordinates z = (2/, 2'') on a neighborhood W of
wo tn W such that z(w,) = 0 and

Q@ =@, -, n=dmc® and 2’ = (" ---,2");

(i) if te R then
£, = D atz(w)) a—z; with af(z) holomorphic.
k=1
If ¢(2"") is a holomorphic function on a neighbordood of 0 in C¥ ™ then there exist
a netghborhood W, of we tn W3 and a unique holomorphic function f : Wy — V
that satisfies (6.2), such that
if weW, and 2/(w) =0 then f(w) = ¢(z""(w)).

Remark. The proof will be valid for a real Lie algebra of C* vector fields,

a real Banach space, and a real analytic initial value function ¢.

Lemma 3.8 follows from Theorem 6.1. Let G° denote any complex Lie group
with Lie algebra &°. Choose an open set 8 C ®&° such that

(i) W = exp (B) is a complex local coordinate neighborhood of 1 in G°,
(ii) exp : B — W is a diffeomorphism, and
(iii) expe maps @ M W diffeomorphically onto an open set U C G.

We identify U with a closed subset of W by expg (§) — exp (¢) e W.
{ is a Lie algebra of left invariant holomorphic vector fields on W, and also

a Lie algebra of complex valued vector fields on U. Those realizations are related
by

(6.3) &N ]U = £ (f lv) for el

A :® — L(V) is given as a Lie algebra representation. Let w, = 1 e W and choose
ve V. Theorem 6.1 provides an open set W, , 1 ¢ W, C W, and a holomorphic
solution f : W, — V to (6.2), such that f(1) = v. Let U’ = U N\ Wi and f' =
f lus . Then (6.3) shows that f' : U’ — V is a solution of (3.7) such that f'(1) = ».
Thus Theorem 6.1 implies Lemma 3.8. Q.E.D.

Proof of Theorem 6.1. 1f (3) holds, then (2) follows with the choice ¢(2"') = v
for all 2.

Assume (2) and let f : W, — V be a holomorphic solution to (6.2) such that
f(wo) = v. Then

M, v = Ay, E1f(wo) = —([&1, £2]-1) (wo)
— G ) wo) + (2 i) (wo)
G- NEDN)wo) — (E2- AEN) (wo)

]

I
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= M) - wo) — NE)E+ 1 (wo)
= {—=MEINE) + MEINE) }(wo)
= {NEIME) — NEINED) .

As v eV is arbitrary that shows )\ to be a Lie algebra representation. Thus (2)
implies (1).

We go on to prove that (1) implies (3). The complex Frobenius Theorem
(cf. [1], p. 323) provides a complex local coordinate neighborhood (W; , 2)
of w, in W such that z2(w,) = 0 and dz*(() = O forn < ¢ < N and ¢ ¢ 2. That
is where we use the hypothesis that € is a Lie algebra of holomorphic vector
fields on W such that ¢, = 0 for we W and 0 5 £e & Now z = (¢/, 2) asin
(i) of (3), and every £ ¢ € has expression £ = D 7., af(2)(9/02"), with a}(z) holo-
morphie in z and linear in £ Choose a basis {£, - -+ , £} of & Now

n

(6.4) t= 2. di) 5% , a% holomorphic, det (a¥) = 0.

k=1

Let (b;) denote the inverse matrix, so

6.5 Z": ar(@)bi®) = &, b; holomorphic.

k=1

Now we re-write our system (6.2) as
n : a
6.6 Df+ 21 bdf=0, Di=-7,N=2M)lslsn

We use multi-indices 7 = (py, "+, pv)yp = (11, -+ ,ry) and ¢ = (81,
-, sy) with integral entries =0. ¢ denotes the multi-index with 8! in the
1*® place. As usual,

2" denotes (')>(2°)* --- (M),
D™ denotes D3D3* --- D%,

x| = Z pi and =l = (pN)(ps)) --- (p&))-
Now expand the holomorphic functions b;(z) by

6.7) bi@) = 20 bi: 2

P
Suppose that we have a formal V-valued power series
6.8) @) = 2 a2z, a, eV,

with formal initial conditions
(6.9) 7(0, 2”") = ¢(2"") formal V-valued power series.
Then the equation (6.6) says formally that
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(6.10) Z a.pie” " + Z > 3 biN(az™? = 0.

i=1 p *

If we replace = by ¢ + ¢ in (6.10) and equate coefficients we obtain

(6.11) Gora = 5 +1 > Y bia@); 1=1=n

i=1 w+p=0

That recursion formula in turn implies (6.2) in any subdomain of W} on which
the series (6.8) is absolutely convergent.

We use (6.9) and (6.11) to determine the coefficients a, in (6. 8). Suppose
that all a, with |r|] < M are determined; we determine the @¢,., , 1 £ 1 < N,
with ¢ + ¢| = M + 1. If n < 1 < N then either all s; = 0forl <7 =< n
and (6.9) determines a,.., , or there exists ¥ < n with s, = 1 and we write
o + ¢ = ¢ + ¢ to throw the problem back to the case l = n. If 1 =1 = n
then (6.11) determines a,.., in terms of the already-known a, with |r] < M.

Now all a, are determined. Some, however, are determined in several ways.
To see that our recursive construction of the a, is not ambiguous, we must
check that

if 1k<lZn and 4+ & = ¢ + ¢ then

. + 1 Z > bin(a) = Z > b (an).

i=1 pty=71 i=1l x+p=0

In other words, from the viewpoint of r — ¢, = v = ¢ — & , we must check
that if a formal power series (6.8) satisfies

(a) Dif + wa—O— Dif + Z_;bkx,f

with 1 £ k < I < n, then it automatically satisfies

(b) Dk(le) = Dt(Dkf)-
We compute, using (a), that

n

DD = 3 bBANS — 3 DM,

t,i=1

D(Df) = Zl BHNS — 3 DibIMS.
Thus to show that (a) implies (b) we need only prove

6.12) }1’_;1 bibiln: , N] = Z {Du(b}) — Dy(b)}N:

If we apply D _r .., ala® to the left side of (6.12) we obtain [\, , AJ]. If we apply
it to the right side of (6.12) then we obtain

Z a,a; Dy(bi)\; — Z alar Dy(b,
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It

Z azzga(b;.))‘i - Z a:&(bl))\c

il i,k

= ;sxa:)bzx.- - les.,(a:)b';x.-

= M g,(@)bit, — X t(al)bit)  at each point
.k i,

M2 £(a7) D, — Dt (a7 D,) at each point

A[Ep ’ Ea] = D\fp ’ >‘Ea] = D‘p ’ >‘q]-

Thus (6.12) is just the hypothesis that A be a Lie algebra representation. Now
we have proved that (6.9) and (6.11) determine the coefficients @, in (6.8),
completely and without ambiguity. Thus we have constructed a formal solution
(6.8) to (6.6) with initial condition (6.9).

Now we assume that the initial condition series (6.9) represents a holomorphic
function, and we conclude that the series (6.8) just constructed also represents
a holomorphic function. Choose r > 0 such that

the bi(z) are holomorphicon |¢f| < 2r,1 < k £ N,
#(2"") is holomorphic on |¢*| < 2r, n <k < N.
Then for any multi-index x, and any #’ = (0, ++- , 0, Pps1, -+ , D) # 0,

Mn! M='!

(Dbi)(©0)| < = and [(D"'®)O)]] < Teri-1
., r

for some M > 0. Increase M if necessary so that M = max (|[\]], - -, [\, 1),
let P = nM?®, and then increase M again if necessary so that » = 1/P. Finally
adjust the norm on V so that |[¢(0)|| = 1. Now we must find a number ¢ > 0
such that

(6.13) lla.rl] < (P/¢)'"!, all multi-indices .
For then on the polydise || S trc, 0 < ¢t < 1,

Z [la.2"|| = Z llau|| £ 71! !
Z,:t"' _ (gtq)N= (i"l_"z)N< .

so f converges uniformly and absolutely on that polydisc. Thus the series (6.8)
will represent a holomorphic function on the polydisc |¢*| < r¢, and that will
give the neighborhood W, carrying the required solution f to (6.2).

To prove (6.13) we first find an integer A = 1 such that

(6.14) 4+ )" < AN
If N = 1 we may take A to be any integer =1. If N > 1 we note

IIA
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that log (A + 1)/log (A) decreases to 1 as A — «, and we take 4 sufficiently
large so that N/(N — 1) = log (4 + 1)/log (4). Then we have (6.14). That
done, note > 2, (4 + 1)® < (A + 1)**'/A by induction on s, and apply
(6.14) to see

T A+ =3 3 3 4 g e

Ttp=o 21=0 p2=0 PN=0
N 84 ) N 1
=X @+ 1)") <II5 @+~
i= i= i=]
= A—N(A +’ l)N—l(A 'l‘ 1)1+2c; § (A + l)leH.
That gives us
(6.15) > o' =g’ where ¢ = -A—-ITI , 0<c=1.
THp=0o

Now we check that the number ¢ > 0 of (6.15) satisfies (6.13). If = = 0
then (6.13) says ||¢(0)|] < 1, which was arranged. If #+ = (0, +++ , 0, Pus1
*, pn) # O then

M < Plfl é (P/C Ixl

xl-1 =

el = L @wo| s

1"

where the last inequality uses ¢ < 1. To prove (6.13) by induction on |x| we

recall the construction (6.11) and compute

-1 ud ‘
s; + 1 Z E bl;l)‘i(ar)

f=] w4pm=o

”a¢+ol” =

= 2 2 bl Il

i=1 Tip=e

=n ﬂ-M -(P/c)'' induction step

el rlpl

= ( Z c-lrl)Plu-ul < (P/c)lnul
x+pm=o
where the last inequality is (6.15). Thus (6.13) is proved, and that completes
the proof that (1) implies (3) in Theorem 6.1. Now Theorem 6.1 is proved.

QE.D.
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